National Library of Energy BETA

Sample records for resources production capacity

  1. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  2. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity, and Retail Availability for Low-Carbon Scenarios | Department of Energy Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel

  3. Iran outlines oil productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  4. "Period","Annual Production Capacity",,"Monthly B100 Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  5. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011

  6. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2012

  7. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  8. Pdvsa plans to hike productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-01-13

    This paper reports that Venezuela's state oil company plans to jump its productive capacity by 117,000 b/d to 2.92 million b/d this year. Petroleos de Venezuela also projects sizable increases for oil and gas reserves and plans record spending in 1992. Meantime, Pdvsa is sounding a warning again about the Venezuelan government's excessive tax take amid debate within the company about spending priorities.

  9. Water Efficient Energy Production for Geothermal Resources |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources PDF icon Primer FINAL.PDF More Documents & Publications Water ...

  10. Water Efficient Energy Production for Geothermal Resources |...

    Broader source: Energy.gov (indexed) [DOE]

    Water Efficient Energy Production for Geothermal Resources.PDF (4.19 MB) More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the ...

  11. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  12. ,"U.S. Production Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Aromatics Production Capacity as of January 1 (Barrels per Stream Day)","U.S. Refinery Asphalt and Road Oil ...

  13. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  14. 1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

  15. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5_es_wise_2012_p.pdf (321.02 KB) More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011 Annual Progress Report for Energy Storage R&D

  16. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    All Petrolem Reports U.S. Fuel Ethanol Plant Production Capacity Release Date: June 29, ... This is the sixth release of the U.S. Energy Information Administration data on fuel ...

  17. GTP energy production from low-temperature resources, coproduced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GTP energy production from low-temperature resources, coproduced fluids, and geopressured resources. GTP energy production from low-temperature resources, coproduced fluids, and ...

  18. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  19. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect (OSTI)

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  20. Clean Energy Manufacturing Resources - Technology Full-Scale Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  1. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  2. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  3. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

  4. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment for Hydrogen Production Hydrogen Production Potential from Fossil and Renewable Energy Resources M. Melaina, M. Penev, and D. Heimiller National Renewable Energy Laboratory Technical Report NREL/TP-5400-55626 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL)

  5. Multi-Programmatic and Institutional Computing Capacity Resource Attachment 2 Statement of Work

    SciTech Connect (OSTI)

    Seager, M

    2002-04-15

    Lawrence Livermore National Laboratory (LLNL) has identified high-performance computing as a critical competency necessary to meet the goals of LLNL's scientific and engineering programs. Leadership in scientific computing demands the availability of a stable, powerful, well-balanced computational infrastructure, and it requires research directed at advanced architectures, enabling numerical methods and computer science. To encourage all programs to benefit from the huge investment being made by the Advanced Simulation and Computing Program (ASCI) at LLNL, and to provide a mechanism to facilitate multi-programmatic leveraging of resources and access to high-performance equipment by researchers, M&IC was created. The Livermore Computing (LC) Center, a part of the Computations Directorate Integrated Computing and Communications (ICC) Department can be viewed as composed of two facilities, one open and one secure. This acquisition is focused on the M&IC resources in the Open Computing Facility (OCF). For the M&IC program, recent efforts and expenditures have focused on enhancing capacity and stabilizing the TeraCluster 2000 (TC2K) resource. Capacity is a measure of the ability to process a varied workload from many scientists simultaneously. Capability represents the ability to deliver a very large system to run scientific calculations at large scale. In this procurement action, we intend to significantly increase the capability of the M&IC resource to address multiple teraFLOP/s problems, and well as increasing the capacity to do many 100 gigaFLOP/s calculations.

  6. Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003 Printer-Friendly Version gascapdata.xls ratiodata.xls wellcountdata.xls Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available

  7. GTP energy production from low-temperature resources, coproduced fluids,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and geopressured resources. | Department of Energy GTP energy production from low-temperature resources, coproduced fluids, and geopressured resources. GTP energy production from low-temperature resources, coproduced fluids, and geopressured resources. This document provides and overview of how to respond to a funding opportunity announcement. go_foa_overview.pdf (94.71 KB) More Documents & Publications Microsoft Word - fDE-FOA-0000109.rtf Microsoft Word - FOA cover sheet.doc DISCLAIMER:

  8. U.S. Fuel Ethanol Plant Production Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Note: In previous ethanol capacity reports, EIA included data on maximum sustainable ... The collection and publication efforts for the maximum sustainable data value were ...

  9. Draft environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R

    SciTech Connect (OSTI)

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.

  10. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 1, Summary

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public.

  11. Geothermal Energy Production with Co-produced and Geopressured Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet), Geothermal Technologies Program (GTP) | Department of Energy Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources. low_temp_copro_fs.pdf (587.5 KB) More Documents & Publications

  12. Power Production from a Moderate-Temperature Geothermal Resource...

    Open Energy Info (EERE)

    Paper: Power Production from a Moderate-Temperature Geothermal Resource Authors Joost J. Brasz, Bruce P. Biederman and Gwen Holdmann Conference GRC annual meeting; Reno,...

  13. Resource Evaluation and Site Selection for Microalgae Production in India

    SciTech Connect (OSTI)

    Milbrandt, A.; Jarvis, E.

    2010-09-01

    The study evaluates climate conditions, availability of CO2 and other nutrients, water resources, and land characteristics to identify areas in India suitable for algae production. The purpose is to provide an understanding of the resource potential in India for algae biofuels production and to assist policymakers, investors, and industry developers in their future strategic decisions.

  14. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    SciTech Connect (OSTI)

    Not Available

    1994-07-14

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

  15. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect (OSTI)

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  16. Assessing Impact of Biofuel Production on Regional Water Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biofuel Production on Regional Water Resource Use and Availability May Wu Ph.D. ... 15, 2012 Biofuel Is a Key Component in Water-Energy Nexus 1 2 Potential Cellulosic ...

  17. Potential for Hydrogen Production from Key Renewable Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NRELTP-640-41134 February 2007 NREL is operated by...

  18. EIA Energy Efficiency-Table 3c. Capacity Adjusted Value of Production...

    Gasoline and Diesel Fuel Update (EIA)

    c Page Last Modified: May 2010 Table 3c. Capacity Adjusted Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS...

  19. EIA Energy Efficiency-Table 4c. Capacity Adjusted Value of Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    c Page Last Modified: May 2010 Table 4c. Capacity Adjusted Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS...

  20. Resource evaluation and site selection for microalgae production systems

    SciTech Connect (OSTI)

    Maxwell, E.L.; Folger, A.G.; Hogg, S.E.

    1985-05-01

    Climate, land, and water resource requirements of microalgae production systems (MPS) were examined relative to construction costs, operating costs, and biomass productivity. The objective was the stratification of the southwestern United States into zones of relative suitability for MPS. Maps of climate (insolation, freeze-free period, precipitation, evaporation, thunderstorm days), land (use/cover, ownership, slope), and water (saline groundwater) resource parameters were obtained. These maps were transformed into digital overlays permitting the cell-by-cell compositing of selected resource parameters to form maps representing relative productivity, make-up water, climate suitability, land suitability, water suitability, and overall suitability. The Southwest was selected for this study because of its high levels of insolation, saline water resources, and large areas of relatively low valued land. The stratification maps cannot be used for the selection of specific sites because of their low resolution (12,455-acre cells). They can be used to guide future resource studies and site selection efforts, however, by limiting these efforts to the most suitable regions. Future efforts should concentrate on saline water resources, for which only limited data are currently available. 13 refs., 44 figs., 5 tabs.

  1. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 2, Sections 1-6

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains the analysis of programmatic alternatives, project alternatives, affected environment of alternative sites, environmental consequences, and environmental regulations and permit requirements.

  2. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 3, Sections 7-12, Appendices A-C

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains references; a list of preparers and recipients; acronyms, abbreviations, and units of measure; a glossary; an index and three appendices.

  3. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    SciTech Connect (OSTI)

    1996-02-09

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

  4. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect (OSTI)

    Hadder, G.R.; Chin, S.M.

    1994-02-01

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  5. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  6. World oil and gas resources-future production realities

    SciTech Connect (OSTI)

    Masters, C.D.; Root, D.H.; Attanasi, E.D. )

    1990-01-01

    Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

  7. "Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel

  8. Historical perspective on Illinois coal resources and production, 1960-1984

    SciTech Connect (OSTI)

    Ellis, M.F.

    1985-08-01

    The study analyzes Illinois coal resources and production from the historical perspective of the period 1960 through 1984. The study examines demonstrated Illinois coal resources, major coal seams, major coal producers in the State, mine employment and production, coal production at the county level, coal prices and revenues, and coal mine operations compared to Illinois State Product.

  9. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect (OSTI)

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  10. Implications of Model Configurations on Capacity Planning Decisions: Scenario Case Studies of the Western Interconnection and Colorado Region using the Resource Planning Model

    Broader source: Energy.gov [DOE]

    In this report, we analyze the impacts of model configuration and detail in capacity expansion models, computational tools used by utility planners looking to find the least cost option for planning the system and by researchers or policy makers attempting to understand the effects of various policy implementations. The present analysis focuses on the importance of model configurations—particularly those related to capacity credit, dispatch modeling, and transmission modeling—to the construction of scenario futures. Our analysis is primarily directed toward advanced tools used for utility planning and is focused on those impacts that are most relevant to decisions with respect to future renewable capacity deployment. To serve this purpose, we develop and employ the NREL Resource Planning Model to conduct a case study analysis that explores 12 separate capacity expansion scenarios of the Western Interconnection through 2030.

  11. Assessing Impact of Biofuel Production on Regional Water Resource Use and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability | Department of Energy Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Dr. May Wu, ANL, 8/15/12 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wu_webinar.pdf (4.26 MB) More Documents & Publications Achieving Water-Sustainable Bioenergy Production 2013 Peer Review Presentations-Analysis and

  12. Low Standby Power Product Purchasing Requirements and Compliance Resources

    Broader source: Energy.gov [DOE]

    Federal agencies are required to purchase energy-consuming products with a standby power level of 1 watt or less, when compliant models are available on the market. To assist federal buyers in complying with this low standby power product requirement, the Federal Energy Management Program (FEMP) has identified priority product categories, which include products that consume relatively large amounts of energy and are prevalent in the federal sector.

  13. OPEC and lower oil prices: Impacts on production capacity, export refining, domestic demand and trade balances

    SciTech Connect (OSTI)

    Fesharaki, F.; Fridley, D.; Isaak, D.; Totto, L.; Wilson, T.

    1988-12-01

    The East-West Center has received a research grant from the US Department of Energy's Office of Policy, Planning, and Analysis to study the impact of lower oil prices on OPEC production capacity, on export refineries, and petroleum trade. The project was later extended to include balance-of-payments scenarios and impacts on OPEC domestic demand. As the study progressed, a number of preliminary presentations were made at the US Department of Energy in order to receive feedback from DOE officials and to refine the focus of our analysis. During one of the presentations on June 4, 1987, the then Director of Division of Oil and Gas, John Stanley-Miller, advised us to focus our work on the Persian Gulf countries, since these countries were of special interest to the United States Government. Since then, our team has visited Iran, the United Arab Emirates, and Saudi Arabia and obtained detailed information from other countries. The political turmoil in the Gulf, the Iran/Iraq war, and the active US military presence have all worked to delay the final submission of our report. Even in countries where the United States has close ties, access to information has been difficult. In most countries, even mundane information on petroleum issues are treated as national secrets. As a result of these difficulties, we requested a one-year no cost extension to the grant and submitted an Interim Report in May 1988. As part of our grant extension request, we proposed to undertake additional tasks which appear in this report. 20 figs., 21 tabs.

  14. Resources

    Broader source: Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  15. Assessing Impact of Biofuel Production on Regional Water Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May Wu, ANL, 81512 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf (4.26 MB) More Documents & Publications ...

  16. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information askUS - Operations Unified Services Portal IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature

  17. Subsidence at Boling salt dome: results of multiple resource production

    SciTech Connect (OSTI)

    Mullican, W.F. III

    1988-02-01

    Boling dome (Wharton and Fort Bend Counties) has experienced more overall subsidence and collapse than any other dome in Texas. These processes are directly related to production of sulfur and hydrocarbons from the southeastern quadrant of the dome. Greatest vertical movement due to subsidence and collapse is 35 ft (based on the Boling 7.5 min topographic map, last surveyed in 1953). Most of the subsidence (83%) is attributed to sulfur production, whereas only 11 to 12% can be linked to hydrocarbon production. Reservoir compaction is the dominant mechanism of land subsidence in areas of hydrocarbon production at Boling dome. Trough subsidence, chimneying, plug caving, and piping are the characteristic mechanisms over sulfur fields developed at the salt dome. The structural and hydrologic stability of the surface and subsurface at Boling dome is compromised by these active deformation processes. Damage to pipelines and well-casing strings may result in costly leaks which have the potential of being uncontrollable and catastrophic. Reduction in hydrologic stability may result if natural aquitards are breached and fresh water mixes with saline water or if hydrologic conduits to the diapir are opened, allowing unrestricted dissolution of the salt stock.

  18. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs,...

  19. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  20. Production of biomass fuel for resource recovery: Trash recycling in Dade County, Florida

    SciTech Connect (OSTI)

    Mauriello, P.J.; Brooks, K.G.

    1997-12-01

    Dade County, Florida has been in the forefront of resources recovery from municipal solid waste since the early 1980`s. The County completed its 3,000 tons per day (six days per week) refuse derived fuel waste-to-energy facility in 1982. The Resources Recovery facility is operated under a long-term agreement with Montenay-Dade, Ltd. The trash processing capability of this facility was upgraded in 1997 to process 860 tons per day (six days per week) of trash into a biomass fuel which is used off-site to produce electrical energy. Under current Florida law, facilities like trash-to-fuel that produce alternative clean-burning fuels for the production of energy may receive credit for up to one-half of the state`s 30 percent waste reduction goal.

  1. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  2. Economics of large-scale thorium oxide production: assessment of domestic resources

    SciTech Connect (OSTI)

    Young, J.K.; Bloomster, C.H.; Enderlin, W.I.; Morgenstern, M.H.; Ballinger, M.Y.; Drost, M.K.; Weakley, S.A.

    1980-02-01

    The supply curve illustrates that sufficient amounts of thorium exist supply a domestic thorium-reactor economy. Most likely costs of production range from $3 to $60/lb ThO/sub 2/. Near-term thorium oxide resources include the stockpiles in Ohio, Maryland, and Tennessee and the thorite deposits at Hall Mountain, Idaho. Costs are under $10/lb thorium oxide. Longer term economic deposits include Wet Mountain, Colorado; Lemhi Pass, Idaho; and Palmer, Michigan. Most likely costs are under $20/lb thorium oxide. Long-term deposits include Bald Mountain, Wyoming; Bear Lodge, Wyoming; and Conway, New Hampshire. Costs approximately equal or exceed $50/lb thorium oxide.

  3. Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources PI (new as of 09/12): Nathan Hancock, Ph.D. Oasys Water Inc. Low Temperature Project Officer: Timothy Reinhardt Total Original Funding: $910,997 Federal with 2:1 cost share Pending rescope: $372,329 Federal (w/ $205,502 outstanding & 1:1 cost share) April 22, 2012 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov

  4. EIS-0144: Siting, Construction, and Operation of New Production Reactor Capacity; Hanford Site, Idaho National Engineering Laboratory, and Savannah River Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation's nuclear defense requirements well into the 21st century. This EIS was cancelled after the DEIS was issued.

  5. Naval Station Newport Wind Resource Assessment. A Study Prepared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... wind speeds, energy production for a generic 1.5 MW wind turbine, and capacity factor. ... resource at the selected sites at NAVSTA Newport is sufficient for a wind turbine project. ...

  6. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect (OSTI)

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  7. 2015 Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources ...

  8. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  9. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  10. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  11. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  12. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Capacity Report With Data as of January 1, 2016 | Release Date: June 22, 2016 | Next Release Date: June 23, 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 prior issues Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators

  13. A Field Study on Simulation of CO 2 Injection and ECBM Production and Prediction of CO 2 Storage Capacity in Unmineable Coal Seam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Qin; Mohaghegh, Shahab D.; Gholami, Vida

    2013-01-01

    CO 2 sequestration into a coal seam project was studied and a numerical model was developed in this paper to simulate the primary and secondary coal bed methane production (CBM/ECBM) and carbon dioxide (CO 2 ) injection. The key geological and reservoir parameters, which are germane to driving enhanced coal bed methane (ECBM) and CO 2 sequestration processes, including cleat permeability, cleat porosity, CH 4 adsorption time, CO 2 adsorption time, CH 4 Langmuir isotherm, CO 2 Langmuir isotherm, and Palmer and Mansoori parameters, have been analyzed within a reasonable range. The model simulation results showed good matches formore » both CBM/ECBM production and CO 2 injection compared with the field data. The history-matched model was used to estimate the total CO 2 sequestration capacity in the field. The model forecast showed that the total CO 2 injection capacity in the coal seam could be 22,817 tons, which is in agreement with the initial estimations based on the Langmuir isotherm experiment. Total CO 2 injected in the first three years was 2,600 tons, which according to the model has increased methane recovery (due to ECBM) by 6,700 scf/d.« less

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 92,765 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 70,000 4,000 12,000 7,500 26 280 Pennsylvania

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1987 to January 1, 2016 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN 1, 1990 1,030 290 844 456 232 341 2,607 24,202

  16. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Potential Impacts to Utilities Electrolytic Hydrogen Production Workshop February 28, 2014 Frank Novachek Director, Corporate Planning 2 Electrolytic Hydrogen Production Potential Impacts - Electric System * Reliability * Capacity * Regulation * Generation Resources * On/Off Peak * Dispatchability Renewables Integration System Operations Electric Load Hydrogen Production * Ramp Control * Reserves * Plant Cycling 3 Unique Opportunities - Electric  Increased

  17. Energy requirements for metals production: comparison between ocean nodules and land-based resources. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A methodology was developed to compare the energy requirements of technologies for production of metals from ocean nodules with production of same metals from land based ores using conventional processes. The energy requirements for production of copper, nickel, cobalt, and manganese from ocean nodules are based on an ocean mining operation of 3 million tons per year of dry nodules. A linear relationship exists between the amount of nodules processed and the total energy so that the energy can be easily converted to other processing rates if desired.

  18. Business resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business resources Business resources Setting new standards and small business initiatives within NNSA that will contribute to developing and strengthening our strategic partners for national security challenges. Contact Small Business Office (505) 667-4419 Email Broaden your market-find more resources with other labs, organizations LANL encourages business owners to fully research the Laboratory and to also market their services and products to other businesses, small business programs of other

  19. Fruit production of Attalea colenda (Arecaceae) in coastal Ecuador - an alternative oil resource?

    SciTech Connect (OSTI)

    Feil, J.P.

    1996-07-01

    Attalea colenda is a monoecious palm found in pastures in coastal Ecuador. In dry regions, it is a valuable source of oil in self-sufficiency farming or in combination with cattle in pastures. The palm was studied over a gradient of dry to humid environments during two fruiting seasons. Palm growth, production of leaves, inflorescences, and infructescences, number of fruits per infructescence, and seed weight of five populations were evaluated. The individual of average size is 15 m tall, which corresponds to approximately 30-40 years of age. No difference in fruit production was recorded between wet and dry regions of coastal Ecuador. The average production of one hectare of pasture, with 50 palms, was 0.9 t of oil per year. One population that was part of an agroforestry system produced 50% more fruits than the average of all populations in pasture. 18 refs., 1 fig., 6 tabs.

  20. Integrated Resource Planning Model (IRPM)

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01

    The Integrated Resource Planning Model (IRPM) is a decision-support software product for resource-and-capacity planning. Users can evaluate changing constraints on schedule performance, projected cost, and resource use. IRPM is a unique software tool that can analyze complex business situations from a basic supply chain to an integrated production facility to a distributed manufacturing complex. IRPM can be efficiently configured through a user-friendly graphical interface to rapidly provide charts, graphs, tables, and/or written results to summarize postulated business scenarios. There is not a similar integrated resource planning software package presently available. Many different businesses (from government to large corporations as well as medium-to-small manufacturing concerns) could save thousands of dollars and hundreds of labor hours in resource and schedule planning costs. Those businesses also could avoid millions of dollars of revenue lost from fear of overcommitting or from penalties and lost future business for failing to meet promised delivery by using IRPM to perform what-if business-case evaluations. Tough production planning questions that previously were left unanswered can now be answered with a high degree of certainty. Businesses can anticipate production problems and have solutions in hand to deal with those problems. IRPM allows companies to make better plans, decisions, and investments.

  1. Rincon De La Vieja Geothermal Resource Area | Open Energy Information

    Open Energy Info (EERE)

    Production Capacity: Net Production Capacity: Owners : Instituto Costarricence de Electricidad Power Purchasers : Instituto Costarricence de Electricidad Other Uses: Click "Edit...

  2. RD & D priorities for energy production and resource conservation from municipal solid waste

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

  3. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  4. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  5. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    SciTech Connect (OSTI)

    Seager, M

    2007-03-22

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as

  6. Energy baseline and energy efficiency resource opportunities for the Forest Products Laboratory, Madison, Wisconsin

    SciTech Connect (OSTI)

    Mazzucchi, R.P.; Richman, E.E.; Parker, G.B.

    1993-08-01

    This report provides recommendations to improve the energy use efficiency at the Forest Products Laboratory in Madison, Wisconsin. The assessment focuses upon the four largest buildings and central heating plant at the facility comprising a total of approximately 287,000 square feet. The analysis is comprehensive in nature, intended primarily to determine what if any energy efficiency improvements are warranted based upon the potential for cost-effective energy savings. Because of this breadth, not all opportunities are developed in detail; however, baseline energy consumption data and energy savings concepts are described to provide a foundation for detailed investigation and project design where warranted.

  7. Resource Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Analysis » Analysis Methodologies » Resource Analysis Resource Analysis Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount that can be available for hydrogen production. While often associated with renewable resources, resource analysis is also suitable for fossil resources and existing production facilities. Geographic Information Systems (GIS)

  8. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  9. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  10. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Energy Potential from New Stream-reach Development in the United States ... The estimated technical resource capac- ity for new stream-reach development is 84.7 GW, ...

  11. Spray dryer capacity stretched 50%

    SciTech Connect (OSTI)

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  12. WINDExchange: U.S. Installed Wind Capacity

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) Isooctane a ..................................................................... Alabama 0 0 15,000 1,150 4,200 0 7,120 40 228 0 Hunt Refining Co 0 0 15,000 0 4,200 0 7,120

  14. Proposed coal product valuation rules. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, First Session, November 16, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to discuss the proposed rules issued by the Department of the Interior relating to the valuation of coal production from Federal and Indian leases for royalty purposes. The rules would base the value of coal on the gross proceeds obtained under a contract. The rules would exclude Federal black lung excise tax payments and abandoned mine payments from value, but would include state severance taxes. Considerable controversy arose such that Congress imposed a moratorium on implementation to allow further public comment. An alternative proposal from a joint industry group would base value on the depletable income provisions of the Internal Revenue Code. However, several western governors have voiced concerns over this alternative which analysis shows would result in significantly lower revenues to the Federal government, the states, and to the Tribes. Testimony was heard from eight witnesses, representing the DOI Land and Minerals Management, electric power associations, Western Organization of Resource Councils, the Navajo nation, National Coal Association, and Montana. Additional materials were submitted by the Energy Information Administration, the Western Coal Traffic League, the Western Fuels Association, and the States of Wyoming, North Dakota, Colorado, and New Mexico.

  15. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  16. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  17. Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Porter, K.

    2008-06-01

    This paper summarizes state and regional studies examining the capacity value of wind energy, how different regions define and implement capacity reserve requirements, and how wind energy is defined as a capacity resource in those regions.

  18. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  19. Sage Resources | Open Energy Information

    Open Energy Info (EERE)

    Sage Resources Jump to: navigation, search Name: Sage Resources Place: Missoula, Montana Zip: 59803 Sector: Geothermal energy, Solar Product: A company specializing in geothermal...

  20. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  1. Biomass Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Name: Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1...

  2. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  3. winter_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  4. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources About one in every three federal employees is a military Veteran. At the Department of Energy, 21 percent of our workforce is made up of preference veterans. Veterans, their spouses, and dependent children are eligible for a variety of benefits provided by the Federal government. Some of these benefits are connected with service disabilities; others depend on amount of time served and in what capacity. Regardless, any Veteran seeking employment with a Federal agency should be

  5. Planned Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and...

  6. Comparing Resource Adequacy Metrics: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-09-01

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  7. Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  8. WINDExchange: Potential Wind Capacity

    Wind Powering America (EERE)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  9. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2016 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 131,675 0 140,500 0 47,000 32,000 0 0 0

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels ... Catalytic Cracking Downstream Charge Capacity (Barrels per Stream Day) Cracking Thermal ...

  11. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  12. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2016 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 2,062,300 Valero Refining Co Texas LP

  14. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2014 - 2016 (Barrels per Calendar Day) Reformers Capacity Inputs 2014 2,686,917 5,616,015 2,034,689 2,337,425 4,884,975 1,662,603 2,591,992 3,419,407 74,900 475,800 41,500 47,633 407,342 29,849 PADD I 175,036 240,550 520,521 1,213,427 310,950 444,060 1,023,877 267,016 PADD II 645,874 837,754 1,479,496 2,916,764 1,118,239

  16. USING 3D COMPUTER MODELING, BOREHOLE GEOPHYSICS, AND HIGH CAPACITY PUMPS TO RESTORE PRODUCTION TO MARGINAL WELLS IN THE EAST TEXAS FIELD

    SciTech Connect (OSTI)

    R.L. Bassett

    2003-06-09

    Methods for extending the productive life of marginal wells in the East Texas Field were investigated using advanced computer imaging technology, geophysical tools, and selective perforation of existing wells. Funding was provided by the Department of Energy, TENECO Energy and Schlumberger Wireline and Testing. Drillers' logs for more than 100 wells in proximity to the project lease were acquired, converted to digital format using a numerical scheme, and the data were used to create a 3 Dimensional geological image of the project site. Using the descriptive drillers' logs in numerical format yielded useful cross sections identifying the Woodbine Austin Chalk contact and continuity of sand zones between wells. The geological data provided information about reservoir continuity, but not the amount of remaining oil, this was obtained using selective modern logs. Schlumberger logged the wells through 2 3/8 inch tubing with a new slimhole Reservoir Saturation Tool (RST) which can measure the oil and water content of the existing porosity, using neutron scattering and a gamma ray spectrometer (GST). The tool provided direct measurements of elemental content yielding interpretations of porosity, lithology, and oil and water content, confirming that significant oil saturation still exists, up to 50% in the upper Woodbine sand. Well testing was then begun and at the end of the project new oil was being produced from zones abandoned or bypassed more than 25 years ago.

  17. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  18. Assess public and private sector capacity to support initiatives...

    Open Energy Info (EERE)

    public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development...

  19. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  20. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production capacity and production million gallons Period Annual Production ... B100 is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  1. IEED Tribal Energy Development to Build Tribal Energy Development Capacity

    Broader source: Energy.gov [DOE]

    The Assistant Secretary - Indian Affairs for the U.S. Department of the Interior, through the Office of Indian Energy and Economic Development, is soliciting grant proposals from Indian tribes to build tribal capacity for energy resource development or management under the Department of the Interior's (DOl's) Tribal Energy Development Capacity (TEDC) grant program.

  2. Locational electricity capacity markets: Alternatives to restore the missing signals

    SciTech Connect (OSTI)

    Nieto, Amparo D.; Fraser, Hamish

    2007-03-15

    In the absence of a properly functioning electricity demand side, well-designed capacity payment mechanisms hold more promise for signaling the value of capacity than non-CPM alternatives. Locational CPMs that rely on market-based principles, such as forward capacity auctions, are superior to cost-based payments directed to specific must-run generators, as CPMs at least provide a meaningful price signal about the economic value of resources to potential investors. (author)

  3. Working and Net Available Shell Storage Capacity as of September...

    Gasoline and Diesel Fuel Update (EIA)

    and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to calculate...

  4. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  5. Biomass Resources Corporation | Open Energy Information

    Open Energy Info (EERE)

    Resources Corporation Jump to: navigation, search Name: Biomass Resources Corporation Place: West Palm Beach, Florida Zip: 33401 Product: The Company has established a unique...

  6. DPL Energy Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    Resources Inc Place: Ohio Product: Ohio-based electricity utility with interests in demand response. References: DPL Energy Resources Inc1 This article is a stub. You can...

  7. National Energy Resource Corporation | Open Energy Information

    Open Energy Info (EERE)

    Resource Corporation Jump to: navigation, search Name: National Energy Resource Corporation Place: Burlington, Connecticut Zip: 6013 Product: Company focusing on development of...

  8. Agency of Renewable Resources | Open Energy Information

    Open Energy Info (EERE)

    Renewable Resources Jump to: navigation, search Name: Agency of Renewable Resources Place: Gulzow, Germany Zip: 18276 Sector: Renewable Energy Product: In 1993 the FNR was...

  9. Generation Resources Holding Co | Open Energy Information

    Open Energy Info (EERE)

    Resources Holding Co Jump to: navigation, search Name: Generation Resources Holding Co Place: Leawood, Kansas Zip: 66211-2607 Sector: Renewable Energy, Wind energy Product:...

  10. Big River Resources LLC | Open Energy Information

    Open Energy Info (EERE)

    Resources LLC Jump to: navigation, search Name: Big River Resources LLC Place: West Burlington, Iowa Zip: 52655 Product: Dry-mill bioethanol producer with a cooperative structure....

  11. Environmental Resources Management ERM | Open Energy Information

    Open Energy Info (EERE)

    Resources Management ERM Jump to: navigation, search Name: Environmental Resources Management (ERM) Place: United Kingdom Sector: Services Product: ERM is a provider of consulting...

  12. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  13. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Broader source: Energy.gov [DOE]

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while...

  14. Human Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources

  15. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  16. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  17. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  18. Save Energy Now Resources

    SciTech Connect (OSTI)

    2008-03-01

    The U.S. Department of Energy (DOE) provides information resources to industrial energy users and partnering organizations to help the nations industrial sector save energy and improve productivity.

  19. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1987 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2016 JAN 1, 1987 16,460 6,935 1,928 5,251 466 1,189 3,805 9,083 230 JAN 1, 1988 16,825 7,198

  20. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  1. Wood3 Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood3 Resources Jump to: navigation, search Name: Wood3 Resources Place: Houston, Texas Zip: 77056-2409 Product: Wood3 Resources is an energy project development firm run by former...

  2. Reclaim Resources | Open Energy Information

    Open Energy Info (EERE)

    Product: Reclaim Resources have developed a technology which provides a solution to recycling household waste, offering greater protection to the environment and more cost...

  3. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multimedia This page provides a variety of multimedia products to enhance knowledge and understanding of biomass resources, processes, and projects. Databases This page contains ...

  4. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  5. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,277,500 1,245,500 32,000 1,353,000 1,318,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  7. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  8. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  9. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  10. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Resources Teacher Resources The Bradbury Science Museum offers teacher resources for your visit. Scavenger Hunts Scavenger Hunt (pdf) Scavenger Hunt Key (pdf) Bradbury Science Museum newsletter The current issue can be found at the Newsletter page. Los Alamos Teachers' Resource Book Informal educators throughout the Los Alamos School District gather periodically to share ideas and collaborate. We have assembled a collection of flyers about our programs that serve classroom teachers into

  11. Resources - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  12. Fuel Production/Quality Resources

    Broader source: Energy.gov [DOE]

    Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum...

  13. ,"Table 4.B Winter Net Internal Demand, Capacity Resources,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...44924,44637,44422,44215.557,44353.557 ,,"Balance of Eastern Region",341158,360748,357026,3...2,77155.21552,77850.24952,77706.30352 ,,"Balance of Eastern Region",488418,511642,524995,5...

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Report June 2016 With Data as of January 1, 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2015 CHS Inc./CHS McPherson Refinery Inc. CHS Inc./NCRA 9/15 McPherson, KS 86,000 PBF Energy Co LLC/Chalmette Refining LLC Chalmette Refining LLC 11/15 Chalmette, LA 192,500 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery

  16. Davis, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Products Advanced Energy Products Corp AEP Blue Oak Energy Davis Energy Group Geothermal Resources Council Octus Energy Inc Sierra Energy Corporation University of California...

  17. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil fuels used in power production.The United States is endowed with an abundance of natural gas resources, so increasing use of natural gas power can help strengthen domestic energy security. NETL research efforts enhance technologies that reduce the cost, increase the efficiency, and reduce the environmental risk of

  18. Resources for an Energy Independence Pledge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount that can be available for hydrogen production. While often associated with renewable resources, resource analysis is also suitable for fossil resources and existing production facilities. Geographic Information Systems (GIS) modeling is often used to portray and analyze resource data. GIS can also

  19. Earthjustice, Appliance Standards Awareness Project, Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Council - Comments in response to DOE solicitation of views on the implementation of test procedure waivers for large capacity clothes washers | Department of Energy Earthjustice, Appliance Standards Awareness Project, Natural Resources Defense Council - Comments in response to DOE solicitation of views on the implementation of test procedure waivers for large capacity clothes washers Earthjustice, Appliance Standards Awareness Project, Natural Resources Defense Council - Comments in

  20. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    online resources Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the

  1. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  2. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  3. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  4. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These geothermal systems can occur in widely diverse geologic settings, sometimes without clear surface manifestations of the underlying resource. In 2008, the U.S. Geological ...

  5. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  6. Market balances Mideast capacity

    SciTech Connect (OSTI)

    LeBlanc, L.; Redden, J.; Cornitius, T.; Tanner, R.

    1984-12-01

    Market forces will play a substantial role in energy pricing through the end of the century, but the Mideast countries are still in a commanding position in world energy supplies. The Mideast, with 55% of the world's proven crude reserves, is providing only 21% of worldwide production. This situation, brought about by political pricing in the face of sharply reduced consumption worldwide, will prolong the life of Mideast reserves. Energy importing nations, chiefly the United States, are supporting domestic production with reserves discovered during the 1979-82 period. A commanding position in this production should last through the end of this decase, after which OPEC, led by the Mideast countries, will increasingly influence energy pricing.

  7. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  8. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  9. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  10. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  11. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  12. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  13. Lignocellulosic feedstock resource assessment

    SciTech Connect (OSTI)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  14. Refinery Capacity Report - Explanatory Notes

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration/Refinery Capacity Report 1 Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, "Annual Refinery Report," is the primary source of data in the "Refinery Capacity Report" tables. The form collects data on the consumption of purchased steam, electricity, coal, and natural gas; refinery receipts of crude oil by method of transportation; operable capacity for atmospheric crude oil distillation units and downstream

  15. Adaptive capacity and its assessment

    SciTech Connect (OSTI)

    Engle, Nathan L.

    2011-04-20

    This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

  16. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  17. Property:USGSMeanCapacity | Open Energy Information

    Open Energy Info (EERE)

    USGSMeanCapacity Jump to: navigation, search Property Name USGSMeanCapacity Property Type String Description Mean capacity potential at location based on the USGS 2008 Geothermal...

  18. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  19. World Shale Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0...

  20. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  1. Study of lignocellulose components for production of lactic acid

    SciTech Connect (OSTI)

    Padukone, N.; Schmidt, S.L.; Goodman, B.J.; Wyman, C.E.

    1993-12-31

    Lactic acid promises to be an important chemical feedstock in the future for the production of biodegradable and biocompatible polymers. About half of the current US consumption is imported to meet the escalating demand from both the food and chemical industries. The potential future market for polylactide products would further stress the domestic capacity of lactic acid production. Renewable resources such as lignocellulosic crops and wastes are abundant and could be utilized for the production of important fuels and chemicals. This would not only reduce our dependence on limited reserves of fossil fuels but also alleviate the environmental burden of waste accumulation and disposal.

  2. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    SciTech Connect (OSTI)

    Getman, Dan; Lopez, Anthony; Mai, Trieu; Dyson, Mark

    2015-09-01

    In this report, we introduce a methodology to achieve multiple levels of spatial resolution reduction of solar resource data, with minimal impact on data variability, for use in energy systems modeling. The selection of an appropriate clustering algorithm, parameter selection including cluster size, methods of temporal data segmentation, and methods of cluster evaluation are explored in the context of a repeatable process. In describing this process, we illustrate the steps in creating a reduced resolution, but still viable, dataset to support energy systems modeling, e.g. capacity expansion or production cost modeling. This process is demonstrated through the use of a solar resource dataset; however, the methods are applicable to other resource data represented through spatiotemporal grids, including wind data. In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel top-down approach to assess renewable resources within many other contexts that leverage variability in resource data but require reduction in spatial resolution to accommodate modeling or computing constraints.

  3. Specialized Technology Resources Inc STR Holding Inc | Open Energy...

    Open Energy Info (EERE)

    Technology Resources Inc STR Holding Inc Jump to: navigation, search Name: Specialized Technology Resources Inc (STR Holding Inc) Place: Enfield, Connecticut Zip: 6082 Product:...

  4. Inner Mongolia Sanwei Resources Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sanwei Resources Group Co Ltd Jump to: navigation, search Name: Inner Mongolia Sanwei Resources Group Co Ltd Place: Inner Mongolia Autonomous Region, China Product: An energy and...

  5. Qingxin Evergreen Renewable Resources Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Qingxin Evergreen Renewable Resources Co Ltd Jump to: navigation, search Name: Qingxin Evergreen Renewable Resources Co Ltd Place: Qingyuan, Guangdong Province, China Product: A...

  6. CommonWealth Resource Management Corporation | Open Energy Information

    Open Energy Info (EERE)

    CommonWealth Resource Management Corporation Jump to: navigation, search Name: CommonWealth Resource Management Corporation Place: Boston, Massachusetts Zip: MA 02132 Product:...

  7. China Clean Energy Resource Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: China Clean Energy Resources, Ltd., a manufacturer and distributor of biodiesel fuel and specialty chemicals made from renewable resources References: China...

  8. Energy Power Resources Ltd EPR | Open Energy Information

    Open Energy Info (EERE)

    Energy Power Resources Ltd EPR Jump to: navigation, search Name: Energy Power Resources Ltd (EPR) Place: Suffolk, England, United Kingdom Zip: IP12 1BL Sector: Biomass Product:...

  9. BT16 Forest Resource Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Forest biomass is an abundant biomass feedstock that complements the con- ventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the

  10. EIS-0171: Pacificorp Capacity Sale

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) EIS assesses the proposed action of providing surplus power from its facilites to PacifiCorp in response to its request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations.

  11. Value of Demand Response: Quantities from Production Cost Modeling (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

  12. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  13. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  14. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  15. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  16. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  17. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  18. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  19. COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3

  20. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  1. Hydrothermal Resources

    Broader source: Energy.gov (indexed) [DOE]

    SubTER Crosscut The US Energy Department and National Laboratories have created a crosscutting initiative focused on revolutionizing sustainable subsurface energy production and ...

  2. Colorado Renewable Resource Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Product: Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References: Colorado Renewable Resource...

  3. Renewable Energy Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Renewable Energy Resources, Inc. Place: Las Vegas, Nevada Sector: Hydro, Renewable Energy, Solar, Wind energy Product: Renewable Energy is a...

  4. Barlovento Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    Name: Barlovento Natural Resources Place: Logrono, Spain Zip: 26005 Sector: Solar, Wind energy Product: Technical consulting in the wind and solar energy sector. Coordinates:...

  5. Liquid Resources LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Liquid Resources LLC Place: Medina, Ohio Zip: 44258 Product: Produces bioethanol from waste. Coordinates: 43.174659, -89.082003 Show Map Loading map......

  6. Luma Resources LLC | Open Energy Information

    Open Energy Info (EERE)

    Rochester Hills, Michigan Zip: 48309 Sector: Solar Product: Michigan-based developer and installer of solar roof kits for the residential market. References: Luma Resources LLC1...

  7. Conservation Resource Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Conservation Resource Solutions Place: Cumming, Georgia Zip: 30040 Sector: Services Product: String representation "Conservation Re ......

  8. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  9. Geothermal Resources Council | Open Energy Information

    Open Energy Info (EERE)

    Resources Council Address: P.O. Box 1350 Place: Davis, California Zip: 95617-1350 Sector: Geothermal energy, Renewable Energy, Services Product: Global Geothermal Community...

  10. Allied Resource Corporation | Open Energy Information

    Open Energy Info (EERE)

    Allied Resource Corporation Place: Wayne, Pennsylvania Product: Pennsylvania-based global climate technology group operating and servicing energy related businesses worldwide....

  11. Environmental Resources Trust Inc | Open Energy Information

    Open Energy Info (EERE)

    Trust Inc Jump to: navigation, search Name: Environmental Resources Trust, Inc Place: Washington DC, Washington, DC Zip: 20006 Product: Non-profit organisation funded by...

  12. Agra Resources Cooperative EXOL | Open Energy Information

    Open Energy Info (EERE)

    EXOL Jump to: navigation, search Name: Agra Resources Cooperative (EXOL) Place: Albert Lea, Minnesota Product: EXOL produces 40m gallons of ethanol a year in their plant at...

  13. Renewable Resources International RRI | Open Energy Information

    Open Energy Info (EERE)

    International RRI Jump to: navigation, search Name: Renewable Resources International (RRI) Place: North Carolina Product: A group of investors which owns the North Carolina...

  14. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  15. Information technology resources assessment

    SciTech Connect (OSTI)

    Loken, S.C.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  16. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD

  17. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources This page is the repository for sundry items of information relevant to general computing on BooNE. If you have a question or problem that isn't answered here, or a suggestion for improving this page or the information on it, please mail boone-computing@fnal.gov and we'll do our best to address any issues. Note about this page Some links on this page point to www.everything2.com, and are meant to give an idea about a concept or thing without necessarily wading through a whole website

  18. Valuation of ecological resources

    SciTech Connect (OSTI)

    Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

    1995-04-01

    Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

  19. ,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Capacity ... 11:44:43 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity ...

  20. ,"Kansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Underground Storage Capacity ... 7:00:56 AM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity ...

  1. Optimizing areal capacities through understanding the limitations...

    Office of Scientific and Technical Information (OSTI)

    Title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes Increasing the areal capacity or electrode thickness in lithium ion batteries is ...

  2. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  3. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide...

  4. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  6. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity ... 7:01:01 AM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity ...

  7. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  10. ,"Virginia Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Underground Storage Capacity ... 11:44:46 AM" "Back to Contents","Data 1: Virginia Natural Gas Underground Storage Capacity ...

  11. ,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Capacity ... 7:00:58 AM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity ...

  12. Investigation of Morphology and Hydrogen Adsorption Capacity...

    Office of Scientific and Technical Information (OSTI)

    of Morphology and Hydrogen Adsorption Capacity of Disordered Carbons Citation Details In-Document Search Title: Investigation of Morphology and Hydrogen Adsorption Capacity of ...

  13. Missouri's 9th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    East Central Ag Products MEMC Electronic Materials Inc Mid America Biofuels LLC Missouri Bio Products Missouri Department of National Resources Energy Center Mo DNR Missouri...

  14. Prenova Inc formerly Service Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    Service Resources Inc.) Place: Marietta, Georgia Zip: 30068 Product: Provides energy demand management and energy price information products. Coordinates: 33.174135,...

  15. ORISE Resources: Consumer Health Resource Information Service...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  16. Renewable Portfolio Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Portfolio Standards Resources Renewable Portfolio Standards Resources An RPS is a regulatory method mandating utility companies operating within a certain jurisdiction to increase production of energy from renewable sources such as wind, solar, biomass and other alternatives to fossil and nuclear electric generation. It's also known as a renewable electricity standard. Find renewable portfolio standards resources below. DOE Resource Renewable Portfolio Standards: A Factual Introduction

  17. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  18. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  19. Unconventional Energy Resources: 2007-2008 Review

    SciTech Connect (OSTI)

    2009-06-15

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  20. WINDExchange: About Regional Resource Centers

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable energy production in the United States by 2020. Wind energy currently provides more than 4% of the nation's electricity but has the potential to provide much more. Increasing the country's percentage from wind power will mean

  1. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  2. Procurement Standards Lead-by-Example Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement Standards Lead-by-Example Resources Procurement Standards Lead-by-Example Resources State and local governments can lead by example by promoting energy efficiency programs and policies for public facilities, equipment, and government operations. Find procurement standards lead-by-example resources below. DOE Resource Energy-Efficient Product Procurement. Other Resources ENERGY STAR®: All Certified Products New York State Energy Research and Development Authority: Procurement

  3. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  4. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  5. 1999 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1999-12-01

    and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads. The load forecast is derived by using econometric models and analysis to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA's Firm Resource Exhibit (FRE Exhibit I) submittals, and through analysis of the Federal hydroelectric power system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. The PNCA defines the planning and operation of the regional hydrosystem. The 1999 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix (available electronically only) detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1998 Pacific Northwest Loads and Resources Study. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 2000-01 through 2009-10. The study shows the Federal system's and the region's monthly estimated maximum electricity demand, monthly energy demand, monthly energy generation, and monthly maximum generating capability--capacity--for OY 2000-01, 2004-05, and 2009-10. The Federal system and regional monthly capacity surplus/deficit projections are summarized for 10 operating years. This document analyzes the Pacific Northwest's projected loads and

  6. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  7. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  8. Osmotic Heat Engine for Energy Production from Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Project ...

  9. Manhattan Project: F Reactor Plutonium Production Complex

    Office of Scientific and Technical Information (OSTI)

    F REACTOR PLUTONIUM PRODUCTION COMPLEX Hanford Engineer Works, 1945 Resources > Photo Gallery Plutonium production area, Hanford, ca. 1945 The F Reactor plutonium production ...

  10. Unconventional Energy Resources: 2011 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists

    2011-12-15

    This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.