National Library of Energy BETA

Sample records for resources including oil

  1. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  2. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  3. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  4. Research Portfolio Report Unconventional Oil & Gas Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Oil & Gas Resources: Subsurface Geology and Engineering DOENETL-20151691 ... Research Portfolio Report: Unconventional Oil & Gas Resources Executive Summary S ...

  5. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands...

    Office of Environmental Management (EM)

    Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale ...

  6. Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgysztan)

    Reports and Publications (EIA)

    1994-01-01

    Provides the most comprehensive assessment publicly available for oil and gas resources in the Fergana Basin. Includes projections of potential oil supply and U.S. Geological Survey estimates of undiscovered recoverable oil and gas.

  7. Kerogen extraction from subterranean oil shale resources (Patent...

    Office of Scientific and Technical Information (OSTI)

    Kerogen extraction from subterranean oil shale resources Title: Kerogen extraction from subterranean oil shale resources The present invention is directed to methods for extracting ...

  8. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Early products de- rived from shale oil included kerosene and lamp oil, paraffin, fuel oil, lubricating oil and grease, naphtha, illuminating gas, and ammonium sulfate fertilizer. ...

  9. Imported resources - gas/oil

    SciTech Connect (OSTI)

    Jakob, K.

    1995-12-01

    The goal of this presentation is to provide information on issues of crude oil and natural gas supply at a conference addressing the problems of energy in Eastern and Central Europe. Although this can inevitably be performed through the {open_quotes}binoculars{close_quotes} of the petroleum sector of my country, I will try to present the issues and challenges that are thought to be characteristic in general for the region.

  10. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    SciTech Connect (OSTI)

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind; Facelli, Julio; Hradisky, Michal; Kelly, Kerry; Miller, Jan; McLennan, John; Ring, Terry; Ruple, John; Uchitel, Kirsten

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    | Technically Recoverable Shale Oil and Shale Gas Resources i This report was ... September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil ...

  12. Technically Recoverable Shale Oil and Shale Gas Resources

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA/ARI World Shale Gas and Shale Oil Resource Assessment May, 17, 2013 2-1 SHALE GAS AND SHALE OIL RESOURCE ASSESSMENT METHODOLOGY INTRODUCTION This report sets forth Advanced Resources' methodology for assessing the in-place and recoverable shale gas and shale oil resources for the EIA/ARI "World Shale Gas and Shale Oil Resource Assessment." The methodology relies on geological information and reservoir properties assembled from the technical literature and data from publically

  13. Geothermal and heavy-oil resources in Texas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Geothermal and heavy-oil resources in Texas Citation Details In-Document Search Title: Geothermal and heavy-oil resources in Texas You are accessing a document from the ...

  14. Preliminary evaluation of shale-oil resources in Missouri

    SciTech Connect (OSTI)

    Nuelle, L.M.; Sumner, H.S.

    1981-02-01

    This report is a preliminary overview of oil-shale potential in Missouri. Two types of oil shales occur in Missouri: (1) the platform marine type, represented by the Devonian Chattanooga Shale, and (2) black shales in Pennsylvanian cyclothems, many of which overlie currently mined coal beds. The Chattanooga Shale contains black, fissile, carbonaceous shales and reaches a thickness of around 70 ft in southwestern Missouri. Oil-yield data from Missouri are not available, but based on yields from other states, the Chattanooga of southwest Missouri is estimated to contain between 2.6 and 15.8 billion barrels of oil. Preliminary estimates of the black, hard, fissile, carbonaceous Pennsylvanian shales indicate they contain between 100 and 200 billion barrels of shale oil. Many of these units directly overlie currently mined coal seams and could be recovered with the coal, but they are now discarded as overburden. These shales also contain significant amounts of phosphates and uranium. Other Paleozoic units with limited oil-shale potential are the Ordovician Decorah and Maquoketa Formations and the Upper Devonian Grassy Creek Shale. Ambitious research programs are needed to evaluate Missouri oil-shale resources. Further investigations should include economic and technological studies and the drilling, mapping, and sampling of potential oil-shale units. Shrinking supplies of crude oil make such studies desirable.

  15. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Info (EERE)

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  16. Oil and gas resources remaining in the Permian Basin

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In this book the authors present a reevaluation of the oil and gas resource base remaining in existing Permian Basin reservoirs. The Permian Basin is one of the nation's premier sources of oil production, accounting for almost one quarter of the total domestic oil resource. The distribution and magnitude of oil and gas resources discovered in the basin are documented at the play and reservoir levels. Data on reservoir geology and volumetric analysis come from the oil and gas atlases published by the Bureau of Economic Geology, the Bureau's oil-reservoir data base, and NRG Associates Significant Oil and Gas Fields of the United States.

  17. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  18. Innovative Technology Improves Upgrading Process for Unconventional Oil Resources

    Broader source: Energy.gov [DOE]

    An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy-funded project.

  19. Projects Selected to Boost Unconventional Oil and Gas Resources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy

  20. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  1. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  2. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    SciTech Connect (OSTI)

    Smith, M.W.; Shadle, L.J.; Hill, D.

    2007-01-01

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  3. Kerogen extraction from subterranean oil shale resources

    DOE Patents [OSTI]

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2010-09-07

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  4. Kerogen extraction from subterranean oil shale resources

    DOE Patents [OSTI]

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2009-03-10

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  5. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  6. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  7. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect (OSTI)

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  8. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of ...

  9. Crude oil resource appraisal in the United States

    SciTech Connect (OSTI)

    Uri, N.D.

    1980-07-01

    Past experience supported an optimistic view of US oil resources prior to the Arab embargo of 1973, although some were aware that exploration and production were declining. An approach to estimating producible reserves, combining the engineering and econometric techniques, uses geologic estimates and a structural model to project when production will peak, the quantity that will be produced, and the time distribution of production. The results indicate that aggregate production will increase with the real price of oil. At $45 per barrel, 20 to 30 billion more barrels will be produced. 18 references. (DCK)

  10. Oil discoveries and basin resource prediction in Latin America: Past, present, and future

    SciTech Connect (OSTI)

    Kronman, G.E.; Aleman, A.M.; Rushworth, S.W. )

    1993-02-01

    Over 350 oil discoveries were made in Latin America during the 1980s. About 12% are estimated to contain reserves greater than 100 MMBO. Several of the larger finds (>500 MMBO), such as Cusiana (Colombia), Furrial/Musipan (Venezuela), Cano Lima (Colombia) and Marlim (Brazil) represent an important part of the giant field found worldwide since 1980. Most of the larger discoveries were made by national oil companies in Venezuela, Mexico and Brazil. Undiscovered oil resources of 40-80 BBO are estimated to remain in the highest potential Latin American basins, including those in Mexico, based on historical field size data and current geological knowledge. Over 150 BBO of produced oil and proven reserves has been found in the same group of basins. The probability of finding large undiscovered oil and gas fields (>100 MMBOE) in selected established and mature Latin American basins is high. The Campos (Brazil), Llanos (Colombia), Magadalena (Colombia), Maracaibo (Venezuela), Marahon-Oriente-Putomayo (Peru-Ecuador-Colombia), Maturin (Venezuela), Reforma-Campeche (Mexico) and Ucayali (Peru) basins have the best possibility for such accumulations. Another tier of frontier and emerging basins may also contain significant resources, but limited data makes it difficult to estimate their undiscovered resources. Some of the higher potential basins in this group include the Sierra de Chiapas (Mexico/Guatemala), Huallaga (Peru), Yucatan (Mexico), Sabinas, and Burgos (Mexico) basins.

  11. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air, Wellbore Integrity & Induced Seismicity Cover image: NETL's Mobile Air Monitoring Laboratory. Research Portfolio Report Unconventional Oil & Gas Resources: Air, Wellbore Integrity & Induced Seismicity DOE/NETL-2015/1693 Prepared by: Mari Nichols-Haining, Jennifer Funk, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report was

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Algeria Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Argentina Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Australia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Chad Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    China Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Eastern Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Egypt Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    India and Pakistan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Indonesia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Jordan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Kazakhstan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Libya Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Morocco Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Northern South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Oman Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Poland Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Russia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    South Africa Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Spain Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Thailand Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Tunisia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    Kingdom Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  19. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  20. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar

  1. World oil and gas resources-future production realities

    SciTech Connect (OSTI)

    Masters, C.D.; Root, D.H.; Attanasi, E.D. )

    1990-01-01

    Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

  2. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D; Geza, Mengistu; Murray, Kyle E.

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  3. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  4. High liquid yield process for retorting various organic materials including oil shale

    DOE Patents [OSTI]

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  5. A high liquid yield process for retorting various organic materials including oil shale

    DOE Patents [OSTI]

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  6. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... When the petroleum production peak occurs, the consequences will be severe if import-depen... unconventional fossil energy sources, namely liquids from oil shale, coal, and tar sand. ...

  7. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  8. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  9. Mineral industries of Australia, Canada, and Oceania (including a discussion of Antarctica's mineral resources). Mineral perspective

    SciTech Connect (OSTI)

    Kimbell, C.L.; Lyday, T.Q.; Newman, H.H.

    1985-12-01

    The Bureau of Mines report gives the mineral industry highlights of two of the world's major mineral producing countries, Australia and Canada, and seven Pacific island nations or territories--Fiji, New Caledonia, New Zealand, Papua New Guinea, Republic of Nauru, Solomon Islands, and Vanuatu. The mineral resources of Antarctica are also discussed. Because of the size of the Australian and Canadian mineral industries, summary reviews are presented for each of the States, Provinces, or Territories. The most current information available from all nations is given on major minerals or mineral-commodity production, share of world production, and reserves. Reported also are significant mining companies, locations and capacities of their main facilities, and their share of domestic production. Other information is provided on mineral-related trade with the United States, government mineral policy, energy production-consumption and trade, the mining industry labor force, and prospects for the mineral industry. Maps show the locations of selected mineral deposits, oilfields and gasfields, mines, and processing facilities including iron and steel plants, nonferrous smelters and refineries, and cement plants, as well as infrastructure pertinent to the mineral industry.

  10. Imported resources - oil crude oil processing in the Czech Republic and its prospectives

    SciTech Connect (OSTI)

    Soucek, I.; Ottis, I.

    1995-12-01

    This paper examines the availability of various crude oils, addressing specifically crude oil pipelines to the Czech Republic, both existing and under construction. Secondly, the economic status of two main Czech refineries is examined in comparison to international trends, technical configurations, and product supply and demand.

  11. Running into an out of oil: Scenarios of global oil use and resource depletion to 2050

    SciTech Connect (OSTI)

    Greene, David L.; Hopson, Janet L.; Li, Jia

    2002-07-23

    Is a transition from conventional oil imminent? Is it likely to lock the world into a high-carbon energy future? This report attempts to shed some light on these questions.

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Key positive above-the-ground advantages in the United States and Canada that may not apply in other locations include private ownership of subsurface rights that provide a strong ...

  13. Research needs to maximize economic producibility of the domestic oil resource

    SciTech Connect (OSTI)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L. ); Dauben, D.L. )

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs.

  14. Impacts of an oil well blowout near Trecate, Italy on ecological resources

    SciTech Connect (OSTI)

    Brandt, C.; Becker, J.; Dauble, D.

    1995-12-31

    An ecological risk assessment (ERA) was conducted after the February 1995 blowout of an oil well near Trecate, Italy to quantify injuries to terrestrial and aquatic biological resources from effects of oil and habitat changes. Avian surveys were conducted on a surrogate area near Varallino to estimate species and numbers potentially exposed to oil and displaced by habitat alteration in the affected area. Of the 43 avian species observed, 20 are considered protected by European Community laws. The most abundant species were passero domestico, fringuello, cornacchia grigia, rondine, piccione torraiolo, and cardellino. These species likely suffered the greatest losses due to inhalation of volatile aromatics, dermal loading of oil, and/or habitat loss in the affected area. Based on CHARM model outputs, inhalation exposures to volatile aromatics and oil aerosols occurred above LOELs for all receptors within 2 km of the blowout. The most significant exposure pathway to large birds was dermal loading, which likely exceeded LC50 levels within 900m of the well. Terrestrial insects seldom contained detectable levels of PAHs, consistent with their shorter life span and residence time in the contaminated area. The highest concentrations of PAHs were found in dike vegetation, frogs, and benthic invertebrates. Ingestion exposures of woodmice to PAHs exceeded toxic reference levels at one site and mice had EHQ = >1 at soil PAH concentrations >4.2 mg/kg. Based on known body burdens causing narcotic response, neither fish nor benthic invertebrates experienced toxic consequences from exposure to PAHs in irrigation canal sediments.

  15. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  16. An evaluation of known remaining oil resources in the state of California. Volume 2, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As a part of this larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to California`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of California and the nation as a whole.

  17. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the

  18. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  19. An evaluation of known remaining oil resources in the state of California: Project on advanced oil recovery and the states. Volume 2

    SciTech Connect (OSTI)

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of California and the nation as a whole.

  20. The United States remains unprepared for oil import disruptions. Volume I. summary: includes conclusions and recommendations. Report to the Congress

    SciTech Connect (OSTI)

    Not Available

    1981-09-29

    The U.S. Government is almost totally unprepared to deal with disruptions in oil imports. Oil import disruptions--such as the 1973 oil embargo and the 1979 Iranian shortfall--pose a significant threat to national security, and the lack of effective contingency planning and program development to data is serious and requires immediate attention. The Government must make a determined commitment to emergency preparedness now, while oil markets are slack, to prepare for any future disruption.

  1. Natural resources law handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers legal topics ranging from ownership-related issues (including disposition, use and management of privately and publicly-owned lands, resources, minerals and waters) to the protection and maintenance of our nation's natural resources. It contains chapters on oil and gas resources, coal resources, and minerals and mining.

  2. Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource...

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: * See Tables 4.2 and 4.3 for more recent proved reserves data. * Data are at end of year. * Resources in areas where drilling is officially prohibited are not included. ...

  3. DOE Science Showcase - Oil Shale Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Oil Shale Research Oil shale has been recognized as a potentially valuable U.S. energy resource for a century. Obstacles to its use have included the expense of current shale-oil ...

  4. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  5. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    SciTech Connect (OSTI)

    John Jackson; Katherine Jackson

    2008-09-30

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through

  6. Future directions in advanced exploratory research related to oil, gas, shale and tar sand resources

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The Office of Technical Coordination (OTC) is responsible for long-range, high-risk research that could provide major advances in technologies for the use of fossil fuels. In late 1986, OTC was given responsibility for an existing program of research in Advanced Process Technology (APT) for oil, gas, shale, and tar sands. To meet these challenges and opportunities, the OTC approached the National Research Council with a request to organize an advisory panel to examine future directions in fundamental research appropriate for sponsorship by the Advanced Process Technology program. An advisory group was formed with broad representation from the geosciences, physical sciences, and engineering disciplines to accomplish this task. The charge to the panel was to prepare a report for the director of the Office of Technical Coordination, identifying critical research areas. This report contains the findings and recommendations of the panel. It is written both to advise the research management of the Department of Energy on research opportunities and needs, and to stimulate interest and involvement in the research community in fundamental research related to fossil energy, and in particular, oil and gas resources. 1 tab.

  7. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  8. Venezuelan oil

    SciTech Connect (OSTI)

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  9. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  10. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  11. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect (OSTI)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    , cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  12. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    SciTech Connect (OSTI)

    1993-11-01

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  13. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  14. Oil & Gas Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional ... quantify potential risks associated with oil and gas resources in shale reservoirs that ...

  15. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  16. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  17. Resources

    Broader source: Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  18. Unconventional Energy Resources: 2013 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2013-11-30

    This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.

  19. DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources

    Broader source: Energy.gov [DOE]

    A technology as simple as an advanced heater cable may hold the secret for tapping into the nation's largest source of oil, which is contained in vast amounts of shale in the American West.

  20. Unconventional Energy Resources: 2015 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  1. Arctic Oil and Natural Gas Potential

    Reports and Publications (EIA)

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  2. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information askUS - Operations Unified Services Portal IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature

  3. Fruit production of Attalea colenda (Arecaceae) in coastal Ecuador - an alternative oil resource?

    SciTech Connect (OSTI)

    Feil, J.P.

    1996-07-01

    Attalea colenda is a monoecious palm found in pastures in coastal Ecuador. In dry regions, it is a valuable source of oil in self-sufficiency farming or in combination with cattle in pastures. The palm was studied over a gradient of dry to humid environments during two fruiting seasons. Palm growth, production of leaves, inflorescences, and infructescences, number of fruits per infructescence, and seed weight of five populations were evaluated. The individual of average size is 15 m tall, which corresponds to approximately 30-40 years of age. No difference in fruit production was recorded between wet and dry regions of coastal Ecuador. The average production of one hectare of pasture, with 50 palms, was 0.9 t of oil per year. One population that was part of an agroforestry system produced 50% more fruits than the average of all populations in pasture. 18 refs., 1 fig., 6 tabs.

  4. Unconventional Energy Resources: 2011 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists

    2011-12-15

    This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

  5. Unconventional Energy Resources: 2007-2008 Review

    SciTech Connect (OSTI)

    2009-06-15

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  6. Developing an oil generation model for resource assessment of Bakken formation, Williston Basin

    SciTech Connect (OSTI)

    Charpentier, R.R.; Krystinik, K.B.

    1984-04-01

    A model was developed for oil generation in the Devonian and Mississippian Bakken Formation, which has been proposed as the main hydrocarbon source rock within the Williston basin. The data consisted of formation temperatures and of density, neutron-porosity, resistivity, and gamma-ray logs from more than 250 wells in North Dakota and Montana. The upper and the lower shale members of the Bakken Formation were studied. Regression analysis, analysis of residuals, and cluster, discriminant, and factor analyses were used in an attempt to separate depositional effects--especially variations in organic content-from maturity. Regression and analysis of residuals indicate differences both areally and between the upper and lower members. In the upper member, and less strongly in the lower member, the center of the basin differs from the basin margins in that it has extreme residuals--either high or low. Clustering and residual analyses show roughly the same areal patterns. Inverse relationships, similar to those suggested by other workers, were found between formation temperature and organic content and between density logs and organic content. Also found, though, was that the addition of other factors, such as neutron porosity, helps to indicate organic content. Preliminary results show that it may be possible to model oil generation by using statistical techniques on well-log data. In particular, the model has the potential to refine estimates of the amount of hydrocarbons generated by the Bakken Formation in the Williston basin.

  7. Mineral resources: Timely processing can increase rent revenue from certain oil/gas leases

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Federal regulations require that onshore oil and gas leases that are subsequently determined to overlie a known geologic structure are to have their rental rates increased. The Bureau of Land Management does not have internal controls that ensure that such rental increases are processed consistently and in a timely manner. Although BLM'S state offices in Colorado and Wyoming generally increased rental rates for leases determined to overlie known geologic structures, these increases were not made in a timely manner during calendar years 1984 and 1985. These delays resulted in lost revenue of $552,614. There were also a few instances in the two states in which the rental rates had not been increased at all, causing an additional revenue loss of at least $15,123.

  8. Land and Resource Management Issues Relevant to Deploying In...

    Office of Scientific and Technical Information (OSTI)

    Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation's richest oil sands resources. If economically feasible and ...

  9. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  10. RVA. 3-D Visualization and Analysis Software to Support Management of Oil and Gas Resources

    SciTech Connect (OSTI)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne; Vanmoer, Mark; Angrave, Lawrence; Damico, James R.; Grigsby, Nathan

    2015-12-01

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including

  11. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  12. Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 states Outer Continental Shelf (OCS) have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

  13. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  14. Petroleum resources of Venezuela and Trinidad and Tobago

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The status of known and ultimately recoverable crude oil and natural gas resources of the Federal Republics of Venezuela, and Trinidad and Tobago (hereafter referred to as Trinidad) is set forth in this report. The rates that oil resources may be available to world markets are also covered in the report. A section on the petroleum geology of the region is included. The Republics of Venezuela and Trinidad share a common and ancient petroleum history. Over a century of exploration and development have resulted in the cumulative production of nearly 39 billion barrels of oil from Venezuela and over 2 billion barrels from Trinidad. Both republics have passed their peak status as oil producers. Venezuela reached its peak as the second largest producer in the world in the mid-fifties, and Trinidad attained its highest status as the eighth largest oil producer in the early forties. The report concludes that Venezuela and Trinidad have depleted slightly less than one-half of their ultimately recoverable crude oil resources. Based on feasible production rates and estimates of remaining recoverable resources, nearly two-thirds of Venezuela's oil resources and about three-fourths of Trinidad's oil resources may be depleted by the year 2000. The natural gas resources of both countries are underutilized and underdeveloped.

  15. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect (OSTI)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  16. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at

  17. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources...

  18. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  19. Investing in Russia`s oil and gas industry: The legal and bureaucratic obstacles

    SciTech Connect (OSTI)

    Skelton, J.W. Jr.

    1993-12-31

    This article discusses the unusual challenges the international oil companies have as they consider investing in the oil and gas industry of the Russian Federation. Topics include the following: Russian oil and gas reserves; the Russian legislative process; law on subsurface resources; regulations on licensing procedure; draft law on oil and gas; draft law on concessions; proposed modification draft legislation; obstacles to wide scale investment.

  20. PACKAGE INCLUDES:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PACKAGE INCLUDES: Airfare from Seattle, 4 & 5 Star Hotels, Transfers, Select Meals, Guided Tours and Excursions DAY 01: BANGKOK - ARRIVAL DAY 02: BANGKOK - SIGHTSEEING DAY 03: BANGKOK - FLOATING MARKET DAY 04: BANGKOK - AT LEISURE DAY 05: BANGKOK - CHIANG MAI BY AIR DAY 06: CHIANG MAI - SIGHTSEEING DAY 07: CHIANG MAI - ELEPHANT CAMP DAY 08: CHIANG MAI - PHUKET BY AIR DAY 09: PHUKET - PHI PHI ISLAND BY FERRY DAY 10: PHUKET - AT LEISURE DAY 11: PHUKET - CORAL ISLAND BY SPEEDBOAT DAY 12: PHUKET

  1. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  2. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  3. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN...

    Office of Scientific and Technical Information (OSTI)

    AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH'S UINTA BASIN Utah is rich in oil shale and oil sands resources. ...

  4. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas ...

  5. Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology

    SciTech Connect (OSTI)

    Canja, S.; Williams, C.R.

    1982-04-01

    This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

  6. NATURAL RESOURCES ASSESSMENT

    SciTech Connect (OSTI)

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology

  7. Running Out Of and Into Oil. Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, David L.; Hopson, Janet L.; Li, Jia

    2003-10-01

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value.

  8. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  9. Effects of Removing Restrictions on U.S. Crude Oil Exports -...

    Gasoline and Diesel Fuel Update (EIA)

    Alphabetical Frequency Tag Cloud Full report Baseline and scenario data Reference Low Oil Price High Oil and Gas Resource High Oil and Gas Resource with Low Oil Price Effects of ...

  10. Understanding Resource Nationalism in the 21st Century

    SciTech Connect (OSTI)

    Hughes, Llewelyn; Kreyling, Sean J.

    2010-07-26

    Resource nationalism in oil-importing states appears on the rise. Oil price volatility underpinned by demand growth has led China, India and others to increase state support for national-flag firms in order to increase the states energy self-sufficiency. Both Chinese and Indian National Oil Companies (NOCs) have made energy investments worldwide, including in Sudan and Iran. Long-standing oil importers such as the United States and Japan have reenergized policies designed to increase domestic production of crude and crude substitutes, or have subsidized national-flag firms, in the name of energy independence.

  11. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  12. California PRC Section 6903, Definitions for Geothermal Resources...

    Open Energy Info (EERE)

    Resources Act, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "For the purposes of this chapter, 'geothermal resources'...

  13. Legislation affecting oil-merger proposals. Hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Energy and Natural Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2362, April 10, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Statements by 34 witnesses on S. 2362 examine the need for and possible impact of legislation calling for a study of mergers among oil companies. The focus of the study would be on the implications for US energy policy and energy independence, national security, and the economy. The witnesses represented investors, various sectors of the petroleum industry, economists, and various departments and agencies of the federal government. Their testimony follows the text of S. 2362, which amends the Mineral Lands Leasing Act of 1920 by limiting the authority to lease land when a merger is involved. Discussion on the relative merits of the legislation included antitrust and securities law issues and the exploration record following merger.

  14. Heavy oil and tar sands recovery and upgrading. International technology

    SciTech Connect (OSTI)

    Schumacher, M.M.

    1982-01-01

    This work provides an in-depth assessment of international technology for the recovery and upgrading of heavy crude oil and tar sands. The technologies included are currently in use, under development, or planned; emphasis is placed on post-1978 activities. The heavy oil technologies and processes considered include methods relating to the exploitation of heavy oil reservoirs, such as production from underground workings, all types of improved or enhanced recovery, subsurface extraction, and well rate stimulation. The tar sands section includes sizing the resource base and reviewing and evaluating past, present, and planned research and field developments on processes for mining, producing, extracting, and upgrading very heavy oils recovered from tar sands, e.g., bitumen recovery from tar sands where primary production was impossible because of the oil's high viscosity. 616 references.

  15. RedLeaf Resources Ecoshale Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RedLeaf Resources Ecoshale Project RedLeaf Resources Ecoshale Project Overview of oil shale reserves, unique oil extraction issues, novel approach for cost-effective extraction deer08_patten.pdf (6.04 MB) More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Oil Shale Research in the United States EERE: VTO - Red Leaf PNG Image

  16. Economic evaluation on CO₂-EOR of onshore oil fields in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economic method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.

  17. Economic evaluation on CO₂-EOR of onshore oil fields in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less

  18. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  19. Georgia Department of Natural Resources (GDNR) | Open Energy...

    Open Energy Info (EERE)

    References Retrieved from "http:en.openei.orgwindex.php?titleGeorgiaDepartmentofNaturalResources(GDNR)&oldid765343" Categories: Organizations Oil and Gas State Oil and...

  20. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil ...

  1. Arkansas Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Commission Jump to: navigation, search Name: Arkansas Oil and Gas Commission Address: 301 Natural Resources Dr. Ste 102 Place: Arkansas Zip: 72205 Website:...

  2. A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana

    SciTech Connect (OSTI)

    Schmoker, J.W.

    1996-01-01

    The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation -- in effect a single very large field -- underlying approximately 17,800 mi{sup 2} (46,100 km{sup 2}) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better well-performance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

  3. Unconventional Resources Technology Advisory Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of

  4. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  5. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  6. Oil-futures markets

    SciTech Connect (OSTI)

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  7. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST...

    Office of Scientific and Technical Information (OSTI)

    SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES Citation Details In-Document Search Title: SOLVENT-BASED ENHANCED OIL ...

  8. Rule of capture: government and the oil industry

    SciTech Connect (OSTI)

    Tomain, J.P.

    1984-01-01

    In his analysis of the oil industry-government relationship, the author examines the question of whether Big Oil is really bad and, if so, whether the government should leave it alone because it is unmanageable or regulate it for that reason. Responding to Robert Sherrill's The Oil Follies of 1970-1980 and its emphasis on conspiracy and betrayal, he focuses on the replacement of the Rule of Capture, which promoted the production of natural resources, with regulations restricting oil and gas production. He concludes that Big Government has not managed Big Oil well, but proposes an approach based on a series of workable projects instead of antitrust review. These initiatives could include efforts for horizontal and vertical divestiture, restrictions on tax divestiture, regulating cross-ownership, and a reworking of banking and tax laws.

  9. Land and Resource Management Issues Relevant to Deploying In...

    Office of Scientific and Technical Information (OSTI)

    Title: Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil ...

  10. South Dakota Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    development in South Dakota related to the exploration and development of oil and gas resources. References "South Dakota Department of Natural Resources" Retrieved...

  11. Colorado Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  12. Colorado Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  13. Oil Shale and Other Unconventional Fuels Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves » Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a

  14. Progress Report SEAB Recommendations on Unconventional Resource

    Broader source: Energy.gov (indexed) [DOE]

    the development of U.S. oil and natural gas is safe and environmentally responsible. ... realize the potential of the nation's oil and natural gas resources to provide secure ...

  15. heavy_oil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Oil Heavy oil is a vast U.S. oil resource that is underexploited because its highly viscous nature renders it difficult to produce and to refine. As higher-gravity crudes (lighter oil) become increasingly scarce in the U.S., American operators are looking more and more to low-gravity crudes (heavy oil) to prop up the Nation's declining oil output. Heavy oil generally is defined as having an API (American Petroleum Institute) gravity of 10-20 degrees. Oil sources with even lower gravities,

  16. World Energy Resources program U. S. Geological Survey

    SciTech Connect (OSTI)

    Masters, C.D.

    1986-05-01

    In 1973, with the OPEC embargo, the US was jarred into the world of insecure energy supplies - a harsh reality considering that throughout much of our history we had sufficient domestic supplies of oil and gas to meet all of our requirements. The US Government's response in 1973 was to assess domestic oil and gas potential, which was found to be substantial but nonetheless short of long-term requirements. Born of the need to become more certain about foreign as well has domestic resources, and working in conjunction with the Foreign Energy Supply Assessment Program of the US Department of Energy, the US Geological Survey undertook a program to develop a technical understanding of the reserves and undiscovered recoverable resources of petroleum in every basin in the world with petroleum potential. The World Energy Resources Program prepared an assessment of ultimate resources of crude oil for the World Petroleum Congress (WPC) in 1983, and a revision and update (including nature gas, crude oil, extra heavy oil, and tar sands) are planned for WPC in 1987. This poster session attempts to engender awareness of our scenario of world ultimate petroleum occurrence and to show some elements of the geology that guided our thinking.

  17. Feasibility of establishing and operating a generic oil shale test facility

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The December 19, 1985, Conference Report on House Joint Resolution 465, Further continuing appropriations for Fiscal Year 1986, included instruction to DOE to conduct a feasibility study for a generic oil shale test facility. The study was completed, as directed, and its findings are documented in this report. To determine the feasibility of establishing and operating such a facility, the following approach was used: examine the nature of the resource, and establish and basic functions associated with recovery of the resource; review the history of oil shale development to help put the present discussion in perspective; describe a typical oil shale process; define the relationship between each oil shale system component (mining, retorting, upgrading, environmental) and its cost. Analyze how research could reduce costs; and determine the scope of potential research for each oil shale system component.

  18. Unconventional Energy Resources and Geospatial Information: 2006 Review

    SciTech Connect (OSTI)

    2007-09-15

    This article contains a brief summary of some of the 2006 annual committee reports presented to the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. The purpose of the reports is to advise EMD leadership and members of the current status of research and developments of energy resources (other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks), energy economics, and geospatial information. This summary presented here by the EMD is a service to the general geologic community. Included in this summary are reviews of the current research and activities related to coal, coalbed methane, gas hydrates, gas shales, geospatial information technology related to energy resources, geothermal resources, oil sands, and uranium resources.

  19. Pittsburgh, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Penn State Center - Pittsburgh United Oil Company University of Pittsburgh VIPO Energy Resources Inc Walnut Capital Acquisitions Registered Financial Organizations in...

  20. Quebec: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Canada) Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state) Heavy Oil Consumption Reduction Program (Quebec, Canada) Hydro-Quebec Distribution -...

  1. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  2. Oil and Gas Gateway | Open Energy Information

    Open Energy Info (EERE)

    States, oil and gas boards and commissions are the place for finding data related to oil and gas activities. These activities include well records, permitting, and production...

  3. State Oil and Gas Board State Oil and Gas Board Address Place...

    Open Energy Info (EERE)

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  4. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils

  5. Impact and future of heavy oil produciton

    SciTech Connect (OSTI)

    Olsen, D.K, )

    1996-01-01

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  6. Impact and future of heavy oil produciton

    SciTech Connect (OSTI)

    Olsen, D.K,

    1996-12-31

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  7. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co- Produced and Other Oil Field Fluids William Gosnold ... entrepreneurship in development of oil field geothermal resources and to train ...

  8. Computerized map-based information management system for natural resource management

    SciTech Connect (OSTI)

    Miller, K.

    1995-12-01

    Federal agencies, states and resource managers have control and stewardship responsibility over a significant inventory of natural resources. A number of federal regulations require the review, protection and preservation of natural resource protection. Examples of such actions include the reauthorization of the Clean Water Act and the modification of the National Contingency Plan to incorporate the requirements of the Oil Pollution Act of 1990. To successfully preserve conserve and restore natural resources on federal reservations, and state and private lands, and to comply with Federal regulations designed to protect natural resources located on their sites, and the type of information on these resources required by environmental regulations. This paper presents an approach using a computerized, graphical information management system to catalogue and track data for the management of natural resources under Federal and state regulations, and for promoting resource conservation, preservation and restoration. The system is designed for use by Federal facility resource managers both for the day-to-day management of resources under their control, and for the longer-term management of larger initiatives, including restoration of significant or endangered resources, participation in regional stewardship efforts, and general ecosystem management. The system will be valuable for conducting natural resource baseline inventories an implementing resource management plans on lands other than those controlled by the Federal government as well. The system can provide a method for coordinating the type of natural resource information required by major federal environmental regulations--thereby providing a cost-effective means for managing natural resource information.

  9. Heavy oil and tar sands recovery and upgrading: international technology

    SciTech Connect (OSTI)

    Schumacher, M.M.

    1982-01-01

    This book provides an in-depth assessment of international technology for the recovery and upgrading of heavy crude oil and tar sands. The technologies included are currently in use, under development, or planned; emphasis is placed on post-1978 activities. The heavy oil technologies and processes considered in Part I include methods relating to the exploitation of heavy oil reservoirs, such as production from undergorun workings, all types of improved or enhanced recovery, subsurface extraction, and well rate stimulation. Furthermore, even though heavy crudes are understood to include only those liquid or semiliquid hydrocarbons with a gravity of 20/sup 0/API or less, technology applied to lighter crude oils with in situ viscosities of the same order of magnitude as some US heavy oils is also included. The scope of the tar sands section (Part II) includes sizing the resource base and reviewing and evaluatin past, present, and planned research and field developments on processes for mining, producing, extracting, and upgrading very heavy oils recovered from tar sands, e.g., bitumen recovery from tar sands where primary production was impossible because of the oil's high viscosity. On the production side, very heavy oil is defined as having a gravity less than 10/sup 0/ to 12/sup 0/API and greater than 100,000-centipoise viscosity at 50/sup 0/F. On the upgrading side, hydrocarbons whose characteristics dictated additional processing prior to conventional refining into salable products (1050+/sup 0/ material) were included, regardless of origin, in order to encompass all pertinent upgrading technologies.

  10. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  11. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect (OSTI)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  12. World Shale Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0...

  13. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  14. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  15. Energy Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education & Training » Energy Resource Library Energy Resource Library The U.S. Department of Energy (DOE) Office of Indian Energy resource library provides links to helpful resources for tribes on energy project development and financing on tribal lands. The library includes links to topically relevant publications, websites, videos, and more produced by the Office of Indian Energy and external organizations. The resources are specifically focused on energy topics that help promote tribal

  16. Groundwater and Wastewater Remediation Using Agricultural Oils - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Groundwater and Wastewater Remediation Using Agricultural Oils Savannah River National Laboratory Contact SRNL About This Technology Soybean oil used for groundwater and wastewater remediation Soybean oil used for groundwater and wastewater remediation Technology Marketing Summary Scientists have developed a groundwater treatment technique that employs agricultural oils to stimulate endogenous microbes which accelerates the cleanup. The oils tested include canola oil,

  17. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses

  18. RedLeaf Resources Ecoshale Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RedLeaf Resources Ecoshale Project Overview DEER 2008 Energy demand is exploding but "renewable energy" can't fill gap. Existing conventional oil production is "peaking" Lower extraction costs and demand have accelerated unconventional oil sands. * Unconventional Hydrocarbons - The hidden opportunity, oil industry consultancy Wood Mackenzie: "by 2025 unconventional oil is expected to supply more than 20% of global demand. Canada's UNCONVENTIONAL climb to the top of world

  19. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOE Patents [OSTI]

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  20. NREL: Biomass Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources The following data and resources include procedures, databases, maps, and tools produced by NREL. These resources are available for biomass researchers and...

  1. Title 20 AAC 25.705-.740 Geothermal Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    ResourcesLegal Abstract Title 20 of the Alaska Administrative Code Chapter 25, Alaska Oil and Gas Conservation Commission Article 7, Geothermal Resources, Sections 705-740....

  2. Oil shale mining studies and analyses of some potential unconventional uses for oil shale

    SciTech Connect (OSTI)

    McCarthy, H.E.; Clayson, R.L.

    1989-07-01

    Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

  3. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  4. Oil Shale Research in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Oil Shale Research in the United States (7.2 MB) More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Applicability of a Hybrid Retorting Technology in the Green River Formation National Strategic Unconventional Resource Model

  5. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect (OSTI)

    Greene, David L; Hopson, Dr Janet L; Li, Jia

    2005-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  6. Natural gas and oil technology partnership support

    SciTech Connect (OSTI)

    Schmidt, T.W.

    1996-06-01

    The Natural Gas and Oil Technology Partnership expedites development and transfer of advanced technologies through technical interactions and collaborations between the national laboratories and the petroleum industry - majors, independents, service companies, and universities. The Partnership combines the expertise, equipment, facilities, and technologies of the Department of Energy`s national laboratories with those of the US petroleum industry. The laboratories utilize unique capabilities developed through energy and defense R&D including electronics, instrumentation, materials, computer hardware and software, engineering, systems analysis, physics, and expert systems. Industry contributes specialized knowledge and resources and prioritizes Partnership activities.

  7. Optical modulator including grapene

    DOE Patents [OSTI]

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  8. Stocks of Total Crude Oil and Petroleum Products (Including SPR)

    U.S. Energy Information Administration (EIA) Indexed Site

    ,084,846 2,087,339 2,088,659 2,095,271 2,099,773 2,086,032

  9. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  10. unconventional-resources | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Resources Alaska's Potential from unconventional sources: The Alaska heavy oil resource is large, on the order of 45 billion barrels of original oil in place. The West Sak PA is believed to contain between 15 and 20 billion barrels of oil (BBO) with variable oil gravity from 10 to 22°API. West Sak development is restricted to a core area of about 2 BBO of which only 1.2 BBO is considered to be economical to develop. The Schrader Bluff PA is believed to contain between 15 and 20

  11. Process for upgrading heavy oils

    SciTech Connect (OSTI)

    LePage, J.F.; Marlino, G.

    1983-07-05

    The viscosity of heavy oils is reduced in order to facilitate pipe line transportation thereof. A fraction of the heavy oil is deasphalted in the presence of C/sub 5/-C/sub 7/ hydrocarbons, a portion of the separated asphalt is converted to synthesis gas, at least a portion of said gas is used to manufacture an alcohol mixture including methanol and C/sub 2/ to C/sub 10/ alcohols, which mixture is admixed with the heavy oil before transportation thereof. This procedure is more beneficial to the transported heavy oil than the prior processes which do not comprise the conversion of the asphalt fraction of the heavy oil.

  12. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  13. Washington Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    of Natural Resources is located in Olympia, Washington. About About 600 gas and oil wells have been drilled in Washington, but large-scale commercial production has never...

  14. Kansas Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    service and safety of public utilities, common carriers, motor carriers, and regulate oil and gas production by protecting correlative rights and environmental resources....

  15. Ohio Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    division's responsibilities include regulation of Ohio's oil and gas drilling operations oil and gas production operations brine disposal operations solution mining operations...

  16. oil and gas portfolio reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gas Research Portfolio Reports Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)/National Energy Technology Laboratory (NETL) is releasing a series of nine Research Portfolio Reports to provide a snapshot of results and accomplishments completed to-date for active and completed projects under three focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. The reports capture research conducted over the last ten years

  17. Category:Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 110 pages are in this category,...

  18. Oil & Gas Technology at Oklahoma City | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experience efforts to safely, efficiently and reliably accelerate oil and gas ... Performance & CO2 including Enhanced Oil Recovery, Alternative Stimulation Fluids, ...

  19. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOE Patents [OSTI]

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  20. Petroleum Resource Management and Assessment project for the Western Siberian Administration Russia. TDA feasibility study. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The objective of the study is: (1) To determine the nature and availability of the information necessary for Resource Assessment in oil fields to be open to foreign investment; (2) To determine what resources are required to implement the 'Alberta Model' of Resource Management in Siberia; (3) To establish a pilot Data Collection and Information System, including software, hardware and technology; (4) To indicate whether the studied database model and related software can meet Russia's long term requirements for information management in the petroleum sector; (5) The transfer of information techniques to the Russian implementation teams; and (6) To define the requirements for a resource/economic study.

  1. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  2. Oil shale: The environmental challenges III

    SciTech Connect (OSTI)

    Petersen, K.K.

    1983-01-01

    This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

  3. Upgrading Orinoco belt heavy oil

    SciTech Connect (OSTI)

    Alcantara, J.; Castillo, O.

    1982-09-01

    The Orinoco Heavy Oil Belt of Venezuela is a subsurface geological formation of petroleum-bearing sands that is approximately 700 km long and between 60 and 80 km wide. The results of recent explorations have shown the area to contain over one trillion barrels of oil in-place, ranging from 8/sup 0/ API to 14/sup 0/ APE gravity. In an effort to develop these resources, Petroleos de Venezuela has undertaken a program to evaluate and develop this heavy oil belt. The objectives of this program are discussed along with the process technology selection, pilot plants, and environmental protection measures. (JMT)

  4. Upgrading Orinoco Belt heavy oil

    SciTech Connect (OSTI)

    Aliantara, J.; Castillo, O.

    1982-05-01

    Petroleos de Venezuela, S.A. (PDVSA), in an effort to develop new oil resources, has undertaken a program to evaluate and develop the Orinoco Heavy Oil Belt, in the eastern part of Venezuela. Lagoven, S.A., a subsidiary of PDVSA, has been assigned the responsibility for developing and upgrading part of the Orinoco belt. This paper describes the most relevant aspects of Lagoven's first upgrading module, a facility that will convert Orinoco oil into a premium crude with a very high yield of products of great market demand.

  5. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  6. Abandoned Texas oil fields

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  7. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  8. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  9. Human Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources

  10. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  11. Research Portfolio Report Unconventional Oil & Gas Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Produced Water Treatment & Management Cover image: Western Research Institute treating and reusing coal-bed methane (CBM) pro- duced water. Research Portfolio Report Unconventional ...

  12. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  13. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  14. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  15. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique facilities CMI recent presentations Photographs via Flick'r: Critical Materials Institute, The Ames Laboratory Videos from The Ames Laboratory Webinars from Colorado School of Mines To offer comments on the CMI website or to ask questions, please contact us via e-mail at CMIdirector@ameslab.gov or call 515-296-4500.

  16. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  17. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  18. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  19. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  20. Resources - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  1. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Resources Teacher Resources The Bradbury Science Museum offers teacher resources for your visit. Scavenger Hunts Scavenger Hunt (pdf) Scavenger Hunt Key (pdf) Bradbury Science Museum newsletter The current issue can be found at the Newsletter page. Los Alamos Teachers' Resource Book Informal educators throughout the Los Alamos School District gather periodically to share ideas and collaborate. We have assembled a collection of flyers about our programs that serve classroom teachers into

  2. Numerical simulations for low energy nuclear reactions including...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulations for low energy nuclear reactions including direct channels to ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  3. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT

    SciTech Connect (OSTI)

    Bunting, Bruce G; Boyd, Alison C

    2012-01-01

    One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

  4. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

  5. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  6. Crude Oil Characteristics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil Characteristics Research Crude Oil Characteristics Research July 9, 2015 - 1:00pm Addthis Paula Gant Paula Gant Principal Deputy Assistant Secretary The DOE Office of Fossil Energy wanted to identify the actions needed to obtain a science-based understanding of outstanding questions associated with the production, treatment, and transportation of various types of crude oil, including Bakken crude oil. In support of that effort, DOE - in collaboration with the Department of

  7. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  8. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  9. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  10. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  11. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  13. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. Oil Shale Mining Claims Conversion Act. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session on S. 2089, H. R. 1039, April 22, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to examine two bills which address the processing of oil shale mining claims and patents by the Department of the Interior under the General Mining Law of 1872. S.2089 would provide for certain requirements relating to the conversion of oil shale mining claims located under the Mining Law of 1872 to leases and H.R.1039 would amend section 37 of the Mineral Lands Leasing Act of 1920 relating to oil shale claims. Under the new bills the owners of oil shale mining claims must make an election within 180 days after enactment as to whether to convert their claims to leases or to maintain their claims by performing 1000 dollars of annual assessment work on the claim, filing annually an affidavit of assessment work performed, and producing oil shale in significant marketable amounts within 10 years from the date of enactment of the legislation.

  15. Limited Personal Use of Government Office Equipment including Information Technology

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-07

    The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

  16. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  17. Jordan ships oil shale to China

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  18. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    online resources Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the

  19. Business resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business resources Business resources Setting new standards and small business initiatives within NNSA that will contribute to developing and strengthening our strategic partners for national security challenges. Contact Small Business Office (505) 667-4419 Email Broaden your market-find more resources with other labs, organizations LANL encourages business owners to fully research the Laboratory and to also market their services and products to other businesses, small business programs of other

  20. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  1. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  2. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  3. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  4. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These geothermal systems can occur in widely diverse geologic settings, sometimes without clear surface manifestations of the underlying resource. In 2008, the U.S. Geological ...

  5. NREL: Geothermal Technologies - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources The following data and resources include geothermal resource maps, models and tools, and photos used and produced by NREL. These resources are available for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help industry, policymakers, and researchers evaluate the number, location, and possibilities for geothermal resources throughout the United States. View

  6. Build a Floating Oil Rig | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Includes sections on petroleum, natural gas, and methane hydrates. Hands-on activities include drilling for oil in the ocean, and building a floating oil rig. Study Guide - Build a ...

  7. Oil- and gas-supply modeling

    SciTech Connect (OSTI)

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  8. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  9. The economic impact of proposed regulations on the discharge of drilling muds and cuttings from the offshore facilities on US undiscovered crude oil reserves

    SciTech Connect (OSTI)

    Not Available

    1989-01-13

    This paper presents the results of an assessment of the potential economic impact of proposed regulations. on the discharge of drilling fluids (muds) and cuttings on US offshore undiscovered crude oil resources. These regulations include proposed Best Available Technology economically achievable (BAT) and New Source Performance Standards (NSPS) effluent limitations under the Clean Water Act governing the discharge of drilling fluids and drill cuttings from offshore oil and gas drilling operations. The impact of the proposed RAT/NSPS regulations for the drilling fluids and drill cuttings disposal on the cost of funding, developing, and producing Lower-48 offshore undiscovered crude oil resources will depend significantly on operators perceptions on the chances of failing toxicity or static sheen tests. If operators, in economically justifying their projects, assume that the fluids fail one of these tests, thereby prohibiting them from being discharged, up to 11% of the economically recoverable offshore resource would be considered uneconomic to produce. This would amount to 845 million barrels of oil at an oil price around $25 per barrel. On the other hand, if operators are willing co take their chances and see if their fluids fail one of these tests, then, based on EPA`s assumptions concerning forecast fluid use and static sheen and toxicity test failure rates, up to 4% of the offshore undiscovered resource would be impacted, amounting to lost reserves of up to 270 million barrels.

  10. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska, Open File Report 98-34, 1999) provided basic information used in this study. A prior assessment was completed in 1987 by the USGS.

  11. Historical Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historical Resources Historical Resources Historical Resources New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy maintains and makes accessible to the general public a wide variety of historical resources. These include published and online histories of the Department and its predecessor agencies and records, exhibits, museums, and tours available online and at various locations both within and outside the Department. The Department's Office of

  12. System and method for preparing near-surface heavy oil for extraction using microbial degradation

    DOE Patents [OSTI]

    Busche, Frederick D.; Rollins, John B.; Noyes, Harold J.; Bush, James G.

    2011-04-12

    A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

  13. WINDExchange: Information Resources

    Wind Powering America (EERE)

    Information Resources A range of WINDExchange resources are available, including links to relevant publications, podcasts, and webinars about wind energy topics. Annual Reports Screenshot of the 2015 Wind Technologies Market Report 2015 Wind Technologies Market Report The report provides a comprehensive overview of 2015 trends in the U.S. wind industry and wind power market. Lawrence Berkeley National Laboratory draws from a variety of data sources and covers a broad range of topics. Screenshot

  14. Combating oil spill problem using plastic waste

    SciTech Connect (OSTI)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  15. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  16. Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research

    Broader source: Energy.gov [DOE]

    Three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation’s abundant unconventional natural gas and oil resources.

  17. Electric Power Generation from Co-Produced Fluids from Oil and...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  18. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil

    Office of Energy Efficiency and Renewable Energy (EERE)

    Converting domestic biomass into affordable fuels, products, and power supports our national strategy to diversify energy resources and reduce dependence on imported oil.

  19. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  20. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  1. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  2. Petroleum hydrocarbons in near-surface seawater of Prince William Sound, Alaska, following the Exxon Valdez oil spill II: Analysis of caged mussels. Air/water study number 3. Subtidal study number 3a. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect (OSTI)

    Short, J.W.; Harris, P.M.

    1995-07-01

    Mussels (Mytilus trossulus) were deployed at 22 locations inside Prince William Sound and 16 locations outside the Sound at depths of 1, 5 and 25 m for 2 to 8 weeks to determine the biological availability and persistence of petroleum-derived hydrocarbons from the Exxon Valdez Oil (EVO) spill. Four successive deployments were made in 1989, and two each in 1990 and 1991. Mussels were analyzed for 27 alkane and 43 polynuclear aromatic hydrocarbon (PAH) analytes. PAH concentrations derived from EVO in mussels decreased with depth, time, and distance from heavily oiled beaches. Hydrocarbon accumulation derived from EVO by deployed mussels indicates petroleum hydrocarbons were available to subsurface marine fauna the summer following the spill, which may be a route of oil ingestion exposure by fauna at high trophic levels.

  3. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited

  4. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  5. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  6. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  7. Waste oil reclamation. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  8. Waste oil reclamation. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  9. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  10. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the ...

  11. Nebraska Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    was founded in 1959. Its mission is to foster, encourage and promote the development, production and utilization of natural resources of oil and gas in the state. The mission...

  12. An Industrial Membrane System Suitable for Distributed Used Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as thermal and chemical stability, including waste oil re-refining, coal tar oil clean-up, and FCC slurry upgrading. * In parallel, use these applications and know-how ...

  13. Lubrication from mixture of boric acid with oils and greases

    DOE Patents [OSTI]

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  14. Lubrication from mixture of boric acid with oils and greases

    DOE Patents [OSTI]

    Erdemir, Ali

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  15. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  16. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  17. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  18. Elements of oil-tanker transportation

    SciTech Connect (OSTI)

    Marks, A.

    1982-01-01

    Historical, economic, and statistical aspects of oil tanker transportation are discussed. In addition, oil tanker applied technology using a Hewlett-Packard 67 calculator is detailed. HP-67 programs are given in addition to theoretical formulas, references and examples need to solve the equations using any calculator. The contents include: berthing energy computation; Poisson distribution computation for estimating berth requirements; ship collision probability computation; spill risk analysis; oil spill movement computation; tanker characteristic computations; and ASTM measurement computations. (JMT)

  19. Methodology for Monthly Crude Oil Production Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    015 U.S. Energy Information Administration | Methodology for Monthly Crude Oil Production Estimates 1 Methodology for Monthly Crude Oil Production Estimates Executive summary The U.S. Energy Information Administration (EIA) relies on data from state and other federal agencies and does not currently collect survey data directly from crude oil producers. Summarizing the estimation process in terms of percent of U.S. production: * 20% is based on state agency data, including North Dakota and

  20. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  1. Training Resources | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Training Resources The NNSA Office of Civil Rights maintains a robust training and awareness resource library. Available resources include DVD-based training programs, DVD videos, guides, handbooks, and textbooks regarding the following topical areas: Workplace Conflict Resolution Harassment Detection, Intervention, and Prevention Workplace Diversity Supervision and Management Federal Sector EEO Processes, Procedures, and Responsibilities If you are interested in accessing these resources,

  2. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  3. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  4. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  5. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  6. Distributed Generation Lead-by-Example Resources

    Broader source: Energy.gov [DOE]

    State governments can lead by example by promoting renewable energy programs and policies. Efforts to lead by example include using renewable energy resources (including alternative fuel for...

  7. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  8. MHK technology developments include current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developments include current energy conversion (CEC) devices, for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high- performance computing (HPC), advanced materials and coatings, nondestructive

  9. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD

  10. Exxon Valdez oil spill: State/federal natural resource damage assessment final report. Effects of pink salmon (oncorhynchus gorbuscha) escapement level on egg retention, preemergent fry, and adult returns to the kodiak and chignik management areas caused by the Exxon Valdez oil spill. Fish/shellfish study numbers 7b and 8b. Final report

    SciTech Connect (OSTI)

    1993-12-01

    As a result of the 1989 Exxon Valdez oil spill, commercial salmon fishing in and around the Kodiak and Chignik areas was severely restricted throughout the 1989 season. Consequently, pink salmon escapements for these areas greatly exceeded targeted escapement objectives. Investigations were conducted within the Kodiak and Chignik Management Areas during 1989 and 1990 to determine if negative impacts on future odd-year brood line pink salmon production occurred as a result of overescapement in 1989.

  11. Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Solantausta, Yrjo

    2012-06-01

    Catalytic hydroprocessing has been applied to the fast pyrolysis liquid product (bio-oil) from softwood biomass in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. This paper is focused on the process experimentation and product analysis. The paper describes the experimental methods used and relates the results of the product analyses. A range of operating parameters including temperature, and flow-rate were tested with bio-oil derived from pine wood as recovered and pyrolyzed in the pilot pyrolyzer of Metso Power in Tampere, Finland. Effects of time on stream and catalyst activity were assessed. Details of the process results were presented included product yields and hydrogen consumption. Detailed analysis of the products were provided including elemental composition and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an initial understanding of the efficacy of hydroprocessing as applied to the Finnish pine bio-oil.

  12. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  13. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  14. Oil, gas, and helium references index for the Navajo Indian Reservation, Arizona, New Mexico, and Utah. [223 references

    SciTech Connect (OSTI)

    Bliss, J.D.

    1982-02-01

    The references which are listed in this document represent the readily available literature about oil, gas, and helium resources on or adjacent to the Navajo Indian Reservation. They were selected during the developmental phase of the Navajo Resource Information System (NRIS). The system contains a set of computerized data bases addressing various resource categories. The system was developed by the US Geological Survey in coordination with the Minerals Department, Navajo Nation. Literature is the foundation of resource assessment and the absence of such a compilation for the Navajo Nation prompted the development of a reference data base entitled nref, which consists of over 1300 records. The following reference list of approximately 230 references was selected from those citations which contain oil, gas, or helium in a keyword list attached to each citation. References to general literature on oil, gas, or helium may also be present. The main attempt was to list most of the literature published in the 1960's and 1970's for areas in, or adjacent to, the Navajo Reservation. References published prior to this were included only if readily available or if they seemed to represent areas or topics not covered in later publications. 223 references.

  15. BT16 Forest Resource Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Forest biomass is an abundant biomass feedstock that complements the con- ventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the

  16. Natural resource damages: A legal, economic and policy overview

    SciTech Connect (OSTI)

    Connaughton, J.L.

    1995-12-31

    Natural resource damages liability is a major development in environmental law. Government authorities are increasingly seeking damage claims for injury to natural resources, invoking the natural resource damages (NRD) provisions of the federal Superfund statute and the Oil Pollution Act. The number of Claims asserted is increasing, and the amounts sought range to hundreds of millions of dollars, with some claims exceeding $1 billion. Some assert that the federal NRD program is an awakening sleeping giant that could threaten to rival the Superfund cleanup program in cost and the potential for imposing far-reaching liabilities on a wide range of businesses as well as the federal government. Lawyers, economists, and other experts on NRD have become fully engaged in comprehensive analyses of the legal, economic and policy issues presented by NRD claims, including a full review of the NRD litigating record. Many critics find that existing NRD law and practice is flawed; produces excessive liability claims, skewed incentives and economic waste; and urgently needs reform. Changes have been recommended to improve the law and refocus the NRD program on achieving cost-effective restoration of injured natural resources. These analytical endeavors are especially timely because Congress is currently considering significant changes in NRD law. This overview will provide a brief background summary of the NRD program and highlight some of the central legal and scientific issues facing government policy makers and litigants in NRD cases.

  17. OpenMP Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMP Home » For Users » Computational Systems » Edison » Programming » Using OpenMP » OpenMP Resources OpenMP Resources What is OpenMP OpenMP is an industry standard API of C/C++ and Fortran for shared memory parallel programming. OpenMP Architecture Review Board (ARB) consists of major compiler vendors and many research institutions. Common architectures include shared memory architecture (multiple CPUs shared global memory, uniform memory access (UMA), with typical shared memory

  18. OpenMP Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMP » OpenMP Resources OpenMP Resources What is OpenMP OpenMP is an industry standard API of C/C++ and Fortran for shared memory parallel programming. OpenMP Architecture Review Board (ARB) consists of major compiler vendors and many research institutions. Common architectures include shared memory architecture (multiple CPUs shared global memory, uniform memory access (UMA), with typical shared memory programming model of OpenMP, Pthreads), distributed memory architecture (each CPU has own

  19. Commercialization of oil shale with the Petrosix process

    SciTech Connect (OSTI)

    Batista, A.R.D.; Ivo, S.C.; Piper, E.M.

    1985-02-01

    Brazil, because of domestic crude oil shortage, took an interest in oil shale between 1940 and 1950. Petrobras, created in 1954, included in its charter the responsibility to develop a modern oil shale industry. An outgrowth has been the Petrosix process incorporated in a commercial unit in the State of Parana that has operated successfully more than 65,000 hours. Because of the maturity of the Petrosix process in this plant and the similarity of the Brazilian Irati oil shale to many other shales, interest has developed to apply the Petrosix process to producing shale oil and high BTU gas from these oil shales. A comparison of the characteristics has been developed between Irati and other oil shales. An evaluation of a commercial plant design has been completed for Irati, Kentucky, and Indiana oil shale projects. The technological and commercial aspects of producing shale oil using the Petrosix technology are discussed.

  20. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  1. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  2. Method for forming an in-situ oil shale retort in differing grades of oil shale

    SciTech Connect (OSTI)

    Ricketts, T.E.

    1984-04-24

    An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

  3. Energy Resource Library | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Training » Energy Resource Library Energy Resource Library The U.S. Department of Energy (DOE) Office of Indian Energy resource library provides links to helpful resources for tribes on energy project development and financing on tribal lands. The library includes links to topically relevant publications, websites, videos, and more produced by the Office of Indian Energy and external organizations. The resources are specifically focused on energy topics that help promote tribal

  4. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  5. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  6. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources This page is the repository for sundry items of information relevant to general computing on BooNE. If you have a question or problem that isn't answered here, or a suggestion for improving this page or the information on it, please mail boone-computing@fnal.gov and we'll do our best to address any issues. Note about this page Some links on this page point to www.everything2.com, and are meant to give an idea about a concept or thing without necessarily wading through a whole website

  7. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  8. Griffiss AFB integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  9. Modeling renewable energy resources in integrated resource planning

    SciTech Connect (OSTI)

    Logan, D.; Neil, C.; Taylor, A.

    1994-06-01

    Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

  10. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  11. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Unconventional Oil and Gas Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Offshore Safety and Spill Prevention Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Unconventional Oil and Gas Chapter 7: Technology Assessments Executive Summary The United States will, for the foreseeable future, continue to rely heavily upon oil and natural gas to support our economy, national security, and energy security. Given the increasing reliance on unconventional oil and gas (UOG) resources,

  12. Strategic Center for Natural Gas and Oil R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Albert Yost SMTA Strategic Center for Natural Gas & Oil The National Energy Technology Laboratory & The Strategic Center for Natural Gas and Oil R&D Program August 18, 2015 Tribal leader forum: U.S. Department of Energy oil and gas technical assistance capabilities Denver, Colorado 2 National Energy Technology Laboratory Outline * Review of Case History Technology Successes * Review of Current Oil and Natural Gas Program * Getting More of the Abundant Shale Gas Resource *

  13. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs,...

  14. ORISE Resources: Consumer Health Resource Information Service...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  15. U.S. Open Labs - Exploring Resources | Open Energy Information

    Open Energy Info (EERE)

    describes the technology and includes a list of less-developed countries with access to OTEC resources. International Wind Resource Maps The National Renewable Energy Laboratory...

  16. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...

  17. World frontiers beckon oil finders

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This paper discusses the international aspects of the petroleum industry. Most who work in the industry agree that the possibilities for huge are found largely in international regions. Something that is helping fuel that possibility is the way countries are increasingly opening their doors to US oil industry involvement. Listed in this paper is a partial list of the reported projects now underway around the world involving US companies. It is not intended to be comprehensive, but rather an indication of how work continues despite a general lull atmosphere for the oil industry. These include Albania, Bulgaria, Congo, Czechoslovakia, Dominican Republic, Ethiopia, Ireland, Malta, Madagascar, Mongolia, Mozambique, Nigeria, Panama, Paraquay, and Senegal.

  18. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  19. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  20. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  1. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-03-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-08-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-10-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Renewable resource development in the Ecuadorian rainforest

    SciTech Connect (OSTI)

    Hutton, W.C.; Skaggs, M.M. Jr.

    1995-12-31

    This paper discusses the planning and execution of a multi-million dollar, heavy oil renewable resource development project in the Amazon Basin of Ecuador. The project work is authorized under a risk service contract with PETROECUADOR and employs new technology in order to minimize environmental and cultural impacts on the environment and the inhabitants of the areas. During the peak of the project, over 3,000 workers were employed and managed in the rainforest under special guidelines, in order to avoid damages to the environment. The project guidelines are spelled out in a model Environmental Management Plan (EMP) which employs innovative well pad, road and pipeline construction and platform drilling methods to limit deforestation. Reforestation methods are reviewed; scientific baseline and archaeological pre and post construction methods were followed, and methods to control colonization pressures are executed as a part of the EMP described in this paper. In addition, the EMP covers methods used to minimize the disruption of the indigenous population of the area including medical, educational and other programs employed to reduce disease among the indigenous population of the area. Conventional aspects of the EMP include spill control techniques for remote areas of the rainforest, solid waste recycling programs, drilling and construction waste management, landfarming methods, pipeline construction and underground river crossing methods. All of these methods are employed to minimize the environmental and cultural impact of the project on the environment and its inhabitants.

  5. ADR Resources

    Broader source: Energy.gov [DOE]

    Alternative dispute resolution (ADR) is any technique for resolving disputes without resorting to litigation in either an administrative or judicial forum.  ADR techniques include (See ADR Term...

  6. Internal Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drawings/Photos | Links Disclaimer The statements and opinions included in the CAMD SAXS Beamline pages are those of CAMD SAXS Beamline personnel and SAXS web designer only. Any statements and opinions included in these pages are not those of Louisiana State University or the LSU Board of Supervisors. Small Angle X-ray Scattering Beamline at The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices Louisiana State University | Telephone: 225-578-8887 | Fax: 225-578-6954

  7. Marbled murrelet abundance and breeding activity at Naked Island, Prince William Sound, and Kachemak Bay, Alaska, before and after the Exxon Valdez oil spill. Bird study number 6. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect (OSTI)

    Kuletz, K.J.

    1994-08-01

    The author compared pre- and post-spill abundance and breeding activity of murrelets near the Naked Island group in central Prince William Sound, and in Kachemak Bay in lower Cook Inlet. Murrelet numbers at Naked Island were lower in 1989 than in 1978-1980 but not in 1990-1992. At Kachemak Bay, where oiling was minimal, murrelet densities did not change between 1988 and 1989. The results suggest that the murrelet population at Kachemak Bay, further removed temporally and spatially from the spill epicenter, was not affected as the Naked Island populations in 1989. Murrelet numbers were negatively correlated to numbers of boats at both study sites, and cleanup activities likely contributed to disruption in 1989.

  8. High-Performance Renewable Base Oils for Industrial Lubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When used in industrial lubricants of all types, Biosynthetic's oils achieved superior performance in many critical performance areas, including pour point, viscosity index, flash ...

  9. Enhanced oil recovery projects data base

    SciTech Connect (OSTI)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  10. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  11. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    SciTech Connect (OSTI)

    Zirker, L.R.; Francfort, J.E.

    2003-01-31

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  12. Histopathologic lesions in sea otters exposed to crude oil

    SciTech Connect (OSTI)

    Lipscomb, T.P.; Harris, R.K.; Moeller, R.B.; Pletcher, J.M.; Haebler, R.J.

    1993-01-01

    On 24 March 1989, the oil tanker Exxon Valdez ran aground on Bligh Reef in Prince William Sound, Alaska. In the months following the spill, over 1,000 sea otters (Enhydra lutris) from oil spill-affected areas are known to have died. The purpose of the study is to identify and describe histopathologic lesions associated with crude oil exposure in sea otters and to discuss possible pathogeneses of the lesions. Materials available included tissues from oil-contaminated and uncontaminated otters that died in rehabilitation centers following the oil spill and tissues from otters that were found dead in the oil spill-affected area with external oil present. Tissues from apparently normal sea otters from an area not contaminated by crude oil, were also examined.

  13. Expansion of the commercial output of Estonian oil shale mining and processing

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1996-09-01

    Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

  14. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. )

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  15. Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  16. US Crude oil exports

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since ...

  17. Crude Oil Characteristics Research

    Broader source: Energy.gov (indexed) [DOE]

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The ...

  18. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  19. South American oil

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  20. State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

  1. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  2. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect (OSTI)

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  3. Developing a cost effective environmental solution for produced water and creating a ''new'' water resource

    SciTech Connect (OSTI)

    Doran, Glenn; Leong, Lawrence Y.C.

    2000-05-01

    The project goal is to convert a currently usable by-product of oil production, produced water, into a valuable drinking water resource. The project was located at the Placate Oil Field in Santa Clarita, California, approximately 25 miles north of Los Angeles. The project included a literature review of treatment technologies; preliminary bench-scale studies to refine a planning level cost estimate; and a 10-100 gpm pilot study to develop the conceptual design and cost estimate for a 44,000 bpd treatment facility. A reverse osmosis system was constructed, pilot tested, and the data used to develop a conceptual design and operation of four operational scenarios, two industrial waters levels and two irrigation/potable water.

  4. Summary of 1998 crude oil reserve changes. Statistical series number 99-18A

    SciTech Connect (OSTI)

    1999-11-01

    During the year, the Alberta Energy and Utilities Board`s Resource Appraisal Group and Reservoir Development Group designates new oil pools, revises reserves in existing pools because of new drilling or reassessment of reserves, and approves various schemes for improving ultimate oil recovery. This document summarizes those changes in sections covering the following: Pools in which recoverable reserves were revised as a result of pool development or reservoir re-evaluation; new pools declared during the year; pools which lost their confidential status; pool name changes; and schemes which received enhanced recovery recognition during the year. Information presented by name of pool includes reserve levels in previous years and amount of change, as well as reason for change.

  5. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  6. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  7. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  8. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    SciTech Connect (OSTI)

    Carlson, Garry J.; Birkby, Jeff

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  9. Outer Continental Shelf Oil and Gas Information Program. Update 2, August 1981, Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: a summary report, July 1980

    SciTech Connect (OSTI)

    McCord, C.A.

    1981-01-01

    In July 1980, the Office of Outer Continental Shelf (OCS) Information issued an initial report called Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: A Summary Report, July 1980. The purpose of this report was to provide State and local governments with current information about offshore oil and gas resources and onshore activity in the area extending from Cape Hatteras, North Carolina, to Cape Canaveral, Florida. This information was designed to assist in socioeconomic planning for the onshore impacts of oil and gas development in the affected areas. This report, Update 2, discusses Outer Continental Shelf oil and gas activities and their onshore impacts for the period of February 1981 to August 1981. Because of the minimal offshore oil- and gas-related activity in the South Atlantic Region, the onshore impacts are also minimal. Very little, if any, development has occurred as a result of exploration or development. Even though the South Atlantic OCS does contain large areas with hydrocarbon potential, little optimism has been generated by exploration associated with Lease Sale 43. Lease Sale 56 included tracts with geologic conditions more favorable to the generation, migration, and accumulation of hydrocarbons, especially the deepwatr tracts, but industry showed moderate interest in the first deepwater lease sale. The level of nearshore and onshore activity may increase with exploration associated with Lease Sale 56. More permanent onshore development will be contingent on the outcome of exploration efforts.

  10. Low-Temperature Hydrothermal Resource Potential Estimate

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  11. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect (OSTI)

    Kishore Mohanty

    2012-03-31

    includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil

  12. Largest US oil and gas fields, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  13. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect (OSTI)

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  14. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    SciTech Connect (OSTI)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  15. Valuation of ecological resources

    SciTech Connect (OSTI)

    Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

    1995-04-01

    Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

  16. Geothermal resources of Montana

    SciTech Connect (OSTI)

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  17. NREL: TroughNet - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This site features data and resources about parabolic trough power plant technology, including: Industry partners U.S. power plant data Solar data Models and tools System and ...

  18. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  19. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  20. Mobile Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency & Renewable Energy Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the

  1. Method for maximizing shale oil recovery from an underground formation

    DOE Patents [OSTI]

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  2. Tapping America's Energy Potential Through R&D | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil reservoirs amenable to carbon dioxide enhanced oil recovery (CO2 EOR), heavy oil, oil shale, shale oil, and natural gas resources including methane hydrates. Studies have shown...

  3. Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach

    SciTech Connect (OSTI)

    Amy Childers

    2011-03-30

    Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

  4. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  5. Assessment of industry needs for oil shale research and development

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  6. No. 2 heating oil/propane program

    SciTech Connect (OSTI)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  7. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  8. Oil field management system

    DOE Patents [OSTI]

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  9. The commanding heights of oil: Control over the International oil market

    SciTech Connect (OSTI)

    Krapels, E.N.

    1992-01-01

    The Commanding Heights of Oil is an analysis of oil's role in the international environment. It identifies the degree of control over oil in terms of what is asserted as the most important processes and factors that determine the condition of international affairs: (1) The state of oil demand in relation to the capacity to supply, with special emphasis on the amount of spare production capacity; (2) The nature of the business, and how the structure of the industry changes over time as companies cope with the risks peculiar to an extremely capital intensive enterprise; (3) The financial strength of the parties contending for control, including their ability to outlast their opponents in contests for influence over oil affairs; and (4) The nature of the mechanisms whereby the governments and companies strive to create a situation in which they do not have to rely on price to balance supply and demand. Each of the four central factors was prominent at every major turn of the international oil market over the decades. The dissertation argues that the international oil market was controlled in the past by first a group of companies, and, later, a group of countries, for a combination of reasons that is unlikely to be repeated. That does not mean that the 1990s will be spared oil price shocks such as occurred in the 1970s and 1980s. It does suggest that those shocks are unlikely to last long, that OPEC members are unlikely to be able to leverage their position in oil into larger positions in world affairs. It means that oil is unlikely to play as prominent a role in world affairs in the 1990s as it has in the past, even if oil demand, and along with it dependence on OPEC oil, rises.

  10. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  11. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Reader, Part II. Sun story. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  12. Solar Energy Education. Renewable energy: a background text. [Includes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    glossary] (Technical Report) | SciTech Connect energy: a background text. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Renewable energy: a background text. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  13. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation's vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers

  14. Tough Blends of Polylactide and Castor Oil

    SciTech Connect (OSTI)

    Robertson, Megan L.; Paxton, Jessica M.; Hillmyer, Marc A.

    2012-10-10

    Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. Broader implementation of the material is limited due to its inherent brittleness. We show that the addition of 5 wt % castor oil to PLLA significantly enhances the overall tensile toughness with minimal reductions in the modulus and no plasticization of the PLLA matrix. In addition, we used poly(ricinoleic acid)-PLLA diblock copolymers, synthesized entirely from renewable resources, as compatibilizers for the PLLA/castor oil blends. Ricinoleic acid, the majority fatty acid comprising castor oil, was polymerized through a lipase-catalyzed condensation reaction. The resulting polymers contained a hydroxyl end-group that was subsequently used to initiate the ring-opening polymerization of L-lactide. The binary PLLA/castor oil blend exhibited a tensile toughness seven times greater than neat PLLA. The addition of block copolymer allowed for control over the morphology of the blends, and even further improvement in the tensile toughness was realized - an order of magnitude larger than that of neat PLLA.

  15. Progress Report SEAB Recommendations on Unconventional Resource

    Office of Environmental Management (EM)

    | P a g e Progress Report SEAB Recommendations on Unconventional Resource Development Introduction Recent Secretary of Energy Advisory Board (SEAB) reports provide important frames of reference for stimulating actions that can ensure the development of U.S. oil and natural gas is safe and environmentally responsible. This overview outlines near term actions being taken by the U.S. Department of Energy (DOE) in response to the SEAB's March 2014 report on FracFocus 2.0, and also highlights

  16. State Heating Oil and Propane Program

    U.S. Energy Information Administration (EIA) Indexed Site

    Program Marcela Rourk 2014 SHOPP Workshop October 8, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC October 8, 2014 2 * Expansion of propane data collection * EIA resources available to States * Improvements to SHOPP What is SHOPP? Marcela Rourk, Washington, DC October 8, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data collection effort between EIA and State Energy Offices (SEOs) - data used by policymakers, industry analysts, and consumers - collects

  17. Venezuelan projects advance to develop world`s largest heavy oil reserves

    SciTech Connect (OSTI)

    Croft, G.; Stauffer, K.

    1996-07-08

    A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

  18. Sandia Energy - Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  19. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  20. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  1. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect (OSTI)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the

  2. Heavy crudes and bitumen categorized to help assess resources, techniques

    SciTech Connect (OSTI)

    Byramjee, R.J.

    1982-07-04

    As conventional crude oil reserves decrease and prices go up, heavy crude oil (HCO) is getting more attention from oil companies and governments. It was felt that some clarification was needed regarding these products and a review of known fields was conducted to sort out ranges of physical and composition characteristics for definition and classification purposes. A summary of this review with a proposal for classification was presented at the Second International Conference on Heavy Crude and Tar Sands held in Caracas in Feb. 1982. This Caracas conference, organized jointly by the United Nations Institute for Training and Research (UNITAR) and Petroleos de Venezuela debated the definition, characteristics, reserves/resources, production/enhanced oil recovery, and upgrading of heavy crude oils. This work is based, in part, on some of the Caracas conference's discussions.

  3. Manhattan Project Historical Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project » Manhattan Project Historical Resources Manhattan Project Historical Resources New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy has developed and made available to the public--in print, online, and on display--a variety of Manhattan Project historical resources. These include histories, websites, reports and document collections, and exhibits and tours. Histories produced by the Department include The Manhattan Project, which provides a

  4. Survey of potential geopressured resource areas in California. Final report

    SciTech Connect (OSTI)

    Sanyal, S.K.; Robertson-Tait, A.; Kraemer, M.; Buening, N.

    1993-03-01

    This paper presents the initial results of a survey of the occurrence and characteristics of geopressured fluid resources in California using the publicly- available database involving more than 150,000 oil and gas wells drilled in the State. Of the 975 documented on-shore oil and gas pools studied, about 42% were identified as potentially geopressured. Geothermal gradients in California oil and gas fields lie within the normal range of 1 F to 2 F per 100 feet. Except for the Los Angeles Basin, there was no evidence of higher temperatures or temperature gradients in geopressured pools.

  5. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  6. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

  7. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources The Human Resources team is fully integrated with Jefferson Lab's mission, committed to providing quality customer service based on expertise, innovation and ...

  8. An oil and gas cartel OPEC in evolution

    SciTech Connect (OSTI)

    Not Available

    1992-12-23

    More than ever before, the Organization of Petroleum Exporting countries is faced with a sophisticated and complex market, a highly charged environmental movement, and new calls for energy conservation and alternative fuels. It has lost a member, Ecuador. However OPEC's future evolves, it will be challenged to change. As non-OPEC oil production continues to decline, OPEC's future could brighten considerably. Natural gas presents a great opportunity to OPEC as many industrial and developing countries utilize gas more extensively because of price and environmental advantages. Whether oil or gas, OPEC will require large amounts of capital to satisfy the world's appetite for petroleum. The loss of Ecuador seems a setback to the Organization, but there are burgeoning Soviet Republics with large reserves in need of development assistance to tap into their natural resources more effectively. On the demand side, many companies are seeking hospitable recipients for their exploratory activities and investment capital. OPEC's role might somehow include the embrace of these developments for the betterment of its individual, unique members.

  9. Technology experience and economics of oil shale mining in Estonia

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1995-11-01

    The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

  10. NREL: Renewable Resource Data Center - Biomass Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  11. Shale oil dearsenation process

    SciTech Connect (OSTI)

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  12. Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills

    SciTech Connect (OSTI)

    Lee, Richard F.; Anderson, Jack W.

    2005-07-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to

  13. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  14. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  15. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  16. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  17. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  18. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  19. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect (OSTI)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  20. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  1. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  2. Lower oil prices also cutting winter heating oil and propane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    see even lower natural gas and heating oil bills this winter than previously expected ... said the average household heating with oil will experience a 41% drop in heating oil ...

  3. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect (OSTI)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  4. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  5. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  6. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  7. Upgrading heavy gas oils

    SciTech Connect (OSTI)

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  8. Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

  9. EM, Tribal, and State Officials Receive Training on Restoring Damaged Natural Resources

    Broader source: Energy.gov [DOE]

    NEW ORLEANS – Senior EM, Tribal, and state officials gathered for a training on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process for restoring resources damaged from oil spills or hazardous substance releases into the environment.

  10. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Broader source: Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  11. Cal. PRC Section 6909 - Oil and Gas and Mineral Leases: Geothermal...

    Open Energy Info (EERE)

    09 - Oil and Gas and Mineral Leases: Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 6909 -...

  12. Money windfalls and oil-exporting developing countries: a comparative study of Algeria, Ecuador, trinidad and Tobago, and Indonesia

    SciTech Connect (OSTI)

    Avin, R.M.

    1986-01-01

    This thesis analyzes how the oil windfalls of the 1970s have affected the growth path and the sectoral composition of output and trade of the oil rich developing countries. The policy makers of the four subject countries have adopted different development strategies so that their economies can achieve sustained increases in per capita income and a higher level of economic development after the resource is depleted. The analysis is concerned with the consequences of these policies. The neoclassical models used in the literature to analyze the effects of a resource boom predict the following consequences among others: (1) increase in the prices of nontraded goods, which include construction and services; (2) appreciation of the real exchange rate, which is defined as the ratio of the price of nontraded goods to the price of traded goods, and (3) fall in the output and employment of the traditional traded goods sector, not including the resource or booming sector. The consequences are known as the Dutch Disease in reference to a decline in Dutch manufacturing in the 1960s brought about by natural gas discoveries. To test the hypotheses of the trade and development models, national accounts data are used in order to measure the changes in the composition of production and trade in the 1970s and early 1980s.

  13. Fuel oil and kerosene sales 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  14. Oil and gas journal databook, 1987 edition

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

  15. Improving oiled shoreline cleanup with COREXIT 9580

    SciTech Connect (OSTI)

    Fiocco, R.J.; Lessard, R.R.; Canevari, G.P.

    1996-08-01

    The cleanup of oiled shorelines has generally been by mechanical, labor-intensive means. The use of a chemical shoreline cleaner to assist in water-flushing oil from the surfaces can result in more complete and more rapid cleaning. Not only is the cleaning process more efficient, but it can also be less environmentally damaging since there is potentially much less human intrusion and stress on the biological community. This paper describes research and applications of COREXIT 9580 shoreline cleaner for treatment of oiled shorelines, including four recent applications in Puerto Rico, Bermuda, Texas and Nova Scotia. Research work on shoreline vegetation, such as mangroves, has also demonstrated the potential use of this product to save and restore oiled vegetation.

  16. Saturn facility oil transfer automation system

    SciTech Connect (OSTI)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector M.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  17. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  18. Downstream Petroleum Mergers and Acquisitions by U.S. Major Oil Companies

    Reports and Publications (EIA)

    2009-01-01

    A summary presentation of mergers and acquisitions by U.S. major oil companies (including the U.S. affiliates of foreign major oil companies). The presentation focuses on petroleum refining over the last several years through late 2009.

  19. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  20. Central Pacific Minerals and Southern Pacific Petroleum detail oil shale activities

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    These two affiliated companies have their major assets in Queensland. Brief summaries are given of the activities of the Rundle, Condor, and Yaamba oil shale projects and brief descriptions are given of the resources found in the Stuart, Nagoorin, Nagoorin South, Lowmead, and Duaringa oil shale deposits of Queensland. The companies also have, or are planning, oil shale projects in the US, Luxembourg, France, and the Federal Republic of Germany, and these are briefly described.

  1. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment is a product of the Energy Information Administration’s (EIA) Reserves and Production Division. EIA, under various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral

  2. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  3. STEO September 2012 - oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil ...

  4. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  5. Energy Efficiency Resource Standards Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EERS resources below. Coordination of Energy Efficiency and Demand Response ACEEE Database of State EERS Center for Climate and Energy Solutions: Energy Efficiency Standards ...

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... basalts, partly obscuring the underlying geology from seismic and increasing the cost of ... May 17, 2013 VII-11 Figure VII-6: Regional Seismic Time Section Across the Chaco ...

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... Source: Sachsenhofer et al., 2012 The Kovel-1 petroleum well is a key stratigraphic test ... have pursued shale gas leasing in Bulgaria but only one shale test well has been drilled. ...

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the La Luna-1 stratigraphic test in the MMVB later that year (results not disclosed). ... ConocoPhillips expects to drill its first exploration well to test the La Luna Shale in ...

  9. Technically Recoverable Shale Oil and Shale Gas Resources

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    logs from 100 horizontal wells showed an enormous discrepancy in production between perforation clusters that is likely due to rock heterogeneity." One reason why...

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... of the Paran Basin, although Amerisur Energy has discussed the shale potential of the ... Showing Flat-lying but Moderately Faulted Devonian Shale (Green) at Depths of 2 to 3 km. ...

  11. Vegetable oil as fuel

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  12. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  13. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect (OSTI)

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  14. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

  15. Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report

    SciTech Connect (OSTI)

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

  16. China shows increasing interest in heavy oil and oil sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  17. NREL: Energy Analysis - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources The following data and resources include procedures, databases, maps, and tools produced by NREL. These resources are available to assess, analyze, and optimize renewable energy and energy efficiency technologies for your project. Annual Technology Baseline and Standard Scenarios This study provides an annual process designed to ensure consistent application of a realistic and timely set of input assumptions and consider a diverse set of potential futures. Building Energy Data

  18. Technical Assistance: Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Technical Assistance: Resources The State and Local Solution Center helps states, local governments, and K-12 schools take clean energy to scale in their communities using a searchable database based on four key action areas or by topic and/or resource type. Action areas include in depth information on how to develop a clean energy strategy, design and implement clean energy programs, pay for clean energy, and access and use energy data. The State & Local Energy Efficiency Action

  19. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources that are used directly as a fuel, or converted to another form or energy product that are available on a renewable basis are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, algae, biomass processing residues, municipal waste, and animal waste. Dedicated Energy Crops Dedicated energy crops are non-food

  20. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  1. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOE Patents [OSTI]

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  2. DOE's Portal to Deepwater Horizon Oil Spill Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

  3. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  4. Fossil Energy Oil and Natural Gas Capabilities for Tribes Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attend this webinar to hear from U.S. Department of Energy Fossil Energy Program staff about the Program’s oil and gas portfolio, technologies, and research capabilities that may be of interest to Tribes and tribal energy resource development organizations.

  5. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  6. Magnetic pipeline for coal and oil

    SciTech Connect (OSTI)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the cost of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.

  7. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  8. Economic Effects of High Oil Prices (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real gross domestic product (GDP) growth, inflation, employment, exports and imports, and interest rates.

  9. The feasibility of recovering medium to heavy oil using geopressured- geothermal fluids

    SciTech Connect (OSTI)

    Negus-de Wys, J.; Kimmell, C.E.; Hart, G.F.; Plum, M.M.

    1991-09-01

    The feasibility, economics and environmental concerns of producing more domestic oil using thermal enhanced oil recovery (TEOR) are reviewed and the unique nature of geopressured-geothermal (GPGT) fluids for thermal recovery are outlined. Current methods of TEOR are briefly discussed and it is noted that these methods are presently under scrutiny by both federal and state air quality agencies; and moreover, they often involve costly operational and mechanical problems associated with heating water on the surface for injection into the target reservoir. The characteristics of the GPGT resources as seen through previous Department of Energy (DOE) studies from sites in Louisiana and Texas are discussed. These studies indicate sufficient quantities of GPGT fluids can be produced to sustain a TEOR project. The Alworth Field in the south Texas Mirando Trend is proposed as a TEOR pilot site. The target reservoirs for injection of the GPGT fluids are the Jackson and Yegua sandstones of the upper Eocene Epoch. The reservoirs contain an estimated 4 MMbbls of heavy oil in place (OIP) (18.6{degree}API) of which it is estimated that at least 1 MMbbls could be recovered by TEOR. The problems associated with using the GPGT fluids for TEOR include those normally associated with hot water flooding but in addition the reaction of the brine from the geopressured-geothermal reservoir with the target reservoir is uncertain. Under the elevated temperatures associated with GPGT TEOR, actual increased porosity and permeability are possible. 120 refs., 40 figs., 13 tabs.

  10. BT16 Algae Resources Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 BILLION-TON REPORT Algae Resources The results of the BAT land characterization and suitability model resulted in 74,606 suitable "unit farms" (1,200 acres) totaling approximately 139,886 mi 2 (362,304 km 2 ). Algae Resources Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components-including lipids, proteins, and carbohydrates- that can be converted and upgraded to a

  11. Hydroprocessing catalysts for heavy oil and coal

    SciTech Connect (OSTI)

    Satriana, M.J.

    1982-01-01

    Hydroprocessing catalysts, as described in over 230 processes covered in this book, are hydrogenation catalysts used in the upgrading of heavy crudes and coal to products expected to be in great demand as the world's primary oil supplies gradually dwindle. The techniques employed in hydroprocessing result in the removal of contaminants, the transformation of lower grade materials such as heavy crudes to valuable fuels, or the conversion of hydrocarbonaceous solids into gaseous or liquid fuel products. All of these techniques are, of course, carried out in the presence of hydrogen. Some of the brightest energy prospects for the future lie in heavy oil reservoirs and coal reserves. Heavy oils, defined in this book as having gravities of < 20/sup 0/API, are crudes so thick that they are not readily extracted from their reservoirs. However, processing of these crudes is of great importance, because the US resource alone is enormous. The main types of processing catalysts covered in the book are hydrorefining catalysts plus some combinations of the two. Catalysts for the conversion of hydrocarbonaceous materials to gaseous or liquid fuels are also covered. The primary starting material for these conversions is coal, but wood, lignin, oil shale, tar sands, and peat are other possibilities. The final chapter describes the preparation of various catalyst support systems.

  12. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  13. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  14. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, David Lee; Baraszu, Daniel James; Foulkes, David Mark; Gomes, Enio Goyannes

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  15. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  16. Fact #652: December 6, 2010 U.S. Crude Oil Production Rises | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2: December 6, 2010 U.S. Crude Oil Production Rises Fact #652: December 6, 2010 U.S. Crude Oil Production Rises The production of crude oil in the U.S., including lease condensates, rose in 2009 for the first time since 1991. The general trend of declining oil production began in 1986 after a slight peak in 1985 of 8.97 million barrels per day. In 2008, the lowest point in the series, oil production was only 4.95 million barrels per day. The highest U.S. crude oil production was forty

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  18. Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza

    SciTech Connect (OSTI)

    ORAU's Oak Ridge Institute for Science Education

    2011-04-14

    The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster - readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that - help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. This tool has been reviewed by a variety of key subject matter experts from federal, state, and local agencies and organizations. It also has been piloted with various communities that consist of different population sizes, to include large urban to small rural communities.

  19. Business Planning Resources

    Broader source: Energy.gov [DOE]

    Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  20. LANSCE | User Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the initial proposal process to the completion of the experiment, LANSCE provides its users with resources critical to their experiements and their experience. Lujan Resources pRad Resources WNR Resources Submit a proposal for beam time Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Submit a proposal for beam time Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Submit a proposal for beam time Visit Registration Schedules

  1. Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Filter by Audience Filter by Resource Type description partneragency resourcetype stakeholdergroup publicationdate nodeurl link Careers & Internships EERE Home Contact EERE ...

  2. Hydrothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-08-31

    This two-page fact sheet provides an overview of hydrothermal resources and hydrothermal reservoir creation and operation.

  3. Spreading of crude petroleum in brash ice; Effects of oil`s physical properties and water current

    SciTech Connect (OSTI)

    Sayed, M.; Kotlyar, L.S.; Sparks, B.D.

    1994-12-31

    Experiments were conducted in a refrigerated, circulating current flume to examine crude oil spreading in brash ice. Amauligak, Hibernia and Norman Wells crudes were tested. Measurements of the physical properties of the oils were also conducted, including: surface and interfacial tensions as well as viscosities. Spreading coefficients were calculated from measured surface and interfacial tensions. Results were obtained for original and weathered oils. For the spreading tests, spill volumes up to 3 liters and water currents up to 0.55 m/s were used. Tests were done using both fresh water ice and saline ice. Slick dimensions were measured, and modes of oil spreading were observed. Slick dimensions depended on oil type, but were not influenced by water current. Oils of high spreading coefficient and low viscosity spread over larger areas than those with low spreading coefficient and high viscosity.

  4. Naval Petroleum and Oil Shale Reserves. Annual report of operations

    SciTech Connect (OSTI)

    Not Available

    1982-10-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR), created to provide a source of liquid fuels for the armed forces during national emergencies, were established by a series of Executive Orders between 1912 and 1924. Following the 1973 to 1974 Arab Oil Embargo, which demonstrated the Nation's vulnerability to oil supply interruptions, the Congress authorized and directed in 1974 that the Reserves be explored and developed to their full economic and productive potential. In October 1981, the President notified the Congress of his decision to extend production of the Naval Petroleum Reserves to April 6, 1985. That decision became final when the Congress did not exercise its authority to disapprove the action. With regard to the Naval Oil Shale Reserves (NOSRs), a program was initiated in 1977 to examine the resource for development and subsequent production should national defense requirements so dictate.

  5. Clean Energy Manufacturing Resources - Technology Full-Scale Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  6. Alternative Fuel School Bus Information Resources

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of important resources for learning more about alternative fuels in school buses. It includes information regarding Alternative Fuel School Bus Manufacturers, Alternative Fuel HD Engine Manufacturers, Alternative Fuel School Bus Operators, and Key Web Resources for Alternative Fuels.

  7. north-slope-resources | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope Resources photo of TAPS Alaska North Slope Resources Additional oil production from known resources as well as new discoveries are essential for keeping the Trans Alaska Pipeline System (TAPS) operating both technically and economically. The lower limit of effective operation for TAPS is in the range of 200,000 barrels per day. Current production rates are about 700,000 barrels per day down from a maximum of over 2 million barrels per day in 1988. The economic limit of TAPS will

  8. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  9. Topic A Note: Includes STEPS Subtopic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs

  10. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    IN SITU THERMAL PROCESSING OF OIL SHALESANDS Authors: Michal Hradisky and Philip J. Smith DOE Award No.: DE-FE0001243 Reporting Period: October 1, 2009 - September 30, 2011 ...

  11. oil1987.xls

    Gasoline and Diesel Fuel Update (EIA)

    ... Average Fuel OilKerosene Consumption Expenditures Below Poverty Line 100 Percent 2.0 1.4 ... for 1987. (3) Below 150 percent of poverty line or 60 percent of median State ...

  12. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  13. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  14. Hydroprocessing hydrocarbon oils

    SciTech Connect (OSTI)

    Simpson, H.D.; Borgens, P.B.

    1990-07-10

    This patent describes a catalytic hydroprocess of a hydrocarbon oil containing nitrogen or sulfur. It comprises: contacting a catalytic composition with the hydrocarbon oil under hydroprocessing conditions so as to produce a product hydrocarbon oil containing less nitrogen or sulfur than the hydrocarbon oil, the catalytic composition prepared by the method comprising the steps of impregnating porous refractory support particles with an aqueous impregnating solution comprising one or more Group VIB metal components, one or more phosphorus components and citric acid, the citric acid in a mole ratio to the Group VIB metal components calculated as the Group VIB metal trioxide of less than 1 to 1. The solution has a pH less than 1.0 and calcining the impregnated support particles to produce a catalytic composition containing a Group VIB metal component and a phosphorous component on the porous refractory oxide support.

  15. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  16. Oil products distribution in Iran: a planning approach

    SciTech Connect (OSTI)

    Abrishami, H.

    1986-01-01

    The significance of this study is that it examines the functions of the most important element in the public sector of the economy of Iran - the Ministry of Oil. Oil is the main source of Iran's foreign earnings and the commodity most crucial to the country's economy as its prime export. Furthermore, it plays a vital role in meeting domestic energy demands. The distribution of oil products affects, on the one hand, households, small businesses, and larger industries while, on the other, it affects the allocation, in general of other national resources. Accordingly, the effects of the Ministry of Oil's policies with regard to its production-distribution system cannot be overemphasized. The research entailed has elicited certain factors: The Ministry of Oil's present system suffers from a number of weaknesses in its production-distribution design. These deficiencies involved, among others, terminal location, number of terminals, assignment of terminals to customers, substitution of other major sources of energy for major oil products, the middle distillates problem, and an outmoded distribution method and techniques. This dissertation addresses alternatives that will eliminate faults in the present system. The approach and conclusions of this research have the potential of application to any type of industry in Iran - oil or otherwise, whether in the private or public sector - that has a similar intricate distribution-system design subject to similar variables.

  17. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data ...

  18. NREL: Renewable Resource Data Center - Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following solar resource data collections can be found in the Renewable Resource Data Center (RReDC). Cooperative Networks for Renewable Resource Measurements (CONFRRM)...

  19. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  20. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  1. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  2. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  3. Process for preparing lubricating oil from used waste lubricating oil

    DOE Patents [OSTI]

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  4. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  5. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    SciTech Connect (OSTI)

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  6. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect (OSTI)

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  7. Resource Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Analysis » Analysis Methodologies » Resource Analysis Resource Analysis Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount that can be available for hydrogen production. While often associated with renewable resources, resource analysis is also suitable for fossil resources and existing production facilities. Geographic Information Systems (GIS)

  8. 1997 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1997-12-01

    The 1997 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. Data detailing Pacific Northwest non-utility generating (NUG) resources is also available upon request. This analysis updates the 1996 pacific Northwest Loads and Resources Study, published in December 1996. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. This document analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system which includes loads and resources in addition to the Federal system. This study presents the Federal system and regional analyses for the medium load forecast. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1998--99 through 2007--08.

  9. Upgrading petroleum residues and heavy oils

    SciTech Connect (OSTI)

    Gray, M.R.

    1994-01-01

    Here is an in-depth look at current techniques for converting heavy oils and residues into more valuable distillates. It examines the chemistry of heavy hydrocarbon feeds and their properties which are important to engineering design, including phase behavior, reaction kinetics, and thermodynamic and transport characteristics.

  10. U.S. oil dependence 2014: Is energy independence in sight?

    SciTech Connect (OSTI)

    Greene, David L.; Liu, Changzheng

    2015-06-10

    The importance of reducing U.S. oil dependence may have changed in light of developments in the world oil market over the past two decades. Since 2005, increased domestic production and decreased oil use have cut U.S. import dependence in half. The direct costs of oil dependence to the U.S. economy are estimated under four U.S. Energy Information Administration Scenarios to 2040. The key premises of the analysis are that the primary oil market failure is the use of market power by OPEC and that U.S. economic vulnerability is a result of the quantity of oil consumed, the lack of readily available, economical substitutes and the quantity of oil imported. Monte Carlo simulations of future oil market conditions indicate that the costs of U.S. oil dependence are likely to increase in constant dollars but decrease relative to U.S. gross domestic product unless oil resources are larger than estimated by the U.S. Energy Information Administration. In conclusion, reducing oil dependence therefore remains a valuable goal for U.S. energy policy and an important co-benefit of mitigating greenhouse gas emissions.

  11. U.S. oil dependence 2014: Is energy independence in sight?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greene, David L.; Liu, Changzheng

    2015-06-10

    The importance of reducing U.S. oil dependence may have changed in light of developments in the world oil market over the past two decades. Since 2005, increased domestic production and decreased oil use have cut U.S. import dependence in half. The direct costs of oil dependence to the U.S. economy are estimated under four U.S. Energy Information Administration Scenarios to 2040. The key premises of the analysis are that the primary oil market failure is the use of market power by OPEC and that U.S. economic vulnerability is a result of the quantity of oil consumed, the lack of readilymore » available, economical substitutes and the quantity of oil imported. Monte Carlo simulations of future oil market conditions indicate that the costs of U.S. oil dependence are likely to increase in constant dollars but decrease relative to U.S. gross domestic product unless oil resources are larger than estimated by the U.S. Energy Information Administration. In conclusion, reducing oil dependence therefore remains a valuable goal for U.S. energy policy and an important co-benefit of mitigating greenhouse gas emissions.« less

  12. Gradient Resources | Open Energy Information

    Open Energy Info (EERE)

    Gradient Resources Jump to: navigation, search Logo: Gradient Resources Name: Gradient Resources Address: 9670 Gateway Drive, Suite 200 Place: Reno, Nevada Zip: 89521 Region:...

  13. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    SciTech Connect (OSTI)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  14. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  15. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  16. ORISE: National Security and Emergency Management Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A few examples of ORISE-developed resources available to national security and emergency management personnel include: First Responders test WeB-MEDIS WeB-MEDIS WeB-MEDIS is a ...

  17. Department of Energy Management of Cultural Resources

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-05-02

    The purpose of this Policy is to ensure that Department of Energy (DOE) programs, including the National Nuclear Security Administration (NNSA), and field elements integrate cultural resources management into their missions and activities. Certified 1-28-11. No cancellation.

  18. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    SciTech Connect (OSTI)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  19. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  20. Finding Hidden Oil and Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...