National Library of Energy BETA

Sample records for resources geothermal project

  1. Assessment of Inferred Geothermal Resource: Longavi Project,...

    Open Energy Info (EERE)

    Chile Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Inferred Geothermal Resource: Longavi Project, Chile Organization Hot Rock...

  2. Geothermal Resource Exploration and Definition Projects | Open...

    Open Energy Info (EERE)

    Hills (U-Boat), NV, and Lightning Dock, NM. The seven GRED II projects are located at Raft River, ID, Blue Mountain, NV, Truckhaven, CA, Animas Valley, NM, Lake City, CA, Glass...

  3. NREL: Geothermal Technologies - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  4. Coyote Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Resource Area Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase IV - Resource Production and...

  5. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  6. White Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Location County Geothermal Area Geothermal Region Geothermal Project Profile Developer Eureka Green Systems Project Type Hydrothermal GEA Development Phase Phase II - Resource...

  7. Newdale Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  8. Mary's River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  9. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  10. Mary's River SW Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  11. Snake River Plain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  12. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  13. Beowawe Bottoming Binary Project Geothermal Project | Open Energy...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  14. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  15. Geothermal resistivity resource evaluation survey Waunita Hot...

    Open Energy Info (EERE)

    resistivity resource evaluation survey Waunita Hot Springs project, Gunnison County, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  16. Detachment Faulting and Geothermal Resources - An Innovative...

    Open Energy Info (EERE)

    Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on...

  17. Geothermal Resources Council's 36

    Office of Scientific and Technical Information (OSTI)

    Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting

  18. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  19. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  20. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  1. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  2. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  3. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  4. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  5. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  6. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  7. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  8. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  9. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  10. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  11. Southwest Alaska Regional Geothermal Energy Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southwest Alaska Regional Geothermal Energy Project Southwest Alaska Regional Geothermal Energy Project Engineered Geothermal Systems Demonstration Projects. Project objectives: ...

  12. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect (OSTI)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  13. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  14. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  15. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  16. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  17. New developments in Colorado geothermal energy projects | Open...

    Open Energy Info (EERE)

    library Journal Article: New developments in Colorado geothermal energy projects Authors J. Held and F. Henderson Published Journal Geothermal Resources Council- Transactions,...

  18. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  19. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  20. Geothermal Resources Council Annual Meeting

    Broader source: Energy.gov [DOE]

    Reno, Nevada The 2015 Geothermal Resources Council (GRC) Annual Meeting and the Geothermal Energy Association (GEA) Geothermal Energy Expo will be held in Reno, Nevada, on September 20–23. As the world’s largest annual geothermal conference and expo, this year’s event will bring together leaders in the geothermal industry; showcase the latest in geothermal research, exploration, development, and utilization; and feature workshops on important industry topics and field trips to nearby geothermal sites. Register today to reserve your spot.

  1. Resource assessment for geothermal direct use applications

    SciTech Connect (OSTI)

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  2. NREL: Learning - Student Resources on Geothermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy The following resources can provide you with more information on geothermal energy. Geothermal Technologies Program U.S. Department of Energy's Office of Energy...

  3. National Geothermal Resource Assessment and Classification |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Resource Assessment and Classification track 2: hydrothermal | geothermal 2015 peer review National Geothermal Data System Architecture Design, Testing and ...

  4. Updating the Classification of Geothermal Resources

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  5. Updating the Classification of Geothermal Resources- Presentation

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  6. Geothermal Resource Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Classification Geothermal Resource Classification PDF icon Geothermal Resource Classification.PDF More Documents & Publications Water Use in the Development and Operations ...

  7. Sou Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Sou Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Sou Hills Geothermal Project Project Location Information Coordinates...

  8. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates...

  9. Orita 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Orita 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 2 Geothermal Project Project Location Information Coordinates...

  10. Thermo 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Thermo 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Thermo 2 Geothermal Project Project Location Information Coordinates...

  11. Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

  12. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  13. Idaho Geothermal Resources Webpage | Open Energy Information

    Open Energy Info (EERE)

    Resources Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Geothermal Resources Webpage Abstract Overview of Idaho's Geothermal Program....

  14. Water Efficient Energy Production for Geothermal Resources |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources PDF icon Primer FINAL.PDF More Documents & Publications Water ...

  15. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  16. Edwards Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222,...

  17. Smith Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889,...

  18. Template:GeothermalProject | Open Energy Information

    Open Energy Info (EERE)

    navigation, search This is the 'GeothermalProject' template. To define a new Geothermal Development Project, please use the Geothermal Development Project Form. Parameters Place...

  19. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative assessment of geothermal potential for the U.S. using Enhanced Geothermal Systems (EGS) and based on the levelized cost of electricity, and the Texas Geopressured Geothermal Resource Estimate. Geothermal data sites Data related to geothermal technology and energy

  20. Recovery Act:Direct Confirmation of Commercial Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Confirm heat flow potential with on-site surveys to drill deep resource wells Pilgrim Hot Springs, Alaska El Paso County Geothermal Project: Innovative Research Technologies ...

  1. Geothermal Exploration Best Practices: A Guide to Resource Data...

    Open Energy Info (EERE)

    Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  2. Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

    Broader source: Energy.gov [DOE]

    Project objective: Develop equipment that generates electricity from low temperature geothermal resources at a cost at least 20% below that of the currently available technology.

  3. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  4. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page. For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection. NREL Publications Database For a comprehensive list of other NREL geothermal resource publications, explore NREL's Publications Database. When searching the database, search on "geothermal resources". Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information

  5. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  6. NREL: Renewable Resource Data Center - Geothermal Resource Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Comprehensive geothermal resource information is also available from the following sources: U.S. Department of Energy Geothermal Technologies Office. National Geothermal Data System A portal to geothermal data. Southern Methodist University Geothermal Laboratory The Laboratory supplies vital information on the renewable energy source tapped from the Earth's internal heat. Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Geothermal Data

  7. Leach Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Leach Hot Springs Geothermal Project Project Location Information...

  8. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  9. Neal Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs Geothermal Project Project Location Information...

  10. Geothermal Resources Council | Open Energy Information

    Open Energy Info (EERE)

    Resources Council Address: P.O. Box 1350 Place: Davis, California Zip: 95617-1350 Sector: Geothermal energy, Renewable Energy, Services Product: Global Geothermal Community...

  11. Geothermal Resources Assessment in Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  12. NREL: Geothermal Technologies - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources The following data and resources include geothermal resource maps, models and tools, and photos used and produced by NREL. These resources are available for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help industry, policymakers, and researchers evaluate the number, location, and possibilities for geothermal resources throughout the United States. View

  13. Analysis of Low-Temperature Utilization of Geothermal Resources

    Broader source: Energy.gov [DOE]

    Project objectives: Techno-economic analysis of the potential of low-temperature (90-150°C) geothermal sources. Perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. Develop a regionalized model of the utilization of low-temperature geothermal resources.

  14. Interactive Map Shows Geothermal Resources

    Broader source: Energy.gov [DOE]

    The free interactive online map posted recently by the Oregon Department of Geology and Mineral Industries is part of a U.S. Department of Energy project to expand the knowledge of geothermal energy potential nationwide.

  15. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  16. State Geothermal Resource Assessment and Data Collection Efforts

    Broader source: Energy.gov [DOE]

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  17. Upsal Hogback Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer...

  18. Lee Allen Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer...

  19. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","inlineLabel":"","visitedicon":"" Hide Map Location Nixon, CA County Washoe and Churchill, CA Geothermal Area Geothermal Region Geothermal Project Profile Developer Nevada...

  20. Category:Geothermal Projects | Open Energy Information

    Open Energy Info (EERE)

    Each year different agencies report the upcoming geothermal developing projects. The Geothermal Energy Association (GEA) publishes their findings in their annual US Geothermal...

  1. Unalaska Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Unalaska, HI County Aleutians West, HI Geothermal Area Geothermal Region Geothermal Project Profile...

  2. Canby Cascaded Geothermal Project Phase 1 Feasibility | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Canby Cascaded Geothermal Project Phase 1 Feasibility presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon canby_cascaded_peer2013.pdf More Documents & Publications Rural Cooperative Geothermal Development Electric & Agriculture Silver Peak Innovative Exploration Project Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

  3. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov [DOE]

    National Geothermal Resource Assessment and Classification presentation at the April 2013 peer review meeting held in Denver, Colorado.

  4. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Energy Savers [EERE]

    More Documents & Publications DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water ...

  5. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon novel_energy_conversion_equipment_low_peer2013.pdf More Documents & Publications Novel Energy Conversion Equipment for Low Temperature Geothermal Resources City of Eagan …Civic Ice Arena Renovation Canby Cascaded Geothermal Project Phase 1 Feasibility

  6. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  7. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov (indexed) [DOE]

    2013 Peer Review National Geothermal Resource Assessment and Classification Colin F. Williams US Geological Survey Data Systems and Analysis (Resource Assessment) April 24, 2013...

  8. Energy Department Announces $3 Million to Identify New Geothermal Resources

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced $3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources in areas with no obvious surface expression by mapping the most favorable intersections of heat, permeability, and fluid. While commonly used in oil and gas exploration, play fairway analysis is not yet widely used in the geothermal industry. By improving success rates for exploration drilling, this data-mapping tool could help attract investment in geothermal energy projects and significantly lower the costs of geothermal energy.

  9. Employment Impacts of Geothermal Electric Projects (Technical...

    Office of Scientific and Technical Information (OSTI)

    Employment Impacts of Geothermal Electric Projects Citation Details In-Document Search Title: Employment Impacts of Geothermal Electric Projects You are accessing a document...

  10. Forrest County Geothermal Energy Project

    Broader source: Energy.gov [DOE]

    Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

  11. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  12. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov [DOE]

    This work will enable lower risk/cost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment data by geothermal region as input to GTP supply curves.

  13. Keystone/Mesquite Lake Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Imperial County, NV Geothermal Area South Brawley Geothermal Area Geothermal Region Gulf of California Rift Zone Geothermal Project Profile Developer Ram Power Project Type...

  14. El Centro/Superstition Hills Geothermal Project (2) | Open Energy...

    Open Energy Info (EERE)

    County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer Navy Geothermal Program Project Type Hydrothermal Systems GEA Development Phase Phase II -...

  15. Water Efficient Energy Production for Geothermal Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Energy Production for Geothermal Resources Water Efficient Energy Production for Geothermal Resources PDF icon Water Efficient Energy Production for Geothermal Resources.PDF More Documents & Publications Water Efficient Energy Production for Geothermal Resources Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants

  16. Direct Confirmation of Commercial Geothermal Resources in Colorado...

    Open Energy Info (EERE)

    Cost Share 2,932,500.00 Total Project Cost 7,710,734.00 Principal Investigator(s) F. Lee Robinson, Manager, Flint Geothermal, LLC Targets Milestones The heat resources to be...

  17. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.

  18. NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to allow users to determine locations that are favorable to geothermal energy development. List of software and models from other National Laboratories and Centers

  19. Category:Geothermal Resource Areas | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Resource Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Areas page? For detailed information on...

  20. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting data layers that are NGDS compatible. Photo of the Hot Springs Lodge and Pool. The Hot Springs Lodge and Pool in Glenwood Springs, Colorado, uses a geothermal heat exchanger system with its hot surface spring to provide space heating, domestic hot water, and snow melting. The Renewable Resource Data Center (RReDC) offers a collection of data and

  1. California PRC Section 6903, Definitions for Geothermal Resources...

    Open Energy Info (EERE)

    Resources Act, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "For the purposes of this chapter, 'geothermal resources'...

  2. Middlesex Community College Geothermal Project

    SciTech Connect (OSTI)

    Klein, Jessie; Spaziani, Gina

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  3. Newberry I Geothermal Project (2) | Open Energy Information

    Open Energy Info (EERE)

    I Geothermal Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Newberry I Geothermal Project (2) Project Location Information...

  4. Lightning Dock I Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Dock I Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lightning Dock I Geothermal Project Project Location Information...

  5. Neal Hot Springs II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs II Geothermal Project Project Location Information...

  6. San Emidio II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: San Emidio II Geothermal Project Project Location Information Coordinates...

  7. Pilgrim Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Pilgrim Hot Springs Geothermal Project Project Location...

  8. Fallon Test Ranges Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Test Ranges Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Test Ranges Geothermal Project Project Location Information...

  9. Geothermal Energy Resource Investigations, Chocolate Mountains...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

  10. National Geothermal Resource Assessment and Classification |...

    Broader source: Energy.gov (indexed) [DOE]

    will enable lower riskcost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment...

  11. Geothermal Resources Of California Sedimentary Basins | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resources Of California Sedimentary Basins Abstract The 2004 Department of Energy...

  12. Geothermal Resource Exploration And Definition | Open Energy...

    Open Energy Info (EERE)

    Definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Geothermal Resource Exploration And Definition Abstract No abstract prepared. Authors Jay S....

  13. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal...

  14. Geothermal Resources Development - HGP-A Wellhead Generator Proof of Feasibility Project

    SciTech Connect (OSTI)

    1980-08-01

    Project: A 3 MW plant with single flash steam system. Totally enclosed plant building integrated with a visitors' center, within a fully developed site. Location: Puna District, Island of Hawaii. Construction Cost: US $8,000,000. Completed: Schedule completion August 1980. (This plant was officially dedicated, July 17, 1981 and is currently delivering energy to HELCO Power System in Hawaii. HELCO is operating this plant for the University of Hawaii). Services: Concept studies, preliminary design, final design, procurement and construction management.

  15. Raft River III Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River III Geothermal Project Project Location Information Coordinates...

  16. Title 41 Alaska Statutes Section 06.060 Geothermal Resources...

    Open Energy Info (EERE)

    06.060 Geothermal Resources DefinitionsLegal Abstract This statutory section sets forth the definitions that govern the statutory chapter for geothermal resources. Published...

  17. A Review of Geothermal Resource Estimation Methodology | Open...

    Open Energy Info (EERE)

    Geothermal Resource Estimation Methodology Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Review of Geothermal Resource Estimation...

  18. DOE - Geothermal Energy Resources Map - Tribal | Open Energy...

    Open Energy Info (EERE)

    Geothermal Energy Resources Map - Tribal Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: DOE - Geothermal Energy Resources Map - Tribal Abstract This...

  19. Geothermal Resources Assessment In Hawaii | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Resources Assessment In Hawaii Abstract The Hawaii Geothermal Resources Assessment...

  20. Geothermal Resources Council Annual Meeting - Doug Hollett Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Keynote presentation by Doug Hollett at the Geothermal Resources Council 35th Annual Meeting ...

  1. Pinpointing America's Geothermal Resources with Open Source Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A ...

  2. MCA 77-4-100 Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    MCA 77-4-100 Geothermal ResourcesLegal Abstract Montana statute governing the administration of geothermal resources on state lands Published NA Year Signed or Took Effect...

  3. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

  4. Imperial Valley Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource ...

  5. Analysis of Low-Temperature Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.

  6. San Emido Geothermal Energy North Project | Open Energy Information

    Open Energy Info (EERE)

    Emido Geothermal Energy North Project Jump to: navigation, search NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area...

  7. Desert Peak East EGS Project; 2010 Geothermal Technology Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    East EGS Project; 2010 Geothermal Technology Program Peer Review Report Desert Peak East EGS Project; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal...

  8. Category:Geothermal ARRA Funded Projects Properties | Open Energy...

    Open Energy Info (EERE)

    Geothermal ARRA Funded Projects Properties Jump to: navigation, search Properties used in the Geothermal ARRA Funded template. Pages in category "Geothermal ARRA Funded Projects...

  9. Form:GeothermalProject | Open Energy Information

    Open Energy Info (EERE)

    Project below. If the Development Project already exists, you will be able to edit its information. AddEdit a Geothermal Development Project Retrieved from "http:...

  10. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect (OSTI)

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  11. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect (OSTI)

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  12. Geothermal resources of Colorado | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Report: Geothermal resources of Colorado Author R.H. Pearl Published Colorado Geological Survey Special Publication, 1972 DOI Not Provided...

  13. ORS 522 - Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    522 - Geothermal ResourcesLegal Published NA Year Signed or Took Effect 2013 Legal Citation ORS 522 (2013) DOI Not Provided Check for DOI availability: http:crossref.org...

  14. Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    the information needed to allow users to determine locations that are favorable to geothermal energy development. This was in response to the recommendation by the...

  15. Epithermal Gold Mineralization and a Geothermal Resource at Blue...

    Open Energy Info (EERE)

    s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival Published Journal Geothermal Resources Council...

  16. Geothermal Resource Development Needs in New Mexico | Open Energy...

    Open Energy Info (EERE)

    to library Report: Geothermal Resource Development Needs in New Mexico Author D.J. Fleischman Published Geothermal Energy Association, 2006 DOI Not Provided Check for DOI...

  17. Cal. Prc. Code Sections 3700 to 3776 - Geothermal Resources ...

    Open Energy Info (EERE)

    to library Legal Document- StatuteStatute: Cal. Prc. Code Sections 3700 to 3776 - Geothermal ResourcesLegal Abstract This California statute governs the use of geothermal...

  18. Pinpointing America's Geothermal Resources with Open Source Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis When it comes to harnessing America's vast geothermal energy resources, knowing where to look is half the battle. Geothermal energy-the heat contained within the ...

  19. Advances In Geothermal Resource Exploration Circa 2007 | Open...

    Open Energy Info (EERE)

    that will indicate the presence of geothermal resources before drilling. Advances in computer technology have propelled geothermal exploration forward, but can only go so far. New...

  20. Low-Temperature Geothermal Projects Nationwide

    SciTech Connect (OSTI)

    DOE Geothermal Technologies

    2013-04-01

    Poster of low-temperature and co-produced geothermal projects nationwide. This map poster summarizes completed, ongoing and proposed projects for FY14.

  1. EMPLOYMENT IMPACTS OF GEOTHERMAL ELECTRIC PROJECTS

    Office of Scientific and Technical Information (OSTI)

    EMPLOYMENT IMPACTS OF GEOTHERMAL ELECTRIC PROJECTS 512 1 t93 B Y Daniel J. Entingh BNF Technologies INC Alexandria, VA For i Geothermal Division Department of Energy Washington, DC ...

  2. Pagosa Springs geothermal project. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1984-10-19

    This booklet discusses some ideas and methods for using Colorado geothermal energy. A project installed in Pagosa Springs, which consists of a pipeline laid down 8th street with service to residences retrofitted to geothermal space heating, is described. (ACR)

  3. El Paso County Geothermal Project: Innovative Research Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal ...

  4. Newberry Volcano EGS Demonstration Geothermal Project | Open...

    Open Energy Info (EERE)

    Known Geothermal Resource Area ("Newberry"). Four deep, high temperature, very low permeability, production-size wells have been completed at Newberry, including two currently...

  5. The United Nations' Approach To Geothermal Resource Assessment...

    Open Energy Info (EERE)

    of United Nations' assisted geothermal projects has been on demonstrating the feasibility of producing geothermal fluids, the potential capacity of individual fields has...

  6. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  7. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect (OSTI)

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  8. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  9. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  10. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  11. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  12. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  13. Raft River II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556,...

  14. China Lake South Range Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65,...

  15. Phase I Archaeological Investigation Cultural Resources Survey, Hawaii Geothermal Project, Makawao and Hana Districts, South Shore of Maui, Hawaii (DRAFT )

    SciTech Connect (OSTI)

    Erkelens, Conrad

    1994-03-01

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. A total of 51 archaeological sites encompassing 233 surface features were documented. A GPS receiver was used to accurately and precisely plot locations for each of the documented sites. Analysis of the locational information suggests that archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Moanakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. A total of twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bone from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area. A small test unit was excavated at one habitation site. Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.

  16. Geothermal resources assessment in Hawaii. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-02-21

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  17. Mammoth Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Article: Mammoth Geothermal Project Abstract Abstract unavailable. Authors Ben Holt and Richard G. Campbell Published Journal Geo-Heat Center Quarterly Bulletin, 1984 DOI Not...

  18. CRS 37-90.5 Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    7-90.5 Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: CRS 37-90.5 Geothermal ResourcesLegal Abstract...

  19. Geothermal and heavy-oil resources in Texas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Geothermal and heavy-oil resources in Texas Citation Details In-Document Search Title: Geothermal and heavy-oil resources in Texas You are accessing a document from the ...

  20. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

  1. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Info (EERE)

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  2. Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)

    Broader source: Energy.gov [DOE]

    This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

  3. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  4. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  5. New York Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase III - Permitting and Initial...

  6. Analysis Of Geothermal Resources In Northern Switzerland | Open...

    Open Energy Info (EERE)

    resources in Northern Switzerland. In order to elaborate a Swiss geothermal resource atlas, a procedure has been elaborated that accounts for geological structures, temperature...

  7. California Public Resources Code Division 3, Chapter 4 - Geothermal...

    Open Energy Info (EERE)

    Public Resources Code Division 3, Chapter 4 - Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: California...

  8. Texas TNRC 141.003, Definitions for Geothermal Resources | Open...

    Open Energy Info (EERE)

    ResourcesLegal Abstract Definitions for Geothermal Resources effective September 1, 1977, last amended 1979. Published NA Year Signed or Took Effect 1979 Legal Citation Not...

  9. Seismic Methods For Resource Exploration In Enhanced Geothermal...

    Open Energy Info (EERE)

    Methods For Resource Exploration In Enhanced Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Seismic Methods For Resource Exploration In...

  10. Geothermal Resources Council Annual Meeting - Doug Hollett Presentation,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2011 | Department of Energy Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Geothermal Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Keynote presentation by Doug Hollett at the Geothermal Resources Council 35th Annual Meeting on October 24, 2011 in San Diego, California. PDF icon grc_keynote_hollett_10-24-2011.pdf More Documents & Publications Stanford Geothermal Workshop 2012 Annual Meeting Geothermal Technologies Program

  11. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect (OSTI)

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  12. Property:Geothermal/TotalProjectCost | Open Energy Information

    Open Energy Info (EERE)

    Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A...

  13. Nevada/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Confirmation Silver Peak Geothermal Area Walker-Lane Transition Zone Geothermal Region Smith Creek Geothermal Project Ormat Phase I - Resource Procurement and Identification Smith...

  14. Austria Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Austria Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  15. Australia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Australia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  16. New Zealand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home New Zealand Geothermal Region Details Areas (2) Power Plants (2) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  17. Russia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  18. Iceland Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Iceland Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  19. Enhanced Geothermal Systems Demonstration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Geothermal Technologies Office » Enhanced Geothermal Systems » Enhanced Geothermal Systems Demonstration Projects Enhanced Geothermal Systems Demonstration Projects A significant long-term opportunity for widespread power production from new geothermal sources lies in Enhanced Geothermal Systems (EGS), where innovative technology development and deployment could facilitate access to 100+ GW of energy, exponentially more than today's current geothermal capacity. With EGS, we can tap

  20. Newberry Geothermal Pilot Project : Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    US Forest Service; US Bureau of Land Management; US Bonneville Power Administration

    1994-09-01

    BPA has decided to acquire 20 average megawatts (aMW) of electrical power from a privately-owned geothermal power plant on the west flank of Newberry Volcano in Deschutes County, Oregon. The Newberry Project will generate 30 aMW and will be developed, owned, and operated by CE Newberry, Inc. of Portland, Oregon. In addition, BPA has decided to grant billing credits to EWEB for 10 aMW of electrical power and to provide wheeling services to EWEB for the transmission of this power to their system. BPA expects the Newberry Project to be in commercial operation by November 1997. BPA has statutory responsibilities to supply electrical power to its utility industrial and other customers in the Pacific Northwest. The Newberry Project will be used to meet the electrical power supply obligations of these customers. The Newberry Project will also demonstrate the availability of geothermal power to meet power supply needs in the Pacific Northwest and is expected to be the first commercial geothermal plant in the region. The Newberry Project was selected under the BPA Geothermal Pilot Project Program. The goal of the Program is to initiate development of the Pacific Northwest`s large, but essentially untapped, geothermal resources, and to confirm the availability of this resource to meet the energy needs of the region. The primary underlying objective of this Program is to assure the supply of alternative sources of electrical power to help meet growing regional power demands and needs.

  1. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  2. TNRC, Title 5, Chapter 141 Geothermal Resources | Open Energy...

    Open Energy Info (EERE)

    5, Chapter 141 Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: TNRC, Title 5, Chapter 141 Geothermal...

  3. Energy Department Announces $3 Million to Identify New Geothermal Resources

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced $3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources in areas with...

  4. Overview of Resources for Geothermal Absorption Cooling for Buildings

    SciTech Connect (OSTI)

    Liu, Xiaobing; Gluesenkamp, Kyle R; Mehdizadeh Momen, Ayyoub

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  5. Geothermal Money Book [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  6. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  7. EIS-0298: Telephone Flat Geothermal Development Project

    Broader source: Energy.gov [DOE]

    This EIS is for a Plan of Operation (POO) for Development and Production; and for a POO for Utilization and Disposal for a proposed geothermal development project, including: a power plant, geothermal production and injection wellfield, ancillary facilities, and transmission line on the Modoc National Forest in Siskiyou and Modoc Counties, California.

  8. EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing

    Energy Savers [EERE]

    County, NV | Department of Energy 46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain Geothermal Development Project, Humboldt and Pershing Counties, Nevada

  9. El Paso County Geothermal Project at Fort Bliss

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Determine if, and where, economically viable low temperature geothermal resources might exist in the McGregor test area …or if necessary at other lesser known sites that exist on the Fort Bliss Military Reservation …and to determine at what location they can be best accessed without compromising the tactical and strategic missions of Fort Bliss. Determine if identified resources have adequate temperatures and flow rates/volumes to justify development at any scale, with an eye toward the 20 megawatt target identified. Over base need: 45 megawatts.

  10. Kenya geothermal private power project: A prefeasibility study

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

  11. Employment Impacts of Geothermal Electric Projects Entingh, Daniel...

    Office of Scientific and Technical Information (OSTI)

    Employment Impacts of Geothermal Electric Projects Entingh, Daniel J. 15 GEOTHERMAL ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION; CAPITAL; CONSTRUCTION; EMPLOYMENT; EXPLORATION;...

  12. Lightning Dock Geothermal Space Heating Project: Lightning Dock...

    Open Energy Info (EERE)

    Abstract The proposed project was to take the existing geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive...

  13. Current Geothermal Projects-Exploration Activity | Open Energy...

    Open Energy Info (EERE)

    Activity Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Current Geothermal Projects-Exploration Activity Abstract "Geothermal exploration...

  14. DOE Projects Receive Honors for Best Geothermal Presentations

    Broader source: Energy.gov [DOE]

    Eleven DOE-funded projects presented at the Geothermal Resources Council (GRC) 2011 Annual Meeting in San Diego received honors for "outstanding presentations." The judging criteria included the quality of the visual aids as well as the ability to communicate the subject matter.

  15. IDAPA 37.03.04 Drilling For Geothermal Resources Rules | Open...

    Open Energy Info (EERE)

    Rules for drilling Geothermal Resources released by the State of Idaho Department of Water Resources Geothermal Resource Program in Boise, Idaho. Published NA Year Signed or...

  16. NMOCD - Form G-103 - Sundry Notices & Reports on Geothermal Resource...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- Permit ApplicationPermit Application: NMOCD - Form G-103 - Sundry Notices & Reports on Geothermal Resource WellsLegal Published NA Year...

  17. Title 30 USC 1001 Geothermal Resources Definitions | Open Energy...

    Open Energy Info (EERE)

    DefinitionsLegal Abstract Section 1001 - Definitions under Title 30: Mineral Lands and Mining, Chapter 23: Geothermal Resources of the United States Code, last amended August 8,...

  18. Drilling for Geothermal Resources Rules - Idaho | Open Energy...

    Open Energy Info (EERE)

    - Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Drilling for Geothermal Resources Rules - Idaho Published Publisher Not Provided, Date Not...

  19. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  20. Geothermal Energy Resources of Northwest New Mexico | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Energy Resources of Northwest New Mexico Abstract EDITORS NOTE: The material in...

  1. Geothermal Energy Resource Assessment of Parts of Alaska | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Energy Resource Assessment of Parts of Alaska Abstract Under the sponsorship of...

  2. Geothermal Resources Development in Tibet, China | Open Energy...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geothermal Resources Development in Tibet, China Abstract Tibet is located in the eastern...

  3. Power Production from a Moderate-Temperature Geothermal Resource...

    Open Energy Info (EERE)

    Paper: Power Production from a Moderate-Temperature Geothermal Resource Authors Joost J. Brasz, Bruce P. Biederman and Gwen Holdmann Conference GRC annual meeting; Reno,...

  4. Assessment of Geothermal Resources of the United States - 1978...

    Open Energy Info (EERE)

    Report: Assessment of Geothermal Resources of the United States - 1978 Author Leroy J. Patrick Muffler Published U.S. Geological Survey, 1979 Report Number Circular 790 DOI...

  5. Geothermal Resources in Latin America & the Caribbean | Open...

    Open Energy Info (EERE)

    & the Caribbean Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: Geothermal Resources in Latin America & the Caribbean Authors Liz...

  6. Geothermal Resources of Rifts- a Comparison of the Rio Grande...

    Open Energy Info (EERE)

    tectonic and magmatic histories, however, and these differences are reflected in the nature of their geothermal resources. The Salton Trough is a well developed and successful...

  7. Geothermal resources of the Laramie, Hanna, and Shirley Basins, Wyoming

    SciTech Connect (OSTI)

    Hinckley, B.S.; Heasler, H.P.

    1984-01-01

    A general discussion of how geothermal resources occur; a discussion of the temperatures, distribution, and possible applications of geothermal resources in Wyoming and a general description of the State's thermal setting; and a discussion of the methods used in assessing the geothermal resources are presented. The discussion of the geothermal resources of the Laramie, Hanna, and Shirley Basins includes material on heat flow and conductive gradients, stratigraphy and hydrology, structure and water movement, measured temperatures and gradients, areas of anomalous gradient (including discussion of the warm spring systems at Alcova and Saratoga), temperatures of the Cloverly Formation, and summary and conclusions. 23 references, 9 figures, 5 tables. (MHR)

  8. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Offset Surface Seismic Survey Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey DOE ...

  9. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. Alum Innovative Exploration Project Geothermal Project | Open...

    Open Energy Info (EERE)

    Cumming, Cumming Geoscience Partner 4 Jerry Hamblin, Subsurface Excellence Partner 5 Stephen Hallinan, Western Geco Partner 6 John Deymonaz Partner 7 GeothermEx, Inc. Funding...

  11. Outstanding Issues For New Geothermal Resource Assessments |...

    Open Energy Info (EERE)

    : GRC; p. () Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At General Us Region (Williams & Reed, 2005) Areas (1) General Us Region...

  12. National Geothermal Resource Assessment and Classification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the National Geothermal Data System. The results of this work will enable lower riskcost deployment of conventional and EGS geothermal power. USGS is also supporting GTP...

  13. 2014 Geothermal Resources Council Annual Meeting

    Broader source: Energy.gov [DOE]

    The Annual Meeting attracts geothermal industry stakeholders worldwide and provides opportunity to participate in presentations on geothermal research, exploration, development, and utilization.

  14. Geothermal, the 'undervalued' renewable resource, sees surging interest |

    Energy Savers [EERE]

    Department of Energy Geothermal, the 'undervalued' renewable resource, sees surging interest Geothermal, the 'undervalued' renewable resource, sees surging interest May 21, 2009 - 10:38am Addthis Nearly 200 million acres of public lands, mostly in the West, could become prime generators of emissions-free electricity by extracting steam heat from the earth's core to drive electric turbines. Yet despite a $400 million stimulus bill allocation to spur geothermal energy production in the United

  15. Phase 1 archaeological investigation, cultural resources survey, Hawaii Geothermal Project, Makawao and Hana districts, south shore of Maui, Hawaii

    SciTech Connect (OSTI)

    Erkelens, C.

    1995-04-01

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. The survey team documented a total of 51 archaeological sites encompassing 233 surface features. Archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Maonakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. Twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bones from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area.

  16. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  17. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect (OSTI)

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  18. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project objectives: Techno-economic analysis of the potential of low-temperature (90-150C) geothermal sources. Perform process optimizations and economic analyses of processes ...

  19. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  20. GTP Adds Meeting on the National Geothermal Data System Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adds Meeting on the National Geothermal Data System Project to Peer Review GTP Adds Meeting on the National Geothermal Data System Project to Peer Review May 10, 2010 - 2:41pm...

  1. BLM Approves California Geothermal Development Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy BLM Approves California Geothermal Development Project BLM Approves California Geothermal Development Project August 21, 2013 - 2:41pm Addthis The Bureau of Land Management (BLM) and the U.S. Forest Service Inyo National Forest on August 13 signed the Record of Decision approving a new 40-megawatt geothermal project near Mammoth Lakes, California. The Casa Diablo IV Geothermal Development Project will be built on lands administered by the Inyo National Forest and on private lands

  2. Low-Temperature and Coproduced Geothermal Projects Poster

    Broader source: Energy.gov [DOE]

    This map illustrates DOE-funded low-temperature and coproduced geothermal projects across the United States.

  3. West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report

    SciTech Connect (OSTI)

    Gilliland, M.W.; Fenner, L.B.

    1980-01-01

    The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

  4. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    SciTech Connect (OSTI)

    Garside, L.J.

    1994-12-31

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  5. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.; Trexler, D.; Shevenell, L., Garside, L.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  6. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  7. Fireball Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nixon, NV County Churchill County, NV Geothermal Area Fireball Ridge Geothermal Area Geothermal Region...

  8. Dixie Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nevada County Churchill County, NV Geothermal Area Dixie Valley Geothermal Area Geothermal Region Central...

  9. Desert Queen Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fernley, NV County Churchill County, NV Geothermal Area Desert Queen Geothermal Area Geothermal Region Northwest...

  10. Fallon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Fallon Geothermal Area Geothermal Region Northwest Basin...

  11. Patua Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fernley, NV County Churchill and Lyon Counties, NV Geothermal Area Patua Geothermal Area Geothermal Region...

  12. Tungsten Mtn Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, UT Geothermal Area Tungsten Mountain Geothermal Area Geothermal Region...

  13. Dixie Meadows Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Dixie Meadows Geothermal Area Geothermal Region Central...

  14. Granite Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Red House, CA County Humboldt County, CA Geothermal Area Geothermal Region Geothermal...

  15. BLM Approves Salt Wells Geothermal Energy Projects | Open Energy...

    Open Energy Info (EERE)

    Energy Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Energy Projects Abstract Abstract unavailable....

  16. Property:Geothermal/ProjectEndDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name GeothermalProjectEndDate Property Type Date Description Project End Date Retrieved from "http:en.openei.orgw...

  17. Property:Geothermal/ProjectStartDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name GeothermalProjectStartDate Property Type Date Description Project Start Date Retrieved from "http:en.openei.orgw...

  18. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect (OSTI)

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  19. NMOCD - Form G-105 - Geothermal Resources Well Log | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-105 - Geothermal Resources Well Log Author State of New Mexico Energy and Minerals...

  20. NMOCD - Form G-106 - Geothermal Resources Well Summary Report...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-106 - Geothermal Resources Well Summary Report Author State of New Mexico Energy and...

  1. NMOCD - Form G-107 - Geothermal Resources Well History | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-107 - Geothermal Resources Well History Author State of New Mexico Energy and Minerals...

  2. NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage Dedication Plat Author State of New...

  3. Assessment of the petroleum, coal, and geothermal resources of...

    Office of Scientific and Technical Information (OSTI)

    the petroleum, coal, and geothermal resources of the economic community of West African states (ECOWAS) region Mattick, R.E. (comp.) 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; 15...

  4. NAC 534A - Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 534A - Geothermal ResourcesLegal Abstract These outline the regulations applicable to...

  5. NAC 534A Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 534A Geothermal ResourcesLegal Abstract Nevada Administrative Code 534A for the...

  6. NRS Chapter 534A - Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    534A - Geothermal ResourcesLegal Published NA Year Signed or Took Effect 2014 Legal Citation NRS Chapter 534A DOI Not Provided Check for DOI availability: http:crossref.org...

  7. Assessment of Moderate- and High-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Moderate- and High-Temperature Geothermal Resources of the United States Abstract...

  8. Geothermal-Energy Resources And Their Use In Yugoslavia | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal-Energy Resources And Their Use In Yugoslavia Abstract Yugoslavia has a 30-year...

  9. Montana MCA 77-4-102, Geothermal Resource Definitions | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA 77-4-102, Geothermal Resource DefinitionsLegal Abstract Definitions for...

  10. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Off...

  11. Updating the Classification of Geothermal Resources - Presentation...

    Open Energy Info (EERE)

    - Presentation Abstract Abstract unavailable. Authors Colin F. Williams and Marshall J. Reed and Arlene F. Anderson Conference Thirty-Sixth Workshop on Geothermal Reservoir...

  12. Ethiopian Geothermal Resources and Their Characteristics | Open...

    Open Energy Info (EERE)

    exploration in Ethiopia dates back to 1969. The country is currently using hydro and thermal plants as electric energy source. The proven geothermal fields, Langano and...

  13. Geothermal, the 'undervalued' renewable resource, sees surging...

    Energy Savers [EERE]

    electricity by extracting steam heat from the earth's core ... to spur geothermal energy production in the United ... production into the mainstream of U.S. energy supply. ...

  14. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Integration of new thermochronometric, structural and geological analyses, reflection and refraction seismic surveys and existing geophysical data into a 3-D Earth Model to elucidate the tectonic and 4-D thermal evolution of southern Clayton Valley and the Weepah Hills (Pearl Hot Spring geothermal play).

  15. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect (OSTI)

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84 C. Traditional geothermometry models estimated reservoir temperatures of approximately 125 C in the 1970s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104 C (217 F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227 C (440 F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be investigated using improved geothermal exploration methods.

  16. El Paso County Geothermal Electric Generation Project: Innovative...

    Open Energy Info (EERE)

    Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially...

  17. Low-Temperature and Coproduced Geothermal Projects Poster | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Geopressured Subprogram Overview Geothermal waters bubble up to the surface in a natural hot spring. Source: Ted Clutter Low-Temperature and Coproduced Resources Fact Sheet

  18. Assessment of Geothermal Data Resources and Requirements

    SciTech Connect (OSTI)

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Programs data needs.

  19. Geothermal resource area 11, Clark County area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  20. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop ...

  1. Geothermal Mill Redevelopment Project in Massachusetts

    SciTech Connect (OSTI)

    Vale, A.Q.

    2009-03-17

    Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (“DOE”) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

  2. Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada | Department of Energy for Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada September 23, 2011 - 3:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the Department finalized a partial guarantee for up to a $350 million loan to support a geothermal power generation project. The project, sponsored by Ormat Nevada, Inc., is expected to produce up to 113 megawatts (MW) of clean, baseload

  3. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  4. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect (OSTI)

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  5. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Open Energy Info (EERE)

    depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing...

  6. Geothermal Technologies Office Director Doug Hollett Keynotes at Annual Technical Conference of the Geothermal Resources Council in September

    Broader source: Energy.gov [DOE]

    GTO Director Doug Hollett took the stage this week at the Geothermal Resources Council industry meeting in Portland, Oregon to address barriers to geothermal development and how the office is...

  7. Final Scientific - Technical Report, Geothermal Resource Exploration...

    Open Energy Info (EERE)

    lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region...

  8. Energy Department Announces Project Selections for Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (EGS) Subsurface Laboratory | Department of Energy Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory April 28, 2015 - 9:43am Addthis Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory WASHINGTON, DC - As part of the Obama Administration's all-of-the-above energy

  9. Nicaragua-San Jacinto-Tizate Geothermal Power Project | Open...

    Open Energy Info (EERE)

    Website http:www.iadb.orgprojectsP Program Start 2010 Country Nicaragua UN Region Latin America and the Caribbean References Nicaragua-Geothermal1 Background "The Project...

  10. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  11. Salt Wells Geothermal Energy Projects Environmental Impact Statement...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Energy Projects Environmental Impact Statement Abstract Abstract unavailable....

  12. North Brawley Geothermal Power Plant Project Overview | Open...

    Open Energy Info (EERE)

    2014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Geothermal Power Plant Project Overview Citation PCL...

  13. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    Open Energy Info (EERE)

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  14. Great Basin College Direct Use Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Rice, John

    2014-10-21

    This is the final technical report for the Great Basin College Direct Use Geothermal Demonstrationn Project, outlining the technical aspects of the User Group System.

  15. Manhattan Project: Resources

    Office of Scientific and Technical Information (OSTI)

    RESOURCES RELATING TO THE MANHATTAN PROJECT In addition to the events, people, places, processes, and science pages that comprise the bulk of this web site, a number of additional resources are also provided: Reference Materials Maps Photo Gallery To Learn More Library Suggested Readings Background on this Site About this Site How to Navigate this Site Site Map Sources Note on Sources, A Nuclear Energy and the Public's Right to Know Sources and Notes (for each page) Sources and notes for this

  16. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

  17. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  18. Expanding Geothermal Resource Utilization through Directed Research, Education, and Public Outreach

    SciTech Connect (OSTI)

    Calvin, Wendy

    2015-06-29

    The Great Basin Center for Geothermal Energy (GBCGE or the Center) was established at the University of Nevada, Reno (UNR) in May 2000 to promote research and utilization of geothermal resources. The Center received funding through this grant to promote increased geothermal development in the Great Basin, with most of the funding used for peerreviewed research. Funding to the Center and work under the contract were initiated in March 2002, with supplemental funding in subsequent years. The Center monitored the research projects that were competitively awarded in a series of proposal calls between 2002 and 2007. Peer-reviewed research promoted identification and utilization of geothermal resources in Nevada. Projects used geology, geochemistry, geophysics, remote sensing, and the synthesis of multi-disciplinary information to produce new models of geothermal systems in the Western U.S. and worldwide. Funds were also used to support graduate student research and training. Part of the grant was used to support public outreach activities, including webpages, online maps and data resources, and informational workshops for stakeholders.

  19. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  20. Southwest Alaska Regional Geothermal Energy Project

    SciTech Connect (OSTI)

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  1. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect (OSTI)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  2. Pinpointing America's Geothermal Resources with Open Source Data

    Broader source: Energy.gov [DOE]

    National Geothermal Data System addresses barriers to geothermal deployment by aggregating millions of geoscience datapoints and legacy geothermal research into a nationwide system that serves the geothermal community.

  3. File:03UTAStateGeothermalResourceLeasing.pdf | Open Energy Information

    Open Energy Info (EERE)

    UTAStateGeothermalResourceLeasing.pdf Jump to: navigation, search File File history File usage Metadata File:03UTAStateGeothermalResourceLeasing.pdf Size of this preview: 463 ...

  4. File:03MTAStateGeothermalResourceLease.pdf | Open Energy Information

    Open Energy Info (EERE)

    3MTAStateGeothermalResourceLease.pdf Jump to: navigation, search File File history File usage Metadata File:03MTAStateGeothermalResourceLease.pdf Size of this preview: 463 599...

  5. C.R.S. 37-90.5-105 Geothermal Resources Access | Open Energy...

    Open Energy Info (EERE)

    5 Geothermal Resources Access Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: C.R.S. 37-90.5-105 Geothermal Resources AccessLegal...

  6. UC 73-22 Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: UC 73-22 Utah Geothermal Resource...

  7. UC 73-22 - Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    - Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 73-22 - Utah Geothermal Resource...

  8. EA-1849: Ormat Nevada Geothermal Projects in Northern NV | Department of

    Energy Savers [EERE]

    Energy 9: Ormat Nevada Geothermal Projects in Northern NV EA-1849: Ormat Nevada Geothermal Projects in Northern NV August 22, 2011 EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGuiness Hills Geothermal Project, Lander County, Nevada August 22, 2011 EA-1849: Finding of No Significant Impact Ormat Nevada Northern Nevada Geothermal Power Plant Projects: Loan Guarantee for ORMAT

  9. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect (OSTI)

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  10. EIS-0207: Newberry Geothermal Pilot Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Forest Service prepared this statement to analyze three alternatives and associated environmental impacts for it to enable the CEE Exploration Company of Portland, Oregon to build and operate a geothermal pilot project and supporting facilities capable of generating 33 megawatts of electric power in the Deschutes National Forest in central Oregon. The Department of Energys Bonneville Power Administration (BPA) served as a cooperating agency in preparing this statement in order to fulfill its National Environmental Policy Act obligations ahead of its statutory obligations to purchase and transmit power to customers in the Pacific Northwest, if it is decided that the project will proceed. BPA adopted this statement by October 1994.

  11. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

  12. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  13. Property:Geothermal/ProjectTypeTopic2Count | Open Energy Information

    Open Energy Info (EERE)

    + 0 + Geothermal Data Development, Collection, and Maintenance + 0 + Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  14. Property:Geothermal/NumberOfArraProjectTypeTopic2 | Open Energy...

    Open Energy Info (EERE)

    + 7 + Geothermal Data Development, Collection, and Maintenance + 3 + Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  15. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  16. Title 20 AAC 25.705-.740 Geothermal Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    ResourcesLegal Abstract Title 20 of the Alaska Administrative Code Chapter 25, Alaska Oil and Gas Conservation Commission Article 7, Geothermal Resources, Sections 705-740....

  17. Geothermal Direct Use Program Opportunity Notice Projects Lessons Learned Final Report

    SciTech Connect (OSTI)

    Lunis, B.C.

    1986-01-01

    The use of geothermal energy for direct-use applications was aided through the development of a number of successful field experiment projects funded on a cost-shared basis by the US Department of Energy, Division of Geothermal Technology. This document provides a summary of the projects administered by the US Department of Energy's Idaho Operations Office and technically monitored through the Idaho National Engineering Laboratory (EG and G Idaho, Inc.). An overview of significant findings and conclusions is provided, as are project descriptions and activities, resource development, design, construction, and operational features. Legal and institutional considerations are also discussed.

  18. Geothermal R&D Program FY 1988 Project Summaries

    SciTech Connect (OSTI)

    1988-10-01

    This report summarizes DOE Geothermal R&D subprograms, major tasks, and projects. Contract funding amounts are shown. Many summaries have references (citations) to the researchers' previous related work. These can be useful. Geothermal budget actual amounts are shown for FY 1984 -1988. (DJE 2005)

  19. Direct utilization of geothermal energy resources in food processing. Final report, May 17, 1978-May 31, 1982

    SciTech Connect (OSTI)

    Austin, J.C.

    1982-05-01

    In early 1978 financial assistance was granted for a project to utilize geothermal energy at Ore-Ida Foods, Inc.'s food processing plant in Ontario, Oregon. Specifically, the project included exploring, testing, and developing the potential geothermal resource; retrofitting the existing gas/oil-fired steam system; utilizing the geothermal resource for food processing, space heating, and hot potable water; and injecting the spent geothermal water back into a disposal well. Based on preliminary investigations which indicated the presence of a local geothermal resource, drilling began in August 1979. Although the anticipated resource temperature of 380/sup 0/F was reached at total well depth (10,054 feet), adequate flow to meet processing requirements could not be obtained. Subsequent well testing and stimulation techniques also failed to produce the necessary flow, and the project was eventually abandoned. However, throughout the duration of the project, all activities were carefully monitored and recorded to ensure the program's value for future evaluation. This report presents a culmination of data collected during the Ore-Ida project.

  20. Papua New Guinea Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Papua New Guinea Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  1. Demonstrating the Commercial Feasibility of Geopressured-Geothermal...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  2. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  3. The Role of Cost Shared R&D in the Development of Geothermal Resources

    SciTech Connect (OSTI)

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  4. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  5. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  6. Funding Opportunity Announcement Webinar: Technology Advancement for Rapid Development of Geothermal Resources (DE-FOA-0000522)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program (the Program) presented a webinar on Thursday, June 23, about its newly released funding opportunity announcement (FOA), Geothermal Technology Advancement for Rapid Development of Resources in the United States.

  7. MCA 77-4-104 - Nature of Geothermal Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    4 - Nature of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 77-4-104 - Nature of Geothermal...

  8. Pumpernickel Valley Geothermal Project Thermal Gradient Wells...

    Open Energy Info (EERE)

    the geothermal activity in the valley are two areas with hot springs, seepages, and wet groundvegetation anomalies near the Pumpernickel Valley fault, which indicate that the...

  9. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  10. Characterization Of Geothermal Resources Using New Geophysical...

    Open Energy Info (EERE)

    in the preparation of the final report submitted to Amp Resources Authors Jerry Montgomery, Roger L. Bowers and Val Kofoed Published GRC, 2005 DOI Not Provided Check for DOI...

  11. Salton Sea Power Plant Recognized as Most Innovative Geothermal Project

    Broader source: Energy.gov [DOE]

    The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

  12. The Geothermal Technologies Office Invests $18 Million for Innovative Projects

    Broader source: Energy.gov [DOE]

    In support of a low carbon future, the United States Department of Energy today announced up to $18 million for 32 projects that will advance geothermal energy development in the United States. The...

  13. US Geothermal Updates Status of Development Projects New Wells...

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: US Geothermal Updates Status of Development Projects New Wells Drilled at Neal Hot Springs...

  14. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect (OSTI)

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  15. Pyramid Lake Paiute Tribe - Pyramid Lake Energy Project - Geothermal Assessment

    Energy Savers [EERE]

    Tribe Pyramid Lake Paiute Tribe Pyramid Lake Energy Project Pyramid Lake Energy Project Geothermal Assessment Geothermal Assessment Pyramid Lake Paiute Reservation 40 miles north of Reno 475,000 acres Pyramid Lake 125,000 surface acres Northern Reservation Needles Area Needles Geyser Needles Geyser Exploration conducted Exploration conducted in 1968 in 1968 Hot water was found Hot water was found at 160 degrees f at 160 degrees f Was not considered Was not considered feasible feasible PLEP

  16. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  17. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  18. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  19. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  20. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect (OSTI)

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  1. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting &...

  2. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  3. BLM/DOI - Notice of Intent to Conduct Geothermal Resource Exploration...

    Open Energy Info (EERE)

    DOI - Notice of Intent to Conduct Geothermal Resource Exploration Operations < BLM Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: BLMDOI - Notice of...

  4. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    Broader source: Energy.gov [DOE]

    Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners presentation at the April 2013 peer review meeting held in Denver, Colorado.

  5. Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources

    SciTech Connect (OSTI)

    Heiken, G.; Sayer, S.

    1980-02-01

    This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

  6. Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

  7. Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

  8. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  9. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    SciTech Connect (OSTI)

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to support project facilities in a safe and environmentally acceptable manner; and non-power generating alternatives, such as conservation and demand-side management.

  10. Rural Cooperative Geothermal Development Electric & Agriculture |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy DOE 2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects PDF icon low_silveria_rural_electric_coop.pdf More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

  11. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy News Geothermal Energy News RSS May 12, 2016 Source: Kirby Baier of Continental Resources EERE Success Story-DOE-Funded Project is First Permanent Facility to Co-produce Electricity from Geothermal Resources at an Oil and Gas Well The U.S. Department of Energy (DOE) is excited to announce the launch of the nation's first commercial enterprise to co-produce electricity from geothermal resources at an oil and gas well. With support from DOE's Geothermal Technologies Office (GTO),

  12. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect (OSTI)

    Negus-deWys, J.

    1990-03-01

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  13. Geothermal Resource Analysis And Structure Of Basin And Range...

    Open Energy Info (EERE)

    And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  14. Pinpointing America's Geothermal Resources with Open Source Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 24, 2014 - 9:23am Addthis The National Geothermal Data System is helping researchers and industry developers cultivate geothermal technology applications in energy and ...

  15. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    SciTech Connect (OSTI)

    Reed, M.J.

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  16. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  17. EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California

    Broader source: Energy.gov [DOE]

    The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

  18. Reconnaissance of geothermal resources of Los Angeles County, California

    SciTech Connect (OSTI)

    Higgins, C.T.

    1981-01-01

    Thermal waters produced from large oil fields are currently the most important geothermal resources in Los Angeles County. Otherwise, the County does not appear to have any large, near-surface geothermal resources. The oil fields produce thermal water because of both the moderate depths of production and normal to above-normal geothermal gradients. Gradients are about 3.0-3.5/sup 0/C/100 meters in the Ventura Basin and range from that up to about 5.5-6.0/sup 0/C/100 meters in the Los Angeles Basin. The hottest fields in the County are west of the Newport-Inglewood Structural Zone. The Los Angeles Basin has substantially more potential for uses of heat from oil fields than does the Ventura Basin because of its large fields and dense urban development. Produced fluid temperatures there range from ambient air to boiling, but most are in the 100-150/sup 0/F range. Daily water production ranges from only a few barrels at some fields to over a million barrels at Wilmington Oil Field; nearly all fields produce less than 50,000 barrels/day. Water salinity generally ranges from about 15,000-35,000 mg/liter NaCl. Fields with the most promise as sources of heat for outside applications are Wilmington, Torrance, Venice Beach, and Lawndale. The centralized treatment facilities are the most favorable sites for extraction of heat within the oil fields. Because of the poor water quality heat exchangers will likely be required rather than direct circulation of the field water to users. The best sites for applications are commercial-industrial areas and possibly institutional structures occupied by large numbers of people.

  19. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect (OSTI)

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  20. Soda Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Add a new Operating Power Plant Developing Power Projects: 1 East Soda Lake Geothermal Project ( MW, Phase I - Resource Procurement and Identification) Add a new...

  1. Geothermal Resources of New Mexico - A Survey of Work to Date...

    Open Energy Info (EERE)

    library Report: Geothermal Resources of New Mexico - A Survey of Work to Date Authors W.J. Stone and N.H. Mizell Published New Mexico Bureau of Mines & Mineral Resources, 1977...

  2. Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17

    SciTech Connect (OSTI)

    McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01

    The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

  3. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    SciTech Connect (OSTI)

    Shervais, John W.; Evans, James P.; Liberty, Lee M.; Schmitt, Douglas R.; Blackwell, David D.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements.

  4. Geothermal Resource Exploration And Definition Projects | Open...

    Open Energy Info (EERE)

    Et Al., 2004) Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004)...

  5. Geothermal Resource Exploration And Definition Project | Open...

    Open Energy Info (EERE)

    (Warpinski, Et Al., 2002) Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Micro-Earthquake At...

  6. Fallon-Main Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Fallon Geothermal Area Geothermal Region Northwest Basin...

  7. East Soda Lake Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Soda Lake Geothermal Area Geothermal Region Northwest...

  8. Lee Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Lee Hot Springs Geothermal Area Geothermal Region...

  9. McCoy Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill and Lander Counties, NM Geothermal Area McCoy Geothermal Area Geothermal Region...

  10. Pinpointing America's Geothermal Resources with Open Source Data

    Broader source: Energy.gov [DOE]

    Geothermal energythe heat contained within the earthrepresents a growing part of the country's clean energy mix. Still, for continued growth of this industry, gaining easy access to reliable, comprehensive geothermal data remains a critical barrier.

  11. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  12. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  13. Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach

    Broader source: Energy.gov [DOE]

    This project entails finding and assessing geothermal systems to: Increase geothermal development through research and outreach; Reduce risk in drill target selection, thus reducing project development costs; and Recent research includes development of shallow temperature surveys, seismic methods, aerial photography, field structural geology.

  14. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling...

    Open Energy Info (EERE)

    Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Phase 2 Reese River Geothermal...

  15. Parcperdue Geopressure -- Geothermal Project: Appendix E

    SciTech Connect (OSTI)

    Sweezy, L.R.

    1981-10-05

    The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

  16. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  17. New Mexico State University Campus geothermal demonstration project

    SciTech Connect (OSTI)

    Cuniff, R.A.; Fisher, K.P.; Chintawongvanich, P.

    1984-04-01

    This report presents the design, construction highlights, and performance of the New Mexico State University Campus Geothermal Demonstration Project at Las Cruces, New Mexico. Construction started in July 1981, first system use was January 1982, and the system was dedicated on April 21, 1982. Included herein are summary observations after two years of use. The geothermal hot water from New Mexico State University wells is used to heat potable water, which in turn provides 83 percent of the domestic hot water on the New Mexico State University campus, as well as space heat to two buildings, and for two heated swimming pools. The original system is providing service to 30 total buildings, with two additional buildings (150,000 square feet) in process of geothermal conversion.) The system overall performance has been excellent, except for geothermal well pump problems. In terms of operating efficiency, the system has exceeded the design parameters. In spite of abnormally high costs for well and pump repairs, the system has shown a positive cost avoidance of more than $118,000 for the first year of operation. For the first two full years of operation, the system has produced a net positive cost avoidance of more than $200,000. Payback on the total investment of $1,670,000 is projected to be 6 to 10 years, depending on the future prices of natural gas and electricity.

  18. Environmental assessment for Kelley Hot Spring geothermal project: Kelley Hot Spring Agricultural Center

    SciTech Connect (OSTI)

    Neilson, J.A.

    1981-04-01

    The environmental impacts of an integrated swine production unit are analyzed together with necessary ancillary operations deriving its primary energy from a known geothermal reservoir in accordance with policies established by the National Energy Conservation Act. This environmental assessment covers 6 areas designated as potentially feasible project sites, using as the basic criteria for selection ground, surface and geothermal water supplies. The six areas, comprising +- 150 acres each, are within a 2 mile radius of Kelley Hot Springs, a known geothermal resource of many centuries standing, located 16 miles west of Alturas, the county seat of Modoc County, California. The project consists of the construction and operation of a 1360 sow confined pork production complex expandable to 5440 sows. The farrow to finish system for 1360 sows consists of 2 breeding barns, 2 gestation barns, 1 farrowing and 1 nursery barn, 3 growing and 3 finishing barns, a feed mill, a methane generator for waste disposal and water storage ponds. Supporting this are one geothermal well and 1 or 2 cold water wells, all occupying approximately 12 acres. Environmental reconnaissance involving geology, hydrology, soils, vegetation, fauna, air and water quality, socioeconomic, archaelogical and historical, and land use aspects were carefully carried out, impacts assessed and mitigations evaluated.

  19. Surveys of forest bird populations found in the vicinity of proposed geothermal project subzones in the district of Puna, Hawaii

    SciTech Connect (OSTI)

    Jacobi, J.D.; Reynolds, M.; Ritchotte, G.; Nielsen, B.; Viggiano, A.; Dwyer, J.

    1994-10-01

    This report presents data on the distribution and status of forest bird species found within the vicinity of proposed geothermal resource development on the Island of Hawaii. Potential impacts of the proposed development on the native bird populations found in the project are are addressed.

  20. Phase 1 Feasibility Study, Canby Cascaded Geothermal Project, April 2, 2013

    SciTech Connect (OSTI)

    Merrick, Dale E

    2013-04-02

    A small community in Northern California is attempting to use a local geothermal resource to generate electrical power and cascade residual energy to an existing geothermal district heating system, greenhouse, and future fish farm and subsequent reinjection into the geothermal aquifer, creating a net-zero energy community, not including transportation.

  1. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well

  2. Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council

    SciTech Connect (OSTI)

    Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

    1989-09-26

    This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

  3. Analysis of how changed federal regulations and economic incentives affect financing of geothermal projects

    SciTech Connect (OSTI)

    Meyers, D.; Wiseman, E.; Bennett, V.

    1980-11-04

    The effects of various financial incentives on potential developers of geothermal electric energy are studied and the impact of timing of plant construction costs on geothermal electricity costs is assessed. The effect of the geothermal loan guarantee program on decisions by investor-owned utilities to build geothermal electric power plants was examined. The usefulness of additional investment tax credits was studied as a method for encouraging utilities to invest in geothermal energy. The independent firms which specialize in geothermal resource development are described. The role of municipal and cooperative utilities in geothermal resource development was assessed in detail. Busbar capital costs were calculated for geothermal energy under a variety of ownerships with several assumptions about financial incentives. (MHR)

  4. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  5. Geothermal R and D Project report for period April 1, 1976 to...

    Open Energy Info (EERE)

    1976 in research on geothermal energy is reported. The experiments are performed in the Raft River Valley, Idaho, a hydrothermal resource site with water temperatures below 150sup...

  6. A Geothermal District-Heating System and Alternative Energy Research...

    Open Energy Info (EERE)

    2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

  7. Geothermal Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal Success Stories Geothermal Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in finding, accessing, and using U.S. geothermal resources effectively and consistently pave the way for widespread adoption of this energy resource. Explore EERE's geothermal success stories below. May 12, 2016 Source: Kirby Baier of Continental Resources EERE Success Story-DOE-Funded Project is First Permanent Facility to Co-produce Electricity

  8. New Mexico HB 201 (2012) An Act Relating to Geothermal Resources...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- BillBill: New Mexico HB 201 (2012) An Act Relating to Geothermal Resources; Providing for ground water to...

  9. HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources...

    Open Energy Info (EERE)

    HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: HAR 13-183...

  10. IDAPA 37.03.04.045 - Abandonment of Geothermal Resource Wells...

    Open Energy Info (EERE)

    .045 - Abandonment of Geothermal Resource Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 37.03.04.045 -...

  11. C.R.S. 37-90.5-103 Geothermal Resources Definitions | Open Energy...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: C.R.S. 37-90.5-103 Geothermal Resources DefinitionsLegal Abstract Colorado statute that defines terms...

  12. Getting into hot water: the law of geothermal resources in Colorado...

    Open Energy Info (EERE)

    Getting into hot water: the law of geothermal resources in Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Getting into hot water: the law...

  13. I.C. 47-1605 - Geothermal Resources - Leases--Rental and Royalty...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 47-1605 - Geothermal Resources - Leases--Rental and RoyaltyLegal Abstract This code...

  14. El Paso County Geothermal Project: Innovative Research Technologies Applied

    Broader source: Energy.gov (indexed) [DOE]

    Energy Peer Exchange Call Series: Einstein and Energy Efficiency: Making Homes Smarter (301), call slides and discussion summary. PDF icon Call Slides and Discussion Summary More Documents & Publications The Future is Here - Smart Home Technology Driving Accountability for Program Performance Using Measured Energy Savings (201) Energy Efficiency on Display: Using Demonstration Projects to Showcase Home Performance Opportunities (201) to the Geothermal Reosurce Potential at Fort Bliss |

  15. Geothermal Resource-Reservoir Investigations Based On Heat Flow...

    Open Energy Info (EERE)

    to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state,...

  16. Geothermal Resource Analysis and Structure of Basin and Range...

    Open Energy Info (EERE)

    Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  17. Indicators Of Low-Temperature Geothermal Resources In Northern...

    Open Energy Info (EERE)

    attractive thermal energy prospects on the Atlantic Coastal Plain. Authors Douglas L. Smith and William T. Dees Published Journal Journal of Volcanology and Geothermal Research,...

  18. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Open Energy Info (EERE)

    low-enthalpy geothermal water will be designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. - Perform process optimizations and economic...

  19. Our Evolving Knowledge Of Nevada's Geothermal Resource Potential...

    Open Energy Info (EERE)

    of portable, efficient systems of measuring shallow ground temperatures, 2) structural analysis of the controls of existing geothermal systems and development of conceptual...

  20. Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential...

    Open Energy Info (EERE)

    systems at Bonham Ranch, and Rhodes and Teels Marshes, NV. Collaboration with the gold mining industry has led to the announcement of two new significant geothermal...

  1. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  2. Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA

    SciTech Connect (OSTI)

    O'Banion, K.; Hall, C.

    1980-07-14

    This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

  3. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    SciTech Connect (OSTI)

    Goff, S.J.

    2000-05-28

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide is a good start for providing the geothermal community a standard EIA format. As decision makers may only read the Executive Summary of the EIA, this summary should be well written and present the significant impacts (in order of importance), clarifying which are unavoidable and which are irreversible; the measures which can be taken to mitigate them; the cumulative effects of impacts; and the requirements for monitoring and supervision. Quality plans and Public Participation plans should also be included as part of the environmental analysis process.

  4. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  5. GeothermEx Inc | Open Energy Information

    Open Energy Info (EERE)

    spectrum of resource-related issues -- from exploration and drilling through analysis, project management, financial modeling and operational support. References "GeothermEx...

  6. DOE-Backed Project Will Demonstrate Innovative Geothermal Technology

    Broader source: Energy.gov [DOE]

    As part of DOE's Geothermal Technologies Program, two geothermal companies, AltaRock Energy and Davenport Newberry, announced plans on June 8 to conduct a demonstration of Enhanced Geothermal Systems (EGS) technology at a site located near Bend, Oregon.

  7. DOE Offers Loan Guarantees to Geothermal Projects in Nevada and Oregon

    Broader source: Energy.gov [DOE]

    DOE recently offered loan guarantees for geothermal power projects located in northwestern Nevada and southeastern Oregon, drawing on funds from the American Reinvestment and Recovery Act.

  8. Geothermal-resource assessment of Ranger Warm Spring, Colorado. Resources Series 24

    SciTech Connect (OSTI)

    Zacharakis, T.G.; Pearl, R.H.; Ringrose, C.D.

    1983-01-01

    In 1977 a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. This program consisted of literature search, reconnaissance geologic and hydrogeologic mapping and geophysical and geochemical surveys. During 1980 and 1981 geothermal resource assessment efforts were conducted in the Cement Creek Valley south of Crested Butte. In this valley are two warm springs, Cement Creek and Ranger, about 4 mi (6.4 km) apart. The temperature of both springs is 77 to 79/sup 0/F (25 to 26/sup 0/C) and the discharge ranges from 60 to 195 gallons per minute. Due to access problems no work was conducted in the Cement Creek Warm Springs area. At Ranger Warm Springs electrical resistivity and soil mercury surveys were conducted. The warm springs are located in the Elk Mountains of west central Colorado. The bedrock of the area consists of sedimentary rocks ranging in age from Precambrian to Recent. Several faults with displacements of up to 3000 ft (194 m) are found in the area. One of these faults passes close to the Ranger Warm Springs. The electrical resistivity survey indicated that the waters of Ranger Warm Springs are moving up along a buried fault which parallels Cement Creek.

  9. Demonstration of an Enhanced Geothermal System at the Northwest Geysers

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Resources | Department of Energy Project objectives: Demonstrate a 1 megawatt Variable Phase Turbine and Variable Phase Cycle with low temperature brine. PDF icon low_hays_variable_phase_turbine.pdf More Documents & Publications track 1: Low Temp | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Field, California |

  10. U.S. and Australian Advanced Geothermal Projects Face Setbacks

    Broader source: Energy.gov [DOE]

    Efforts to develop and commercialize a new type of geothermal energy, called Enhanced Geothermal Systems (EGS), are facing technical setbacks in both the United States and Australia.

  11. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...

    Office of Scientific and Technical Information (OSTI)

    can be obtained from wastewater treatment facilities, irrigation rights, or reverse osmosis of the geothermal brine. No geothermal steam-cycle plants are air-cooled. Instead,...

  12. Manhattan Project Historical Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project » Manhattan Project Historical Resources Manhattan Project Historical Resources New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy has developed and made available to the public--in print, online, and on display--a variety of Manhattan Project historical resources. These include histories, websites, reports and document collections, and exhibits and tours. Histories produced by the Department include The Manhattan Project, which provides a

  13. A Code for Geothermal Resources and Reserves Reporting | Open...

    Open Energy Info (EERE)

    over two years will be covered in a companion paper by Lawless et al. Authors A. F. Williams, J. V. Lawless, M. A. Ward, F. L. Holgate and A. Larking Conference World Geothermal...

  14. Geothermal Resources Exploration And Assessment Around The Cove...

    Open Energy Info (EERE)

    Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to...

  15. Toward The Development Of Occurrence Models For Geothermal Resources...

    Open Energy Info (EERE)

    in existing fields and grass-roots geothermal exploration Authors A. E. Sabin, J. D. Walker, J. Unruh and F. C. Monastero Published GRC, 2004 DOI Not Provided Check for...

  16. A Method for Estimating Undiscovered Geothermal Resources in...

    Open Energy Info (EERE)

    areas based on the presence of drill-holes, wells, and depth to the water table. The "density of occurrence" (number of geothermal systems per km2) is calculated, taking into...

  17. Draft Executive Summary Hawaii Geothermal Project - EIS Scoping Meetings

    SciTech Connect (OSTI)

    1992-03-01

    After introductions by the facilitator and the program director from DOE, process questions were entertained. It was also sometimes necessary to make clarifications as to process throughout the meetings. Topics covered federal involvement in the HGP-EIS; NEPA compliance; public awareness, review, and access to information; Native Hawaiian concerns; the record of decision, responsibility with respect to international issues; the impacts of prior and on-going geothermal development activities; project definition; alternatives to the proposed action; necessary studies; Section 7 consultations; socioeconomic impacts; and risk analysis. Presentations followed, in ten meetings, 163 people presented issues and concerns, 1 additional person raised process questions only.

  18. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    SciTech Connect (OSTI)

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  19. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  20. Assessment of the geothermal resources of Illinois based on existing geologic data

    SciTech Connect (OSTI)

    Vaught, T.L.

    1980-12-01

    Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)

  1. Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate

    SciTech Connect (OSTI)

    Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

    1981-04-01

    Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

  2. Geothermal Development and Resource Management in the Yakima Valley : A Guidebook for Local Governments.

    SciTech Connect (OSTI)

    Creager, Kurt

    1984-03-01

    The guidebook defines the barriers to geothermal energy development at all levels of government and proposes ways to overcome these various barriers. In recognition that wholesale development of the region's geothermal resources could create a series of environmental problems and possible conflicts between groundwater users, resource management options are identified as possible ways to ensure the quality and quantity of the resource for future generations. It is important for local governments to get beyond the discussion of the merits of geothermal energy and take positive actions to develop or to encourage the development of the resource. To this end, several sources of technical and financial assistance are described. These sources of assistance can enable local governments and others to take action should they choose to do so. Even though the Yakima Valley is the setting for the analysis of local issues that could hamper geothermal development, this guidebook could be used by any locale with geothermal energy resources. The guidebook is not a scientific manual, but rather a policy document written especially for local government staff and officials who do not have technical backgrounds in geology or hydrology.

  3. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  4. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  5. Department of Energy Finalizes $96.8 Million Loan Guarantee for Oregon Geothermal Project

    Broader source: Energy.gov [DOE]

    Energy Secretary Steven Chu today announced that the U.S. Department of Energy (DOE) finalized a $96.8 million Recovery Act supported loan guarantee to a project sponsored by U.S. Geothermal, Inc. to construct a 23 megawatt (net) geothermal power project in Malheur County, in southeastern Oregon.

  6. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  7. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  10. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    SciTech Connect (OSTI)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  11. Property:Geothermal/LegalNameOfAwardee | Open Energy Information

    Open Energy Info (EERE)

    and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy (U.S.) Corp. + A new analytic-adaptive model for EGS...

  12. Papers Presented - Geothermal Resources Council 1980 Annual Meeting

    SciTech Connect (OSTI)

    1980-10-01

    This report contains preprints of papers pertaining to geothermal energy development in the Eastern United States written by members of the Center for Metropolitan Planning and Research (Metro Center) and by the Applied Physics Laboratory (APL) both of The Johns Hopkins University.

  13. Environmental assessment for a geothermal direct utilization project in Reno, Nevada

    SciTech Connect (OSTI)

    Perino, J.V.; McCloskey, M.H.; Wolterink, T.J.; Wallace, R.C.; Baker, D.W.; Harper, D.L.; Anderson, D.T.; Siteman, J.V.; Sherrill, K.T.

    1980-08-20

    The proposed action involves the development of geothermal wells to provide hot water and heat for five users in Reno, Nevada. Data from nearby wells indicate the sufficient hot water is available from the Moana Known Geothermal Resource Area for this action. Construction activities have been planned to minimize or eliminate problems with noise, runoff, and disturbance of biota as well as other potential environmental effects. Disposal of the geothermal fluids via surface water or injection will be determined based on water quality of the geothermal fluids and geologic effects of injection. The affected environment is described by this document and needed mitigation procedures discussed.

  14. Geothermal guidebook

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

  15. Bouillante 1 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  16. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  17. Bouillante 2 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  18. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  19. AWEA Wind Resource & Project Energy Assessment

    Broader source: Energy.gov [DOE]

    Join the wind industry's leading owners, project developers, and wind assessors as they share latest challenges facing the wind resource assessment community. During this technical event you will...

  20. Solar Resource and Meteorological Assessment Project (SOLRMAP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource and Meteorological Assessment Project (SOLRMAP) Solar and Meteorological Station Options: Configurations and Specifications July 1, 2009 (revised) Steve Wilcox and ...

  1. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect (OSTI)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  2. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  3. Lahendong Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  4. Mindanao Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. Fukushima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  9. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  10. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  11. Miyagi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  12. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. Ogiri Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Ngawha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. Bouillante Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. Leyte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  18. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. South Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Energy Department Finalizes Loan Guarantee for Ormat Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy resources, create skilled jobs for American workers and ensure the U.S. remains a global leader in geothermal energy development," said Secretary Chu. "The project...

  1. Preliminary Assessment of Geothermal Resource Potential at the UTTR

    SciTech Connect (OSTI)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2011-06-01

    The purpose of this report is to summarize the current state of geologic knowledge concerning potential high-temperature geothermal development on the lands controlled by Hill Air Force Base (HAFB) at the Utah Testing and Training Range (UTTR) and the lands encompassed by the Dugway Proving Grounds (Dugway). This report is based on currently available published and publically available information. Most of the information presented here is purely geologic in nature. Therefore, the logistical issues (such as military exclusion areas, proximity to electrical infrastructure, and access) are additional considerations that are being addressed in a separate report that will be issued to HAFB by the SES corporation.

  2. Geothermal Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, 2007 Briefing Outline * The Geothermal Resource * Applications * Market Barriers * Outlook Earth is Hot 99% greater than 1000C Geothermal Resources Hot granite ...

  3. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    SciTech Connect (OSTI)

    Carlson, Garry J.; Birkby, Jeff

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  4. Geothermal FAQs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does

  5. New York Canyon Stimulation Geothermal Project | Open Energy...

    Open Energy Info (EERE)

    Institution) TGP Development Company, LLC Partner 1 GeothermEx Partner 2 Lawrence Berkeley National Laboratory Partner 3 Array Information Technology, Inc. Funding Opportunity...

  6. Two-Meter Temperature Surveys for Geothermal Exploration Project...

    Open Energy Info (EERE)

    years the Great Basin Center for Geothermal Energy has made progress toward developing methods and corrections aimed at eliminating these effects. Seasonal drift, albedo,...

  7. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Phase III Report

    SciTech Connect (OSTI)

    Noel, Donna

    2013-12-01

    This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed within the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.

  8. NREL: Water Power Research - Resource Characterization Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Projects The objective of NREL's resource characterization work is to characterize U.S. marine and hydrokinetic energy resources and quantify the amounts of energy that could feasibly be extracted. This information will allow both DOE and various stakeholders to prioritize the level of investment and research by resource type and assess the potential contribution to the U.S. renewable energy portfolio. Examples of NREL's resource characterization activities include: Work with

  9. Energy Department Announces $18 Million for Innovative Projects to Advance Geothermal Energy

    Broader source: Energy.gov [DOE]

    As part of the Administration’s all-of-the-above energy strategy, the Energy Department today announced up to $18 million for 32 projects that will advance geothermal energy development in the United States.

  10. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  11. Evaluation and targeting of geothermal energy resources in the southeastern United States. Final report, May 1, 1976-June 30, 1982

    SciTech Connect (OSTI)

    Costain, J.K.; Glover, L. III

    1982-01-01

    The objectives of the geothermal program have been to develop and apply geological and geophysical targeting procedures for the discovery of low-temperature geothermal resources related to heat-producing granite. Separate abstracts have been prepared for individual papers comprising the report. (ACR)

  12. Geothermal Resources Council Annual Meeting - Doug Hollett Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Program Organization - 2012 5 Systems Analysis & Cross-Cutting Hydrothermal & Resource ... (EGS) * Demonstrate 5 MW reservoir creation by 2020 * Lower LCOE to 6 centskWh by ...

  13. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect (OSTI)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  14. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  15. Geothermal resources of the Upper San Luis and Arkansas valleys...

    Open Energy Info (EERE)

    resources of the Upper San Luis and Arkansas valleys, Colorado Authors R.H. Pearl and J.K. Barrett Editors Epis, R.C. & Weimer and R.I. Published Colorado School of Mines:...

  16. Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011

    Broader source: Energy.gov [DOE]

    Transcript and presentation slides for Funding Opportunity Announcement webinar, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S., on 6-23-2011.

  17. Geothermal resource assessment of Canon City, Colorado Area

    SciTech Connect (OSTI)

    Zacharakis, Ted G.; Pearl, Richard Howard

    1982-01-01

    In 1979 a program was initiated to fully define the geothermal conditions of an area east of Canon City, bounded by the mountains on the north and west, the Arkansas River on the south and Colorado Highway 115 on the east. Within this area are a number of thermal springs and wells in two distinct groups. The eastern group consists of 5 thermal artesian wells located within one mile of Colorado Highway 115 from Penrose on the north to the Arkansas river on the south. The western group, located in and adjacent to Canon City, consists of one thermal spring on the south bank of the Arkansas River on the west side of Canon City, a thermal well in the northeast corner of Canon City, another well along the banks of Four Mile Creek east of Canon City and a well north of Canon City on Four Mile Creek. All the thermal waters in the Canon City Embayment, of which the study area is part of, are found in the study area. The thermal waters unlike the cold ground waters of the Canon City Embayment, are a calcium-bicarbonate type and range in temperature from 79 F (26 C) to a high of 108 F (42 C). The total combined surface discharge o fall the thermal water in the study area is in excess of 532 acre feet (A.F.) per year.

  18. Exploration for Geothermal Resources in Dixie Valley, Nevada...

    Open Energy Info (EERE)

    two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led...

  19. Status of Nevada Geothermal Resource Development - Spring 2011...

    Open Energy Info (EERE)

    in Nevada are the first significant activities since the Steamboat IIIII and Brady plants came on line in 1992.Exploration activity on existing projects grew between...

  20. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and low pressure drawdown. Developing geophysical and geologic techniques for identifying and precisely mapping LAFsin 3-D will greatly reduce dry hole risk and the overall number of wells required for reaching a particular geothermal field power capacity.

  1. Nuova Molinetto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  2. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  4. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  5. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Nuova Gabbro Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  8. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  10. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  11. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. DOE Offers Loan Guarantees to Geothermal Projects in Nevada and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal power plants generally draw on underground reservoirs of hot water or steam, using that energy to drive a turbine, which spins a generator to produce power. For the ...

  13. CNCC Craig Campus Geothermal Project …Craig, Colorado

    Broader source: Energy.gov [DOE]

    Feasibility study of GHP technology for new Craig Campus and conducted energy analysis modeling with Architect and Engineers. 96-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus.

  14. Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Locate and drill two exploration wells that will be used to define the nature and extent of the geothermal resources on Jemez Pueblo in the Indian Springs area.

  15. Resource engineering and economic studies for direct application of geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurations and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.

  16. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect (OSTI)

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  17. Geothermal Research Department Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges * Drilling * Reservoir Creation * Reservoir Management Resource ... Research Drilling, Monitoring, and Analysis Geothermal well construction * "Most" ...

  18. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect (OSTI)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

  19. Geothermal Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  20. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  1. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  2. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  3. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  4. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  5. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  6. Finding Large Aperture Fractures in Geothermal Resource Areas Using A

    Broader source: Energy.gov (indexed) [DOE]

    Neighborhood Program Financing Peer Exchange Call: Financing Small Business Upgrades, call slides and discussion summary, October 25, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Midcourse Refinements of Financing Strategies Finance Peer Exchange Kickoff Call Strategies for Marketing and Driving Demand for Commercial Financing Products

    Various structures can be used to finance a clean energy project or develop a clean energy financing program that will

  7. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  8. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  9. Amendment to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S.

    Broader source: Energy.gov [DOE]

    Amendment No. 004 to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S.

  10. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect (OSTI)

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  11. An Economic Analysis of the Kilauea Geothermal Development and Inter-Island Cable Project

    SciTech Connect (OSTI)

    1990-03-01

    A study by NEA completed in April 1987 shows that a large scale (500 MW) geothermal development on the big island of Hawaii and the inter-island power transmission cable is economically infeasible. This updated report, utilizing additional information available since 1987, reaches the same conclusion: (1) The state estimate of $1.7 billion for development cost of the geothermal project is low and extremely optimistic. more realistic development costs are shown to be in the range of $3.4 to $4.3 billion and could go as high as $4.6 billion. (2) Compared to alternative sources of power generation, geothermal can be 1.7 to 2.4 times as costly as oil, and 1.2 to 1.7 times as costly as a solar/oil generating system. (3) yearly operation and maintenance costs for the large scale geothermal project are estimated to be 44.7 million, 72% greater than a solar/oil generating system. (4) Over a 40-year period ratepayers could pay, on average, between 1.3 (17.2%) and 2.4 cents (33%) per kWh per year more for electricity produced by geothermal than they are currently paying (even with oil prices stabilizing at $45 per barrel in 2010). (5) A comparable solar/oil thermal energy development project is technologically feasible, could be island specific, and would cost 20% to 40% less than the proposed geothermal development. (6) Conservation is the cheapest alternative of all, can significantly reduce demand, and provides the greatest return to ratepayers. There are better options than geothermal. Before the State commits the people of Hawaii to future indebtedness and unnecessary electricity rate increases, more specific study should be conducted on the economic feasibility, timing, and magnitude of the geothermal project. The California experience at The Geyers points up the fact that it can be a very risky and disappointing proposition. The state should demand that proponents and developers provide specific answers to geothermals troubling questions before they make an irreversible commitment to it. The state should also more carefully assess the potential risks and hazards of volcanic disturbances, the degree of environmental damage that could occur, the future demand for electricity, and the potential of supplying electricity from alternative energy sources, conservation and small scale power units. As they stated in the April 1987 study, to move ahead with rapid large scale geothermal development on Hawaii without thoroughly studying these aspects of its development is ill-advised and economically unsound.

  12. Community Geothermal Technology Program: Hawaii glass project. Final report

    SciTech Connect (OSTI)

    Miller, N.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  13. Community Geothermal Technology Program: Silica bronze project. Final report

    SciTech Connect (OSTI)

    Bianchini, H.

    1989-10-01

    Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

  14. Mak-Ban / Laguna Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  16. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  17. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  18. GEOTHERMAL A N D HEAVY-OIL RESOURCES I N TEXAS TOPICAL REPORT

    Office of Scientific and Technical Information (OSTI)

    dV DOE/m/10412 - 6 GEOTHERMAL A N D HEAVY-OIL RESOURCES I N TEXAS TOPICAL REPORT B y Steven J. Sen1 and Timothy 6. Walter . January 1994 DISCLAIMER T h i s report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information,

  19. Geothermal resource assessment for the state of Texas: status of progress, November 1980. Final report

    SciTech Connect (OSTI)

    Woodruff, C.M. Jr.; Caran, S.C.; Gever, C.; Henry, C.D.; Macpherson, G.L.; McBride, M.W.

    1982-03-01

    Data pertaining to wells and thermal aquifers and data interpretation methods are presented. Findings from a program of field measurements of water temperatures (mainly in South-Central Texas) and an assessment of hydrologic properties of three Cretaceous aquifers (in North-Central Texas) are included. Landsat lineaments and their pertinance to the localization of low-temperature geothermal resources are emphasized. Lineament data were compared to structural and stratigraphic features along the Balcones/Ouachita trend in Central Texas to test for correlations. (MHR)

  20. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect (OSTI)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.