Powered by Deep Web Technologies
Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

80 m 01-APR-2011 2.1.1 Wind Speed ms >10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for...

2

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

and atmospheric effects may cause the wind speed to depart from the map estimates. Expert advice should be sought in placing wind turbines and estimating their energy production....

3

Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at  

E-Print Network (OSTI)

Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at larger heights above ground level? The wind resource at a wind farm can be estimated in two ways: by measurement or by modeling

4

Extreme Wind Speeds: Publications  

Science Conference Proceedings (OSTI)

... "Algorithms for Generating Large Sets of Synthetic Directional Wind Speed Data for Hurricane, Thunderstorm, and Synoptic Winds," NIST Technical ...

2013-08-19T23:59:59.000Z

5

wind speed | OpenEI  

Open Energy Info (EERE)

speed speed Dataset Summary Description GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m. Annual average >= 10 months of data, no nulls. Source National Renewable Energy Laboratory (NREL) Date Released Unknown Date Updated Unknown Keywords GIS global NOAA NREL offshore wind wind speed Data application/zip icon Download Shapefile (zip, 18.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Please cite NREL and NOAA Rate this dataset Usefulness of the metadata

6

OpenEI - wind speed  

Open Energy Info (EERE)

NREL GIS Data: Global NREL GIS Data: Global Offshore Wind http://en.openei.org/datasets/node/869 GIS data for offshore wind speed (meters/second).  Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m.  Annual average  >= 10 months of data, no nulls. License

Type of License:  Other (please specify below)

7

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer.

...

8

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer.

...

9

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

10

Forecasting Solar Wind Speeds  

E-Print Network (OSTI)

By explicitly taking into account effects of Alfven waves, I derive from a simple energetics argument a fundamental relation which predicts solar wind (SW) speeds in the vicinity of the earth from physical properties on the sun. Kojima et al. recently found from their observations that a ratio of surface magnetic field strength to an expansion factor of open magnetic flux tubes is a good indicator of the SW speed. I show by using the derived relation that this nice correlation is an evidence of the Alfven wave which accelerates SW in expanding flux tubes. The observations further require that fluctuation amplitudes of magnetic field lines at the surface should be almost universal in different coronal holes, which needs to be tested by future observations.

Takeru K. Suzuki

2006-02-03T23:59:59.000Z

11

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

12

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

13

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

14

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

15

Virtual Wind Speed Sensor for Wind Turbines Andrew Kusiak1  

E-Print Network (OSTI)

Virtual Wind Speed Sensor for Wind Turbines Andrew Kusiak1 ; Haiyang Zheng2 ; and Zijun Zhang3 Abstract: A data-driven approach for development of a virtual wind-speed sensor for wind turbines is presented. The virtual wind-speed sensor is built from historical wind-farm data by data-mining algorithms

Kusiak, Andrew

16

Numerical wind speed simulation model  

DOE Green Energy (OSTI)

A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

1981-09-01T23:59:59.000Z

17

Discussion of “Ultimate Wind Load Design Gust Wind Speeds ...  

Science Conference Proceedings (OSTI)

... Ind. Aerodyn., 97(3–4), 120–131. Peterka, JA (2001). “Database of peak gust wind speeds, Texas Tech/ CSU.” Extreme winds and wind effects on ...

2013-08-19T23:59:59.000Z

18

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network (OSTI)

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

19

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

20

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dual-speed wind turbine generation  

SciTech Connect

Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)

1996-10-01T23:59:59.000Z

22

Mongolia wind resource assessment project  

DOE Green Energy (OSTI)

The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia.

Elliott, D.; Chadraa, B.; Natsagdorj, L.

1998-09-07T23:59:59.000Z

23

Wind resource assessment with a mesoscale non-hydrostatic model  

E-Print Network (OSTI)

Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

Paris-Sud XI, Université de

24

Wind: wind speed and wind power density GIS data at 10m and 50m above  

Open Energy Info (EERE)

10m and 50m above 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL ocean offshore QuikScat SWERA UNEP wind Data application/msword icon Download Documentation (doc, 53.8 KiB) application/zip icon Download Data (zip, 41 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/2000 - 12/31/2004

25

Wind: wind speed and wind power density maps at 10m and 50m above surface  

Open Energy Info (EERE)

maps at 10m and 50m above surface maps at 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 36.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2004 License License Other or unspecified, see optional comment below

26

Fort Carson Wind Resource Assessment  

DOE Green Energy (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

27

United States areal wind resource assessment  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States, in support of the US Department of Energy`s National Energy Strategy. These estimates were based on the wind resource data published in a national resource atlas. Estimates of the wind resource in this atlas are expressed in wind power classes ranging from class 1 to class 7, with each class representing a range of mean wind power density or equivalent mean speed at specified heights above the ground (Table 1) . Areas designatedclass 4 or greater are suitable for most wind turbine applications. Power class 3 areas are suitable for wind energy development using tall (50-m hub height) turbines. Class 2 areas are marginal and class 1 areas unsuitable for wind energy development. A map of the areal (percentage of land area) distribution of the wind resource digitized in grid cells (1/4{degrees} latitude by 1/3{degrees} longitude) shows that exposed areas with moderate to high wind resource (class 3 and greater) are dispersed throughout much of the contiguous United States.

Schwartz, M.N.; Elliott, D.L.

1993-03-01T23:59:59.000Z

28

United States areal wind resource assessment  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States, in support of the US Department of Energy's National Energy Strategy. These estimates were based on the wind resource data published in a national resource atlas. Estimates of the wind resource in this atlas are expressed in wind power classes ranging from class 1 to class 7, with each class representing a range of mean wind power density or equivalent mean speed at specified heights above the ground (Table 1) . Areas designatedclass 4 or greater are suitable for most wind turbine applications. Power class 3 areas are suitable for wind energy development using tall (50-m hub height) turbines. Class 2 areas are marginal and class 1 areas unsuitable for wind energy development. A map of the areal (percentage of land area) distribution of the wind resource digitized in grid cells (1/4[degrees] latitude by 1/3[degrees] longitude) shows that exposed areas with moderate to high wind resource (class 3 and greater) are dispersed throughout much of the contiguous United States.

Schwartz, M.N.; Elliott, D.L.

1993-03-01T23:59:59.000Z

29

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

30

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

31

TMCC WIND RESOURCE ASSESSMENT  

DOE Green Energy (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

32

Wind Power Resource Assessment in Ohio and Puerto Rico  

E-Print Network (OSTI)

Wind Power Resource Assessment in Ohio and Puerto Rico: A Motivational and Educational Tool Juan University, Athens, Ohio Abstract This paper presents an educational guide and example of a wind resource calculations. New data representing wind speed and direction for locations in Ohio and Puerto Rico

Womeldorf, Carole

33

Figure 4.16 Offshore Wind Resources - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Figure 4.16 Offshore Wind Resources U.S. Energy Information Administration / Annual Energy Review 2011 123 Notes: • Data are annual average wind speed at 90 meters.

34

Low Wind Speed Technology Phase I: Prototype Multi-Megawatt Low Wind Speed Turbine; General Electric Wind Energy, LLC  

SciTech Connect

This fact sheet describes a subcontract with GE Wind Energy to develop an advanced prototype turbine to significantly reduce energy costs (COE) in low wind speed environments.

2006-03-01T23:59:59.000Z

35

Indiana 50 M Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana 50 M Wind Resource Indiana 50 M Wind Resource Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: March, 2004 Title: Indiana 50 M Wind Resource Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

36

Ohio 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio 50 m Wind Resource Ohio 50 m Wind Resource Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: May, 2004 Title: Ohio 50 m Wind Resource Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Online_Linkage:

37

Missouri 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

50 m Wind Resource 50 m Wind Resource Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: November, 2004 Title: Missouri 50 m Wind Resource Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

38

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of...

39

Mexico Wind Resource Assessment Project  

Science Conference Proceedings (OSTI)

A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

Schwartz, M.N.; Elliott, D.L.

1995-05-01T23:59:59.000Z

40

Vermont Standard Offer for Qualifying SPEED Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Maximum Rebate Varies by technology Program Info Start Date 09/30/2009 State Vermont Program Type Performance-Based Incentive Rebate Amount Varies by technology Provider VEPP, Inc. '''''Note: The first RFP for the new competitive award process has passed; applications were accepted through May 1, 2013. See the program web site for information regarding future solicitations. ''''' In May 2009, Vermont enacted legislation requiring all Vermont retail electricity providers to purchase electricity generated by eligible

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modelling and forecasting wind speed intensity for weather risk management  

Science Conference Proceedings (OSTI)

The main interest of the wind speed modelling is on the short-term forecast of wind speed intensity and direction. Recently, its relationship with electricity production by wind farms has been studied. In fact, electricity producers are interested in ... Keywords: ARFIMA-FIGARCH, Auto Regressive Gamma, Gamma Auto Regressive, Weather risk management, Wind speed modelling, Wind speed simulation

Massimiliano Caporin; Juliusz Pre

2012-11-01T23:59:59.000Z

42

LIDAR wind speed measurements of evolving wind fields  

E-Print Network (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor’s frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor’s hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios. Nomenclature a decay parameter for exponential coherence al decrement parameter for transverse coherence (l ? {u, v, w}) bl offset parameter for transverse coherence (l ? {u, v, w}) D longitudinal distance between two points or measurement preview distance F focal distance f frequency (Hz) ? LIDAR measurement angle off of longitudinal direction k wind velocity wavenumber (m?1) ? wavelength (m) R range along LIDAR beam r scan radius for spinning LIDAR scenario ri,j distance between two points in the yz plane U mean wind speed (m/s) ?i,j average mean wind speed between two points in the yz plane ? azimuth angle in the rotor plane ?2 xy(f) Coherence between signals x and y

Eric Simley; Lucy Y. Pao; Neil Kelley; Bonnie Jonkman; Rod Frehlich

2012-01-01T23:59:59.000Z

43

MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation  

E-Print Network (OSTI)

MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ½*______*______*______*.59

Dyer, Bill

44

Wind resources and wind farm wake effects offshore observed from satellite  

E-Print Network (OSTI)

Wind resources and wind farm wake effects offshore observed from satellite Charlotte Bay Hasager, Wind Energy Department, Roskilde, Denmark Charlotte.hasager@risoe.dk, poul.astrup@risoe.dk, merete.bruun.Christiansen@risoe.dk, morten.Nielsen@risoe.dk, r.barthelmie@risoe.dk Abstract: Satellite observations of ocean wind speed

45

Wind Energy Resource Atlas of the Philippines  

DOE Green Energy (OSTI)

This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

2001-03-06T23:59:59.000Z

46

Quantifying hurricane wind speed with undersea sound  

E-Print Network (OSTI)

Hurricanes, powerful storms with wind speeds that can exceed 80 m/s, are one of the most destructive natural disasters known to man. While current satellite technology has made it possible to effectively detect and track ...

Wilson, Joshua David

2006-01-01T23:59:59.000Z

47

The Autocorrelation of Hourly Wind Speed Observations  

Science Conference Proceedings (OSTI)

The autocorrelation of hourly wind speed observations is estimated for seven stations on the west coast of Canada at selected lags ranging from one hour to two months. The estimated autocorrelation function is fitted by a model that includes a ...

Arthur C. Brett; Stanton E. Tuller

1991-06-01T23:59:59.000Z

48

Wind Speed Forecasting for Power System Operation  

E-Print Network (OSTI)

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system operation in terms of the efficiency of the system. The goal of this dissertation is to develop advanced statistical wind speed predictive models to reduce the uncertainties in wind, especially the short-term future wind speed. Moreover, a criterion is proposed to evaluate the performance of models. Cost reduction in power system operation, as proposed, is more realistic than prevalent criteria, such as, root mean square error (RMSE) and absolute mean error (MAE). Two advanced space-time statistical models are introduced for short-term wind speed forecasting. One is a modified regime-switching, space-time wind speed fore- casting model, which allows the forecast regimes to vary according to the dominant wind direction and seasons. Thus, it avoids a subjective choice of regimes. The other one is a novel model that incorporates a new variable, geostrophic wind, which has strong influence on the surface wind, into one of the advanced space-time statistical forecasting models. This model is motivated by the lack of improvement in forecast accuracy when using air pressure and temperature directly. Using geostrophic wind in the model is not only critical, it also has a meaningful geophysical interpretation. The importance of model evaluation is emphasized in the dissertation as well. Rather than using RMSE or MAE, the performance of both wind forecasting models mentioned above are assessed by economic benefits with real wind farm data from Pacific Northwest of the U.S and West Texas. Wind forecasts are incorporated into power system economic dispatch models, and the power system operation cost is used as a loss measure for the performance of the forecasting models. From another perspective, the new criterion leads to cost-effective scheduling of system-wide wind generation with potential economic benefits arising from the system-wide generation of cost savings and ancillary services cost savings. As an illustration, the integrated forecasts and economic dispatch framework are applied to the Electric Reliability Council of Texas (ERCOT) equivalent 24- bus system. Compared with persistence and autoregressive models, the first model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars. For the second model, numerical simulations suggest that the overall generation cost can be reduced by up to 6.6% using look-ahead dispatch coupled with spatio-temporal wind forecast as compared with dispatch with persistent wind forecast model.

Zhu, Xinxin

2013-08-01T23:59:59.000Z

49

LIDAR Wind Speed Measurements of Evolving Wind Fields  

DOE Green Energy (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

50

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

51

The Wind Speed Profile At Offshore Wind Farm Sites  

E-Print Network (OSTI)

Using Monin-Obukhov theory the vertical wind speed profile can be predicted from the wind speed at one height, when the two parameters Monin-Obukhov length and sea surface roughness are known. The applicability of this theory for wind power prediction at offshore sites is investigated using data from the measurement program Rdsand in the Danish Baltic Sea. Different methods to estimate the two parameters are discussed and compared. Significant deviations to the theory are found for near-neutral and stable conditions, where the measured wind shear is larger than predicted. A simple correction method to account for this effect has been developed and tested.

Bernhard Lange Sren; Bernhard Lange; Sřren E. Larsen; Jřrgen Hřjstrup; Rebecca Barthelmie

2002-01-01T23:59:59.000Z

52

NREL: Wind Research - Wind Applications Center Valuable Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs,...

53

Unsafe at Any (Wind) Speed?  

Science Conference Proceedings (OSTI)

The goal of this research was to examine the relative safety and stability of stationary motor vehicles exposed to severe winds. The focus was on private passenger vehicles. 1) The behavior of two instrumented storm-chase vehicles that were ...

Thomas Schmidlin; Barbara Hammer; Paul King; Yuichi Ono; L. Scott Miller; Gregory Thumann

2002-12-01T23:59:59.000Z

54

Wind Energy Resource Assessment of the Caribbean and Central America  

DOE Green Energy (OSTI)

A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

1987-04-01T23:59:59.000Z

55

Wind Energy Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

determine whether the wind resource in a particular area is adequate for wind power. Addthis Related Articles Glossary of Energy Related Terms Hydropower Technologies Wind Turbines...

56

SWERA/Wind Resource Information | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » SWERA/Wind Resource Information < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Wind Resource Information SWERA wind products provide estimates of how much wind resource is available at potential development sites. SWERA wind resources are depicted as average wind speed (meters per second) or wind power density (watts per square meter) at a specified height above the ground (nominally 50 m). These are derived from models and satellite and global weather observations

57

Technical Report - Cuba Wind Energy Resource Assessment  

Open Energy Info (EERE)

Cuba Wind Energy Resource Assessment (Abstract):  This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

58

Technical Report - China Wind Energy Resource Assessment  

Open Energy Info (EERE)

China Wind Energy Resource Assessment (Abstract):  This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

59

Technical Report - Ghana Wind Energy Resource Assessment  

Open Energy Info (EERE)

Ghana Wind Energy Resource Assessment (Abstract):  This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

60

Sampling Wind Data for Mean Wind Speed Estimation  

Science Conference Proceedings (OSTI)

Two sampling techniques are applied to wind data at 3 h intervals for six stations in the Great Plains region in the United States in order to investigate the reduction in the number of data needed to estimate the mean wind speed. One-in-k ...

Mark Jong; Gary Thomann

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Probability Distribution of Land Surface Wind Speeds  

Science Conference Proceedings (OSTI)

The probability density function (pdf) of land surface wind speeds is characterized using a global network of observations. Daytime surface wind speeds are shown to be broadly consistent with the Weibull distribution, while nighttime surface wind ...

Adam H. Monahan; Yanping He; Norman McFarlane; Aiguo Dai

2011-08-01T23:59:59.000Z

62

Wind Energy Resources  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of producing electricity....

63

Wind energy resource atlas. Volume 3. Great Lakes Region  

DOE Green Energy (OSTI)

The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

64

Wind energy resource atlas. Volume 2. The North Central Region  

SciTech Connect

The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

65

Wind energy resource atlas. Volume 7. The south central region  

DOE Green Energy (OSTI)

This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-03-01T23:59:59.000Z

66

Wind Energy Resource Atlas of Oaxaca  

DOE Green Energy (OSTI)

The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

67

Wind resource analysis. Annual report  

SciTech Connect

FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

Hardy, D. M.

1978-12-01T23:59:59.000Z

68

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

69

Philippines Wind Energy Resource Atlas Development  

DOE Green Energy (OSTI)

This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

Elliott, D.

2000-11-29T23:59:59.000Z

70

Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system  

Science Conference Proceedings (OSTI)

This paper proposes a precise real-time wind speed estimation method and sensorless control for variable-speed variable-pitch wind turbine power generation system (WTPGS). The wind speed estimation is realized by a nonlinear input-output mapping extreme ... Keywords: Extreme learning machine, Sensorless control, Wind speed estimation, Wind turbine power generation system

Si Wu; Youyi Wang; Shijie Cheng

2013-02-01T23:59:59.000Z

71

Wind Energy Resource Atlas of Armenia  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

72

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and...

73

Time Series Models to Simulate and Forecast Wind Speed and Wind Power  

Science Conference Proceedings (OSTI)

A general approach for modeling wind speed and wind power is described. Because wind power is a function of wind speed, the methodology is based on the development of a model of wind speed. Values of wind power are estimated by applying the ...

Barbara G. Brown; Richard W. Katz; Allan H. Murphy

1984-08-01T23:59:59.000Z

74

Wind speed PDF classification using Dirichlet mixtures Rudy CALIF1  

E-Print Network (OSTI)

Wind speed PDF classification using Dirichlet mixtures Rudy CALIF1 , Richard EMILION2 , Ted'Orléans), UMR CNRS 6628 Université d'Orléans, France. Abstract: Wind energy production is very sensitive to instantaneous wind speed fluctuations. Thus rapid variation of wind speed due to changes in the local

Paris-Sud XI, Université de

75

LIDAR Wind Speed Measurements of Evolving Wind Fields  

Science Conference Proceedings (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

2012-01-01T23:59:59.000Z

76

Dynamic simulation of dual-speed wind turbine generation  

SciTech Connect

Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

77

NREL: Learning - Student Resources on Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources will help you...

78

Extreme Wind Speed Data Sets: Texas Tech/CSU  

Science Conference Proceedings (OSTI)

... B-indicates a beacon tower exposure. ... 93839 Memphis TN 4 3 1968 123 107 WIND SPEEDS GREATER ... [ SED Home | Extreme Winds Home | Data ...

2013-09-27T23:59:59.000Z

79

Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions?  

Science Conference Proceedings (OSTI)

Wind speeds over the oceans are required for a range of applications but are difficult to obtain through in situ methods. Hence, remote sensing tools, which also offer the possibility of describing spatial variability, represent an attractive ...

R. J. Barthelmie; S. C. Pryor

2003-01-01T23:59:59.000Z

80

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

82

Nevada/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nevada/Wind Resources Nevada/Wind Resources < Nevada Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

83

Kansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources Kansas/Wind Resources < Kansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

84

Nebraska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources Nebraska/Wind Resources < Nebraska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

85

Alabama/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama/Wind Resources Alabama/Wind Resources < Alabama Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

86

Florida/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Florida/Wind Resources Florida/Wind Resources < Florida Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

87

Vermont/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources Vermont/Wind Resources < Vermont Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

88

Wisconsin/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources Wisconsin/Wind Resources < Wisconsin Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wisconsin Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

89

Idaho/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources Idaho/Wind Resources < Idaho Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

90

Missouri/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources Missouri/Wind Resources < Missouri Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

91

Iowa/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Iowa/Wind Resources Iowa/Wind Resources < Iowa Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

92

Maryland/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources Maryland/Wind Resources < Maryland Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

93

Massachusetts/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources Massachusetts/Wind Resources < Massachusetts Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

94

Minnesota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Wind Resources Minnesota/Wind Resources < Minnesota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

95

Pennsylvania/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources Pennsylvania/Wind Resources < Pennsylvania Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

96

Hawaii/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources Hawaii/Wind Resources < Hawaii Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

97

Washington/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources Washington/Wind Resources < Washington Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

98

Louisiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources Louisiana/Wind Resources < Louisiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

99

Oregon/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon/Wind Resources Oregon/Wind Resources < Oregon Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

100

Kentucky/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources Kentucky/Wind Resources < Kentucky Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sliding mode control law for a variable speed wind turbine  

Science Conference Proceedings (OSTI)

Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed ... Keywords: modeling and simulation, variable structure control, wind turbine control

Oscar Barambones; Jose Maria Gonzalez De Durana; Patxi Alkorta; Jose Antonio Ramos; Manuel De La Sen

2011-02-01T23:59:59.000Z

102

Wind Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Assessment Assessment Jump to: navigation, search Maps Central America 50m Wind Power China Chifeng 50m Wind Power China Enshi 50m Wind Power China Fuzhou 50m Wind Power China Guangzhou 50m Wind Power China Haikou 50m Wind Power China Hangzhou 50m Wind Power China Hohhot 50m Wind Power China Jiamusi 50m Wind Power China Manzhouli 50m Wind Power China Nanchang 50m Wind Power China Qingdao 50m Wind Power China Qiqihar 50m Wind Power China Shenyang 50m Wind Power China Tianjin 50m Wind Power China Yinchuan 50m Wind Power East China Map Reference NREL-30m-US-Wind NREL-50m-Alaska-Wind-Map NREL-50m-Alaska-Wind-Map NREL-Alaska-50m-Wind-Resource NREL-Arizona-50m-Wind-Resource NREL-Arkansas-50m-Wind-Resource NREL-Atlantic-Coast-90m-Offshore-Wind-Resource NREL-CA-90mwindspeed-off NREL-CT-90mwindspeed-off

103

Wisconsin Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wind Resources Wind Resources Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Wisconsin Wind Resources WisconsinMap.jpg Retrieved from

104

Short-Term Wind Speed Forecasting for Power System Operations  

E-Print Network (OSTI)

Global large scale penetration of wind energy is accompanied by significant challenges due to the intermittent and unstable nature of wind. High quality short-term wind speed forecasting is critical to reliable and secure power system operations. This paper gives an overview of the current status of worldwide wind power developments and future trends, and reviews some statistical short-term wind speed forecasting models, including traditional time series models and advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular the need for realistic loss functions. New challenges in wind speed forecasting regarding ramp events and offshore wind farms are also presented.

Xinxin Zhu; Marc G. Genton

2011-01-01T23:59:59.000Z

105

Wind speed modeling and prediction in wind farms using fuzzy logic  

Science Conference Proceedings (OSTI)

In this paper, the upcoming wind speed is forecasted using the stochastic characteristics of wind speed of previous years. The wind speed is estimated in the fuzzy inference system and simulated with the fuzzy logic. The simulation results illustrate ... Keywords: fuzzy, prediction, wind farm

Shahram Javadi; Zeinab Hojjatinia

2012-01-01T23:59:59.000Z

106

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

107

Montana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Montana/Wind Resources < Montana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Montana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

108

Ohio/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Ohio/Wind Resources < Ohio Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Ohio Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

109

Power quality analysis of wind generator connected to the weak grid during low wind speed  

Science Conference Proceedings (OSTI)

Power quality analysis based on measurements performed on wind generator during low wind speed is presented in the paper. Wind generator is connected via 10 kV cable to the distribution network, where grid is weak with low value of short-circuit power. ... Keywords: distribution network, harmonics, power quality, wind speed, wind turbine

Aleksandar Nikolic; Branka Kostic; Maja Markovic; Sasa Minic; Srdjan Milosavljevic

2011-07-01T23:59:59.000Z

110

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics  

E-Print Network (OSTI)

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

Massachusetts at Amherst, University of

111

LQG Controller for a Variable Speed Pitch Regulated Wind Turbine  

Science Conference Proceedings (OSTI)

This paper deals with the design of LQG controllers for pitch regulated, variable speed wind turbines where the controller is used primarily for controlling the pitch angle through a collective pitch angle in the high wind speed in order to guarantee ... Keywords: LQG controller, Pitch control, Wind Trubine

Xingjia Yao; Shu Liu; Guangkun Shan; Zuoxia Xing; Changchun Guo; Chuanbao Yi

2009-08-01T23:59:59.000Z

112

Dynamical Downscaling of Wind Speed in Complex Terrain Prone To Bora-Type Flows  

Science Conference Proceedings (OSTI)

The results of numerically modeled wind speed climate, a primary component of wind energy resource assessment in the complex terrain of Croatia, are given. For that purpose, dynamical downscaling of 10 yr (1992–2001) of the 40-yr ECMWF Re-Analysis ...

Kristian Horvath; Alica Baji?; Stjepan Ivatek-Šahdan

2011-08-01T23:59:59.000Z

113

Category:State Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:State Wind Resources Jump to: navigation, search Category containing State Wind Resources Pages in category "State Wind Resources" The following 100 pages are in this category, out of 100 total. A Alabama/Wind Resources Alabama/Wind Resources/Full Version Alaska/Wind Resources Alaska/Wind Resources/Full Version Arizona/Wind Resources Arizona/Wind Resources/Full Version Arkansas/Wind Resources Arkansas/Wind Resources/Full Version C California/Wind Resources California/Wind Resources/Full Version Colorado/Wind Resources Colorado/Wind Resources/Full Version

114

Texas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Texas/Wind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Texas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

115

Illinois/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Illinois/Wind Resources < Illinois Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Illinois Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

116

Arizona/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arizona/Wind Resources < Arizona Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arizona Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

117

California/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Wind Resources < California Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

118

Connecticut/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Connecticut/Wind Resources < Connecticut Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

119

Oklahoma/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oklahoma/Wind Resources < Oklahoma Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

120

Michigan/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Michigan/Wind Resources < Michigan Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Michigan Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Indiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Indiana/Wind Resources < Indiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

122

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

123

Mississippi/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mississippi/Wind Resources < Mississippi Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

124

Tennessee/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Tennessee/Wind Resources < Tennessee Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Tennessee Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

125

Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Virginia/Wind Resources < Virginia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

126

Georgia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Georgia/Wind Resources < Georgia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

127

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources < Delaware Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

128

Colorado/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Wind Resources < Colorado Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Colorado Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

129

Arkansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arkansas/Wind Resources < Arkansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

130

Utah/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Wind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Utah Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate?

131

Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution  

SciTech Connect

Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

Zhou, Yuyu; Smith, Steven J.

2013-09-09T23:59:59.000Z

132

Development of Regional Wind Resource and Wind Plant Output Datasets...  

NLE Websites -- All DOE Office Websites (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

133

Using ADCP Background Sound Levels to Estimate Wind Speed  

Science Conference Proceedings (OSTI)

It is well known that ambient sound is generated by wind through the process of wave breaking and bubble injection. The resulting sound levels are highly correlated with wind speed and, even though the physical process is not fully understood, ...

Len Zedel

2001-11-01T23:59:59.000Z

134

Simulated Atmospheric Rime Icing of Some Wind Speed Sensors  

Science Conference Proceedings (OSTI)

Four commercially available wind speed sensors have been tested in an icing wind tunnel to determine the relative susceptibility of each to atmospheric icing and to determine the influence of ire accumulations upon the operation and accuracy of ...

E. M. Gates; W. C. Thompson

1986-06-01T23:59:59.000Z

135

Sliding mode control strategy for variable speed wind turbine  

Science Conference Proceedings (OSTI)

The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, a robust control for variable speed wind power generation that incorporates a doubly feed induction generator is described. ...

Oscar Barambones; Jose Maria Gonzalez De Durana

2009-09-01T23:59:59.000Z

136

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

137

Solar and Wind Energy Resource Assessment Programme's Renewable...  

Open Energy Info (EERE)

Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource...

138

DOE provides detailed offshore wind resource maps - Today in ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Wind energy potential is broken down by wind speed, water depth, and distance from shore.

139

Atmospheric Circulation Effects on Wind Speed Variability at Turbine Height  

Science Conference Proceedings (OSTI)

Mean monthly wind speed at 70 m above ground level is investigated for 11 sites in Minnesota for the period 1995–2003. Wind speeds at these sites show significant spatial and temporal coherence, with prolonged periods of above- and below-normal ...

Katherine Klink

2007-04-01T23:59:59.000Z

140

Ocean Wind Speed Climatology from Spaceborne SAR Imagery  

Science Conference Proceedings (OSTI)

Spaceborne synthetic aperture radar (SAR) imagery can make high-resolution (? 500 m) ocean wind speed measurements. We anticipate re-processing the full decade and a half of Radarsat-1 SAR imagery and generating a SAR wind speed archive. These data will ...

Frank M. Monaldo; Xiaofeng Li; William G. Pichel; Christopher R. Jackson

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Trends and Interannual Variability of Wind Speed Distributions in Minnesota  

Science Conference Proceedings (OSTI)

Near-surface wind speed variability is investigated at seven stations in and surrounding Minnesota for recent climate records of 22–35 yr in length. Analyses focus on mean annual wind speeds and on the 10th, 25th, 50th, 75th, and 90th percentiles ...

Katherine Klink

2002-11-01T23:59:59.000Z

142

Estimation of Extreme Wind Speeds with Very Long Return Periods  

Science Conference Proceedings (OSTI)

Long series of hourly mean wind speeds and the maximum hourly 3-s gust are simulated for four sites in the British Isles in order to investigate methods for the determination of extreme wind speed events. The simulation is performed using a one-...

M. D. G. Dukes; J. P. Palutikof

1995-09-01T23:59:59.000Z

143

Wind Energy Resource Atlas of Southeast China  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

144

Calwind Resources Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Resources Wind Farm Resources Wind Farm Jump to: navigation, search Name Calwind Resources Wind Farm Facility Calwind Resources Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer CalWind Resources Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Long-Term Wind Speed Trends over Australia  

Science Conference Proceedings (OSTI)

Accurate estimates of long-term linear trends of wind speed provide a useful indicator for circulation changes in the atmosphere and are invaluable for the planning and financing of sectors such as wind energy. Here a large number of wind ...

Alberto Troccoli; Karl Muller; Peter Coppin; Robert Davy; Chris Russell; Annette L. Hirsch

2012-01-01T23:59:59.000Z

146

Puerto Rico wind energy resource assessment project  

Science Conference Proceedings (OSTI)

The Puerto Rico Office of Energy initiated a Wind Energy Resource Assessment Project in September 1982 to gather reliable, quantitative data on the wind resource of Puerto Rico for making decisions on the deployment of single, small wind energy conversion systems throughout the Island and on the viability of installing wind turbine clusters and windfarms interconnected with the Puerto Rico Electric Power Authority grid. The project consists of four main activities: the collection and analysis of existing wind energy data for the Island, the installation and monitoring of five wind measurement stations, the development of a software model to incorporate and analyze these wind measurement data, simulate wind turbine performance, and assess the cost-benefit of conceptual wind energy conversion systems, and the completion of studies to identify institutional factors and industry financial incentives that would affect the deployment of wind energy conversion systems in Puerto Rico. The Wind Energy System Performance Model consists of three separate models; the Wind Resource Assessment Model, the Wind Turbine Performance Model and the Wind System Cost Model. The turbine performance model and the system cost model are interactive so that data such as turbine output power and a load demand profile can be passed between them to facilitate sensitivity studies. All the individual models are user-friendly to allow easy parameter input. They can be run separately or in sequence.

Scott, R.D.; Borgo, P.

1983-12-01T23:59:59.000Z

147

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

148

Wind: wind speed and wind power density GIS data at 50m above ground and  

Open Energy Info (EERE)

Bangladesh from RisoeDTU Bangladesh from RisoeDTU Dataset Summary Description (Abstract): These data are results from the KAMM/WASP studies for Bangladesh. Version 2 is an updated version of the earlier release and includes an adjustment to Weibull A and k to bring the Atlas values into better agreement with observations. See supplemental information.The KAMM/WAsP methodology uses a set of wind classes to represent wind conditions for the mapped region. A mesoscale simulation for each wind class, using KAMM (Karlsruhe Mesoscale Model), is performed and statistics performed on the model output. The result is i. a wind resource map, a summary of the simulated wind climate, and ii. a wind atlas, a summary of the wind climate standardized to flat, uniform roughness terrain. (Purpose): The product is intended to be used to

149

Wind: wind speed and wind power density GIS data at 50m above ground and  

Open Energy Info (EERE)

Kenya from RisoeDTU Kenya from RisoeDTU Dataset Summary Description (Abstract): These data are results from the KAMM/WASP studies for Kenya. The KAMM/WAsP methodology uses a set of wind classes to represent wind conditions for the mapped region. A mesoscale simulation for each wind class, using KAMM (Karlsruhe Mesoscale Model), is performed and statistics performed on the model output. The results are a summary of the simulated wind climate, and ii. a wind atlas, a summary of the wind climate standardized to flat, uniform roughness terrain. (Purpose): The product is intended to be used to estimate the wind resource potential in the country including the the spatial variability. This map covers regions where long term measurements are not available. In a sense this is the point of the

150

Optimal evolutionary wind turbine placement in wind farms considering new models of shape, orography and wind speed simulation  

Science Conference Proceedings (OSTI)

In this paper we present a novel evolutionary algorithm for optimal positioning of wind turbines in wind farms. We consider a realistic model for the wind farm, which includes orography, shape of the wind farm, simulation of the wind speed and direction, ...

B. Saavedra-Moreno; S. Salcedo-Sanz; A. Paniagua-Tineo; J. Gascón-Moreno; J. A. Portilla-Figueras

2011-06-01T23:59:59.000Z

151

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

SciTech Connect

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

152

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

DOE Green Energy (OSTI)

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

153

Scatterometer Observations at High Wind Speeds  

Science Conference Proceedings (OSTI)

Satellite scatterometer winds are commonly validated by comparing them to buoy observations and/or numerical model surface wind analyses. However, the empirical scatterometer algorithm (geophysical model function) has been calibrated against a ...

Lixin Zeng; Robert A. Brown

1998-11-01T23:59:59.000Z

154

A Short-Term Ensemble Wind Speed Forecasting System for Wind Power Applications  

Science Conference Proceedings (OSTI)

This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 h ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather ...

Justin J. Traiteur; David J. Callicutt; Maxwell Smith; Somnath Baidya Roy

2012-10-01T23:59:59.000Z

155

Echo-state-network-based real-time wind speed estimation for wind power generation  

Science Conference Proceedings (OSTI)

Wind turbine generators (WTGs) are usually equipped with one or more well-calibrated anemometers to measure wind speed for system monitoring, control, and protection. The use of these mechanical sensors increases the cost and hardware complexity and ...

Wei Qiao

2009-06-01T23:59:59.000Z

156

Wind Speeds at Heights Crucial for Wind Energy: Measurements and Verification of Forecasts  

Science Conference Proceedings (OSTI)

Wind speed measurements from one year from meteorological towers and wind turbines at heights between 20 and 250 m for various European sites are analyzed and are compared with operational short-term forecasts of the global ECMWF model. The ...

Susanne Drechsel; Georg J. Mayr; Jakob W. Messner; Reto Stauffer

2012-09-01T23:59:59.000Z

157

A Technique for Deducing Wind Direction from Satellite Microwave Measurements of Wind Speed  

Science Conference Proceedings (OSTI)

A technique is presented to deduce wind direction from satellite microwave measurements of wind speed information. The technique, based on simple Ekman boundary layer dynamics, makes use of surface pressure fields routinely analyzed at the ...

Tsann-wang Yu

1987-09-01T23:59:59.000Z

158

NREL-International Wind Resource Maps | Open Energy Information  

Open Energy Info (EERE)

International Wind Resource Maps International Wind Resource Maps Jump to: navigation, search Tool Summary Name: NREL-International Wind Resource Maps Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Website: www.nrel.gov/wind/international_wind_resources.html NREL-International Wind Resource Maps Screenshot References: International Wind Resource Maps [1] Logo: NREL-International Wind Resource Maps This resource provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and United Nations International Programme. "NREL is helping to develop high-resolution projections of wind resources

159

Federal Energy Management Program: Wind Energy Resources and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Resources and Technologies Photo of multiple wind turbines stand on green space in front of a mountain backdrop. The Department of Energy tests wind turbine...

160

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technical Report - Central America Wind Energy Resource Assessment  

Open Energy Info (EERE)

Central America Wind Energy Resource Assessment (Abstract):  This document describes the development of detailed high-resolution (1 km2) wind energy resource maps...

162

Wisconsin Low Wind Speed Turbine Project First- and Second-Year Operating Experience: 1998-2000: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The 1.2 MW Low Wind Speed Turbine Project (LWSTP) -- installed in Glenmore, Wisconsin, in early 1998 -- was the first commercial-scale wind project in Wisconsin. This report describes the first- and second-year operating experience at the LWSTP. The lessons learned in the project will be valuable to other utilities planning similar wind power projects, particularly in cold-weather, moderate wind resource areas.

2000-12-15T23:59:59.000Z

163

NREL: Wind Research - Shedding Light on Offshore Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Shedding Light on Offshore Wind Resources March 22, 2013 View of the Chesapeake Bay light tower in the water. The Chesapeake Bay light tower is located approximately 13 miles from...

164

Development of Wind Speed Forecasting Model Based on the Weibull Probability Distribution  

Science Conference Proceedings (OSTI)

Wind is a variable energy source. The power output of a wind turbine generator (WTG) unit, therefore, fluctuates with wind speed variations. Accurate models reflecting the variability of wind speed is hence required in both reliability evaluation of ... Keywords: Wind Energy, Wind Speed Forecasting Model, Weibull Distribution, Maximum Likelihood Method, Time Series Model

Ruigang Wang; Wenyi Li; B. Bagen

2011-02-01T23:59:59.000Z

165

Review of Weibull Statistics for Estimation of Wind Speed Distributions  

Science Conference Proceedings (OSTI)

A statistical distribution commonly used for describing measured wind speed data is the Weibull distribution. A review of the methods found in the statistical literature for the purpose of estimation of the parameters in Weibull distributions is ...

K. Conradsen; L. B. Nielsen; L. P. Prahm

1984-08-01T23:59:59.000Z

166

Weibull Statistics of Wind Speed over the Ocean  

Science Conference Proceedings (OSTI)

The probability distribution of wind speed data over the world's oceans is studied using a two-parameter Weibull distribution. The parameters are estimated following a linearized least-squares approach. The seasonal and latitudinal variation are ...

Edgar G. Pavia; James J. O'Brien

1986-10-01T23:59:59.000Z

167

Global Estimates of Extreme Wind Speed and Wave Height  

Science Conference Proceedings (OSTI)

A long-term dataset of satellite altimeter measurements of significant wave height and wind speed, spanning 23 years, is analyzed to determine extreme values corresponding to a 100-yr return period. The analysis considers the suitability of both ...

J. Vinoth; I. R. Young

2011-03-01T23:59:59.000Z

168

File:CV WindSpeed.pdf | Open Energy Information  

Open Energy Info (EERE)

WindSpeed.pdf WindSpeed.pdf Jump to: navigation, search File File history File usage Cape Verde-Map Summarizing Average Wind Speed (m/s) Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 246 KB, MIME type: application/pdf) Description Cape Verde-Map Summarizing Average Wind Speed (m/s) Sources ECOWAS Creation Date 2011/11/14 Coordinates 16.002082°, -24.013197° File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:43, 14 November 2011 Thumbnail for version as of 11:43, 14 November 2011 1,650 × 1,275 (246 KB) STobin (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

169

Offshore Wind Resource Global Wind Potential Supply Curves by...  

Open Energy Info (EERE)

Offshore Wind Resource Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)
2012-07-12T22:51:45Z 2012-07-13T20:49:20Z I am submitting data from...

170

Wind energy resource atlas. Volume 12. Puerto Rico and US Virgin Islands  

DOE Green Energy (OSTI)

The Puerto Rico/US Virgin Island atlas assimilates three collections of wind resource data: one for the region as a whole and one each for both the Commonwealth of Puerto Rico and the US Virgin Islands. For the two subregions, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in both subregions are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction and duration frequencies of the wind at these locations.

Wegley, H.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-01-01T23:59:59.000Z

171

Wind energy resource atlas. Volume 8. The southern Rocky Mountain region  

DOE Green Energy (OSTI)

The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-03-01T23:59:59.000Z

172

Modelling the Vertical Wind Speed and Turbulence Intensity Profiles at Prospective Offshore Wind Farm Sites  

E-Print Network (OSTI)

Monin-Obukhov theory predicts the well-known log-linear form of the vertical wind speed profile. A turbulence intensity profile can be estimated from this by assuming that the standard deviation of the wind speed is proportional to the friction velocity. Two parameters, namely the aerodynamic surface roughness length and the MoninObukhov length, are than needed to predict the vertical wind speed and turbulence intensity profiles from a measurement at one height. Different models to estimate these parameters for conditions important for offshore wind energy utilisation are compared and tested: Four models for the surface roughness and three methods to derive the Monin-Obukov-length from measurements. They have been tested with data from the offshore field measurement Rdsand by extrapolating the measured 10 m wind speed to 50 m height and comparing it with the measured 50 m wind speed.

Bernhard Lange; Sřren Larsen; Jřrgen Hřjstrup; Rebecca Barthelmie; Ulrich Focken

2002-01-01T23:59:59.000Z

173

The amount of power in the wind is very dependent on the speed of the wind. Because the power in the wind  

E-Print Network (OSTI)

The amount of power in the wind is very dependent on the speed of the wind. Because the power in the wind is proportional to the cube of the wind speed, small differences in the wind speed make a big. This gives rise to the primary reason for wind re- source assessment. In order to more accurately predict

Massachusetts at Amherst, University of

174

Wind Energy Resource Atlas of Sri Lanka and the Maldives  

DOE Green Energy (OSTI)

The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

175

(The Spanish version of Wind Energy Resource Atlas of Oaxaca)  

DOE Green Energy (OSTI)

The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2004-04-01T23:59:59.000Z

176

Reference wind speed distributions and height profiles for wind turbine design and performance evaluation applications. [USA  

DOE Green Energy (OSTI)

The purpose of this report is to provide a set of reference or standard values of wind profiles, wind speed distributions and their effects on wind turbine performance for engineering design applications. Based on measured Weibull distribution parameters, representative average, low, and high variance data are given for height profiles of mean, 25 percentile, and 75 percentile wind speeds; and for wind speed probability density (velocity frequency) functions and cumulative probability (velocity duration) functions at selected heights. Results of a sensitivity analysis of the dependence of wind turbine performance parameters on cut-in speed, and rated speed for various mean wind and wind variance regimes are also presented. Wind turbine performance is expressed in terms of capacity factor (ratio of mean power output to rated power) and recovery factor (ratio of mean energy output to energy theoretically available in the wind). The representative high, mean, and low variance cases were determined from calculated Weibull distributions at 140 sites across the Continental U.S., and all of the representative functions are evaluated at mean wind speeds of 4, 5, 6, 7, and 8 m/s at standard 10 m level.

Justus, C.G.; Hargraves, W.R.; Mikhail, A.

1976-08-01T23:59:59.000Z

177

System and method for upwind speed based control of a wind turbine ...  

A method for controlling power output of a wind turbine generator in response to an anticipated change in wind speed is provided. The method includes sensing wind ...

178

Anemometer Data (Wind Speed, Direction) for Laurel, Nebraska (2001 - 2002)  

Open Energy Info (EERE)

Laurel, Nebraska (2001 - 2002) Laurel, Nebraska (2001 - 2002) Dataset Summary Description Wind data collected from Laurel, Nebraska from a 20-meter anemometer as part of the Western Area Power Administration anemometer loan program. Ten-minute average wind speed and direction is available for 2001 - 2002. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released November 09th, 2010 (4 years ago) Date Updated November 09th, 2010 (4 years ago) Keywords wind wind direction wind speed Data text/csv icon Jun 11, 2001 - Jul 1, 2001 (csv, 144 KiB)

179

The Influence of Wind Speed on Shallow Marine Cumulus Convection  

Science Conference Proceedings (OSTI)

The role of wind speed on shallow marine cumulus convection is explored using large-eddy simulations and concepts from bulk theory. Focusing on cases characteristic of the trades, the equilibrium trade wind layer is found to be deeper at stronger ...

Louise Nuijens; Bjorn Stevens

2012-01-01T23:59:59.000Z

180

Correlation of Real and Model Wind Speeds in Different Terrains  

Science Conference Proceedings (OSTI)

Wind speeds over a 6-month period from 21 surface stations, 3 upper-wind stations, and 2 different models are compared. Similar data are used for three different topographic regions of New Zealand broadly classed as having low, moderate, and high ...

Steve J. Reid; Richard Turner

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Short term wind speed forecasting with evolved neural networks  

Science Conference Proceedings (OSTI)

Concerns about climate change, energy security and the volatility of the price of fossil fuels has led to an increased demand for renewable energy. With wind turbines being one of the most mature renewable energy technologies available, the global use ... Keywords: forecasting, renewable energy, wind-speed

David Corne; Alan Reynolds; Stuart Galloway; Edward Owens; Andrew Peacock

2013-07-01T23:59:59.000Z

182

Comparison of Synthetic Aperture Radar–Derived Wind Speeds with Buoy Wind Speeds along the Mountainous Alaskan Coast  

Science Conference Proceedings (OSTI)

Satellite-borne synthetic aperture radar (SAR) offers the potential for remotely sensing surface wind speed both over the open sea and in close proximity to the coast. The resolution improvement of SAR over scatterometers is of particular ...

C. M. Fisher; G. S. Young; N. S. Winstead; J. D. Haqq-Misra

2008-05-01T23:59:59.000Z

183

Offshore Wind Resource | OpenEI  

Open Energy Info (EERE)

Offshore Wind Resource Offshore Wind Resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

184

Wind: wind speed and wind power density GIS data at 50m above ground and  

Open Energy Info (EERE)

Ethiopia from RisoeDTU Ethiopia from RisoeDTU Dataset Summary Description (Abstract): These data are results from the KAMM/WASP studies for Ethiopia. The KAMM/WAsP methodology uses a set of wind classes to represent wind conditions for the mapped region. A mesoscale simulation for each wind class, using KAMM (Karlsruhe Mesoscale Model), is performed and statistics performed on the model output. The results are a summary of the simulated wind climate, and ii.a wind atlas, a summary of the wind climate standardized to flat, uniform roughness terrain. (Purpose): The product is intended to be used to estimate the wind resource potential in the country including the spatial variability. This map covers regions where long term measurements are not available. In a sense this is the point of the mapping exercise, but it also means that verification of results has not been as complete would be ideal. There is some concern that the results may underestimate the resource. However, new measurement data is coming and revisions to the map may be made if necessary as verification is carried out.

185

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P.

1995-11-01T23:59:59.000Z

186

NREL-Wind Resource Assessment Handbook | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Handbook Wind Resource Assessment Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-Wind Resource Assessment Handbook Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Resource Type: Guide/manual, Training materials Website: www.nrel.gov/docs/legosti/fy97/22223.pdf NREL-Wind Resource Assessment Handbook Screenshot References: Wind Resource Assessment Handbook[1] Logo: NREL-Wind Resource Assessment Handbook This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. About "This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy

187

Wind Energy Resource Atlas of Armenia (CD-ROM)  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

188

Wind: wind speed and wind power density GIS data at 50m above ground and  

Open Energy Info (EERE)

Nepal from RisoeDTU Nepal from RisoeDTU Dataset Summary Description (Abstract): These data are results from the KAMM/WASP studies for Nepal. The KAMM/WAsP methodology uses a set of windclasses to represent wind conditions for the mapped region. A mesoscale simulation for each wind class, using KAMM (Karlsruhe Mesoscale Model), is performed and statistics performed on the model output. The results are a summary of the simulated wind climate, and a wind atlas, a summary of the wind climate standardized to flat, uniform roughness terrain. (Purpose): The product is intended to be used to estimate the wind resource potential in the country including the the spatial variability. This map covers regions where long term measurements are not available. In a sense this is the point of the mapping exercise, but it also means that verification of results has not been as complete would be ideal. There is some concern that the results may underestimate the resource. However, new measurement data is coming and revisions to the map may be made if necessary as verification is carried out.

189

The Solar Wind Helium Abundance: Variation with Wind Speed and the Solar Cycle  

E-Print Network (OSTI)

The Solar Wind Helium Abundance: Variation with Wind Speed and the Solar Cycle Matthias R. Aellig Alamos National Lab., Los Alamos, NM 87545 Abstract We investigate the helium abundance in the solar wind of 1994 and early 2000 are analyzed. In agreement with similar work for previous solar cycles, we find

Richardson, John

190

Short-term wind speed forecasting based on a hybrid model  

Science Conference Proceedings (OSTI)

Wind power is currently one of the types of renewable energy with a large generation capacity. However, operation of wind power generation is very challenging because of the intermittent and stochastic nature of the wind speed. Wind speed forecasting ... Keywords: Forecasting, RBF neural networks, Seasonal adjustment, Wavelet transform, Wind speed

Wenyu Zhang, Jujie Wang, Jianzhou Wang, Zengbao Zhao, Meng Tian

2013-07-01T23:59:59.000Z

191

Anemometer Data (Wind Speed, Direction) for Ugashik, AK (2001 - 2002) |  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278290 Varnish cache server Anemometer Data (Wind Speed, Direction) for Ugashik, AK (2001 - 2002) Dataset Summary Description Wind data collected from Ugashik Traditional Village in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2001 through 2002, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp.

192

Anemometer Data (Wind Speed, Direction) for Tanana, AK (2001 - 2002) |  

Open Energy Info (EERE)

40 40 Varnish cache server Anemometer Data (Wind Speed, Direction) for Tanana, AK (2001 - 2002) Dataset Summary Description Wind data collected from Tanana Village in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2001 through 2002, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released November 09th, 2010 (4 years ago) Date Updated November 09th, 2010 (4 years ago)

193

Empirical-Statistical Method to Estimate the Surface Wind Speed over Complex Terrain  

Science Conference Proceedings (OSTI)

An empirical-statistical method to estimate surface wind speed over complex terrain under strong wind condition is proposed. This method is based on the postulation that the surface wind speed depends on a surface roughness parameter and a ...

Hiromi Yamazawa; Junsei Kondo

1989-09-01T23:59:59.000Z

194

Empirical Models of the Probability Distribution of Sea Surface Wind Speeds  

Science Conference Proceedings (OSTI)

This study considers the probability distribution of sea surface wind speeds, which have historically been modeled using the Weibull distribution. First, non-Weibull structure in the observed sea surface wind speeds (from SeaWinds observations) ...

Adam Hugh Monahan

2007-12-01T23:59:59.000Z

195

Variable-Speed Wind System Design : Final Report.  

SciTech Connect

Almost from the onset of the development of wind energy conversion systems (WECS), it was known that variable-speed operation of the turbine would maximize energy capture. This study was commissioned to assess the cost, efficiency gain, reduction of the cost of energy (COE), and other operating implications of converting the existing hardware of a modern fixed-speed wind energy conversion system to variable-speed operation. The purpose of this study was to develop a preliminary design for the hardware required to allow variable-speed operation using a doubly-fed generator with an existing fixed-speed wind turbine design. The turbine selected for this study is the AWT-26 designed and built by Advanced Wind Turbines Inc. of Redmond, Washington. The lowest projected COE using this variable-speed generation system is projected to be $0.0499/kWh, compared to the lowest possible COE with fixed-speed generation which is projected to be $0.0546/kWh. This translates into a 8.6% reduction of the COE using this variable-speed generation option. The preliminary system design has advanced to where the printed circuit boards can be physically laid out based on the schematics and the system software can be written based on the control flow-charts. The core of hardware and software has been proven to be successful in earlier versions of VSG systems. The body of this report presents the results of the VSWG system development. Operation under normal and fault conditions is described in detail, the system performance for variable-speed operation is estimated and compared to the original fixed-speed system performance, and specifications for all system components (generator, power electronic converter, and system controller) are given. Costs for all components are estimated, and incremental system cost is compared to incremental energy production. Finally, operational features of the VSWG which are not available in the existing FSWG system are outlined.

Lauw, Hinan K.; Weigand, Claus H.; Marckx, Dallas A.; Electronic Power Conditioning, Inc.

1993-10-01T23:59:59.000Z

196

1. Wind-splash erosion 4. Relationships between rainfall intensity, wind-speed, wind direction and erosion  

E-Print Network (OSTI)

1. Wind-splash erosion 4. Relationships between rainfall intensity, wind-speed, wind direction and erosion 5. Longer term influence of wind-direction on landscape evolution 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1 of tubes at approximately two week intervals. Contour plots of rainfall intensity (mm/hr) against wind

197

Indiana 50 M Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

using their MesoMap system and historical weather data under contract to Wind Powering AmericaNREL. This map has been validated with available surface data by NREL and...

198

Missouri 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

using their MesoMap system and historical weather data under contract to Wind Powering AmericaNREL. This map has been validated with available surface data by NREL and...

199

Ohio 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

using their MesoMap system and historical weather data under contract to Wind Powering AmericaNREL. This map has been validated with available surface data by NREL and...

200

NREL GIS Data: Global Offshore Wind GIS data for offshore wind...  

Open Energy Info (EERE)

Global Offshore Wind GIS data for offshore wind speed (meterssecond).  Specified to Exclusive Economic Zones (EEZ).

Wind resource based on NOAA blended sea winds and...

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind energy resource atlas. Volume 10. Alaska region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-12-01T23:59:59.000Z

202

Wind energy resource atlas. Volume 9. The Southwest Region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-11-01T23:59:59.000Z

203

Wind energy resource atlas. Volume 4. The Northeast region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-09-01T23:59:59.000Z

204

NREL GIS Data: Minnesota High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Minnesota High Resolution Wind Resource Minnesota High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for Minnesota at a 50 meter height. Purpose: Provide information on the wind resource development potential in Minnesota. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. Data from http://www.state.mn.us/portal/mn/jsp/content.do?contentid=536887066&contenttype=EDITORIAL&agency=Commerce average the 30 and 80 m wind speed values and then converted it to power density assuming a Weibull K of 2.0 and using elevation to estimate air density. Other_Citation_Details: This map has been validated with available surface data by NREL and wind energy meteorological consultants.

205

Simulation of wind-speed time series for wind-energy conversion analysis.  

DOE Green Energy (OSTI)

In order to investigate operating characteristics of a wind energy conversion system it is often desirable to have a sequential record of wind speeds. Sometimes a long enough actual data record is not available at the time an analysis is needed. This may be the case if, e.g., data are recorded three times a day at a candidate wind turbine site, and then the hourly performance of generated power is desired. In such cases it is often possible to use statistical characteristics of the wind speed data to calibrate a stochastic model and then generate a simulated wind speed time series. Any length of record may be simulated by this method, and desired system characteristics may be studied. A simple wind speed simulation model, WEISIM, is developed based on the Weibull probability distribution for wind speeds with a correction based on the lag-one autocorrelation value. The model can simulate at rates from one a second to one an hour, and wind speeds can represent short-term averages (e.g., 1-sec averages) or longer-term averages (e.g., 1-min or 1 hr averages). The validity of the model is verified with PNL data for both histogram characteristics and persistance characteristics.

Corotis, R.B.

1982-06-01T23:59:59.000Z

206

NANA Wind Resource Assessment Program Final Report  

DOE Green Energy (OSTI)

NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

Jay Hermanson

2010-09-23T23:59:59.000Z

207

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

208

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

DOE Green Energy (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

209

Manual and Semiautomated Wind Direction Editing for Use in the Generation of Synthetic Aperture Radar Wind Speed Imagery  

Science Conference Proceedings (OSTI)

Previous studies have demonstrated that satellite synthetic aperture radar (SAR) can be used as an accurate scatterometer, yielding wind speed fields with subkilometer resolution. This wind speed generation is only possible, however, if a ...

George S. Young; Todd D. Sikora; Nathaniel S. Winstead

2007-06-01T23:59:59.000Z

210

Validation of New Wind Resource Maps: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) recently led a project to validate updated state wind resource maps for the northwestern United States produced by a private U.S. company, TrueWind Solutions (TWS). The independent validation project was a cooperative activity among NREL, TWS, and meteorological consultants. It became clear that using a numerical modeling approach for wind resource mapping was rapidly gaining ground as a preferred technique and if the trend continues, it will soon become the most widely used technique around the world. The numerical modeling approach is a relatively fast application compared to older mapping methods and, in theory, should be quite accurate because it directly estimates the magnitude of boundary-layer processes that affect the wind resource of a particular location. Numerical modeling output combined with high-resolution terrain data can produce useful wind resource information at a resolution of 1 km or lower. However, because the use of the numerical modeling approach is new (last 3-5 years) and relatively unproven, meteorological consultants question the accuracy of the approach.

Elliott, D.; Schwartz, M.

2002-05-01T23:59:59.000Z

211

Wind Energy Resource Atlas of the Dominican Republic  

DOE Green Energy (OSTI)

The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; Kline, J.

2001-10-01T23:59:59.000Z

212

Technical Report - Sri Lanka and the Maldives Wind Energy Resource  

Open Energy Info (EERE)

Sri Lanka and the Maldives Wind Energy Resource Assessment (Abstract):  This document describes the development of detailed high-resolution (1 km2) wind energy...

213

West Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Wind Resources West Virginia/Wind Resources < West Virginia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> West Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

214

North Dakota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

North Dakota/Wind Resources North Dakota/Wind Resources < North Dakota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

215

South Dakota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

South Dakota/Wind Resources South Dakota/Wind Resources < South Dakota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

216

New York/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

New York/Wind Resources New York/Wind Resources < New York Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New York Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

217

New Jersey/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

New Jersey/Wind Resources New Jersey/Wind Resources < New Jersey Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Jersey Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

218

Rhode Island/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources Rhode Island/Wind Resources < Rhode Island Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

219

South Carolina/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

South Carolina/Wind Resources South Carolina/Wind Resources < South Carolina Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> South Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

220

The integration of climatic data sets for wind resource assessment  

DOE Green Energy (OSTI)

One barrier to wind energy development, in many regions of the world, is the lack of reliable information about the spacial distribution of the wind energy resource. The goal of the U.S. Department of Energy (DOE) Wind Energy Program`s wind resource assessment group is to improve the characterization of the wind resource in many of these regions in support of U.S. wind energy industry. NREL provides wind resource assessments for our clients in the form of reports, atlases, and wind resource maps. The assessments estimate the level of the wind resource, at wind turbine hub heights (typically 30m to 50m above ground level), for locations exposed to the prevailing winds.

Schwartz, M.N.; Elliott, D.L.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wind resource assessment: San Nicolas Island, California  

DOE Green Energy (OSTI)

San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Olsen, T.L. [Timothy L. Olsen Consulting, (United States)

1996-01-01T23:59:59.000Z

222

Wind energy resource atlas. Volume 5: the East Central Region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters. States include Delaware, Maryland, Kentucky, North Carolina, Tennessee, Virginia, and West Virginia.

Brode, R.; Stoner, R.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-01-01T23:59:59.000Z

223

An Optical Disdrometer for Use in High Wind Speeds  

Science Conference Proceedings (OSTI)

A new optical disdrometer has been developed that is optimized for use in high wind speeds, for example, on board ships. The minimal detectable size of droplets is 0.35 mm. Each drop is measured separately with regard to its size and residence ...

Martin Grossklaus; Klaus Uhlig; Lutz Hasse

1998-08-01T23:59:59.000Z

224

A Mechanism for the Increase of Wind Stress (Drag) Coefficient with Wind Speed over Water Surfaces: A Parametric Model  

Science Conference Proceedings (OSTI)

A mechanism is proposed for a physical explanation of the increase in wind stress (drag) coefficient with wind speed over water surfaces. The formula explicitly incorporates the contribution of both winds and waves through the parameterizations ...

S. A. Hsu

1986-01-01T23:59:59.000Z

225

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS  

E-Print Network (OSTI)

Wind energy is considered as the most viable renewable energy options. In a renewable energy system more energy from the wind. One of the options is to use the variable speed wind turbine-speed wind turbine system for transient studies are discussed in this paper. The performance of wind energy

226

Georgia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Georgia/Wind Resources/Full Version Georgia/Wind Resources/Full Version < Georgia‎ | Wind Resources Jump to: navigation, search Print PDF Georgia Wind Resources GeorgiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

227

California/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

California/Wind Resources/Full Version California/Wind Resources/Full Version < California‎ | Wind Resources Jump to: navigation, search Print PDF California Wind Resources CaliforniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

228

Kansas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources/Full Version Kansas/Wind Resources/Full Version < Kansas‎ | Wind Resources Jump to: navigation, search Print PDF Kansas Wind Resources KansasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

229

Wisconsin/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources/Full Version Wisconsin/Wind Resources/Full Version < Wisconsin‎ | Wind Resources Jump to: navigation, search Print PDF Wisconsin Wind Resources WisconsinMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

230

Nebraska/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources/Full Version Nebraska/Wind Resources/Full Version < Nebraska‎ | Wind Resources Jump to: navigation, search Print PDF Nebraska Wind Resources NebraskaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

231

Michigan/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Michigan/Wind Resources/Full Version Michigan/Wind Resources/Full Version < Michigan‎ | Wind Resources Jump to: navigation, search Print PDF Michigan Wind Resources MichiganMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

232

Texas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Texas/Wind Resources/Full Version Texas/Wind Resources/Full Version < Texas‎ | Wind Resources Jump to: navigation, search Print PDF Texas Wind Resources TexasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

233

Wyoming/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources/Full Version Wyoming/Wind Resources/Full Version < Wyoming‎ | Wind Resources Jump to: navigation, search Print PDF Wyoming Wind Resources WyomingMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

234

Mississippi/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Wind Resources/Full Version Mississippi/Wind Resources/Full Version < Mississippi‎ | Wind Resources Jump to: navigation, search Print PDF Mississippi Wind Resources MississippiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

235

Washington/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources/Full Version Washington/Wind Resources/Full Version < Washington‎ | Wind Resources Jump to: navigation, search Print PDF Washington Wind Resources WashingtonMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

236

Vermont/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources/Full Version Vermont/Wind Resources/Full Version < Vermont‎ | Wind Resources Jump to: navigation, search Print PDF Vermont Wind Resources VermontMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

237

Missouri/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources/Full Version Missouri/Wind Resources/Full Version < Missouri‎ | Wind Resources Jump to: navigation, search Print PDF Missouri Wind Resources MissouriMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

238

Idaho/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources/Full Version Idaho/Wind Resources/Full Version < Idaho‎ | Wind Resources Jump to: navigation, search Print PDF Idaho Wind Resources IdahoMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

239

Louisiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources/Full Version Louisiana/Wind Resources/Full Version < Louisiana‎ | Wind Resources Jump to: navigation, search Print PDF Louisiana Wind Resources LouisianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

240

Massachusetts/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources/Full Version Massachusetts/Wind Resources/Full Version < Massachusetts‎ | Wind Resources Jump to: navigation, search Print PDF Massachusetts Wind Resources MassachusettsMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Connecticut/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Connecticut/Wind Resources/Full Version Connecticut/Wind Resources/Full Version < Connecticut‎ | Wind Resources Jump to: navigation, search Print PDF Connecticut Wind Resources ConneticutMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

242

Tennessee/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Tennessee/Wind Resources/Full Version Tennessee/Wind Resources/Full Version < Tennessee‎ | Wind Resources Jump to: navigation, search Print PDF Tennessee Wind Resources Tennessee.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

243

Pennsylvania/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources/Full Version Pennsylvania/Wind Resources/Full Version < Pennsylvania‎ | Wind Resources Jump to: navigation, search Print PDF Pennsylvania Wind Resources PennsylvaniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

244

Virginia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Virginia/Wind Resources/Full Version Virginia/Wind Resources/Full Version < Virginia‎ | Wind Resources Jump to: navigation, search Print PDF Virginia Wind Resources VirginiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

245

Kentucky/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources/Full Version Kentucky/Wind Resources/Full Version < Kentucky‎ | Wind Resources Jump to: navigation, search Print PDF Kentucky Wind Resources KentuckyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

246

Utah/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Utah/Wind Resources/Full Version Utah/Wind Resources/Full Version < Utah‎ | Wind Resources Jump to: navigation, search Print PDF Utah Wind Resources UtahMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

247

Hawaii/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources/Full Version Hawaii/Wind Resources/Full Version < Hawaii‎ | Wind Resources Jump to: navigation, search Print PDF Hawaii Wind Resources HawaiiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

248

Oklahoma/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Oklahoma/Wind Resources/Full Version Oklahoma/Wind Resources/Full Version < Oklahoma‎ | Wind Resources Jump to: navigation, search Print PDF Oklahoma Wind Resources OklahomaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

249

Maryland/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources/Full Version Maryland/Wind Resources/Full Version < Maryland‎ | Wind Resources Jump to: navigation, search Print PDF Maryland Wind Resources MarylandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

250

Indiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Indiana/Wind Resources/Full Version Indiana/Wind Resources/Full Version < Indiana‎ | Wind Resources Jump to: navigation, search Print PDF Indiana Wind Resources IndianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

251

Illinois/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Illinois/Wind Resources/Full Version Illinois/Wind Resources/Full Version < Illinois‎ | Wind Resources Jump to: navigation, search Print PDF Illinois Wind Resources IllinoisMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

252

Analysis of Wind Speed Measurements using Continuous Wave LIDAR for Wind Turbine Control ?†  

E-Print Network (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurate the incoming wind field can be measured. This study examines the accuracy of different measurement scenarios that rely on coherent continuouswave Doppler LIDAR systems to determine their applicability to feedforward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth, with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Nomenclature d measurement preview distance F focal distance k wind velocity wavenumber (m?1) r scan radius for spinning LIDAR RMS root mean square ?u standard deviation of u component of wind velocity TI turbulence intensity ? LIDAR measurement angle ? mean u wind speed u ? friction velocity U ? D average friction velocity over rotor disk ? angle between laser and wind velocity vector ? angle in the rotor plane ? rotational rate of spinning LIDAR

Eric Simley; Lucy Y. Pao; Rod Frehlich; Bonnie Jonkman; Neil Kelley

2011-01-01T23:59:59.000Z

253

Wind Resource Atlas of Oaxaca (CD-ROM)  

DOE Green Energy (OSTI)

The CD version of the Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

254

Changes related to "Idaho/Wind Resources" | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "IdahoWind Resources" IdahoWind Resources Jump to: navigation, search This is a list of...

255

Solar and Wind Energy Resource Assessment (SWERA)  

Open Energy Info (EERE)

Wiki Page Wiki Page Solar and Wind Energy Resource Assessment A United Nations Environment Programme facilitated effort. Getting Started Data Sets Analysis Tools About SWERA Loading.. Country Name Analyze Layer Data in OpenCarto View Country Profile in OpenEI Latitude Longitude Homer XML Get HOMER Data What am I seeing? This visualization shows international solar DNI, wind and climate resources. Click on one of the layer buttons below to view the resource layer. For more detailed information on each country, select the country by clicking it on the map below and then select 'View in OpenCarto' or 'View Country Page in OpenEI' to explore more data for that country. For HOMER, select a point to populate the latitude/longitude or provide your own, then press the button to send this information to HOMER.

256

Wind Resource Mapping for United States Offshore Areas  

DOE Green Energy (OSTI)

A poster for the WindPower 2006 conference showing offshore resource mapping efforts in the United States.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

257

Hi-Q Rotor - Low Wind Speed Technology  

DOE Green Energy (OSTI)

The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the public sector's growing energy demands.

Todd E. Mills; Judy Tatum

2010-01-11T23:59:59.000Z

258

The Influence of Bubbles on Ambient Noise in the Ocean at High Wind Speeds  

Science Conference Proceedings (OSTI)

Observations of ambient noise in the ocean at high wind speeds reveal significant departures in spectral shape from previously reported values at lower wind speeds. The observations were made in open ocean conditions in Queen Charlotte Sound, ...

David M. Farmer; David D. Lemon

1984-11-01T23:59:59.000Z

259

Modeling and design of control system for variable speed wind turbine in all operating region  

Science Conference Proceedings (OSTI)

In order to get the maximum power from the wind, the variable-speed wind turbine should run at different speed when wind speed changes. In this paper a control system is introduced to get this purpose base on establishing the three-mass model of the ... Keywords: doubly-fed induction generator (DFIG), feed-forward compensator, loop-shaping, pitch controller, speed controller, three-mass model, wind turbine

Wu Dingguo; Wang Zhixin

2008-05-01T23:59:59.000Z

260

New Mexico/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » New Mexico/Wind Resources < New Mexico Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Mexico Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine?

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A neural network control strategy for improved energy capture on a variable-speed wind turbine  

Science Conference Proceedings (OSTI)

Pitch control has so far been the dominating method for power control in modern variable speed wind turbines. This paper proposes an improved control technique for pitching the blades of a variable speed wind turbine, using Artificial Neural Networks ... Keywords: artificial neural networks, control trajectories, pitch control, variable-speed wind turbines

António F. Silva; Fernando A. Castro; José N. Fidalgo

2005-06-01T23:59:59.000Z

262

Wind Energy Resource Atlas of Armenia  

NLE Websites -- All DOE Office Websites (Extended Search)

Elliott, M. Schwartz, G. Scott, S. Haymes, D. Heimiller, R. George Elliott, M. Schwartz, G. Scott, S. Haymes, D. Heimiller, R. George National Renewable Energy Laboratory Wind Energy Resource Atlas of Armenia July 2003 * NREL/TP-500-33544 Wind Energy Resource Atlas of Armenia D. Elliott M. Schwartz G. Scott S. Haymes, D. Heimiller R. George Prepared under Task No. WF7C0202 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

263

Arkansas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arkansas/Wind Resources/Full Version < Arkansas‎ | Wind Resources Jump to: navigation, search Print PDF Arkansas Wind Resources ArkansasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

264

Alabama/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Alabama/Wind Resources/Full Version < Alabama‎ | Wind Resources Jump to: navigation, search Print PDF Alabama Wind Resources AlabamaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

265

Florida/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Florida/Wind Resources/Full Version < Florida‎ | Wind Resources Jump to: navigation, search Print PDF Florida Wind Resources FloridaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

266

Oregon/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oregon/Wind Resources/Full Version < Oregon‎ | Wind Resources Jump to: navigation, search Print PDF Oregon Wind Resources OregonMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

267

Maine/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources/Full Version < Maine‎ | Wind Resources Jump to: navigation, search Print PDF Maine Wind Resources MaineMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

268

Nevada/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Nevada/Wind Resources/Full Version < Nevada‎ | Wind Resources Jump to: navigation, search Print PDF Nevada Wind Resources NevadaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

269

Delaware/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources/Full Version < Delaware‎ | Wind Resources Jump to: navigation, search Print PDF Delaware Wind Resources DelawareMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

270

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

271

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

272

National-Scale Wind Resource Assessment for Power Generation (Presentation)  

SciTech Connect

This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

Baring-Gould, E. I.

2013-08-01T23:59:59.000Z

273

Systematic Controller Design Methodology for Variable-Speed Wind Turbines  

DOE Green Energy (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

Hand, M. M.; Balas, M. J.

2002-02-01T23:59:59.000Z

274

North Carolina/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » North Carolina/Wind Resources < North Carolina Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> North Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

275

New Hampshire/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » New Hampshire/Wind Resources < New Hampshire Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Hampshire Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

276

Mexico-NREL Wind Resource Assessments | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessments Wind Resource Assessments Jump to: navigation, search Logo: Mexico-NREL Initiatives Name Mexico-NREL Initiatives Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Wind Topics Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/internatio Country Mexico Central America References NREL International Program Overview [1] Abstract Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to prepare wind development scenarios for these regions. Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to

277

Stakeholder Engagement and Outreach: Wind Resource Maps and Anemometer Loan  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Maps and Anemometer Loan Program Data The Stakeholder Engagement and Outreach initiative provides wind maps and validation to help states and regions build capacity to support and accelerate wind energy deployment. Read about the available wind maps for utility-, community-, and residential-scale wind development. A wind resource map of the United States showing land-based with offshore resources. The Energy Department, the National Renewable Energy Laboratory, and AWS Truepower provide the wind resource map that shows land-based with offshore resources. This map is the first to provide wind developers and policy

278

NREL: Education Programs - Wind Applications Center Valuable Resource for  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Center Valuable Resource for Wind for Schools Partners Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs, Nebraska Wind Applications Center Associate Director (MP3 3.6 MB). Download Windows Media Player. Time: 00:03:58. The Wind for Schools Program was launched in 2006 by the U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory. Six states were chosen as priorities for the program, and one of those states was Nebraska. The University of Nebraska-Lincoln houses the Wind Applications Center, which is the resource for K-12 partner schools in the program in Nebraska. Wind Applications Center Director Jerry Hudgins says wind is a fantastic resource in Nebraska, lending itself to renewable energy generation,

279

Wind Energy Resource Atlas of the United States  

DOE Data Explorer (OSTI)

This atlas, containing more than 72 maps, estimates wind energy resource for the United States and its terrorities. Early wind resource atlases created for the Federal Wind Energy Program were based on date collected before 1979. Since then, hundreds of new sites have been instrumented specifically for wind energy assessment purposes, and many of these have been located in areas thought to have high wind resource but where data were previously not available or were very limited [copied from http://rredc.nrel.gov/wind/pubs/atlas/chp1.html].

280

Solar and Wind Energy Resource Assessment Programme's Renewable Energy  

Open Energy Info (EERE)

Solar and Wind Energy Resource Assessment Programme's Renewable Energy Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Focus Area: Solar Topics: Opportunity Assessment & Screening Website: en.openei.org/apps/SWERA/ Equivalent URI: cleanenergysolutions.org/content/solar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Solar and Wind Energy Resource Assessment (SWERA) programme's Renewable Energy Resource Explorer (RREX) is a Web-based map viewer that displays data from SWERA, the United Nations Environment Programme (UNEP) renewable resource assessment program. The viewer allows users to select any location

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Colorado Wind Resource at 50 Meters Above Ground Level  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource at 50 Meters Above Ground Level Wind Resource at 50 Meters Above Ground Level Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: December 2003 Title: Colorado Wind Resource at 50 Meters Above Ground Level Geospatial_Data_Presentation_Form: vector digital data Online_Linkage: Description: Abstract: Annual average wind resource potential for the state of Colorado,

282

Wind resource mapping of the state of Vermont  

DOE Green Energy (OSTI)

This paper summarizes the results of a wind mapping project and a validation study for the state of Vermont. The computerized wind resource mapping technique used for this project was developed at the National Renewable Energy Laboratory (NREL). The technique uses Geographic Information System (GIS) software and produces high resolution (1km{sup 2}) wind resource maps.

Elliott, D.; Schwartz, M.; Nierenberg, R.

2000-12-13T23:59:59.000Z

283

Wind Atlas for Egypt A national database for wind resource assessment and  

E-Print Network (OSTI)

Wind Atlas for Egypt A national database for wind resource assessment and wind power planning Niels G. Mortensen Wind Energy Department Risø National Laboratory MENAREC 3, Cairo, Egypt 12 June 2006 #12;Acknowledgements The "Wind Atlas for Egypt" is the result of a comprehensive team effort! · New

284

Pitch Angle Control of Variable Low Rated Speed Wind Turbine Using Fuzzy Logic Control  

E-Print Network (OSTI)

Abstract — Pitch angle control of wind turbine has been used widely to reduce torque and output power variation in high rated wind speed areas. It is a challenge to maximize available energy in the low rated wind speed areas. In this paper, a wind turbine prototype with a pitch angle control based on fuzzy logic to maximize the output power is built and demonstrated. In the varying low rated wind speed of 4-6 m/s, the use of fuzzy logic controller can maximize the average output power of 14.5 watt compared to 14.0 watt at a fixed pitch angle of the blade. Implementation of pitch angle fuzzy logic-based control to the wind turbine is suitable for the low rated wind speed areas. Index Terms — low rated wind speed areas, pitch angle control, fuzzy logic, wind turbine. T I.

A. Musyafa; A. Harika; I. M. Y. Negara; I. Rob

2010-01-01T23:59:59.000Z

285

One-Month Ahead Prediction of Wind Speed and Output Power Based on EMD and LSSVM  

Science Conference Proceedings (OSTI)

Wind speed is a kind of non-stationary time series, it is difficult to construct the model for accurate forecast. The way improving accuracy of the model for predicting wind speed up to one-month ahead has been investigated using measured data recorded ... Keywords: wind speed forecasting, empirical mode decomposition(EMD), least square support vector machine (LSSVM), intrinsic mode function(IFM), wind power

Wang Xiaolan; Li Hui

2009-10-01T23:59:59.000Z

286

Model Simulations Examining the Relationship of Lake-Effect Morphology to Lake Shape, Wind Direction, and Wind Speed  

Science Conference Proceedings (OSTI)

Idealized model simulations with an isolated elliptical lake and prescribed winter lake-effect environmental conditions were used to examine the influences of lake shape, wind speed, and wind direction on the mesoscale morphology. This study ...

Neil F. Laird; John E. Walsh; David A. R. Kristovich

2003-09-01T23:59:59.000Z

287

Error Estimates for Ocean Surface Winds: Applying Desroziers Diagnostics to the Cross-Calibrated, Multiplatform Analysis of Wind Speed  

Science Conference Proceedings (OSTI)

The Desroziers diagnostics (DD) are applied to the cross-calibrated, multi-platform (CCMP) ocean surface wind data sets to estimate wind speed errors of the ECMWF background, the microwave satellite observations and the resulting CCMP analysis. ...

Ross N. Hoffman; Joseph V. Ardizzone; S. Mark Leidner; Deborah K. Smith; Robert Atlas

288

Neuroadaptive speed assistance control of wind turbine with variable ratio gearbox (VRG)  

Science Conference Proceedings (OSTI)

Wind power as a renewable energy source is irregular in occurrence. It is interesting yet challenging to maximize the energy capture from wind. Most existing control methods for wind power generation are traditionally based on wind turbine with fixed ... Keywords: PMSM, neuroadaptive control, speed regulation, wind turbine

Xue-fei Wang; Yong-duan Song; Dan-yong Li; Kai Zhang; Shan Xue; Ming Qin

2012-07-01T23:59:59.000Z

289

Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010  

DOE Green Energy (OSTI)

The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

Brower, M.

2009-12-01T23:59:59.000Z

290

Wind power resource assessment in complex urban environments  

E-Print Network (OSTI)

in availability of small-scale wind turbines for dense urban environments highlight the need for detailed wind installation of a small wind turbine. The procedure of resource assessment includes estimation of the average wind power available for energy production on campus and identification of optimal location for turbine

291

New England Wind Forum: Resources and Tools  

Wind Powering America (EERE)

Resources and Tools Resources and Tools The following provides resources for large energy users considering purchases of wind or other renewable energy. World Resources Institute. (2004). "Next Generation Green Power Products for Corporate Markets in North America." This installment of WRI's Corporate Guide to Green Power Markets focuses on the most effective, and cost-effective, ways for large electricity consumers to buy green power. These include purchases of nationally sourced RECs and two forms of long-term contracts with renewable generators that can be used to stabilize corporate energy costs or serve as a hedge against volatile electricity rates. The Green Power Market Development Group (GPMDG) A collaboration of 12 leading corporations and the World Resources Institute dedicated to building corporate markets for 1,000 MW of new, cost-competitive green power by 2010. The group includes Alcoa Inc., Delphi Corporation, Dow, DuPont, FedEx Kinko's, General Motors, IBM, Interface, Johnson & Johnson, NatureWorks LLC, Pitney Bowes, and Staples. The GPMDG has developed analytical tools, guidelines for writing a solicitation, sample REC contracts, and corporate case studies, available on their Web site to facilitate corporate purchases of renewable energy.

292

Wind Resource and Feasibility Assessment Report for the Lummi Reservation  

SciTech Connect

This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

DNV Renewables (USA) Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

2012-08-31T23:59:59.000Z

293

Pitch-Controlled Variable-Speed Wind Turbine Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Pitch-Controlled Variable-Speed Pitch-Controlled Variable-Speed Wind Turbine Generation February 2000 * NREL/CP-500-27143 E. Muljadi and C.P. Butterfield Presented at the 1999 IEEE Industry Applications Society Annual Meeting Phoenix, Arizona October 3-7, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

294

Measurement strategies for estimating long-term average wind speeds  

DOE Green Energy (OSTI)

The uncertainty and bias in estimates of long-term average wind speeds inherent in continuous and intermittent measurement strategies are examined by simulating the application of the strategies to 40 data sets. Continuous strategies have smaller uncertainties for fixed duration measurement programs, but intermittent strategies make more efficient use of instruments and have smaller uncertainties for a fixed amount of instrument use. Continuous strategies tend to give biased estimates of the long-term annual mean speed unless an integral number of years' data is collected or the measurement program exceeds 3 years in duration. Intermittent strategies with three or more month-long measurement periods per year do not show any tendency toward bias.

Ramsdell, J.V.; Houston, S.; Wegley, H.L.

1980-10-01T23:59:59.000Z

295

Stability analysis of a variable-speed wind turbine  

DOE Green Energy (OSTI)

This paper examines the elastomechanical stability of a four-bladed wind turbine over a specific rotor speed range. Stability modes, frequencies, and dampings are extracted using a specialized modal processor developed at NREL that post-processes the response data generated by the ADAMS simulation code. The processor can analyze a turbine with an arbitrary number of rotor blades and offers a novel capability of isolating stability modes that become locked at a single frequency. Results indicate that over a certain rotor speed range, the tower lateral mode and the rotor regressive in-plane mode coalesce, resulting in a self-excited instability. Additional results show the effect of tower and nacelle parameters on the stability boundaries.

Bir, G.S.; Wright, A.D.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

296

Homogenization and Trend Analysis of Canadian Near-Surface Wind Speeds  

Science Conference Proceedings (OSTI)

Near-surface wind speeds recorded at 117 stations in Canada for the period from 1953 to 2006 were analyzed in this study. First, metadata and a logarithmic wind profile were used to adjust hourly wind speeds measured at nonstandard anemometer ...

Hui Wan; Xiaolan L. Wang; Val R. Swail

2010-03-01T23:59:59.000Z

297

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems  

E-Print Network (OSTI)

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two (National Renewable Energy Laboratory) wind turbine simulator FAST (Fatigue, Aerodynamics, Structures

Brest, Université de

298

Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks  

Science Conference Proceedings (OSTI)

In wind energy conversion systems, one of the operational problems is the changeability and discontinuity of wind. In most cases, wind speed can fluctuate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion ... Keywords: Neural network-based controller, Pitch control, Variable-speed wind turbine, Wind energy conversion systems

Ahmet Serdar Yilmaz; Zafer Özer

2009-08-01T23:59:59.000Z

299

NREL GIS data: Pakistan Wind Resources GIS data for Pakistan...  

Open Energy Info (EERE)

GIS data for Pakistan's wind resources in graphical files of seasonal and diurnal data from surface weather stations, graphical files of seasonal and diurnal data from...

300

Colorado Wind Resource at 50 Meters Above Ground Level  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource at 50 Meters Above Ground Level Metadata also available as Metadata: IdentificationInformation DataQualityInformation SpatialDataOrganizationInformation...

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar and Wind Energy Resource Assessment (SWERA) - Bangladesh...  

Open Energy Info (EERE)

made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most...

302

NREL GIS Data: Illinois High Resolution Wind Resource Abstract...  

Open Energy Info (EERE)

of Illinois at a 50 meter height.

Purpose: Provide information on the wind resource development potential within Illinois.

SupplementalInformation:<...

303

Assessment of Offshore Wind Energy Resources for the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Report NRELTP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial...

304

Improved Offshore Wind Resource Assessment in Global Climate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios Douglas Arent National...

305

Solar wind acceleration in coronal holes. [High speed solar wind streams  

SciTech Connect

Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams.

Kopp, R.A.

1978-01-01T23:59:59.000Z

306

Wind: wind speed and wind power density GIS data at 50m above...  

Open Energy Info (EERE)

from the KAMMWASP studies for Kenya.

The KAMMWAsP methodology uses a set of wind classes to represent wind conditions for the mapped region. A mesoscale simulation for...

307

Wind: wind speed and wind power density GIS data at 50m above...  

Open Energy Info (EERE)

for Nepal.

The KAMMWAsP methodology uses a set of windclasses to represent wind conditions for the mapped region. A mesoscale simulation for each wind class, using...

308

Wind: wind speed and wind power density GIS data at 50m above...  

Open Energy Info (EERE)

the KAMMWASP studies for Ethiopia.

The KAMMWAsP methodology uses a set of wind classes to represent wind conditions for the mapped region. A mesoscale simulation for...

309

Wind: wind speed and wind power density GIS data at 50m above...  

Open Energy Info (EERE)

See supplemental information.

The KAMMWAsP methodology uses a set of wind classes to represent wind conditions for the mapped region. A mesoscale simulation for...

310

Estimation of Offshore Wind Resources in Coastal Waters off Shirahama Using ENVISAT ASAR Images  

E-Print Network (OSTI)

Abstract: Offshore wind resource maps for the coastal waters off Shirahama, Japan were made based on 104 images of the Advanced Synthetic Aperture Radar (ASAR) onboard the ENVISAT satellite. Wind speed fields were derived from the SAR images with the geophysical model function CMOD5.N. Mean wind speed and energy density were estimated using the Weibull distribution function. These accuracies were examined in comparison with in situ measurements from the Shirahama offshore platform and the Southwest Wakayama buoy (SW-buoy). Firstly, it was found that the SAR-derived 10 m-height wind speed had a bias of 0.52 m/s and a RMSE of 2.33 m/s at Shirahama. Secondly, it was found that the mean wind speeds estimated from SAR images and the Weibull distribution function were overestimated at both sites. The ratio between SAR-derived and in situ measured mean wind speeds at Shirahama is 1.07, and this value was used for a long-termRemote Sens. 2013, 5 2884

Yuko Takeyama; Teruo Ohsawa; Tomohiro Yamashita; Katsutoshi Kozai; Yasunori Muto; Yasuyuki Baba; Koji Kawaguchi

2013-01-01T23:59:59.000Z

311

Wind Energy Resource Atlas of Southeast China (CD-ROM)  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

312

Update of wind resource assessment activities at NREL  

DOE Green Energy (OSTI)

The goal of the wind resource assessment activity at the National Renewable Energy Laboratory (NREL) is to improve the characterization of the wind resource for regions where there are market opportunities for U.S. wind energy technology. A variety of wind resource assessment activities have recently been undertaken at NREL in support of this effort. The major tasks during the past year include aiding the establishment of new wind measurement programs in the United States, the development of updated comprehensive meteorological and geographical data bases to be used for resource assessments in the United States and abroad, and designing progressive wind resource mapping tools to facilitate products used in support of emerging markets.

Elliott, D L; Schwartz, M N

1996-07-01T23:59:59.000Z

313

Effects of turbulence on power generation for variable-speed wind turbines  

DOE Green Energy (OSTI)

One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

1996-11-01T23:59:59.000Z

314

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

Muljadi, E.

1998-08-25T23:59:59.000Z

315

Variable Speed Wind Turbine Generator with Zero-sequence Filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-08-25T23:59:59.000Z

316

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents (OSTI)

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-01-01T23:59:59.000Z

317

File:QuikSCAT - Annual Wind Speed at 10 m.pdf | Open Energy Information  

Open Energy Info (EERE)

QuikSCAT - Annual Wind Speed at 10 m.pdf QuikSCAT - Annual Wind Speed at 10 m.pdf Jump to: navigation, search File File history File usage QuikSCAT - Annual Wind Speed at 10 m Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.19 MB, MIME type: application/pdf) Title Annual Wind Speed at 10 m Description QuikSCAT - Annual Wind Speed at 10 m Sources NREL, National Aeronautics and Space Administration Extent International Coordinates 0°, 0° Scatterometer measurements of the state of the ocean surface are used to estimate 10-m ocean winds in the QuikSCAT satellite data set. The QuikSCAT data are produced by Remote Sensing Systems and sponsored by the U.S. National Aeronautics and Space Administration Ocean Vector Winds Science

318

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE)  

E-Print Network (OSTI)

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE) Quinn;Caltech Field Laboratory for Optimized Wind Energy (reduced visual signature) #12;Field Study Results 6 continuous hours existing wind farms Planform Kinetic Energy Flux = U (W m-2) mean power above cut

319

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with ...

Adam J. Deppe; William A. Gallus Jr.; Eugene S. Takle

2013-02-01T23:59:59.000Z

320

Comparison of Mean Wind Speeds and Turbulence at a Coastal Site and Offshore Location  

Science Conference Proceedings (OSTI)

Observations of mean wind speed and longitudinal turbulence at a height of 8 m over the Atlantic ocean, 5 km off Long Island, New York, were compared with simultaneous observations at the beach. Results were grouped into wind direction classes ...

S. SethuRaman; G. S. Raynor

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An Isofactorial Change-of-Scale Model for the Wind Speed Probability Density Function  

Science Conference Proceedings (OSTI)

The wind speed probability density function (PDF) is used in a variety of applications in meteorology, oceanography, and climatology usually as a dataset comparison tool of a function of a quantity such as momentum flux or wind power density. The ...

Mark L. Morrissey; Angie Albers; J. Scott Greene; Susan Postawko

2010-02-01T23:59:59.000Z

322

Spatial Predictions of Extreme Wind Speeds over Switzerland Using Generalized Additive Models  

Science Conference Proceedings (OSTI)

The purpose of this work is to present a methodology aimed at predicting extreme wind speeds over Switzerland. Generalized additive models are used to regionalize wind statistics for Swiss weather stations using a number of variables that ...

Christophe Etienne; Anthony Lehmann; Stéphane Goyette; Juan-Ignacio Lopez-Moreno; Martin Beniston

2010-09-01T23:59:59.000Z

323

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

Science Conference Proceedings (OSTI)

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

324

A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

The power from wind varies depending on the environmental factors. Many methods have been proposed to locate and track the maximum power point (MPPT) of the wind, such as the fuzzy logic (FL), artificial neural network (ANN) and neuro-fuzzy. In this ... Keywords: ANFIS, MPPT, Power generation, Variable speed wind generator, Wind energy

A. Meharrar; M. Tioursi; M. Hatti; A. Boudghčne Stambouli

2011-06-01T23:59:59.000Z

325

Puerto Rico and U.S. Virgin Islands Wind Resource Map at 50 meters  

Wind Powering America (EERE)

% % % % % % % % % % % % % % % % % % % % % % 19-JUN-2007 1.1.1 U.S. Department of Energy National Renewable Energy Laboratory Puerto Rico and U.S. Virgin Islands - 50 m Wind Power Mayaguez 20 0 20 40 60 80 100 Kilometers 20 0 20 40 60 Miles Ponce San Juan Charlotte Amalie Cruz Bay PUERTO RICO VIRGIN ISLANDS Wind Power Class 1 2 3 4 5 Resource Potential Poor Marginal Fair Good Excellent Wind Power Density at 50 m W/m 0 - 200 200 - 300 300 - 400 400 - 500 500 - 600 2 Wind Speed at 50 m m/s 0.0 - 5.9 5.9 - 6.8 6.8 - 7.5 7.5 - 8.0 8.0 - 8.5 a Wind Speed at 50 m mph 0.0 - 13.2 13.2 - 15.2 15.2 - 16.8 16.8 - 17.9 17.9 - 19.0 a Wind speeds are based on a Weibull k of 2.5 at sea level. a Wind Power Classification The annual wind power estimates for this map were produced by AWS Truewind

326

The study of multimode power control system for MW variable-speed wind turbine  

Science Conference Proceedings (OSTI)

Wind energy is a viable option to complement other types of pollution-free generation. In the past constant-speed wind turbine is used for the limitation of the control technology and manufacturing technology. But this kind wind turbine has low efficiency ... Keywords: feed-forward compensator, loop-shaping, multimode power control system, pitch controller, speed controller, the shaft system model, wind turbine

Dingguo Wu; Zhixin Wang

2008-10-01T23:59:59.000Z

327

Wind Class Sampling of Satellite SAR Imagery for Offshore Wind Resource Mapping  

Science Conference Proceedings (OSTI)

High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is ...

Merete Badger; Jake Badger; Morten Nielsen; Charlotte Bay Hasager; Alfredo Peńa

2010-12-01T23:59:59.000Z

328

Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008  

DOE Green Energy (OSTI)

This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

Genesis Partners LP

2010-08-01T23:59:59.000Z

329

Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

2006-03-01T23:59:59.000Z

330

Wind Resource Mapping for United States Offshore Areas: Preprint  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

331

United States (48 Contiguous States) Wind Resource Potential Chart  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

332

Modeling access to wind resources in the United States  

DOE Green Energy (OSTI)

To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

Short, W.D.

1999-10-20T23:59:59.000Z

333

Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona  

DOE Green Energy (OSTI)

The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-01T23:59:59.000Z

334

Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information  

Open Energy Info (EERE)

Energy Resource Assessment (SWERA) Energy Resource Assessment (SWERA) Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Agency/Company /Organization: United Nations Environment Programme Partner: National Renewable Energy Laboratory, German Aerospace Center (DLR), Risoe National Laboratory for Sustainable Energy, Brazil's National Institute for Space Research (INPE), State University of New York (SUNY), Technical University of Denmark (DTU), United Nations Environment Programme (UNEP), National Aeronautics and Space Administration, Global Environment Facility (GEF) Sector: Energy Focus Area: Solar, Wind

335

Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions? Part II: Quantifying Uncertainties Associated with Distribution Fitting Methods  

Science Conference Proceedings (OSTI)

Remote sensing tools represent an attractive proposition for measuring wind speeds over the oceans because, in principle, they also offer a mechanism for determining the spatial variability of flow. Presented here is the continuation of research ...

S. C. Pryor; M. Nielsen; R. J. Barthelmie; J. Mann

2004-05-01T23:59:59.000Z

336

United States Offshore Wind Resource Map at 90 Meters  

Wind Powering America (EERE)

Offshore Wind Speed at 90 m 10-JAN-2011 1.1.1 Wind Speed at 90 m ms 11.5 - 12.0 11.0 - 11.5 10.5 - 11.0 10.0 - 10.5 9.5 - 10.0 9.0 - 9.5 8.5 - 9.0 8.0 - 8.5 7.5 - 8.0 7.0 - 7.5...

337

U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization  

DOE Green Energy (OSTI)

This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

Schreck, S.; Lundquist, J.; Shaw, W.

2008-06-01T23:59:59.000Z

338

Standard Deviations of Wind Speed and Direction from Observations over a Smooth Surface  

Science Conference Proceedings (OSTI)

Measurements of wind speed and direction made every minute on a 15 m mast sited on a large expanse of sea ice were analyzed to study the behavior of their standard deviation. The large scatter normally observed under low wind speed and/or non-...

Sylvain M. Joffre; Tuomas Laurila

1988-05-01T23:59:59.000Z

339

Estimating Probabilities of Hurricane Wind Speeds Using a Large-Scale Empirical Model  

Science Conference Proceedings (OSTI)

A new method is presented for estimating the probability of exceeding a given wind speed in 1 year at any given location in the Atlantic tropical cyclone basin. The method is especially appropriate for wind speeds with return periods of 100 years ...

R. W. R. Darling

1991-10-01T23:59:59.000Z

340

Hydrogen Sulfide Dispersion Consequences Analysis in Different Wind Speeds: A CFD Based Approach  

Science Conference Proceedings (OSTI)

Hydrogen sulfide (h2s) leakage and dispersion from a sulfide recycle installation in different wind speeds are simulated by implementing a 3D Computational Fluid Dynamics (CFD) model. H2s concentrations of monitor points which represent dispersion contours ... Keywords: CFD, hydrogen Sulfide, dispersion, concenquences analysis, different wind speeds

Bo Zhang; Guo-ming Chen

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Utilization of Automatic Weather Station Data for Forecasting High Wind Speeds at Pegasus Runway, Antarctica  

Science Conference Proceedings (OSTI)

Reduced visibility due to blowing snow can severely hinder aircraft operations in the Antarctic. Wind speeds in excess of approximately 7–13 m s?1 can result in blowing snow. The ability to forecast high wind speed events can improve the safety ...

R. E. Holmes; C. R. Stearns; G. A. Weidner; L. M. Keller

2000-04-01T23:59:59.000Z

342

Observed Coherent Trends of Surface and Upper-Air Wind Speed over China since 1960  

Science Conference Proceedings (OSTI)

Previous studies indicated that surface wind speed over China declined during past decades, and several explanations exist in the literature. This study presents long-term (1960–2009) changes of both surface and upper-air wind speeds over China ...

Changgui Lin; Kun Yang; Jun Qin; Rong Fu

2013-05-01T23:59:59.000Z

343

Wind Energy Resources for Teachers | Open Energy Information  

Open Energy Info (EERE)

Resources for Teachers Resources for Teachers Jump to: navigation, search Photo from the South Dakota Wind Applications Center, NREL 18283 The following links lead to curricula and classroom resources for teachers who want to incorporate wind energy into their lesson plans. 4-H Group Wind Curriculum Developed The Power of the Wind, which consists of one Youth Guide and one Facilitator's Guide. The activities involve young people in the engineering design process as they learn about the wind and its uses. The site also offers videos. Boise State University Compiled a list of resources for educators, including lesson plans created using the Idaho State and Common Core Standards. California Energy Commission Developed a set of educational materials called "Energy Quest" that

344

An examination of loads and responses of a wind turbine undergoing variable-speed operation  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is to show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.

Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

1996-11-01T23:59:59.000Z

345

Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

Jimenez, A. C.

2013-12-01T23:59:59.000Z

346

Wind for Schools Portal Educational Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind for Schools Portal Educational Resources Jump to: navigation, search Wind for Schools Portal Home Comparison Motion Chart Educational Resources Educational Resources University Trade School High School Middle School Elementary School Other Resources To add a new entry, you can upload a new file. In the summary field, type in the following text to add the file to this page: [[Category:Wind for Schools LEVEL Curricula]] Where LEVEL is one of: University Trade School High School Middle School Elementary School Or assign the upload to: [[Category:Wind_for_Schools_Portal_Other_Resources]]

347

Wind Speeds in ASCE 7 Standard Peak-Gust Map ...  

Science Conference Proceedings (OSTI)

... The second zone comprises these three states, for which ... implies that the extreme wind climate in Central ... 6 is similar to the wind climates in Central ...

2013-08-19T23:59:59.000Z

348

Choosing wind power plant locations and sizes based on electric reliability measures using multiple-year wind speed measurements  

DOE Green Energy (OSTI)

To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

Milligan, M.R.; Artig, R.

1999-07-08T23:59:59.000Z

349

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network (OSTI)

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

350

Adaptive variable structure control law for a variable speed wind turbine  

Science Conference Proceedings (OSTI)

The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, an adaptive robust control for a doubly feed induction generator drive for variable speed wind power generation is described. ... Keywords: modeling and simulation, variable structure control, wind turbine control

Oscar Barambones; Jose Maria Gonzalez De Durana; Patxi Alkorta; Jose Antonio Ramos; Manuel De La Sen

2011-05-01T23:59:59.000Z

351

An Examination of Tropical and Extratropical Gust Factors and the Associated Wind Speed Histograms  

Science Conference Proceedings (OSTI)

A gust factor, defined as the ratio between a peak wind gust and mean wind speed over a period of time, can be used along with other statistics to examine the structure of the wind. Gust factors are heavily dependent on upstream terrain ...

B. M. Paulsen; J. L. Schroeder

2005-02-01T23:59:59.000Z

352

Control algorithms for effective operation of variable-speed wind turbines  

DOE Green Energy (OSTI)

This report describes a computer code, called ASYM and provides results from its application in simulating the control of the 34-m Test Bed vertical-axis wind turbine (VAWT) in Bushland, Texas. The code synthesizes dynamic wind speeds on a second-by-second basis in the time domain. The wind speeds conform to a predetermined spectral content governed by the hourly average wind speed that prevails at each hour of the simulation. The hourly average values are selected in a probabilistic sense through the application of Markov chains, but their cumulative frequency of occurrence conforms to a Rayleigh distribution that is governed by the mean annual wind speed of the site selected. The simulated wind speeds then drive a series of control algorithms that enable the code to predict key operational parameters such as number of annual starts and stops, annual energy production, and annual fatigue damage at a critically stressed joint on the wind turbine. This report also presents results from the application of ASYM that pertain to low wind speed cut-in and cut-out conditions and controlled operation near critical speed ranges that excite structural vibrations that can lead to accelerated fatigue damage.

Not Available

1993-10-01T23:59:59.000Z

353

Wind Conditions in a Fjord-like Bay and Predictions of Wind Speed Using Neighboring Stations Employing Neural Network Models  

Science Conference Proceedings (OSTI)

This paper evaluates the applicability of neural networks to estimate wind speeds at various target locations using neighboring reference locations on the South coast of Newfoundland Canada. The stations were chosen to cover a variety of ...

Jens J. Currie; Pierre J. Goulet; Andry W. Ratsimandresy

354

The Characteristics of Wind Velocity that Favor the Fitting of a Weibull Distribution in Wind Speed Analysis  

Science Conference Proceedings (OSTI)

The derivation of the Weibull distribution from the bivariate normal distribution provides theoretical justification for its use in wind speed analysis if four conditions are met. These conditions are that the orthogonal components of horizontal ...

Stanton E. Tuller; Arthur C. Brett

1984-01-01T23:59:59.000Z

355

Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines  

DOE Green Energy (OSTI)

Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

Pierce, K.; Migliore, P.

2000-08-01T23:59:59.000Z

356

Wind powering America: America's wind power...a natural resource  

DOE Green Energy (OSTI)

The Wind Powering America Initiative is a regionally-based effort to increase the use of clean wind energy in the United States over the next two decades. The purpose of this brochure is to provide a brief description of the initiative, its goals, benefits, and strategy as well as a list of contacts for those interested in obtaining more information.

NONE

2000-04-04T23:59:59.000Z

357

Wind Powering America: America's Wind Power...A Natural Resource  

DOE Green Energy (OSTI)

The Wind Powering America Initiative is a regionally-based effort to increase the use of clean wind energy in the United States over the next two decades. The purpose of this brochure is to provide a brief description of the initiative, its goals, benefits, and strategy as well as a list of contacts for those interested in obtaining more information.

Dougherty, P.

2001-05-23T23:59:59.000Z

358

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

3.4.2 Wind roses . . . . . . . .Figure 5.5: Downscaled wind speed changes and componentin?uences on California’s wind energy resource. Part 1:

Mansbach, David K

2010-01-01T23:59:59.000Z

359

Characterization of wind power resource in the United States  

E-Print Network (OSTI)

Wind resource in the continental and offshore United States has been reconstructed and characterized using metrics that describe, apart from abundance, its availability, persistence and intermittency. The Modern Era ...

Gunturu, Udaya Bhaskar

360

Session: What can we learn from developed wind resource areas  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

Thelander, Carl; Erickson, Wally

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation Of Models For The Vertical Extrapolation Of Wind Speed Measurements At Offshore Sites  

E-Print Network (OSTI)

Monin-Obukhov theory predicts the well-known log-linear form of the vertical wind speed profile. Two parameters, namely the aerodynamic surface roughness length and the Monin-Obukhov-length, are needed to predict the vertical wind speed profile from a measurement at one height. Different models to estimate these parameters for conditions important for offshore wind energy utilisation are discussed and tested: Four models for the surface roughness and three methods to derive the Monin-Obukov-length from measurements are compared. They have been tested with data from the offshore field measurement Rdsand by extrapolating the measured 10 m wind speed to 50 m height and comparing it with the measured 50 m wind speed. The mean

Bernhard Lange; Jřrgen Hřjstrup; Sřren Larsen; Rebecca Barthelmie

2001-01-01T23:59:59.000Z

362

Wind Resource Mapping for United States Offshore Areas: Preprint  

SciTech Connect

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

363

Space-Time Wind Speed Forecasting for Improved Power System Dispatch  

E-Print Network (OSTI)

In order to support large scale integration of wind power, state-of-the-art wind speed forecasting methods should provide accurate and adequate information to enable efficient scheduling of wind power in electric energy systems. In this article, space-time wind forecasts are incorporated into power system economic dispatch models. First, we proposed a new space-time wind forecasting model, which generalizes and improves upon a so-called regime-switching space-time model by allowing the forecast regimes to vary with the dominant wind direction and with the seasons. Then, results from the new wind forecasting model are implemented into a power system economic dispatch model, which takes into account both spatial and temporal wind speed correlations. This, in turn, leads to an overall more cost-effective scheduling of system-wide wind generation portfolio. The potential economic benefits arise in the system-wide generation cost savings and in the ancillary service cost savings. This is illustrated in a test system in the northwest region of the U.S. Compared with persistent and autoregressive models, our proposed method could lead to annual integration cost savings on the scale of tens of millions of dollars in regions with high wind penetration, such as Texas and the Northwest. Key words: Power system economic dispatch; Power system operation; Space-time statistical model; Wind data; Wind speed forecasting.

Xinxin Zhu; Marc G. Genton; Yingzhong Gu; Le Xie

2012-01-01T23:59:59.000Z

364

Toward Objective, Standardized Intensity Estimates from Surface Wind Speed Observations  

Science Conference Proceedings (OSTI)

Extreme wind climatology and event-specific intensity assessments rely heavily on surface wind field observations. The most widely used platforms sited at airports are the Automated Surface Observing System (ASOS) and its predecessor, the ...

Forrest J. Masters; Peter J. Vickery; Phuong Bacon; Edward N. Rappaport

2010-12-01T23:59:59.000Z

365

New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)  

DOE Green Energy (OSTI)

Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

Not Available

2013-05-01T23:59:59.000Z

366

Low Wind Speed Technology Phase II: LIDAR for Turbine Control  

SciTech Connect

This fact sheet describes NREL's subcontract with QinetiQ to conduct a study on LIDAR systems for wind turbines.

Not Available

2006-06-01T23:59:59.000Z

367

Anemometer Data (Wind Speed, Direction) for YKHC-Bethel, AK (2003 - 2004) |  

Open Energy Info (EERE)

YKHC-Bethel, AK (2003 - 2004) YKHC-Bethel, AK (2003 - 2004) Dataset Summary Description Wind data collected from YKHC - Bethel in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2003 through 2004, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released November 09th, 2010 (4 years ago) Date Updated November 09th, 2010 (4 years ago) Keywords wind wind direction wind speed

368

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

369

Wind for Schools Portal Developer Resources | Open Energy Information  

Open Energy Info (EERE)

Developer Resources Developer Resources Jump to: navigation, search Wind for Schools Portal Home Comparison Motion Chart Educational Resources Data, APIs and Visualizations - introduction for aspiring developers Are you looking to get raw data from Wind for Schools Portal? Or perhaps you'd like to modify an existing visualization? This page shows details on how to query data and modify or create your own visualizations. All of the Wind for Schools Portal data is open. Because it is updated real-time, it is unique, interesting data that you can download, analyze and visualize. Data Wind data is aggregated daily to Google Fusion Tables. This data is such that SQL-like queries can be made against it and a visualization created. Generate an API key for your usage at Google API console. This API

370

Air–Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST  

Science Conference Proceedings (OSTI)

Quantifying air–sea exchanges of enthalpy and momentum is important for understanding and skillfully predicting tropical cyclone intensity, but the magnitude of the corresponding wind speed–dependent bulk exchange coefficients is largely unknown ...

Michael M. Bell; Michael T. Montgomery; Kerry A. Emanuel

2012-11-01T23:59:59.000Z

371

Air–Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST  

E-Print Network (OSTI)

Quantifying air–sea exchanges of enthalpy and momentum is important for understanding and skillfully predicting tropical cyclone intensity, but the magnitude of the corresponding wind speed–dependent bulk exchange coefficients ...

Bell, Michael M.

372

Tests of the Generalized Pareto Distribution for Predicting Extreme Wind Speeds  

Science Conference Proceedings (OSTI)

Extreme wind speed predictions are often based on statistical analysis of site measurements of annual maxima, using one of the Generalized Extreme Value (GEV) distributions. An alternative method applies one of the Generalized Pareto ...

B. B. Brabson; J. P. Palutikof

2000-09-01T23:59:59.000Z

373

Wind speed forecasting at different time scales: a non parametric approach  

E-Print Network (OSTI)

The prediction of wind speed is one of the most important aspects when dealing with renewable energy. In this paper we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model, that reproduces accurately the statistical behavior of wind speed, to forecast wind speed one step ahead for different time scales and for very long time horizon maintaining the goodness of prediction. In order to check the main features of the model we show, as indicator of goodness, the root mean square error between real data and predicted ones and we compare our forecasting results with those of a persistence model.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

374

Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear  

Science Conference Proceedings (OSTI)

Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850-200 mb environmental vertical ...

Eric W. Uhlhorn; Bradley W. Klotz; Tomislava Vukicevic; Paul D. Reasor; Robert F. Rogers

375

A Phenomenological Model for Wind Speed and Shear Stress Profiles in Vegetation Cover Layers  

Science Conference Proceedings (OSTI)

A phenomenological model for the mean wind speed and Reynolds shear stress profiles with height in a vegetation cover layer is derived from forms suggested by truncation of the equations of turbulent fluid motion at second order in fluctuating ...

F. A. Albini

1981-11-01T23:59:59.000Z

376

A fuzzy logic controller to increase fault ride-through capability of variable speed wind turbines  

Science Conference Proceedings (OSTI)

A fuzzy controller for improving Fault Ride-Through (FRT) capability of Variable Speed Wind Turbines (WTs) equipped with Doubly Fed Induction Generator (DFIG) is presented. The controller is designed in order to compensate the voltage at the Point of ...

Geev Mokryani, Pierluigi Siano, Antonio Piccolo, Vito Calderaro

2012-01-01T23:59:59.000Z

377

Method for Estimation of Surface Roughness and Similarity Function of Wind Speed Vertical Profile  

Science Conference Proceedings (OSTI)

This study is aimed at identifying and refining a method suitable to estimate the surface roughness length (z0) and the universal similarity function of the wind speed profile (?M) based on ultrasonic anemometer measurements carried out at only ...

Roberto Sozzi; Maurizio Favaron; Teodoro Georgiadis

1998-05-01T23:59:59.000Z

378

Evaluation of the National Hurricane Center’s Tropical Cyclone Wind Speed Probability Forecast Product  

Science Conference Proceedings (OSTI)

A tropical cyclone (TC) wind speed probability forecast product developed at the Cooperative Institute for Research in the Atmosphere (CIRA) and adopted by the National Hurricane Center (NHC) is evaluated for U.S. land-threatening and landfalling ...

Michael E. Splitt; Jaclyn A. Shafer; Steven M. Lazarus; William P. Roeder

2010-04-01T23:59:59.000Z

379

Estimation of Wind Speed Distribution Using Markov Chain Monte Carlo Techniques  

Science Conference Proceedings (OSTI)

The Weibull distribution is the most commonly used statistical distribution for describing wind speed data. Maximum likelihood has traditionally been the main method of estimation for Weibull parameters. In this paper, Markov chain Monte Carlo ...

Wan-Kai Pang; Jonathan J. Forster; Marvin D. Troutt

2001-08-01T23:59:59.000Z

380

On the Accuracy of Monthly Mean Wind Speeds over the Equatorial Pacific  

Science Conference Proceedings (OSTI)

Yearlong in situ surface wind measurements at three sites along the Pacific equator (95°, 110°, 152°W) are used to estimate the required number of random observations per month for monthly mean wind speed components accurate to 1.0 and 0.5 m s?. ...

David Halpern

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tractable Analytic Expressions for the Wind Speed Probability Density Functions Using Expansions of Orthogonal Polynomials  

Science Conference Proceedings (OSTI)

The use of the two-parameter Weibull function as an estimator of the wind speed probability density function (PDF) is known to be problematic when a high accuracy of fit is required, such as in the computation of the wind power density function. ...

Mark L. Morrissey; J. Scott Greene

2012-07-01T23:59:59.000Z

382

Low-Speed Wind-Tunnel Investigation of the Stability and Control Characteristics  

Science Conference Proceedings (OSTI)

A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8\\deg to 48\\deg). Because of the ...

Fears Scott P.; Ross Holly M.; Moul Thomas M.

1995-06-01T23:59:59.000Z

383

Controlled operation of variable speed driven permanent magnet synchronous generator for wind energy conversion systems  

Science Conference Proceedings (OSTI)

The introduction of distributed generation through renewable sources of energy has opened a challenging area for power engineers. As these sources are intermittent in nature, variable speed electric generators are employed for harnessing electrical energy ... Keywords: permanent magnet synchronous generator, power conditioners, power quality, variable speed generators, wind energy

Rajveer Mittal; K. S. Sandhu; D. K. Jain

2009-02-01T23:59:59.000Z

384

Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Solar and Wind Energy Resource Assessment (SWERA) (Redirected from SWERA) Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Agency/Company /Organization: United Nations Environment Programme Partner: National Renewable Energy Laboratory, German Aerospace Center (DLR), Risoe National Laboratory for Sustainable Energy, Brazil's National Institute for Space Research (INPE), State University of New York (SUNY), Technical University of Denmark (DTU), United Nations Environment Programme (UNEP), National Aeronautics and Space Administration, Global Environment Facility (GEF)

385

Potential for Development of Solar and Wind Resource in Bhutan  

DOE Green Energy (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

386

Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters  

E-Print Network (OSTI)

Abstract: This work discusses the accuracies of geophysical model functions (GMFs) for retrieval of sea surface wind speed from satellite-borne Synthetic Aperture Radar (SAR) images in Japanese coastal waters characterized by short fetches and variable atmospheric stability conditions. In situ observations from two validation sites, Hiratsuka and Shirahama, are used for comparison of the retrieved sea surface wind speeds using CMOD (C-band model)4, CMOD_IFR2, CMOD5 and CMOD5.N. Of all the geophysical model functions (GMFs), the latest C-band GMF, CMOD5.N, has the smallest bias and root mean square error at both sites. All of the GMFs exhibit a negative bias in the retrieved wind speed. In order to understand the reason for this bias, all SAR-retrieved wind speeds are separated into two categories: onshore wind (blowing from sea to land) and offshore wind (blowing from land to sea). Only offshore winds were found to exhibit the large negative bias, and short fetches from the coastline may be a possible reason for this. Moreover, it is clarified that in both the unstable and stable conditions, CMOD5.N has atmospheric stability effectiveness, and can keep the same accuracy with CMOD5 in the neutral condition. In short, at the moment, CMOD5.N is thought to be the most promising GMF

Yuko Takeyama; Teruo Ohsawa; Katsutoshi Kozai; Charlotte Bay Hasager; Merete Badger

2013-01-01T23:59:59.000Z

387

Avian use of Norris Hill Wind Resource Area, Montana  

DOE Green Energy (OSTI)

This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

1998-07-01T23:59:59.000Z

388

The effects of variable speed and drive train component efficiencies on wind turbine energy capture  

SciTech Connect

A wind turbine rotor achieves optimal aerodynamic efficiency at a single tip-speed ratio (TSR). To maintain that optimal TSR and maximize energy capture in the stochastic wind environment, it is necessary to employ variable-speed operation. Conventional constant-speed wind turbines have, in the past, been converted into variable-speed turbines by attaching power electronics to the conventional induction generator and gearbox drive train. Such turbines have shown marginal, if any, improvement in energy capture over their constant-speed counterparts. These discrepancies have been shown to be the result of drive train components that are not optimized for variable-speed operation. Traditional drive trains and power electronic converters are designed to achieve maximum efficiency at full load and speed. However, the main energy producing winds operate the turbine at light load for long periods of time. Because of this, significant losses to efficiency occur. This investigation employs a quasi-static model to demonstrate the dramatic effect that component efficiency curves can have on overall annual energy capture.

Fingersh, L.J.; Robinson, M.C.

1998-05-01T23:59:59.000Z

389

Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint  

DOE Green Energy (OSTI)

As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

Muljadi, E.; Singh, M.; Gevorgian, V.

2012-11-01T23:59:59.000Z

390

CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT  

SciTech Connect

Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

Miller-Ricci Kempton, Eliza [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Rauscher, Emily, E-mail: ekempton@ucolick.org [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States)

2012-06-01T23:59:59.000Z

391

High speed air pneumatic wind shield wiping design  

E-Print Network (OSTI)

In this creative design process a number of designs were constructed, implemented and tested in order to assess the feasibility of using high speed to create a curtain to repel the rain from the automobile windshield instead ...

Heyward, Moses A

2005-01-01T23:59:59.000Z

392

Kaneohe, Hawaii Wind Resource Assessment Report  

DOE Green Energy (OSTI)

The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

Robichaud, R.; Green, J.; Meadows, B.

2011-11-01T23:59:59.000Z

393

Stakeholder Engagement and Outreach: Resources and Tools for Siting Wind  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting Resources & Tools Resources for Siting Wind Turbines This page lists information resources such as publications, websites, and news for siting wind turbines. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 39 records found. Page 1 of 8, Sorted by descending date Filtered by: Siting 1 2 3 4 5 6 7 8 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

394

The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land  

Science Conference Proceedings (OSTI)

Knowledge of the diurnally varying land surface wind speed probability distribution is essential for surface flux estimation and wind power management. Global observations indicate that the surface wind speed probability density function (PDF) is ...

Yanping He; Norman A. McFarlane; Adam H. Monahan

2012-09-01T23:59:59.000Z

395

Adaptive pitch control for variable speed wind turbines  

DOE Patents (OSTI)

An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

Johnson, Kathryn E. (Boulder, CO); Fingersh, Lee Jay (Westminster, CO)

2012-05-08T23:59:59.000Z

396

Secular Change in Reported Surface Wind Speeds over the Ocean  

Science Conference Proceedings (OSTI)

The Comprehensive Ocean-Atmosphere Data Set reveals that mean scalar winds decreased between 1854 and 1920 and increased since World War II. The latter increase is due to a change in estimating procedure and to the growing proportion of ships ...

C. S. Ramage

1987-04-01T23:59:59.000Z

397

West Virginia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Wind Resources/Full Version West Virginia/Wind Resources/Full Version < West Virginia‎ | Wind Resources Jump to: navigation, search Print PDF West Virginia Wind Resources WestVirginiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

398

New Jersey/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

New Jersey/Wind Resources/Full Version New Jersey/Wind Resources/Full Version < New Jersey‎ | Wind Resources Jump to: navigation, search Print PDF New Jersey Wind Resources NewJerseyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

399

South Carolina/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

South Carolina/Wind Resources/Full Version South Carolina/Wind Resources/Full Version < South Carolina‎ | Wind Resources Jump to: navigation, search Print PDF South Carolina Wind Resources SouthCarolinaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

400

South Dakota/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

South Dakota/Wind Resources/Full Version South Dakota/Wind Resources/Full Version < South Dakota‎ | Wind Resources Jump to: navigation, search Print PDF South Dakota Wind Resources SouthDakotaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Rhode Island/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources/Full Version Rhode Island/Wind Resources/Full Version < Rhode Island‎ | Wind Resources Jump to: navigation, search Print PDF Rhode Island Wind Resources RhodeIslandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

402

The Extrapolation of Vertical Profiles of Wind Speed within the Marine Atmospheric Surface layer Using the p Formula  

Science Conference Proceedings (OSTI)

Values of p for the exponent-type wind profile formulation, used in vertical extrapolations of wind speed, were derived for the marine atmospheric surface layer. Nomograms were constructed providing p values as dependent on a single elevation ...

M. Segal; R. A. Pielke

1988-02-01T23:59:59.000Z

403

80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)  

SciTech Connect

Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B.

2010-05-01T23:59:59.000Z

404

Pages that link to "Idaho/Wind Resources" | Open Energy Information  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "IdahoWind Resources" IdahoWind Resources Jump to: navigation, search What links here...

405

Stakeholder Engagement and Outreach: Wind Economic Development Resources  

Wind Powering America (EERE)

Development Resources and Tools Development Resources and Tools This page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 198 records found. Page 1 of 40, Sorted by descending date Filtered by: Econ. Dev. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

406

New Wind Energy Resource Potential Estimates for the United States (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

2011-01-01T23:59:59.000Z

407

Importance of Thermal Effects and Sea Surface Roughness for Offshore Wind Resource Assessment  

E-Print Network (OSTI)

The economic feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can e.g. be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites. Their applicability for wind power prediction at offshore sites is investigated using data from the measurement program Rdsand, located in the Danish Baltic Sea.

Bernhard Lange; Sřren Larsen; Jřrgen Hřjstrup Rebecca Barthelmie; Jřrgen Hřjstrup; Rebecca Barthelmie; Bernhard Lange

2004-01-01T23:59:59.000Z

408

Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis  

E-Print Network (OSTI)

Wind power resource assessment in complex urban environments: MIT campus case-study using CFD of Technology, 2Meteodyn Objectives Conclusions References [1] TopoWind software, User Manual [2] Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Wind Monitoring Program, AWS Scientific, Inc

409

Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data  

DOE Green Energy (OSTI)

Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter- annual variation in capacity credit is still understated by the synthetic data technique.

Milligan, Michael

1997-06-01T23:59:59.000Z

410

Power-Electronic, Variable-Speed Wind Turbine Development: 1988-1993  

Science Conference Proceedings (OSTI)

A five-year development program culminated in the 33M-VS power-electronic, variable-speed turbine, used in a number of wind power plants to offer competitively priced electricity. This report describes turbine development activities from conception through field testing, highlights design decisions that led to the new technology, and provides an overview of the turbine's electrical and mechanical design. An appendix describes technical issues relevant to building a wind power plant using 33M-VS turbines.

1995-11-16T23:59:59.000Z

411

Anemometer Data (Wind Speed, Direction) for Pascua Yaqui, AZ (2003 - 2004)  

Open Energy Info (EERE)

Pascua Yaqui, AZ (2003 - 2004) Pascua Yaqui, AZ (2003 - 2004) Dataset Summary Description Wind data collected from Pascua Yaqui Indian Reservation in Arizona from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2003 through 2004, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released December 02nd, 2010 (3 years ago) Date Updated December 02nd, 2010 (3 years ago) Keywords wind

412

Anemometer Data (Wind Speed, Direction) for Quinault #3, WA (2004 - 2005) |  

Open Energy Info (EERE)

Quinault #3, WA (2004 - 2005) Quinault #3, WA (2004 - 2005) Dataset Summary Description Wind data collected from Quinault Indian Reservation in Washington from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2004 through 2005, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released December 02nd, 2010 (4 years ago) Date Updated December 02nd, 2010 (4 years ago) Keywords wind

413

Recent wind resource characterization activities at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The wind resource characterization team at the National Renewable Energy Laboratory (NREL) is working to improve the characterization of the wind resource in many key regions of the world. Tasks undertaken in the past year include: updates to the comprehensive meteorological and geographic data bases used in resource assessments in the US and abroad; development and validation of an automated wind resource mapping procedure; support in producing wind forecasting tools useful to utilities involved in wind energy generation; continued support for recently established wind measurement and assessment programs in the US.

Elliott, D.L.; Schwartz, M.N.

1997-07-01T23:59:59.000Z

414

Voltage Stability Analysis of a Distributed Network Incorporating Wind Power Resource  

Science Conference Proceedings (OSTI)

This paper investigates the impacts of a wind farm connected at Harterbeespoort substation in South Africa on voltage stability of the power network. The site wind speed was determined and analyzed for viability. A comparison is made between the use ...

Denis Juma; Bessie Monchusi; Josiah Munda; Adisa Jimoh

2011-01-01T23:59:59.000Z

415

Assessment of Offshore Wind Energy Resources for the United States  

Wind Powering America (EERE)

Technical Report Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial Prepared under Task No. WE10.1211 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

416

Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research  

SciTech Connect

This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

Not Available

2006-03-01T23:59:59.000Z

417

On Sudbury-Area Wind Speeds—A Tale of Forest Regeneration  

Science Conference Proceedings (OSTI)

A 34% reduction in 10-m wind speeds at Sudbury Airport in Ontario, Canada, over the period 1975–95 appears to be a result of significant changes in the surface roughness of the surrounding area that are due to land restoration and reforestation ...

Andrew J. Tanentzap; Peter A. Taylor; Norman D. Yan; James R. Salmon

2007-10-01T23:59:59.000Z

418

On the Maximum Observed Wind Speed in a Randomly Sampled Hurricane  

Science Conference Proceedings (OSTI)

There is considerable interest in detecting a long-term trend in hurricane intensity possibly related to large-scale ocean warming. This effort is complicated by the paucity of wind speed measurements for hurricanes occurring in the early part of ...

Andrew R. Solow

2010-03-01T23:59:59.000Z

419

Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed  

Science Conference Proceedings (OSTI)

The optimal power-law expression for the dependence of oceanic whitecap coverage fraction W on 10 m elevation wind speed U as determined by ordinary least squares fitting applied to the combined whitecap data sets of Monahan (1971) and Toba and ...

Edward C. Monahan; IognáidÓ Muircheartaigh

1980-12-01T23:59:59.000Z

420

Trends in Wind Speed at Wind Turbine Height of 80 m over the Contiguous United States Using the North American Regional Reanalysis (NARR)  

Science Conference Proceedings (OSTI)

The trends in wind speed at a typical wind turbine hub height (80 m) are analyzed using the North American Regional Reanalysis (NARR) dataset for 1979–2009. A method, assuming the wind profile in the lower boundary layer as power-law functions of ...

Eric Holt; Jun Wang

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of Offshore Wind Energy Resources for the United States  

SciTech Connect

This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

2010-06-01T23:59:59.000Z

422

NREL GIS Data: Indiana High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Indiana High Resolution Wind Resource Indiana High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of Indiana at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Indiana. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 16 datum WGS 84 projection system. Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

423

NREL GIS Data: Hawaii High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Wind Resource Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of Hawaii at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Hawaii. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 4, datum WGS 84 projection system. Other_Citation_Details: The wind power resource estimates were produced by TrueWind Solutions using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

424

Model of variable speed constant frequency double fed wind power generation system and analysis of its operating performance  

Science Conference Proceedings (OSTI)

Structure of variable speed constant frequency double fed wind power generation system (WPGS) was analyzed, and its model was established. Maximum power point tracking (MPPT) control, constant power control and vector control for WPGS were discussed. ... Keywords: operating performance, variable speed constant frequency, vector control, wind power generation system

Pan Tinglong; Ji Zhicheng

2009-06-01T23:59:59.000Z

425

Using a new characterization of turbulent wind for accurate correlation of wind turbine response with wind speed  

SciTech Connect

The turbulence encountered by a point on a rotating wind turbine blade has characteristics that in some important respects are different from those measured by a stationary anemometer. The conventional one-peaked continuous spectrum becomes, broadly, a two-peaked spectrum that in addition contains a set of narrow-band spikes of turbulence energy, one centered on the frequency of rotor rotation and the others centered on multiples of that frequency. The rotational sampling effect on wind spectra is quantified using measurements of wind velocity by anemometers on stationary crosswind circular arrays. Characteristics of fluctuating wind are compared to measured fluctuations of bending moments of the rotor blades and power output fluctuations of a horizontal-axis wind turbine at the same site. The wind characteristics and the correlations between wind fluctuations and wind turbine fluctuations provide a basis for improving turbine design, siting, and control. 6 refs., 11 figs., 1 tab.

Connell, J.R.; George, R.L.

1987-09-01T23:59:59.000Z

426

Creating Synthetic Wind Speed Time Series for 15 New Zealand Wind Farms  

Science Conference Proceedings (OSTI)

Wind data at time scales from 10 min to 1 h are an important input for modeling the performance of wind farms and their impact on many countries’ national electricity systems. Planners need long-term realistic (i.e., meteorologically spatially and ...

Richard Turner; Xiaogu Zheng; Neil Gordon; Michael Uddstrom; Greg Pearson; Rilke de Vos; Stuart Moore

2011-12-01T23:59:59.000Z

427

Solar wind suprathermal electron Stahl widths across high-speed stream structures  

SciTech Connect

Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

Skoug, Ruth M [Los Alamos National Laboratory; Steinberg, John T [Los Alamos National Laboratory; Goodrich, Katherine A [Los Alamos National Laboratory; Anderson, Brett R [DARTMUTH UNIV.

2011-01-03T23:59:59.000Z

428

Remapping of the Wind Energy Resource in the Midwestern United States: Preprint  

DOE Green Energy (OSTI)

A recent increase in interest and development of wind energy in the Midwestern United States has focused the need for updating wind resource maps of this area. The wind resource assessment group at the National Renewable Energy Lab., a U.S. Department of Energy (DOE) laboratory, has produced updated high-resolution (1-km) wind resource maps for several states in this region. This abstract describes the computerized tools and methodology used by NREL to create the higher resolution maps.

Schwartz, M.; Elliot, D.

2001-12-19T23:59:59.000Z

429

SOLAR WIND HELIUM ABUNDANCE AS A FUNCTION OF SPEED AND HELIOGRAPHIC LATITUDE: VARIATION THROUGH A SOLAR CYCLE  

E-Print Network (OSTI)

SOLAR WIND HELIUM ABUNDANCE AS A FUNCTION OF SPEED AND HELIOGRAPHIC LATITUDE: VARIATION THROUGH A SOLAR CYCLE Justin C. Kasper,1 Michael L. Stevens, and Alan J. Lazarus Kavli Institute for Astrophysics of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind

Richardson, John

430

Correlated solar wind speed, density, and magnetic field changes at J. D. Richardson and C. Wang1  

E-Print Network (OSTI)

., in press, 2003. Wang, C., and J. D. Richardson, Energy partition between solar wind protons and pickup ionsCorrelated solar wind speed, density, and magnetic field changes at Voyager 2 J. D. Richardson December 2003. [1] The character of the solar wind plasma data observed by Voyager 2 recently changed

Richardson, John

431

New Mexico/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » New Mexico/Wind Resources/Full Version < New Mexico‎ | Wind Resources Jump to: navigation, search Print PDF New Mexico Wind Resources NewMexicoMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs.

432

North Dakota/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » North Dakota/Wind Resources/Full Version < North Dakota‎ | Wind Resources Jump to: navigation, search Print PDF North Dakota Wind Resources NorthDakotaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs.

433

Documenting Wind Speed and Power Deficits behind a Utility-Scale Wind Turbine  

Science Conference Proceedings (OSTI)

High-spatial-and-temporal-resolution radial velocity measurements surrounding a single utility-scale wind turbine were collected using the Texas Tech University Ka-band mobile research radars. The measurements were synthesized to construct the ...

Brian D. Hirth; John L. Schroeder

2013-01-01T23:59:59.000Z

434

Final Map Draft Comparison Report WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT  

E-Print Network (OSTI)

II Final Map Draft Comparison Report #12;WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT Tel: 978-749-9591 Fax: 978-749-9713 mbrower@awstruewind.com August 10, 2004 #12;2 WIND ENERGY RESOURCE issues. 1 Background In Task 2 of the project, five promising areas of the state for wind energy

435

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource  

E-Print Network (OSTI)

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract In times of increasing importance of wind power in the world's energy mix, this study focuses on a better

436

Comparison of Observed 10-m Wind Speeds to Those Based on Monin–Obukhov Similarity Theory Using IHOP_2002 Aircraft and Surface Data  

Science Conference Proceedings (OSTI)

Comparisons of 10-m above ground level (AGL) wind speeds from numerical weather prediction (NWP) models to point observations consistently show that model daytime wind speeds are slow compared to observations, even after improving model physics ...

Diane Strassberg; Margaret A. LeMone; Thomas T. Warner; Joseph G. Alfieri

2008-03-01T23:59:59.000Z

437

Novel sensorless generator control and grid fault ride-through strategies for variable-speed wind turbines and implementation on a new real-time simulation platform.  

E-Print Network (OSTI)

??The usage of MW-size variable-speed wind turbines as sources of energy has increased significantly during the last decade. Advantages over fixed-speed wind turbines include more… (more)

Yang, Sheng

2010-01-01T23:59:59.000Z

438

Temporal trend analyses of alpine data using North American Regional Reanalysis and in situ data: temperature, wind speed, precipitation, and derived blowing snow  

Science Conference Proceedings (OSTI)

Across the globe wind speed trends have shown a slight decline for in situ meteorological datasets. Yet few studies have assessed long-term wind speed trends for alpine regions or how such trends could influence snow transport and distribution. ...

Jamie D. Fuller; Nolan Doesken; Kelly Elder; Melinda Laituri; Glen E. Liston

439

A Nonstationary Extreme Value Analysis for the Assessment of Changes in Extreme Annual Wind Speed over the Gulf of St. Lawrence, Canada  

Science Conference Proceedings (OSTI)

Changes in the extreme annual wind speed in and around the Gulf of St. Lawrence (Canada) were investigated through a nonstationary extreme value analysis of the annual maximum 10-m wind speed obtained from the North American Regional Reanalysis (...

Y. Hundecha; A. St-Hilaire; T. B. M. J. Ouarda; S. El Adlouni; P. Gachon

2008-11-01T23:59:59.000Z

440

Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators  

E-Print Network (OSTI)

This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for mini...

Tang, Choon Yik; Jiang, John N

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development and Validation of High-Resolution State Wind Resource Maps for the United States (Poster)  

DOE Green Energy (OSTI)

A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15 -18, 2005 that provides an outline of the approach and process used for validating U.S. wind resource maps.

Elliott, D.; Schwartz, M.

2005-05-01T23:59:59.000Z

442

Development and Validation of High-Resolution State Wind Resource Maps for the United States (Poster)  

SciTech Connect

A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15 -18, 2005 that provides an outline of the approach and process used for validating U.S. wind resource maps.

Elliott, D.; Schwartz, M.

2005-05-01T23:59:59.000Z

443

China Resources Wind Power Development Co Ltd Hua Run | Open Energy  

Open Energy Info (EERE)

Hua Run Hua Run Jump to: navigation, search Name China Resources Wind Power Development Co Ltd (Hua Run) Place Shantou, Guangdong Province, China Zip 515041 Sector Wind energy Product A company engages in developing wind power project. References China Resources Wind Power Development Co Ltd (Hua Run)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Resources Wind Power Development Co Ltd (Hua Run) is a company located in Shantou, Guangdong Province, China . References ↑ "China Resources Wind Power Development Co Ltd (Hua Run)" Retrieved from "http://en.openei.org/w/index.php?title=China_Resources_Wind_Power_Development_Co_Ltd_Hua_Run&oldid=343528

444

Low Wind Speed Technology Phase II: Development of a 2-MW Direct-Drive Wind Turbine for Low Wind Speed Sites; Northern Power Systems  

SciTech Connect

This fact sheet describes a subcontract with Northern Power Systems (NPS) to develop and evaluate a 2-MW wind turbine that could offer significant opportunities for reducing the cost of energy (COE).

2006-03-01T23:59:59.000Z

445

WIND DATA REPORT Wellfleet, MA  

E-Print Network (OSTI)

/RERL_Fact_Sheet_6_Wind_resource_interpretation.pdf * 1 m/s = 2.237 mph. July 10, 2007 Renewable Energy Research Distributions Figure 3 - Wind Speed Distribution, March 1, 2007 ­ May 31, 2007 July 10, 2007 Renewable Energy Figure 5 - Diurnal Average Wind Speed, March 1, 2007 ­ May 31, 2007 July 10, 2007 Renewable Energy

Massachusetts at Amherst, University of

446

Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams  

E-Print Network (OSTI)

Isenberg, P.A. (eds. ) Solar Wind Nine, AIP Conf. Proc. 471,AT SOLAR MINIMUM Solar Wind Sources in the Late Decliningfor their high speed solar wind streams that dominate the

2009-01-01T23:59:59.000Z

447

Steady decline of east Asian monsoon winds, 19692000: Evidence from direct ground measurements of wind speed  

E-Print Network (OSTI)

Steady decline of east Asian monsoon winds, 1969­2000: Evidence from direct ground measurements winter monsoon but strengthen the summer monsoon, because of stronger warming over high-latitude land with the east Asian monsoon has significantly weakened in both winter and summer in the recent three decades

Chang, Chih-Pei

448

Solar wind iron abundance variations at solar wind speeds > 600 km s/sup -1/, 1972 to 1976  

SciTech Connect

We have analyzed the Fe/H ratios in the peaks of high speed streams (HSS) during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). We utilized the response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) onIMP-7 and 8 to solar wind iron ions at high solar wind speeds (V greater than or equal to 600 km sec/sup -1/), and compared our Fe measurements with solar wind H and He parameters from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 10/sup -5/, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS. There are, as well, factor of 2 variations between stream-averaged abundances for recurent HSS emanating from different coronal holes occurring on the sun on the same solar rotation. flare-related solar wind streams sometimes show Fe/H ratios enhanced by factors of 4 to 5 over coronal-hole associated, quite time streams. Over the period 1973 to 1976, a steady decrease in the average quitetime Fe/H ratio by a ractor approx. 4 is measured on both IMP-7 and 8.

Mitchell, D.G.; Roelof, E.C.; Bame, S.J.

1982-01-01T23:59:59.000Z

449

Design of State-Space-Based Control Algorithms for Wind Turbine Speed Regulation: Preprint  

DOE Green Energy (OSTI)

Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads.At the National Renewable Energy Laboratory, we are beginning to design control algorithms for regulation of turbine speed and power using state-space control designs. In this paper, we describe the design of such a control algorithm for regulation of rotor speed in full-load operation (region 3) for a two-bladed wind turbine. We base our control design on simple linear models of a turbine, which contain rotor and generator rotation, drivetrain torsion, and rotor flap degrees of freedom (first mode only). We account for wind-speed fluctuations using disturbance-accommodating control. We show the capability of these control schemes to stabilize the modeled turbine modes via pole placement while using state estimation to reduce the number of turbine measurements that are needed for these control algorithms. We incorporate these controllers into the FAST-AD code and show simulation results for various conditions. Finally, we report conclusions to this work and outline future studies.

Wright, A.; Balas, M.

2002-01-01T23:59:59.000Z

450

Low Wind Speed Technologies Annual Turbine Technology Update (ATTU) Process for Land-Based, Utility-Class Technologies  

SciTech Connect

The Low Wind Speed Technologies (LWST) Project comprises a diverse, balanced portfolio of industry-government partnerships structured to achieve ambitious cost of energy reductions. The LWST Project goal is: ''By 2012, reduce the cost of energy (COE) for large wind systems in Class 4 winds (average wind speed of 5.8 m/s at 10 m height) to 3 cents/kWh (in levelized 2002 dollars) for onshore systems.'' The Annual Turbine Technology Update (ATTU) has been developed to quantify performance-based progress toward these goals, in response to OMB reporting requirements and to meet internal DOE program needs for advisory data.

Schreck, S.; Laxson, A.

2005-06-01T23:59:59.000Z

451

Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines  

DOE Green Energy (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. 2 refs., 9 figs.

Hand, M.M. [National Renewable Energy Lab., Golden, CO (United States); Balas, M.J. [Univ. of Colorado, Boulder, CO (United States). Dept. of Aerospace Engineering Sciences

1997-11-01T23:59:59.000Z

452

Modelling renewable electric resources: A case study of wind  

DOE Green Energy (OSTI)

The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

Bernow, S.; Biewald, B.; Hall, J.; Singh, D. [Tellus Institute, Boston, MA (United States)

1994-07-01T23:59:59.000Z

453

Wind Shear and Resources at Elevated Heights: Indiana and Iowa Case Studies (Poster)  

DOE Green Energy (OSTI)

This poster discusses the results of an analysis of wind shear and resource characteristics data collected by tall towers in Indiana and Iowa.

Elliott, D.; Schwartz, M.; Scott, G.

2008-06-01T23:59:59.000Z

454

Continental U.S. State Wind Resource Potential Tables (RDF Transformat...  

Open Energy Info (EERE)

Continental U.S. State Wind Resource Potential Tables (RDF Transformation) Submitted by Woodjr on Fri, 02042011 - 14:19 A linked data (RDF) transformation of the...

455

UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project  

Open Energy Info (EERE)

b>  This project will provide solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy...

456

Wisconsin Low Wind Speed Turbine Project Third-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine V erification Program  

Science Conference Proceedings (OSTI)

This report describes the third-year operating experience at the 1.2-MW Low Wind Speed Turbine Project (LWSTP) in Glenmore, Wisconsin. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2001-12-06T23:59:59.000Z

457

The Impact of Radar Data on Short-Term Forecasts of Surface Temperature, Dewpoint Depression, and Wind Speed  

Science Conference Proceedings (OSTI)

A statistical system that uses surface observations and radar data to provide 1-, 3-, and 6-h forecasts of temperature, dewpoint depression, and wind speed is developed. Application of the system to independent data demonstrates that the radar ...

Emily K. Grover-Kopec; J. Michael Fritsch

2003-12-01T23:59:59.000Z

458

Retrieval of Surface Wind Speed and Aerosol Optical Depth over the Oceans from AVHRR Images of Sun Glint  

Science Conference Proceedings (OSTI)

This paper investigates the feasibility of recovering both the tropospheric aerosol loading and the surface wind speed from satellite measurements of the radiance within cloud free regions of sun glint over the ocean surface. The method relies on ...

D. M. O'Brien; R. M. Mitchell

1988-12-01T23:59:59.000Z

459

An Empirical Model for Predicting the Decay of Tropical Cyclone Wind Speed after Landfall over the Indian Region  

Science Conference Proceedings (OSTI)

An empirical model for predicting the maximum surface wind speed associated with a tropical cyclone after crossing the east coast of India is described. The model parameters are determined from the database of 19 recent cyclones. The model is ...

S. K. Roy Bhowmik; S. D. Kotal; S. R. Kalsi

2005-01-01T23:59:59.000Z

460

The Determination of Surface-Layer Stability and Eddy Fluxes Using Wind Speed and Vertical Temperature Gradient Measurements  

Science Conference Proceedings (OSTI)

Analytical relations are developed that relate the Monin-Obukhov parameter to a modified bulk Richardson number expressed in terms of measured wind speed and vertical temperature difference. Measured Monin-Obukhov parameters and Richardson ...

I. T. Wang

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource wind speed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Low Wind Speed Technology Phase II: Development of an Operations and Maintenance Cost Model for LWST; Global Energy Concepts  

SciTech Connect

This fact sheet describes a subcontract with Global Energy Concepts to evaluate real-world data on O&M costs and to develop a working model to describe these costs for low wind speed sites.

Not Available

2006-03-01T23:59:59.000Z

462

Technical Report - Cuba Wind Energy Resource Assessment | OpenEI  

Open Energy Info (EERE)

Cuba Wind Energy Resource Assessment Cuba Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for Cuba. (Purpose): To provide information on the wind resource potential within Cuba. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords Cuba documentation GIS NREL SWERA UNEP wind Data application/pdf icon Download Report (pdf, 54.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006 License License Other or unspecified, see optional comment below Comment Restrictions to use (Use Constraints): This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

463

Technical Report - Ghana Wind Energy Resource Assessment | OpenEI  

Open Energy Info (EERE)

Ghana Wind Energy Resource Assessment Ghana Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for Ghana. (Purpose): To provide information on the wind resource potential within Ghana. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords documentation GEF Ghana GIS NREL SWERA UNEP wind Data application/pdf icon Download Report (pdf, 54.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Restrictions to use (Use Constraints): This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, su