National Library of Energy BETA

Sample records for resource recovery facility

  1. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  2. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  3. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  4. Montgomery County Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource...

  5. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  6. SEMASS Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility SEMASS Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Plymouth County, Massachusetts Coordinates 41.9120406, -70.7168469...

  7. Pioneer Valley Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314, -72.6624209...

  8. Resource Recovery Opportunities at America’s Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at America’s Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  9. New Report Outlines Potential of Future Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    A new report from a workshop held jointly by the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the National Science Foundation (NSF) outlines a range of research and actions needed to transform today’s water treatment plants into water resource recovery facilities.

  10. Resource Conservation and Recovery Act (RCRA) facility assessment guidance

    SciTech Connect (OSTI)

    Rastatter, C.; Fagan, D.; Foss, D.

    1986-10-01

    Facilities that manage hazardous wastes are required to obtain permits under the Resource Conservation and Recovery Act (RCRA) of 1976. This guidance document informs RCRA permit writers and enforcement officials of procedures to be used in conducting RCRA Facility Assessments. The RCRA corrective-action program was established to investigate and require clean up of releases of hazardous wastes or constituents to the environment at facilities subject to RCRA permits. Releases to ground water, surface water, air, soil, and subsurface strata may be addressed.

  11. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon williamsbiomass2014.pdf More Documents ...

  12. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  13. Resource Conservation and Recovery Act

    Broader source: Energy.gov [DOE]

    DOE Headquarters provides technical assistance and guidance on newly promulgated regulations, and coordinates the review and advocates Departmental interests regarding proposed Resource Conservation and Recovery Act (RCRA) regulatory initiatives applicable to DOE operations.

  14. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Positive Water Resource Recovery Workshop Related Documents Energy-Positive Water Resource Recovery Workshop Report The Anaerobic Fluidized Bed Membrane Bioreactor for ...

  15. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water...

  16. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water ...

  17. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  18. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  19. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  20. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  1. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  2. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  3. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  4. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  5. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  6. Facilities, Partnerships, and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Partnerships, and Resources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  7. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  8. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  9. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  10. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  11. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  12. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  13. Planet Resource Recovery Inc formerly American Biodiesel Fuels...

    Open Energy Info (EERE)

    Planet Resource Recovery Inc formerly American Biodiesel Fuels Corp Jump to: navigation, search Name: Planet Resource Recovery, Inc. (formerly American Biodiesel Fuels Corp.)...

  14. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  15. Recovery Act Workers Demolish Facility Tied to Project Pluto History |

    Office of Environmental Management (EM)

    Department of Energy Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11.

  16. Energy-Positive Water Resource Recovery Workshop Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Report Energy-Positive Water Resource Recovery Workshop Report Workshop report for the Energy-Positive Water Resource Recovery Workshop hosted by the National Science Foundation, the U.S. Environmental Protection Agency, and the U.S. Department of Energy on April 28-29, 2015, in Arlington, Virginia. PDF icon epwrr_workshop_report.pdf More Documents & Publications Energy-Positive Water Resource Recovery Workshop Report Executive Summary Resource Recovery Opportunities at America's

  17. Optimal design for sustainable development of a material recovery facility

    Office of Scientific and Technical Information (OSTI)

    in a fast-growing urban setting (Journal Article) | SciTech Connect Optimal design for sustainable development of a material recovery facility in a fast-growing urban setting Citation Details In-Document Search Title: Optimal design for sustainable development of a material recovery facility in a fast-growing urban setting Installing material recovery facilities (MRFs) in a solid waste management system could be a feasible alternative to achieve sustainable development goals in urban areas

  18. Chestnut Ridge Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Chestnut Ridge Gas Recovery Sector Biomass Facility Type Landfill Gas Location Anderson County, Tennessee Coordinates 36.0809574, -84.2278796 Show Map Loading map......

  19. Dutchess County Resource Recovery Task Force report: Dutchess County Pyrolysis Program

    SciTech Connect (OSTI)

    None

    1980-07-01

    Dutchess County initiated development of a long-range master plan for Solid Waste Management in 1971. The plan included development of a resource recovery facility to service the municipalities in the County population center. Based on early recommendations, a pyrolysis facility employing Purox technology was to be implemented. A feasibility study, paid for by County funds was completed in 1975. The study provided siting recommendations, estimation of available waste, and preliminary facility design. Because of various considerations, the project was not developed. Under the Department of Energy grant, the County reassessed the feasibility of a resource recovery facility, with emphasis on confirming previous conclusions supporting the Purox technology, waste availability, energy recovery and sale and siting of the plant. The conclusions reached in the new study were: a resource recovery facility is feasible for the County; sufficient waste for such a facility is available and subject to control; While Purox technology was feasible it is not the most appropriate available technoloy for the County; that mass burning with steam recovery is the most appropriate technology; and that resource recovery while presently more expensive than landfilling, represents the only cost effective, energy efficient, and environmentally sound way to handle the solid waste problem in the County.

  20. Energy Positive Water Resource Recovery Workshop Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Energy Positive Water Resource Recovery Workshop Report Energy Positive Water Resource Recovery Workshop Report View the workshop presentations. Workshop Report: Water Resource Cover.jpg This report captures the proceedings of the Energy-Positive Water Resource Recovery (EPWRR) Workshop hosted jointly by the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the National Science Foundation (NSF) on April 28-29, 2015. The workshop gathered stakeholders

  1. Energy-Positive Water Resource Recovery Workshop Report Executive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive summary workshop report for the for the Energy-Positive Water Resource Recovery Workshop hosted by the National Science Foundation, the U.S. Environmental Protection ...

  2. North County Regional Resource Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility North County Regional Resource Sector Biomass Facility Type Municipal Solid Waste Location Palm Beach County, Florida Coordinates 26.6514503, -80.2767327 Show...

  3. Production of biomass fuel for resource recovery: Trash recycling in Dade County, Florida

    SciTech Connect (OSTI)

    Mauriello, P.J.; Brooks, K.G.

    1997-12-01

    Dade County, Florida has been in the forefront of resources recovery from municipal solid waste since the early 1980`s. The County completed its 3,000 tons per day (six days per week) refuse derived fuel waste-to-energy facility in 1982. The Resources Recovery facility is operated under a long-term agreement with Montenay-Dade, Ltd. The trash processing capability of this facility was upgraded in 1997 to process 860 tons per day (six days per week) of trash into a biomass fuel which is used off-site to produce electrical energy. Under current Florida law, facilities like trash-to-fuel that produce alternative clean-burning fuels for the production of energy may receive credit for up to one-half of the state`s 30 percent waste reduction goal.

  4. Energy Positive Water Resource Recovery Workshop Related Documents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Documents Energy Positive Water Resource Recovery Workshop Related Documents PDF icon WTE-Workshop-Report-Executive-Summary-DRAFT.pdf PDF icon WERF.ENER1C12-Executive-Summa...

  5. Energy Positive Water Resource Recovery Workshop Related Documents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Related Documents Energy Positive Water Resource Recovery Workshop Related Documents PDF icon WTE-Workshop-Report-Executive-Summary-DRAFT.pdf PDF icon WERF.ENER1C12-Executive-Summary.pdf PDF icon FCTO-BETO-2015-Workshop-Summary-Outline.pdf More Documents & Publications Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Report Energy-Positive Water Resource Recovery Workshop Report Waste-to-En

  6. RCRA Subtitle C TSD facilities and solvent recovery facilities: Section 313 of the Emergency Planning and Community Right-to-Know Act. Toxic chemical release inventory; Industry guidance

    SciTech Connect (OSTI)

    1999-01-01

    The purpose of this guidance document is to assist facilities in SIC code 4953 that are regulated under the Resource Conservation and Recovery Act (RCRA), Subtitle C and facilities in SIC code 7389 that are primarily engaged in solvent recovery services on a contract or fee basis. This document explains the EPCRA Section 313 and PPA Section 6607 reporting requirements (collectively referred to as the EPCRA Section 313) reporting requirements, and discusses specific release and other waste management activities encountered at many facilities in these industries. The objectives of this manual are to: clarify EPCRA Section 313 requirements for industry; increase the accuracy and completeness of the data being reported by RCRA Subtitle C TSD and solvent recovery facilities; and reduce the level of effort expended by those facilities that prepare an EPCRA Section 313 report.

  7. A Rich Resource Requires Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report / A Rich Resource Requires ... A Rich Resource Requires Recovery Posted: July 22, 2013 - 3:33pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovering uranium from manufacturing processes and from disassembled and dismantled weapons helps ensure an effective stockpile and is a key element of Y-12's weapons work. "We must optimize the use of this extremely valuable material since the quantity is limited," said Brian Gullett of Stockpile Programs. For Y-12, reusing manufacturing

  8. Recovery Act-Funded 90-m Blade Test Facility Commissioned May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011 Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011 May 20, 2011 - 3:06pm Addthis This is ...

  9. Energy-Positive Water Resource Recovery Workshop Report Executive Summary

    Broader source: Energy.gov [DOE]

    Executive summary workshop report for the for the Energy-Positive Water Resource Recovery Workshop hosted by the National Science Foundation, the U.S. Environmental Protection Agency, and the U.S. Department of Energy on April 28–29, 2015, in Arlington, Virginia.

  10. Facilities-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Glove box photo UMass Amherst PHaSE EFRC participants and collaborators have access to the main Photovoltaic & Optical Spectroscopy Facility in Conte B523524 and its...

  11. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect (OSTI)

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  12. Sumner County Solid-Waste Energy Recovery Facility. Volume 2. Performance and environmental evaluation. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    This report summarizes the operation of the Sumner County Solid Waste Energy Recovery Facility for a 2-year period, beginning with initial operation of the plant in December 1981. The 200-ton/day facility is located at Gallatin, Tennessee, and converts municipal solid waste into steam and eletricity. The report addresses physical and chemical properties of process and waste streams, other operating factors including thermal efficiency and availability, and the initial operating expenses and revenues. Two series of tests were carried out approximately one year apart. An environmental analysis was performed to determine the potential solids, liquid, and gaseous emissions from the plant. The results of the testing will be of interest to others who may be considering a resource recovery facility for the production of energy. The principal conclusions of the report are: The initial operation of the facility has been satisfactory. The ash drag system and air pollution control device must be extensively modified. Waste quantities and steam sales have been less than predicted causing some economic difficulties. Cadmium and lead concentrations in the ash have been high (especially fly ash). The long-range outlook for the facility continues to be optimistic. 10 refs., 6 figs., 34 tabs.

  13. Tribal Facilities Retrofits: Freeing Up Resources through Reduced Demand

    Energy Savers [EERE]

    up resources through reduced demand" Elias Duran - Facilities Manager ¡ Day to day operations of facilities ¡ Budget control over facilities ¡ Project needs for future space requirements ¡ Maintenance ¡ Capital improvements ¡ Brief history of the Tlingit & Haida Tribes ¡ Tour of our existing facilities ¡ Historical utility cost data ¡ Summary of Project Objectives ¡ Expected cost and emission reductions ¡ Strategic planning for future implementation Two separate Tribes United

  14. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    SciTech Connect (OSTI)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted

    2012-07-01

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

  15. Energy Positive Water Resource Recovery Workshop Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Presentations Energy Positive Water Resource Recovery Workshop Presentations PDF icon McCormick_4-28-2015.pdf PDF icon Luthy_NSF-EPA-DOE_Luthy_workshop_4-28_v2.pdf PDF icon Giles_Washington_DC_April_2015_WW.pdf PDF icon Kartik_Chandran_DOE_EPA_NSF_Workshop_Presentation_Slides.pdf PDF icon Kohl_2014-04-28_Kohl_NSF_slides_for_Tom_Speth.pdf PDF icon Fillmore_WERF_NSF_panel.4.29.2015.pdf PDF icon Shuman_NSF_Conference_2015.pdf PDF icon

  16. ProForce marks 65 years protecting Sandia resources, facilities...

    National Nuclear Security Administration (NNSA)

    ProForce marks 65 years protecting Sandia resources, facilities, people Monday, October ... Over the past 65 years, the force has changed in size and structure but its mission has ...

  17. NREL: Resource Assessment and Forecasting - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Facilities Photo of two researchers standing on a platform near a solar tracker at the Solar Radiation Research Laboratory. The Solar Radiation Research Laboratory gathers solar radiation and meteorological data on South Table Mountain. NREL's Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar radiation components since 1981. Since then, it has expanded its expertise to include integrated metrology, optics, electronics, and

  18. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    SciTech Connect (OSTI)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  19. Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery

    Office of Environmental Management (EM)

    Maryland Recovery Act State Memo Maryland Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maryland are supporting a broad range of clean energy projects, from energy efficiency and smart grid to advanced battery manufacturing. Through these investments, Maryland's businesses, universities, nonprofits, and local governments are creating quality jobs

  20. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility managers and Designers; Second Edition

    Broader source: Energy.gov [DOE]

    A nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities.

  1. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  2. Who can use the TRACC Facilities and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Who Can Use TRACC Facilities and Resources? Argonne National Laboratory has established the Transportation Research and Analysis Computing Center (TRACC) for the U.S. Department of Transportation (USDOT). TRACC provides high-performance computing resources based on advanced, massively parallel computing systems, primarily to the transportation research and development (R&D) community. Access to the TRACC cluster is limited to users having a TRACC allocation. Requests for TRACC computing

  3. Riveside Resource Recovery LLC Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    (MW) 0.90.9 MW 900 kW 900,000 W 900,000,000 mW 9.0e-4 GW Commercial Online Date 1997 Heat Rate (BTUkWh) 12739.4 References EPA Web Site1 Loading map......

  4. Imperial Valley Resource Recovery Plant Biomass Facility | Open...

    Open Energy Info (EERE)

    15,000 kW 15,000,000 W 15,000,000,000 mW 0.015 GW References Biomass Power Association (BPA) Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TER...

  5. RCRA (Resource Conservation and Recovery Act) inspection manual. Final report

    SciTech Connect (OSTI)

    Not Available

    1988-04-22

    The RCRA Inspection Manual is intended to assist RCRA field inspectors in their performance of Compliance Evaluation Inspections of RCRA generators, transporters, and treatment, storage, and disposal facilities. Included in the document are inspection procedures for both interim status and permitted facilities. The guidance also provides inspection checklists to aid the inspectors in their review of facility compliance. The Manual will assist RCRA inspectors and enforcement personnel to: conduct RCRA inspections efficiently and professionally, to determine facility compliance with RCRA regulations, adequately prepare for and conduct inspections at RCRA generators, transporters and TSD's, review facility permits for inspection of permitted facilities, and prepare quality inspection reports.

  6. Recovery Act:Direct Confirmation of Commercial Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Confirm heat flow potential with on-site surveys to drill deep resource wells Pilgrim Hot Springs, Alaska El Paso County Geothermal Project: Innovative Research Technologies ...

  7. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect (OSTI)

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  8. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    SciTech Connect (OSTI)

    1995-10-01

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  9. HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2007-01-15

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

  10. ARM - ARM Recovery Act Project FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActARM Recovery Act Project FAQs Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Recovery Act Project FAQs Why is ARM buying new instruments and equipment? The ARM Climate Research Facility (ARM)

  11. Development of a tritium recovery system from CANDU tritium removal facility

    SciTech Connect (OSTI)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  12. Data Management Resources at the Office of Science User Facilities...

    Office of Science (SC) Website

    ... for Advanced Accelerator Experimental Tests (FACET) SLAC Link External link Accelerator Test Facility (ATF) BNL Link External link Nuclear Physics (NP) Facility Host Institution ...

  13. Major UMass User Facilities-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility EPR Facility Keck Nanostructures Laboratory X-ray powder and single crystal diffraction Polymer characterization Gel permeation chromatography Electron microscopy...

  14. Energy Recovery Potential from Wastewater Utilities through Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    we Be Rich in Fuel or Knee Deep in Trash by 2025? July 30, ... Utilities - Industry - Engineering & Consulting Firms - ... Water Resource Recovery Facility What is the potential to ...

  15. Preventing Delayed Voltage Recovery with Voltage-Regulating Distributed Energy Resources

    SciTech Connect (OSTI)

    Adhikari, Sarina; Li, Fangxing; Li, Huijuan; Xu, Yan; Kueck, John D; Rizy, D Tom

    2009-01-01

    With the large use of residential air conditioner (A/C) motors during the summer peaks, the potential of motor stalling events have increased in the recent years. The stalled motor loads have been found to be the most important cause of delayed voltage recovery following severe system disturbances, such as a subtransmission fault. The proper modeling of the stalled motors is a very important factor in identifying the effect of these motors in voltage recovery after the fault. This paper presents a methodology for modeling the stalled low inertia induction motors based on a sample utility system and a small primary distribution circuit. The prevention of the stalling of motors plays an important role in maintaining the voltage profile of the system after system disturbances. Distributed Energy Resource (DER) is used to prevent the motor stalling events so that the delayed voltage recovery of the system may be avoided.

  16. Integrating remediation and resource recovery: On the economic conditions of landfill mining

    SciTech Connect (OSTI)

    Frändegård, Per Krook, Joakim; Svensson, Niclas

    2015-08-15

    Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is done using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material.

  17. Draft Guidance: Response, Remediation, and Recovery Checklist for Chemically Contaminated Facilities

    SciTech Connect (OSTI)

    Raber, E; Mancieri, S; Carlsen, T; Fish, C; Hirabayashi-Dethier, J; Intrepido, A; MacQueen, D; Michalik, R; Richards, J

    2007-09-04

    A key part of preparedness in the event of a chemical warfare agent (CWA) or toxic industrial chemical (TIC) release at a large facility, such as an airport or subway, is to develop a concept of operations that allows for an effective incident response and recovery. This document is intended as a component of the concept of operations and will be used in the Emergency Operations Center (EOC) as a decision tool for the Unified Command (UC). The Checklist for Facility Response, Remediation, and Recovery presented in this document is principally focused on the Consequence Management Phase (see Figure 1; LLNL 2007a and 2007b) of a chemical release. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, personnel responsible for managing chemical response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a UC in the event of a CWA or TIC attack. A UC is created when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or a UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase (see Figure 1), the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase shifts to the Consequence Management Phase, the work of characterization, decontamination, and facility clearance begins. There will likely be a coincident transition in organizational structure as well, and new remediation-focused groups, units, and personnel will be added as remediation needs are anticipated. In most cases, a UC would be formed, if not formed already, to direct the cleanup process jointly and to take ultimate responsibility for all cleanup decisions. The UC would likely include the Transportation Facility Manager or Emergency Operations Manager; representatives from state and local public health, environmental, and emergency management agencies; and Federal agencies, such as the U.S. Environmental Protection Agency.

  18. Analysis of material recovery facilities for use in life-cycle assessment

    SciTech Connect (OSTI)

    Pressley, Phillip N.; Levis, James W.; Damgaard, Anders; Barlaz, Morton A.; DeCarolis, Joseph F.

    2015-01-15

    Highlights: • Life-cycle assessment of solid waste management relies on accurate process models. • Material recovery facility (MRF) processes were modeled with new primary data. • Single stream, dual stream, pre-sorted, and mixed waste MRFs were considered. • MRF electricity consumption ranges from 4.7 to 7.8 kW h per Mg input. • Total cost ranges from $19.8 to $24.9 per Mg input. - Abstract: Insights derived from life-cycle assessment of solid waste management strategies depend critically on assumptions, data, and modeling at the unit process level. Based on new primary data, a process model was developed to estimate the cost and energy use associated with material recovery facilities (MRFs), which are responsible for sorting recyclables into saleable streams and as such represent a key piece of recycling infrastructure. The model includes four modules, each with a different process flow, for separation of single-stream, dual-stream, pre-sorted recyclables, and mixed-waste. Each MRF type has a distinct combination of equipment and default input waste composition. Model results for total amortized costs from each MRF type ranged from $19.8 to $24.9 per Mg (1 Mg = 1 metric ton) of waste input. Electricity use ranged from 4.7 to 7.8 kW h per Mg of waste input. In a single-stream MRF, equipment required for glass separation consumes 28% of total facility electricity consumption, while all other pieces of material recovery equipment consume less than 10% of total electricity. The dual-stream and mixed-waste MRFs have similar electricity consumption to a single-stream MRF. Glass separation contributes a much larger fraction of electricity consumption in a pre-sorted MRF, due to lower overall facility electricity consumption. Parametric analysis revealed that reducing separation efficiency for each piece of equipment by 25% altered total facility electricity consumption by less than 4% in each case. When model results were compared with actual data for an existing single-stream MRF, the model estimated the facility’s electricity consumption within 2%. The results from this study can be integrated into LCAs of solid waste management with system boundaries that extend from the curb through final disposal.

  19. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  20. Data Management Resources at the Office of Science User Facilities | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) Data Management Resources at the Office of Science User Facilities Funding Opportunities Funding Opportunities Home Grants & Contracts Support Award Search / Public Abstracts Find Funding Early Career Research Program Statement on Digital Data Management Suggested Elements for a Data Management Plan Frequently Asked Questions Resources at the Office of Science User Facilities Acknowledgements of Federal Support Contact Information Office of Science U.S.

  1. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    SciTech Connect (OSTI)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

  2. Resource Conservation and Recovery Act (RCRA) closure sumamry for the Uranium Treatment Unit

    SciTech Connect (OSTI)

    1996-05-01

    This closure summary has been prepared for the Uranium Treatment Unit (UTU) located at the Y-12 Plant in Oak Ridge, Tennessee. The actions required to achieve closure of the UTU area are outlined in the Closure Plan, submitted to and approved by the Tennessee Department of Environmental and Conservation staff, respectively. The UTU was used to store and treat waste materials that are regulated by the Resource Conservation and Recovery Act. This closure summary details all steps that were performed to close the UTU in accordance with the approved plan.

  3. Using Distributed Energy Resources, A How-To Guide for Federal Facility Managers

    SciTech Connect (OSTI)

    Distributed Utility Associates

    2002-05-01

    The Department of Energy's Federal Energy Management Program (FEMP) established the Distributed Energy Resources (DER) Program to assist Federal agencies in implementing DER projects at their facilities. FEMP prepared this How-To Guide to assist facility managers in evaluating potential applications and benefits. It provides step-by-step advice on how to carry out a Federal DER project. It also describes and explains DER applications and potential benefits in Federal facilities; DER technologies and how to match them to applications; a step-by-step approach to implementing projects; potential barriers and how to overcome them; and resources to assist you in implementing new DER projects.

  4. Laboratories for the 21st Century: Best Practices; Energy Recovery in Laboratory Facilities (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This guide regarding energy recovery is one in a series on best practices for laboratories. It was produced by Laboratories for the 21st Century ('Labs 21'), a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy. Laboratories typically require 100% outside air for ventilation at higher rates than other commercial buildings. Minimum ventilation is typically provided at air change per hour (ACH) rates in accordance with codes and adopted design standards including Occupational Safety and Health Administration (OSHA) Standard 1910.1450 (4 to 12 ACH - non-mandatory) or the 2011 American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Applications Handbook, Chapter 16 - Laboratories (6 to 12 ACH). While OSHA states this minimum ventilation rate 'should not be relied on for protection from toxic substances released into the laboratory' it specifically indicates that it is intended to 'provide a source of air for breathing and for input to local ventilation devices (e.g., chemical fume hoods or exhausted bio-safety cabinets), to ensure that laboratory air is continually replaced preventing the increase of air concentrations of toxic substances during the working day, direct air flow into the laboratory from non-laboratory areas and out to the exterior of the building.' The heating and cooling energy needed to condition and move this outside air can be 5 to 10 times greater than the amount of energy used in most office buildings. In addition, when the required ventilation rate exceeds the airflow needed to meet the cooling load in low-load laboratories, additional heating energy may be expended to reheat dehumidified supply air from the supply air condition to prevent over cooling. In addition to these low-load laboratories, reheat may also be required in adjacent spaces such as corridors that provide makeup air to replace air being pulled into negative-pressure laboratories. Various types of energy recovery devices and systems can substantially reduce heating and cooling energy required for conditioning spaces in laboratories. Heating and cooling systems can be downsized when energy recovery is used because these systems reduce peak heating and cooling requirements. Heating and cooling systems can also be downsized by capturing heat generated in high-load spaces and transferring it to spaces requiring reheat. There are many opportunities for energy recovery in laboratories. This guide includes descriptions of several air-to-air energy recovery devices and methods, such as using enthalpy wheels (Figure 1), heat pipes, or run-around loops in new construction. These devices generally recover energy from exhaust air. This recovered energy is used to precondition supply air during both cooling and heating modes of operation. In addition to air-to-air energy recovery options, this guide includes a description of a water-to-water heat recovery system that collects heat from high-load spaces and transfers it to spaces that require reheat. While air-to-air recovery devices provide significant energy reduction, in some laboratory facilities the amount of energy available in the exhaust air exceeds the pre-heat and pre-cooling needed to maintain supply air conditions. During these periods of time, controls typically reduce the energy recovery capacity to match the reduced load. If the energy recovered in the exhaust is not needed then it is rejected from the facility. By using a water-to-water recovery system, it is possible to significantly reduce overall building energy use by reusing heating or cooling energy generated in the building before it is rejected to the outdoors. Laboratory managers are encouraged to perform a life-cycle cost analysis of an energy-recovery technology to determine the feasibility of its application in their laboratory. Usually, the shortest payback periods occur when the heating and cooling load reduction provided by an energy recovery system allows the laboratory to install and use smaller heating (e.g., hot water or steam) and cooling (e.g., c

  5. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into horizontal production wells overcomes many of the problems associated with implementation of thermal gravity drainage processes in heterogeneous sands. In a steam-assisted gravity drainage (SAGD) well pattern, hydraulically fractured injectors were able to achieve significantly improved reservoir heating and improvements to oil-steam ratio. On the opposite side of the steam injection spectrum, steam often channels through high-permeability zones. Foamed steam stabilized by aqueous surfactants is promising to alter steam flow, but has yet to be tested and simulated under SAGD conditions. The mechanistic population balance method for describing foam flow was extended to a local equilibrium framework that reduces computational costs and is promising for simulation of the effects of foamed steam in 3D.

  6. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature Stories Videos Contact Calendar Health and

  7. Procedural guidance for reviewing exposure information under RCRA (Resource Conservation and Recovery Act) section 3019. Final report

    SciTech Connect (OSTI)

    Grogan, T.; Kayser, R.

    1986-09-26

    This guidance manual describes the procedures for permit writers in evaluating exposure information submitted under Resource Conservation and Recovery Act (RCRA) Section 3019. The integration of the review with existing RCRA permitting activities is also discussed. The document outlines procedures to follow in referring sites to the Agency for Toxic Substances and Disease Registry (ATSDR) for health evaluations.

  8. Permit applicants' guidance manual for exposure information requirements under RCRA (Resource Conservation and Recovery Act) Section 3019. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-07-03

    The purpose of this document is to provide owners and operators of hazardous-waste landfills and surface impoundments that are subject to permitting under the Resource Conservation and Recovery Act (RCRA) with guidance for submitting information on the potential for public exposure to hazardous wastes, as required by Section 3019 of RCRA.

  9. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  10. Distributed Energy Resources at Federal Facilities. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.

    2001-07-16

    This two-page overview describes how the use of distributed energy resources at Federal facilities is being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  11. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  12. Impact of Distributed Energy Resources on the Reliability of Critical Telecommunications Facilities: Preprint

    SciTech Connect (OSTI)

    Robinson, D. G.; Arent, D. J.; Johnson, L.

    2006-06-01

    This paper documents a probabilistic risk assessment of existing and alternative power supply systems at a large telecommunications office. The analysis characterizes the increase in the reliability of power supply through the use of two alternative power configurations. Failures in the power systems supporting major telecommunications service nodes are a main contributor to significant telecommunications outages. A logical approach to improving the robustness of telecommunication facilities is to increase the depth and breadth of technologies available to restore power during power outages. Distributed energy resources such as fuel cells and gas turbines could provide additional on-site electric power sources to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  13. Fast Flux Test Facility transition project resource loaded schedule. Revision 1

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1994-10-31

    Revision 1 of the Fast Flux Test Facility (FFTF) Transition Project Resource Loaded Schedule (RLS) provides detail to manage the major elements, project baseline and cost estimate for the FFF Transition Project within the Advanced Reactors Transition Program, comprised of Activity Data Sheets (ADS) 6640, 6641, and 6642. The scope includes all work in the Budget and Reporting categories of Program Integration (PI), Surveillance and Maintenance (S and M), and Deactivation/Compliance (D/C). The transition activities are necessary to bring the FFTF and related facilities to a safe deactivation state, while maintaining worker health and safety. The scope of ADS 6640 and 6642 is the FFTF Transition Project while the scope of ADS 6641 is the Hanford Site Nuclear Energy Legacies.

  14. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  15. Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011

    Broader source: Energy.gov [DOE]

    The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, now offers a full suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011.

  16. Recovery Act-Funded 90-m Blade Test Facility Commissioned May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011. The center is the first commercial large blade test...

  17. Small Business Awarded Contract for Recovery Act Work at DOE Waste Facility

    Broader source: Energy.gov [DOE]

    Louisiana small business to provide geosynthetic materials and installation services for expansion of the Department of Energy’s Environmental Management Waste Management Facility (EMWMF) on the Oak Ridge Reservation.

  18. Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis

    Broader source: Energy.gov [DOE]

    Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. Virginia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuel vehicles and the Thomas Jefferson National Accelerator Facility

  20. Impact of Distributed Energy Resources on the Reliability of a Critical Telecommunications Facility

    SciTech Connect (OSTI)

    Robinson, D.; Atcitty, C.; Zuffranieri, J.; Arent, D.

    2006-03-01

    Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages, as documented by analyses of Federal Communications Commission (FCC) outage reports by the National Reliability Steering Committee (under auspices of the Alliance for Telecommunications Industry Solutions). There are two major issues that are having increasing impact on the sensitivity of the power distribution to telecommunication facilities: deregulation of the power industry, and changing weather patterns. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. But does the diversity in power sources actually increase the reliability of offered power to the office equipment, or does the complexity of installing and managing the extended power system induce more potential faults and higher failure rates? This report analyzes a system involving a telecommunications facility consisting of two switch-bays and a satellite reception system.

  1. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect (OSTI)

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  2. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  3. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  4. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Thomas R. Wood; Joel Renner

    2010-09-01

    The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

  5. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

  6. Impact of distributed energy resources on the reliability of a critical telecommunications facility.

    SciTech Connect (OSTI)

    Robinson, David; Zuffranieri, Jason V.; Atcitty, Christopher B.; Arent, Douglas

    2006-03-01

    This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

  7. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  8. Design of a large-scale anaerobic digestion facility for the recovery of energy from municipal solid waste

    SciTech Connect (OSTI)

    Kayhanian, M.; Jones, D.

    1996-12-31

    The California Prison Industry Authority, in conjunction with the City of Folsom, operates a 100 ton/d municipal solid waste (MSW) recovery facility using inmate labor. Through manual sorting, all useful organic and inorganic materials are recycled for marketing. The remaining organic material will be further processed to remove hazardous and inert material and prepared as a feedstock for an anaerobic digestion process. The clean organic waste (approximately 78 ton/d) will then be shredded and completely mixed with sewage water prior feeding to the digester. Off gas from the digester will be collected as a fuel for the steam boiler or combusted in a waste gas burner. Steam will be injected directly into the digester for heating. The anaerobically digested material will be moved to compost area where it will be mixed with wood faction of yard waste and processed aerobically for the production of compost material as a soil amendment. Anaerobic digesters will be constructed in two phases. The first phase consists of the construction of one 26 ton/d digester to confirm the suitability of feeding and mixing equipment. Modifications will be made to the second and third digesters, in the second phase, based on operating experience of the first digester. This paper discusses important design features of the anaerobic digestion facility.

  9. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    SciTech Connect (OSTI)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-03-28

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  10. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future MissionFacilities FacilitiesTara Camacho-Lopez2016-04-06T18:06:13+00:00 National Solar Thermal ... experimental engineering data for the design, ...

  11. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  12. Resource Conservation and Recovery Act: Part B permit application. Volume 8, Revision 5

    SciTech Connect (OSTI)

    1995-01-01

    This is the tenth Annual Site Environmental Report (ASER), documenting the progress of environmental programs at the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP). The most significant change affecting the WIPP facility in 1993 was the cancellation of the Test Phase. All activities pertaining to the Test Phase will now be conducted at the Idaho National Engineering laboratory. Even though the cancellation of the Test Phase was a significant change in work scope for the WIPP, there are still numerous environmental monitoring and reporting activities that must be performed as a routine part of daily operations. These activities, and the WIPP's ability to demonstrate compliance with both state and federal environmental compliance requirements, are documented in this report. This report is a compilation and summarization of environmental data collected at the WIPP site.

  13. Preparation of waste analysis plans under the Resource Conservation and Recovery Act (Interim guidance)

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This document is organized to coincide with the suggested structure of the actual Waste Analysis Plans (WAP) discussed in the previous section. The contents of the remaining eleven chapters and appendices that comprise this document are described below: Chapter 2 addresses waste streams, test parameters, and rationale for sampling and analytical method selection; test methods for analyzing parameters; proceduresfor collecting representative samples; and frequency of sample collection and analyses. These are the core WAP requirements. Chapter 3 addresses analysis requirements for waste received from off site. Chapter 4addresses additional requirements for ignitable, reactive, or incompatible wastes. Chapter 5 addresses unit-specific requirements. Chapter 6 addresses special procedures for radioactive mixed waste. Chapter 7 addresses wastes subject to the land disposal restrictions. Chapter 8 addresses QA/QC procedures. Chapter 9 compares the waste analysis requirements of an interim status facility with those of a permitted facility. Chapter 10 describes the petition process required for sampling and analytical procedures to deviate from accepted methods, such as those identified in promulgated regulations. Chapter 11 reviews the process for modification of WAPs as waste type or handling practices change at a RCRA permitted TSDF. Chapter 12 is the list of references that were used in the preparation of this guidance. Appendix A is a sample WAP addressing physical/chemical treatment and container storage. Appendix B is a sample WAP addressing an incinerator and tank systems. Appendix C discusses the relationship of the WAP to other permitting requirements and includes specific examples of how waste analysis is used to comply with certain parts of a RCRA permit. Appendix D contains the exact wording for the notification/certification requirements under theland disposal restrictions.

  14. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    SciTech Connect (OSTI)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  15. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  16. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  17. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    SciTech Connect (OSTI)

    Jody, B. J.; Daniels, E. J.; Duranceau, C. M.; Pomykala, J. A.; Spangenberger, J. S.

    2011-02-22

    Each year, more than 25 million vehicles reach the end of their service life throughout the world, and this number is rising rapidly because the number of vehicles on the roads is rapidly increasing. In the United States, more than 95% of the 10-15 million scrapped vehicles annually enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, over 75% of automotive materials, primarily the metals, are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobile hulks, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials - commonly called shredder residue - constitutes about 25% of the weight of the vehicle, and it is disposed of in landfills. This practice is not environmentally friendly, wastes valuable resources, and may become uneconomical. Therefore, it is not sustainable. Over the past 15-20 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles, including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has been focused on developing technology to separate and recover non-metallic materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lightweighting materials - primarily polymers, polymer composites, high-strength steels, and aluminum - will be used in manufacturing these vehicles. Many of these materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals that are recovered. In addition, the number of hybrid vehicles and electric vehicles on the road is rapidly increasing. This trend will also introduce new materials for disposal at the end of their useful lives, including batteries. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems. Argonne National Laboratory (Argonne), the Vehicle Recycling Partnership, LLC. (VRP) of the United States Council for Automotive Research, LLC. (USCAR), and the American Chemistry Council-Plastics Division (ACC-PD) are working to develop technology for recovering materials from end-of-life vehicles, including separating and recovering polymers and residual metals from shredder residue. Several other organizations worldwide are also working on developing technology for recycling materials from shredder residue. Without a commercially viable shredder industry, our nation and the world will most likely face greater environmental challenges and a decreased supply of quality scrap, and thereby be forced to turn to primary ores for the production of finished metals. This will result in increased energy consumption and increased damage to the environment, including increased greenhouse gas emissions. The recycling of polymers, other organics, and residual metals in shredder residue saves the equivalent of over 23 million barrels of oil annually. This results in a 12-million-ton reduction in greenhouse gas emissions. This document presents a review of the state-of-the-art in the recycling of automotive materials.

  18. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  19. Resource Conservation and Recovery Act: Part B Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report, part of the permit application for the WIPP facility, presents engineering drawings and engineering change orders for the facility. (CBS)

  20. Resources

    Broader source: Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  1. An evaluation of known remaining oil resources in the state of California. Volume 2, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As a part of this larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to California`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of California and the nation as a whole.

  2. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    SciTech Connect (OSTI)

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  3. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As a pre-existing structure in a location with excellent offshore wind resources, the Chesapeake Light Tower provides a cost-effective alternative to building a new platform large...

  4. Guidebook to excellence: A directory of federal facilities and other resources for mathematics and science education improvement. [Contains acronym list

    SciTech Connect (OSTI)

    Shipman, T.

    1993-01-01

    The Guidebook to Excellence is a State-by-State directory of Federal facilities and other resources for improving mathematics and science education. This directory, the first of its kind, is being published to assist educators, parents, and students across the country in attaining the National Education Goals, particularly Goal No. 4: By the year 2000, US students will be first in the world in science and mathematics achievement. Some of the larger research facilities in this directory, such as those of NASA, EPA and the Departments of Energy, Commerce, and the Interior, provide a wide range of education programs, and some offer students and teachers hands on experience with state-of-the-art research in world class facilities. Other sites, such as those of the Department of Transportation or Agriculture may be quite small, but can provide assistance in a single field of research or workforce expertise. Also listed are individuals responsible for State or regional coordination of major programs, such as the US Department of Education's Eisenhower Mathematics and Science Education Program, or the National Science Foundation's Statewide Systemic Initiative Program. In addition, each State listing includes facilities or coordinators providing regional assistance from neighboring States.

  5. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  6. An evaluation of known remaining oil resources in the state of California: Project on advanced oil recovery and the states. Volume 2

    SciTech Connect (OSTI)

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of California and the nation as a whole.

  7. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    SciTech Connect (OSTI)

    Silvas, Alissa J.

    2015-01-14

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): • CAU 90, Area 2 Bitcutter Containment • CAU 91, Area 3 U-3fi Injection Well • CAU 92, Area 6 Decon Pond Facility • CAU 110, Area 3 WMD U-3ax/bl Crater • CAU 111, Area 5 WMD Retired Mixed Waste Pits • CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site, which will be prepared in approximately June 2015. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. It is recommended to continue inspections and monitoring as scheduled.

  8. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect (OSTI)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  9. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  10. Holtville, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Generation Facilities in Holtville, California GEM Resources II Geothermal Facility GEM Resources III Geothermal Facility Ormesa I Geothermal Facility Ormesa IE Geothermal...

  11. Paducah Site Federal Facility Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Facility Agreement Paducah Site Federal Facility Agreement The Federal Facility Agreement (FFA) governs the corrective action/response action process from site investigation through site remediation as agreed to by DOE, the U.S. Environmental Protection Agency, and Kentucky under the Comprehensive Environmental Response, Compensation, and Liability Act; the Resource Conservation and Recovery Act; Kentucky Revised Statute 224; and other laws and regulations identified in the FFA. PDF icon

  12. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  13. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  14. Resources - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  15. Facilities, Partnerships, and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment

  17. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    SciTech Connect (OSTI)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-11-15

    Highlights: WtE plants are to be optimized beyond current acceptance levels. Emission and consumption data before and after 5 technical improvements are discussed. Plant performance can be increased without introduction of new techniques or re-design. Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation before and after optimisation as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  18. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  19. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    tax credits and grants: 5 For total Recovery ... natural resources, including oil, gas, solar, wind, and hydroelectric power. ... expanding the home efficiency industry in ...

  20. Recovery Act State Memos Nebraska

    Broader source: Energy.gov (indexed) [DOE]

    tax credits and grants: 3 For total Recovery ... natural resources, including oil, coal, wind, and hydroelectric power. ... which offers consumer rebates for purchasing ...

  1. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known cultural resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.

  2. Resource Recovery OpportunitiesatAmericas Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... reduction Operational Drivers and Trends - Focus on solids and WRRF's as a ... - Demand for better public outreach and education - Leverage multi-organizational ...

  3. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30

    The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

  4. ASCR Recovery Act Projects | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miscellaneous » ASCR Recovery Act Projects Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources ASCR Discovery Monthly News Roundup News Archives ASCR Program Documents ASCR Workshops and Conferences ASCR Presentations 100Gbps Science Network Related Links Contact Information Advanced Scientific Computing Research U.S. Department of

  5. Improved recovery from Gulf of Mexico reservoirs. Volume III (of 4): Characterization and simulation of representative resources. Final report, February 14, 1995--October 13, 1996

    SciTech Connect (OSTI)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    Significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. In an effort to illustrate the impact that these new technologies and sources of information can have upon the estimates of recoverable oil in the Gulf of Mexico, additional and detailed data was collected for two previously studied reservoirs: a South March Island reservoir operated by Taylor Energy and Gulf of Mexico reservoir operated by Mobil, whose exact location has been blind-coded at their request, and an additional third representative reservoir in the Gulf of Mexico, the KEKF-1 reservoir in West Delta Block 84 Field. The new data includes reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data was used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation also provided additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressures, and water compatibility. Geologic investigations were also conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. These results were also used, in part, to assist in the recharacterization of these reservoirs.

  6. Federal-facilities Hazardous-Waste Compliance Manual. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-09

    In the continuing effort to achieve a higher level of compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) at Federal facilities, the Federal Facilities Hazardous Waste Compliance Office (FFHWCO) has developed the Federal Facilities Hazardous Waste Compliance Manual. The manual includes an overview of the Federal-facilities hazardous-waste compliance program, relevant statutory authorities, model provisions for Federal facility agreements, enforcement and other applicable guidance, Federal facilities docket and NPL listings, data-management information, selected DOD and DOE program guidance, and organization charts and contacts. This compendium is intended to be used as a reference by Regional RCRA and CERCLA enforcement personnel and Regional Counsels, particularly as an orientation guide for new Federal facilities staff.

  7. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2009 [Facility News] Arrival of Recovery Act Funds Sets Wheels In Motion Bookmark and Share So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. Through the American Recovery and Reinvestment Act of 2009 (aka stimulus), the Department of Energy's Office of Science received $1.2 billion. In late May, DOE released approximately $54 million-90 percent-of the $60 million allocated to the ARM

  9. Nebraska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nebraska Recovery Act State Memo Nebraska has substantial natural resources, including oil, coal, wind, and hydro electric power. The American Recovery & Reinvestment Act (ARRA) is ...

  10. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    SciTech Connect (OSTI)

    1996-08-01

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  11. Polk County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    IRFA Iowa Stored Energy Park Energy Generation Facilities in Polk County, Iowa Metro Methane Recovery Facility Biomass Facility Places in Polk County, Iowa Alleman, Iowa Altoona,...

  12. Lebanon County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Energy Generation Facilities in Lebanon County, Pennsylvania Lebanon Methane Recovery Biomass Facility Places in Lebanon County, Pennsylvania Annville,...

  13. Litchfield County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Capital Energy Generation Facilities in Litchfield County, Connecticut New Milford Gas Recovery Biomass Facility Places in Litchfield County, Connecticut Bantam,...

  14. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  15. Calcined solids storage facility closure study

    SciTech Connect (OSTI)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  16. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect (OSTI)

    Tran, Paul

    2013-02-28

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  17. CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES

    SciTech Connect (OSTI)

    HOPKINS, A.M.

    2006-03-17

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP.

  18. Resource Conservation and Recovery Act, Part B Permit Application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report, Part B ( Vol. 2) of the permit application for the WIPP facility, contains information related to the WIPP site on hydrology, geology, maps, and rock salt properties.

  19. Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

  20. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 7: Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

  1. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  2. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down ...

  3. Recovery Act State Memos New Hampshire

    Broader source: Energy.gov (indexed) [DOE]

    tax credits and grants: 1 For total Recovery ... substantial natural resources, including wind, biomass, and hydroelectric power. ... which offers consumer rebates for ...

  4. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. The present invention relates to recovery of metals. More specifically, the present ...

  5. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  6. One million served: Rhode Island`s recycling facility

    SciTech Connect (OSTI)

    Malloy, M.G.

    1997-11-01

    Rhode Island`s landfill and adjacent materials recovery facility (MRF) in Johnston, both owned by the quasi-public Rhode Island Resource Recovery Corp. (RIRRC, Johnston), serve the entire state. The $12-million recycling facility was built in 1989 next to the state`s sole landfill, the Central Landfill, which accepts only in-state trash. The MRF is operated for RIRRC by New England CRInc. (Hampton, N.H.), a unit of Waste Management, Inc. (WMI, Oak Brook, Ill.). It handles a wide variety of materials, from the usual newspaper, cardboard, and mixed containers to new streams such as wood waste, scrap metal, aseptic packaging (milk and juice boxes), and even textiles. State municipalities are in the process of adding many of these new recyclable streams into their curbside collection programs, all of which feed the facility.

  7. American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-05-31

    This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  8. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  9. Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613

  10. High Current Energy Recovery Linac at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  11. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Chapter D, Appendix D1 (beginning), Revision 3

    SciTech Connect (OSTI)

    Lappin, A. R.

    1993-03-01

    The Waste Isolation Pilot Plant (WIPP), which is designed for receipt, handling, storage, and permanent isolation of defense-generated transuranic wastes, is being excavated at a depth of approximately 655 m in bedded halites of the Permian Salado Formation of southeastern New Mexico. Site-characterization activities at the present WIPP site began in 1976. Full construction of the facility began in 1983, after completion of ``Site and Preliminary Design Validation`` (SPDV) activities and reporting. Site-characterization activities since 1983 have had the objectives of updating or refining the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in WIPP performance assessment. This report has four main objectives: 1. Summarize the results of WIPP site-characterization studies carried out since the spring of 1983 as a result of specific agreements between the US Department of Energy and the State of New Mexico. 2. Summarize the results and status of site-characterization and facility-characterization studies carried out since 1983, but not specifically included in mandated agreements. 3. Compile the results of WIPP site-characterization studies into an internally consistent conceptual model for the geologic, hydrologic, geochemical, and structural behavior of the WIPP site. This model includes some consideration of the effects of the WIPP facility and shafts on the local characteristics of the Salado and Rustler Formations. 4. Discuss the present limitations and/or uncertainties in the conceptual geologic model of the WIPP site and facility. The objectives of this report are limited in scope, and do not include determination of whether or not the WIPP Project will comply with repository-performance criteria developed by the US Environmental Protection Agency (40CFR191).

  12. Greening Federal Facilities: An Energy, Environmental, and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Resource Guide for Federal Facility managers and Designers; Second Edition Greening Federal Facilities: An Energy, Environmental, and Economic Resource ...

  13. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  14. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  15. Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2010 [Facility News] ARM Data Management Facility Completes Upgrades from Recovery Act Funding Bookmark and Share The new bank of computers in the front two cabinets will replace the older systems and increase the DMF processing and storage capacity up to 10 times. The ARM Data Management Facility (DMF) is the initial collection point for raw data from all the ARM sites. In June, the DMF completed installing and testing $643,000 of new computers and equipment purchased through the American

  17. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  18. Kenosha County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Energy Generation Facilities in Kenosha County, Wisconsin Pheasant Run Landfill Gas Recovery Biomass Facility Places in Kenosha County, Wisconsin Bristol,...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2015 [Facility News] New Science Board Members Tackle ARM's Expanding Landscape Bookmark and Share With facilities around the world hosting field campaigns on a regular basis, the ARM Climate Research Facility continues to be an important resource to the scientific community. Thanks to the vigilance of the ARM Science Board, the ARM Facility is able to support quality science with over 70 campaigns a year. Comprised of highly-respected scientists from the external climate research community,

  20. Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site |

    Office of Environmental Management (EM)

    Department of Energy Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site October 26, 2011 - 8:14am Addthis Brandon Henderson checks a pump in the water treatment facility at the Paducah Gaseous Diffusion Plant. The former Recovery Act engineer now works for the U.S. Enrichment Corp. Brandon Henderson checks a pump in the water treatment facility at the Paducah Gaseous Diffusion Plant. The former Recovery

  1. Request for modification of 200 Area effluent treatment facility final delisting

    SciTech Connect (OSTI)

    BOWMAN, R.C.

    1998-11-19

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

  2. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    SciTech Connect (OSTI)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.; Thoms, Robert L.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

  3. Recovery | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Recovery NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder

  4. NREL: Resource Assessment and Forecasting - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email address: Your message: Send Message Printable Version Resource Assessment & Forecasting Home Capabilities Facilities Working with Us Research Staff Data & Resources Did...

  5. Orlando, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Florida 3 Energy Generation Facilities in Orlando, Florida 4 References US Recovery Act Smart Grid Projects in Orlando, Florida Intellon Corporation Smart Grid Project Registered...

  6. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy.

  7. Federal Memorandum of Understanding for Hydropower/Resources...

    Open Energy Info (EERE)

    Group Participating Agencies Resources MOU Related Resources Hydropower Resources Assessment at Existing Reclamation Facilities An Assessment of Energy Potential at Non-Powered...

  8. EFRC Resources-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Resources EFRC map Last update 30 April 2015. The following links mostly provide information about accessing specialty equipment and the main instrument facilities that were created by PHaSE during 2009-2015. The last three links guide readers to information that is useful to anyone seriously interested in photovoltaics. Photovoltaic & Spectroscopy Facility Specialty Equipment for Electronic Materials Facility User Reservation Site NREL AM1.5 Solar Radiance Standard NREL Solar Cell

  9. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  10. Tribal Facilities Retrofits

    Energy Savers [EERE]

    up resources through reduced demand" Elias Duran - Property Manager  Day to day operations of facilities  Budget control over facilities  Project needs for future space requirements  Maintenance  Capital improvements  Brief history of the Tlingit & Haida Tribes  Tour of our Juneau facilities  Historical utility cost data  Summary of Project Objectives  Expected cost and emission reductions  Strategic planning for future implementation Two separate

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant

  12. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    Title: Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  13. Business Owners: Prepare a Business Recovery Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a ... Identify your critical business functions-What resources and personnel will you need to ...

  14. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects ... and a National Geothermal Data System, Resource Assessment and Classification System. ...

  15. North Dakota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including ... North Dakota to play an important role in the new energy economy of the future. ...

  16. New Hampshire Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Hampshire Recovery Act State Memo New Hampshire has substantial natural resources, ... New Hampshire to play an important role in the new energy economy of the future. ...

  17. Rhode Island Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including ... Rhode Island to play an important role in the new energy economy of the future. ...

  18. Energy Recovery Council (ERC) Wast to Energy (WTE) | Open Energy...

    Open Energy Info (EERE)

    Organization: Energy Recovery Council (ERC) Sector: Energy Focus Area: Biomass, - Waste to Energy Phase: Create a Vision Resource Type: Dataset, Publications, Guidemanual...

  19. Characterization and Recovery of Rare Earths from Coal and By...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characterization and Recovery of Rare Earths from Coal and By-Products ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect (OSTI)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  1. Pretreatment options for waste-to-energy facilities

    SciTech Connect (OSTI)

    Diaz, L.F.; Savage, G.M.

    1996-12-31

    This paper describes various options available for processing MSW before the material is introduced to waste-to-energy facilities. Specifically, the paper reviews the type of equipment currently available for the recovery of resources from the waste stream. In addition, the paper discusses other matters which in many cases are ignored but are extremely important for the design of the processes. Some of these matters include the use of reliable waste characterization data during conceptual design and definition of the properties and specifications of the recovered materials and/or energy forms (e.g., RDF). Finally, the paper discusses other factors that have a critical impact on the facility such as potential environmental consequences of pretreatment of the waste prior to its combustion in waste-to-energy facilities.

  2. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  3. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy. Through these investments, Arizona's businesses, universities,

  4. User Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Print Text Size: A A A

  5. Uranium Resources Inc URI | Open Energy Information

    Open Energy Info (EERE)

    exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References: Uranium Resources, Inc. (URI)1 This article...

  6. Hartford County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Systems Connecticut Light and Power DBS Energy Inc Energy Recovery Associates Infinity Fuel Cell and Hydrogen National Energy Resource Corporation Pioneer Valley Photovoltaics...

  7. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect (OSTI)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  8. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science

  9. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's resource assessment and forecasting research supports industry, government, and academia by providing renewable energy resource measurements, models, maps, and support services. These resources are used to plan and develop renewable energy technologies and support climate change research. Learn more about NREL's resource assessment and forecasting research: Capabilities Facilities Research staff Data and resources. Resource assessment and forecasting research is primarily performed at

  10. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect (OSTI)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  11. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  12. Bonneville Power Administration Program Specific Recovery Plan | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan PDF icon Microsoft Word - PSRP May 15 2009 _BPA_ Final.docx More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Before the House Natural Resources Subcommittee on Water and Power Western Area Power Administration Borrowing Authority, Recovery Act

  13. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  14. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  15. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  16. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  17. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique facilities CMI recent presentations Photographs via Flick'r: Critical Materials Institute, The Ames Laboratory Videos from The Ames Laboratory Webinars from Colorado School of Mines To offer comments on the CMI website or to ask questions, please contact us via e-mail at CMIdirector@ameslab.gov or call 515-296-4500.

  18. NP User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  19. FES User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FES User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  20. ASCR User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  1. BER User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  2. Using the Street and Parking Facility Lighting Retrofit Financial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Webcasts Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool Using the Street and Parking Facility Lighting Retrofit ...

  3. Calendar Year 2007 Resource Conservation and Recovery Act Annual Monitoring Report for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee - RCRA Post-Closure Permit Nos. TNHW-113, TNHW-116, and TNHW-128

    SciTech Connect (OSTI)

    Elvado Environmental

    2008-02-01

    This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardous waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the CRSDB, CRSP, and KHQ that differ from those established under the expired PCP, including modified suites of laboratory analytes (RCRA groundwater target compounds) for each site and annual rather than semiannual sampling frequencies for the CRSDB and KHQ. The new PCP also specifies the RCRA post-closure groundwater monitoring requirements for the ECRWP, a closed TSD unit that was not addressed in the expired PCP.

  4. California Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Recovery Act State Memo California Recovery Act State Memo California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and

  5. Texas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Texas Recovery Act State Memo Texas Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Texas are supporting a broad range of clean energy projects, from carbon capture and storage to energy efficiency, the smart grid, solar, geothermal, and biomass projects.

  6. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  7. West Virginia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Virginia Recovery Act State Memo West Virginia Recovery Act State Memo West Virginia has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in West Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid, to carbon capture and storage, transportation

  8. Hawaii Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments,

  9. Illinois Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois Recovery Act State Memo Illinois Recovery Act State Memo Illinois has substantial natural resources, including coal, oil, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Illinois are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, carbon capture and storage, and environmental cleanup, as

  10. Maine Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine Recovery Act State Memo Maine Recovery Act State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maine are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind. Through these investments, Maine's businesses,

  11. Nevada Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada has substantial natural resources, including geothermal, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nevada are supporting a broad range of clean energy projects from energy efficiency and the smart grid to geothermal, advanced battery manufacturing, and environmental

  12. Uranium at Y-12: Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and configurations and handling uranium in almost any form, including oxides and liquids (see A Rich Resource Requires Recovery). Y-12 has the equipment and expertise to recover uranium that is present in filters, wipes, mop water and elsewhere. For many salvage materials, the uranium is extracted and then manipulated into a uranyl

  13. Alabama Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  14. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these

  15. Arkansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy.

  16. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  17. NREL: Energy Systems Integration Facility - Fixed Equipment and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fixed Equipment and Experimental Resources The Energy Systems Integration Facility hosts an array of fixed equipment and experimental resources to support component and system...

  18. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  19. National Security Facility (NSF) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facility (NSF) National Security Facility (NSF) Argonne National Laboratory's National Security Facility (NSF) is a flexible, state-of-the-art secure user facility that contains multiple national security networks, video teleconference capability, high-resolution graphics support, a fully powered and cooled data center, multi-level training facilities, and conferencing facilities. The NSF provides tools and resources to enable and strengthen connections between government

  20. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  1. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 181 Implementation Challenges in Deployment of an Energy Security Microgrid for Army Reserve Facilities located on the Former Fort Devens Army Base

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30

    This documents reports on a request for technical assistance from Fort Devens to analyze procurement of energy from nearby renewable generating resources.

  2. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  3. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  4. Corrosion within the Z-Bed Recovery Systems at the Savannah River...

    Office of Environmental Management (EM)

    Corrosion within the Z-Bed Recovery Systems at the Savannah River Site's Tritium Facilities Corrosion within the Z-Bed Recovery Systems at the Savannah River Site's Tritium...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14, 2012 [Education, Facility News] ARM Education Receives Seal of Approval Bookmark and Share Resources selected by the Climate Literacy and Energy Awareness Network (CLEAN) must pass an extensive peer-review process to verify the accuracy and currency of the science. ARM's lesson plan, "Effects of Solar Radiation on Land and Sea" was recently selected for inclusion in the NSF-funded Climate Literacy and Energy Awareness Network's (CLEAN) collection of educational resources. Receipt

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 [Education, Facility News] ARM's Educational Outreach Recognized Bookmark and Share Resources selected by the Climate Literacy and Energy Awareness Network (CLEAN) must pass an extensive peer-review process to verify the accuracy and relevance of the science. Resources selected by the Climate Literacy and Energy Awareness Network (CLEAN) must pass an extensive peer-review process to verify the accuracy and relevance of the science. ARM's lesson plan, "Thermal Expansion of

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 15, 2008 [Facility News] Global Earth Observations Portal Provides Gateway to ARM Data Bookmark and Share The GEOSS is simultaneously addressing nine areas of critical importance to society, ranging from managing energy resources and promoting sustainable agriculture to improving weather forecasts and responding to climate change and its impacts. The GEOSS is simultaneously addressing nine areas of critical importance to society, ranging from managing energy resources and promoting

  8. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  9. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

  10. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration User Facilities collaborationassetsimagesicon-collaboration.jpg User Facilities A new research frontier awaits Our door is open and we thrive on mutually...

  11. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility...

  12. PP-235 Sempra Energy Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sempra Energy Resources to construct, operate, and maintain electric transmission facilities at the U.S-Mexican border. PDF icon PP-235 Sempra Energy Resources More Documents & ...

  13. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  14. High Current Energy Recovery Linac at BNL

    SciTech Connect (OSTI)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  15. Lake County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2 Climate Zone Subtype A. US Recovery Act Smart Grid Projects in Lake County, Florida City of Leesburg, Florida Smart Grid Project Energy Generation Facilities in Lake County,...

  16. Gwinnett County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Places in Gwinnett County, Georgia Auburn, Georgia Berkeley Lake, Georgia Braselton, Georgia Buford, Georgia Dacula, Georgia Duluth, Georgia...

  17. Hendricks County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bridges Gas Recovery Biomass Facility Places in Hendricks County, Indiana Amo, Indiana Avon, Indiana Brownsburg, Indiana Clayton, Indiana Coatesville, Indiana Danville, Indiana...

  18. NREL: Photovoltaics Research - Science and Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Facility Photo of the Science and Technology Facility (S&TF) at NREL. NREL's Science and Technology Facility (S&TF) has a sustainable and energy efficient design and will support solar cell, thin film, and nanostructure research. Solar cell, thin film, and nanostructure research are conducted in our Science and Technology Facility (S&TF) with the benefits of a forty percent reduction in energy use compared to standard laboratory buildings; energy recovery for

  19. Earthquake damage to underground facilities (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... However, the risk to subsurface facilities cannot be judged by applying intensity ratings ...

  20. ALCF Acknowledgment Policy | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User ...

  1. Ormesa I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area East Mesa Geothermal Area Geothermal Region Gulf of California Rift Zone Plant Information Facility Type Binary Owner Ormat Number of...

  2. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    SciTech Connect (OSTI)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab.

  3. Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This document contains compiled data from the DOE Handbook on Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear facilities. Source data and example facilities utilized, such as the Plutonium Recovery Facility, are included.

  4. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    SciTech Connect (OSTI)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated to what would have been the added municipal (community) management costs involved with maintaining closed landfills. (2) With greater quantities of recovered material being returned to and integrated into manufacturing and the marketplace, reduced demand upon virgin wood sources could help lead the way to promoting improved relations and environmental balance between producers and consumers further expanding the value of our natural resource without adding environmental burden.

  5. Recovery Act State Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act ...

  6. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  7. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  8. Feasibility of establishing and operating a generic oil shale test facility

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The December 19, 1985, Conference Report on House Joint Resolution 465, Further continuing appropriations for Fiscal Year 1986, included instruction to DOE to conduct a feasibility study for a generic oil shale test facility. The study was completed, as directed, and its findings are documented in this report. To determine the feasibility of establishing and operating such a facility, the following approach was used: examine the nature of the resource, and establish and basic functions associated with recovery of the resource; review the history of oil shale development to help put the present discussion in perspective; describe a typical oil shale process; define the relationship between each oil shale system component (mining, retorting, upgrading, environmental) and its cost. Analyze how research could reduce costs; and determine the scope of potential research for each oil shale system component.

  9. Utilize Available Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilize Available Resources Print As soon as you arrive at the ALS, go to the registration desk on the second floor of the ALS (Building 6). The registration desk is open from 8:00 a.m. to 4:00 p.m. See the page about working onsite for complete information. Resources Available to Users The ALS has staff and facilities that are available to users to ensure that their experiment run is highly successful. Scientific and Technical Assistance and Facilities Safety for Users User Accounts and Emails

  10. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-05-12

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  11. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 6, Chapter D, Appendices D4--D13: Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report (Vol. 6) for the WIPP facility contains appendices on the following information: Site characterization; general geology; ecological monitoring; and chemical compatibility of waste forms and container materials.

  12. Acknowledging User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acknowledging User Facilities User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Acknowledging

  13. User Facilities Expert Team - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMG_2298.JPG User Facilities Expert Team Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  14. Regulatory facility guide for Ohio

    SciTech Connect (OSTI)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O.; Rymer, A.C.

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  15. American Recovery & Reinvestment Act Newsletter - Issue 24

    Office of Environmental Management (EM)

    Moving 2.4 million tons of uranium mill tail- ings away from the Colorado River is only one of the activi- ties the Moab Uranium Mill Tailings Remedial Action Project accomplished with $108 million from the American Recovery and Reinvestment Act. The Moab Project has achieved numerous accomplishments in Recovery Act-funded efforts to help move the tailings safely and efficiently to a permanent disposal facility near Crescent Junction, 30 miles north of the Moab site. The Recovery Act funded the

  16. LANL awards Recovery Act contract worth up to $100 million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Awards Recovery Act contract LANL awards Recovery Act contract worth up to $100 million TerranearPMC, LLC will haul demolition debris and soils from LANL's Recovery Act cleanup projects for disposal in licensed facilities. March 10, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  17. Integrating Federal Resources for High Performance Hospitals

    SciTech Connect (OSTI)

    2008-08-01

    A postcard describing DOE and EPA resources targeted to hospital architects, facility managers, and corporate leadership at each stage of the hospital design and operation process.

  18. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  19. Nuclear Facility Risk Ranking | Department of Energy

    Energy Savers [EERE]

    Facility Risk Ranking Nuclear Facility Risk Ranking Nuclear Facility Risk Ranking The CNS has purview of over ninety EM nuclear facilities across the DOE complex. To ensure that limited resources are applied in a risk-informed and balanced approach, the CNS performed a methodical assessment of the EM nuclear facilities. This risk-informed approach provides a data-driven foundation on which to construct a balanced set of operating plans and staff assignments. 2015 Risk Analysis Methodology.jpg

  20. Data Management Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Management Resources User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Data Management

  1. EPA - RCRA Orientation Manual 2011: Resource Conservation and...

    Open Energy Info (EERE)

    waste management programs under the Resource Conservation and Recovery Act (RCRA). Author Environmental Protection Agency Published Environmental Protection Agency, 2012 DOI Not...

  2. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  3. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  4. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  7. 303-K Storage Facility closure plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  8. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  9. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  10. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn More Risk Management Assessment Tool Recovery Act Top Line Messages EM Recovery Act Lessons Learned Report to Congress EM Recovery Act Videos News Flashes January 29, 2013 ...

  11. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  12. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide...

    Office of Scientific and Technical Information (OSTI)

    SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  13. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave.,

  14. Waste Heat Recovery

    Energy Savers [EERE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  15. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST...

    Office of Scientific and Technical Information (OSTI)

    SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES Citation Details In-Document Search Title: SOLVENT-BASED ENHANCED OIL ...

  16. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  17. Computing Resources | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a pair of redundant 20 megavolt amperes electrical feeds from a 90 megawatt substation. ... Mira, our 10-petaflops IBM Blue GeneQ supercomputer, is the engine that drives scientific ...

  18. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glovebox Facilities Working with SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials

  19. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  20. Operations and Maintenance in Federal Facilities | Department of Energy

    Energy Savers [EERE]

    Operations and Maintenance in Federal Facilities Operations and Maintenance in Federal Facilities Effective operations and maintenance plans help ensure federal equipment, such as this water recovery- and recycling-type pump, works properly over the long term. Effective operations and maintenance plans help ensure federal equipment, such as this water recovery- and recycling-type pump, works properly over the long term. Federal facilities rely on pumps, motors, fans, and other mechanical systems

  1. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  2. Enhanced oil recovery

    SciTech Connect (OSTI)

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  3. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  4. SEP and EECBG program communications resource kit

    Broader source: Energy.gov [DOE]

    A resource kit that helps a user draw attention to SEP and EECBG projects he/she has developed and showcase the related economic recovery, made possible through the 2009 Recovery Act. The toolkit provides guidance on effectively disseminating information about projects that employ citizens and transform the future of energy in the United States.

  5. ORISE: Completion of environmental characterization at ORNL a Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    success ORISE's completion of environmental characterization at ORNL is a Recovery Act success Exterior of K-33 superstructure at ORNL This 2.8 million-square-foot facility known as K-33 was formerly used to house a uranium-enrichment operation during the Manhattan Project. The superstructure was one of three dozen facilities ORISE characterized under the American Recovery and Reinvestment Act-an effort that proved to be challenging due to the complexity of the facilities and the project's

  6. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect (OSTI)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  7. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  8. Expertise & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and shock and nonshock initiation proton radiography Facilities Los Alamos has a ... Science Laboratory National High Magnetic Field Laboratory War Reserve Detonator ...

  9. Facility Representatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... facilities under a single lineprogram manager within the ... unique position in the transmission of information between ... performance, any areas of theory or fundamentals, if any, ...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facility Improvements Continue at North Slope of Alaska Locale Bookmark and Share The "skydeck" at Barrow shows how the instrument platforms can get very crowded during peak experimental periods. Two things are critical for conducting scientific research: adequate equipment and power. This is especially true in the Arctic, where average winter temperatures hover around -30 degrees Celsius, and access to additional resources is limited. After experiencing crowded working conditions

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2011 [Education, Facility News] Remote Schools Welcome Much-Needed Resources Bookmark and Share Students at the Children's Academy Centre in Lorengau gather as Jacklyn Soko, Teacher-in-Charge at the school, gratefully receives the donation of a new copier. Seven schools on Manus Island recently welcomed new copiers donated through ARM's Education and Outreach program. Hymson Waffi, officer-in-charge for the ARM's Tropical Western Pacific site on Manus Island, enjoyed the happy task of

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2013 [Facility News] Gearing Up for Science in Amazon Rainforest Bookmark and Share In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. Preparing for the biggest and most complex deployment of field resources to date, the ARM Mobile

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 30, 2009 [Facility News] Climate Change Lesson Plan Selected for MyHealthySchool.com Bookmark and Share A lesson plan about climate change in the Arctic was selected by MyHealthySchool.com to join their collection of online educational resources. Developed through the ARM Education and Outreach Program for junior high school students, the lesson plan called "Bringing Climate Change into the Classroom" covers the greenhouse effect, sea ice, adaptation, and climate change in

  14. 3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Cole, C.M. Sr.

    2001-04-17

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

  15. New Osage Nation Facilities Deliver High Energy Performance, Comfort, and

    Office of Environmental Management (EM)

    Hampshire Recovery Act State Memo New Hampshire Recovery Act State Memo New Hampshire has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Hampshire are supporting a broad range of clean energy projects, from weatherization and retrofits to the smart grid. Through these investments, New

  16. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  17. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  18. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  20. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada For Fiscal Year 2012 (October 2011–September 2012)

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2013-01-17

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): · CAU 90, Area 2 Bitcutter Containment · CAU 91, Area 3 U-3fi Injection Well · CAU 92, Area 6 Decon Pond Facility · CAU 110, Area 3 WMD U-3ax/bl Crater · CAU 111, Area 5 WMD Retired Mixed Waste Pits · CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2012 (October 2011–September 2012).

  1. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  2. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  3. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency &

  4. Guidance on NEPA Review for Corrective Actions under the Resource

    Energy Savers [EERE]

    Conservation and Recovery Act (RCRA) (DOE, 1997) | Department of Energy Review for Corrective Actions under the Resource Conservation and Recovery Act (RCRA) (DOE, 1997) Guidance on NEPA Review for Corrective Actions under the Resource Conservation and Recovery Act (RCRA) (DOE, 1997) This guidance results from the work of a Task Team formed by DOE's Environmental Management's NEPA Compliance Officer to study streamlining the NEPA process for RCRA corrective actions, in response to a

  5. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    RECOVERY PROJECT OR ACTIVITY / ACCELERATED MILESTONE TITLE MILESTONE DUE DATE EXPECTED ACCELERATED COMPLETION DATE WITH ARRA FUNDING STATUS INL - Cleanup of Surplus Nuclear Facilities -- CPP- 601 / 640 Complex D&D Post 2012 9/30/2011 On Schedule to be Met by Expected Accelerated Completion Date (NOTE: CPP-601 is approximately 2 months ahead of schedule, CPP-640 was completed by the end of April 2010). INL - Cleanup of Surplus Nuclear Facilities -- VCO Lines under TRA-632 building 9/30/2013

  6. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect (OSTI)

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  8. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  9. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  10. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Fermilab Accelerator Complex Facility for Advanced Accelerator Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  11. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  13. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Resources Teacher Resources The Bradbury Science Museum offers teacher resources for your visit. Scavenger Hunts Scavenger Hunt (pdf) Scavenger Hunt Key (pdf) Bradbury Science Museum newsletter The current issue can be found at the Newsletter page. Los Alamos Teachers' Resource Book Informal educators throughout the Los Alamos School District gather periodically to share ideas and collaborate. We have assembled a collection of flyers about our programs that serve classroom teachers into

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  17. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  18. Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources This webpage is provided for legacy archive purposes only, as of 30 April 2015. However, the facilities and resources created under PHaSE (thanks to the support of the U.S. Department of Energy) remain available for their original purpose of investigating organic-based electronic materials. Resources As a national and regional center of excellence for energy research, PHaSE has access to many resources linked from the Department of Energy and the greater UMass Amherst campus, as well

  19. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Biological and Environmental Research (BER) BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement Climate Research Facility (ARM) Environmental Molecular Sciences Laboratory (EMSL) Joint Genome Institute (JGI) Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown

  20. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Information Center » Recovery Act » Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to

  1. Form:Energy Generation Facility | Open Energy Information

    Open Energy Info (EERE)

    Generation Facility below. If the resource already exists, you will be able to edit its information. AddEdit an Energy Generation Facility The text entered into this field...

  2. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  3. A GIS approach to cultural resources management and NEPA compliance

    SciTech Connect (OSTI)

    Moeller, K.

    1996-06-01

    Cultural resources management and historic preservation compliance are best approached within the broader framework of natural resources planning and land management. Argonne National Laboratory is currently assisting federal agencies with the development of computer- based resource management systems for large facilities, and cultural resources management and preservation are components of these systems. In the area of cultural resources, Argonne is using the GIS tool to demonstrate how federal facilities can manage large, complex databases, integrate cultural resource data with other environmental variables, model distributions of resources to aid in inventory and evaluation, link the data to quantitative and impact modes, and effectively manage and monitor resource planning activities and environmental compliance.

  4. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  5. Information technology resources assessment

    SciTech Connect (OSTI)

    Loken, S.C.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  6. Small Business Administration Recovery Act Implementation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation PDF icon Small ...

  7. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  8. Recovery Act Funds at Work

    Broader source: Energy.gov [DOE]

    Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

  9. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  10. Resource Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    600 average megawatts of generation could be available to the region from concentrated solar power plants in Nevada, but facilities to transmit this power are unavailable until...

  11. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4

    Broader source: Energy.gov [DOE]

    The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and...

  12. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2011, Volume 2 No. 3

    Broader source: Energy.gov [DOE]

    The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and...

  13. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1

    Broader source: Energy.gov [DOE]

    The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and...

  14. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3

    Broader source: Energy.gov [DOE]

    The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and...

  15. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2

    Broader source: Energy.gov [DOE]

    The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and...

  16. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2

    Broader source: Energy.gov [DOE]

    The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and...

  17. EERE Success Story-BASF Catalysts Opens Cathode Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BASF Catalysts Opens Cathode Production Facility EERE Success Story-BASF Catalysts Opens Cathode Production Facility March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE's Vehicle Technologies Office (VTO). The factory was supported by a $25 million American Recovery and Reinvestment Act project. Located in Elyria, Ohio, the facility at full

  18. American Recovery & Reinvestment Act Newsletter - Issue 22

    Office of Environmental Management (EM)

    Before American Recovery and Reinvestment Act workers set out to clean up contamination and demol- ish facilities that supported the Cold War and the Manhattan Project, Oak Ridge called on its budget analysts and financial personnel to ensure that the $755 million Recovery Act investment would be used effectively and expeditiously. The planners for Oak Ridge's Environmental Management (EM) program quickly compiled a list of shovel-ready projects that would accomplish key DOE missions and create

  19. State recovery and lockstep execution restart in a system with

    Office of Scientific and Technical Information (OSTI)

    multiprocessor pairing (Patent) | SciTech Connect State recovery and lockstep execution restart in a system with multiprocessor pairing Citation Details In-Document Search Title: State recovery and lockstep execution restart in a system with multiprocessor pairing System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e.,

  20. Department of Energy's ARM Climate Research Facility External...

    Office of Scientific and Technical Information (OSTI)

    Facility External Data Center Operations Plan Located At Brookhaven National Laboratory ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  1. Property Tax Abatement for Production and Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems to convert solar, wind, geothermal, biomass, biogas or waste heat resources into...

  2. Del Ranch (Hoch) Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Salton Sea Geothermal Area Geothermal Region Gulf of California Rift Zone Plant Information Facility Type Double Flash Owner CalEnergy...

  3. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

  4. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  5. Recovery Act State Memos Pennsylvania

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... recovery and restoration from any energy supply disruptions. ... energy portfolios such as wind, renewables, biofuels, etc. ...

  6. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    carbon emissions, create jobs, and broaden our nation's clean energy technology portfolio. ... details from Recovery.gov, the portal to all data related to Recovery Act spending. ...

  7. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive ...

  8. Tax Credits for Renewable Energy Facilities

    Broader source: Energy.gov [DOE]

    A renewable energy facility is defined as one that generates at least 50 kilowatts (kW) of electricity from solar power or at least 1 megawatt (MW) from wind power, biomass resources, landfill ga...

  9. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  10. EIS-0343: COB Energy Facility

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support the COB Energy Facility, a subsidiary of Peoples Energy Resources Corporation (PERC), to construct a 1,160-megawatt (MW) natural gas-fired, combined-cycle electric generating plant in Klamath County, Oregon, near the city of Bonanza.

  11. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect (OSTI)

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  12. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  13. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  14. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Geology Characterizing geology-rock types, structures, faults, and temperatures- is a fundamental step in discovering new geo- thermal resources. This information comes from a ...

  15. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  18. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    site in December were a new atmospheric emitted radiance interferometer, or AERI, and a Doppler lidar. The AERI instruments throughout the ARM Facility are nearly a decade old...

  19. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EAP) Bulletin, April 2, 2012, Volume 3 No. 2 | Department of Energy April 2, 2012, Volume 3 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 2, 2012, Volume 3 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 2. For more information

  20. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EAP) Bulletin, January 3 2012, Volume 3 No. 1 | Department of Energy 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 1. For more information about

  1. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EAP) Bulletin, January 4, 2010, Volume 1 No. 1 | Department of Energy 4, 2010, Volume 1 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 4, 2010, Volume 1 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 1. For more information

  2. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EAP) Bulletin, July 9, 2012, Volume 3 No. 3 | Department of Energy 9, 2012, Volume 3 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 9, 2012, Volume 3 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 3. For more information about how

  3. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EAP) Bulletin, October 1, 2012, Volume 3 No. 4 | Department of Energy October 1, 2012, Volume 3 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1, 2012, Volume 3 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 4. For more

  4. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EAP) Bulletin, October 3 2011, Volume 2 No. 4 | Department of Energy October 3 2011, Volume 2 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 2, NUMBER 4. For more information

  5. Low-Temperature Mineral Recovery Program FOA Selections | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Temperature Mineral Recovery Program FOA Selections Low-Temperature Mineral Recovery Program FOA Selections This early exploration well, drilled in Montana to find oil, has yielded over 1000 gallons per minute of hot goethermal fluid. The Energy Department is finding new ways to tap these natural energy streams to generate power and a number of direct use applications. Source: Geothermal Resources Council This early exploration well, drilled in Montana to find oil, has yielded over

  6. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    Broader source: Energy.gov [DOE]

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  7. Wave Energy Resource Characterization at US Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Characterization at US Test Sites - Sandia Energy Energy Search Icon Sandia Home ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  8. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  9. Virginia's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Greenlight Biofuels Greenlight Energy Resources Inc GER Multitrade Biomass Holdings LLC Sol Sage Energy Energy Generation Facilities in Virginia's 5th congressional district...

  10. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    ......... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ...... 6 * ...

  11. Geothermal Test Facility, California, Site Fact Sheet

    Office of Legacy Management (LM)

    Geothermal Test Facility, California, Site. The U.S. Department of Energy Office of Legacy Management is responsible for maintaining records for this site. Location of the Geothermal Test Facility, California, Site Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated

  12. American Recovery & Reinvestment Act Newsletter - Issue 13

    Office of Environmental Management (EM)

    Recovery and Reinvestment Act Newsletter d Volume 2, No. 3 d March 2010 Fusion Researchers Gather to Say Goodbye to Pioneering Facility TSTA building saw early advances in nuclear fusion  Fusion Researchers Gather to Say Goodbye to Pioneering Facility ...1  Offi cials Brief Stakeholders on Progress .......................................2  Paul Bellesen is Thrilled to Trade Sun for Dirt ..................................3  'Chem Plant' Decontamination and Decommissioning

  13. Y-12 National Security Complex's Sustainable Recovery and Transformation - 12420

    SciTech Connect (OSTI)

    Jackson, Jan; Widman, Jeannette

    2012-07-01

    American Recovery and Reinvestment Act (ARRA) funds were used at the Y-12 National Security Complex (Y-12) to remove legacy materials from large contaminated excess facilities in order to prepare the facilities for demolition, demolish five excess buildings, and clean up sources of environmental contamination. The legacy materials and buildings presented many challenges and the potential hazards included depleted uranium and other radiological contaminants, lead, polychlorinated biphenyls, Freon, mold, mildew, asbestos, beryllium and mercury. Y-12 project teams have integrated sustainable waste management practices into each of the seven ARRA projects. The ARRA clean up efforts have resulted in the reduction of potential environmental, health, and safety risks posed by the excess facilities and sources of environmental contamination. Y-12's ARRA project teams focused on completing the activities in a sustainable, timely and safe manner. The site utilized a systematic material disposition evaluation process to ensure that materials were not automatically dis-positioned as waste. ARRA projects have recycled or reused over 1.3 million pounds of materials while preventing over 3 million vehicle miles traveled for waste disposal. Y-12 ARRA projects have worked over 2 million safe work hours without a lost time injury. The site has already begun to beneficially reuse land cleared by ARRA project activities to support sustainable transformation efforts. The Y-12 ARRA project activities have demonstrated that large complex projects can be completed sustainably and safely while maintaining an aggressive schedule. Through careful planning and execution, ARRA projects at the site have sustainably reduced the potential environmental, health, and safety risks posed to site employees and the community by the excess facilities and sources of environmental contamination. Y-12's systematic material disposition process ensured that materials were not automatically assumed to be wastes and facilitated the evaluation of all unneeded materials for reuse or recycling. The site's pervasive pollution prevention culture is reflected in the recycling or reuse of over 1.3 million pounds of materials by the ARRA project teams. While the disposal of a large volume of ARRA wastes could not be avoided, the projects were able to reduce the local and national impacts of waste transportation and disposal through careful planning and efficient execution. The site has conserved natural resources through the preservation and beneficial reuse of materials and land cleared by ARRA activities. Y-12 has taken steps to preserve its history as the site undergoes a sustainable and safe transformation for the future. (authors)

  14. Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » Facilities Print Text Size: A A A FeedbackShare Page The

  15. SWIFT Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWIFT Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  16. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  17. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  18. PP-85 Westmin Resources, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Westmin Resources, Inc. PP-85 Westmin Resources, Inc. Presidental Permit authorizing Westmin Resources, Inc. to construct, operate, and maintain electric transmission facilities at the U.S.-Canada Border PDF icon PP-85 Westmin Resources, Inc. More Documents & Publications PP-85-A Westmin Mines, Inc. PP-96-1 Boise Cascade Corporation PP-85-2 Boliden Westmin (Canada) Limited

  19. Environmental analysis of biomass-ethanol facilities

    SciTech Connect (OSTI)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  20. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-02-14

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

  1. DOE Awards More than $16 Million for Recovery Act Cleanup at ORNL

    Broader source: Energy.gov [DOE]

    Through the Recovery Act, DOE awards $16.8 million contract to for environmental cleanup operations at ORNL. Under this contract, EM will demolish 34 facilities in the ORNL central campus area.

  2. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  3. Audit Report: Modular Office Facilities for Recovery Act Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... office space for 48 people, but remained vacant until ... not connected to utility services such as power and water. ... we considered to be unreasonable per Federal Acquisition ...

  4. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  5. Guidance for Fiscal Year 2015 Facilities Information Management System Data

    Energy Savers [EERE]

    Validations | Department of Energy Fiscal Year 2015 Facilities Information Management System Data Validations Guidance for Fiscal Year 2015 Facilities Information Management System Data Validations PDF icon FIMS VALIDATION GUIDANCE_FY 2015 with MEMO 141120 FINAL.pdf More Documents & Publications Three-year Rolling Timeline Three Year Rolling Timeline WAPA Recovery Act Implementation Appropriation

  6. SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site

  7. The First Recovery Act Funded Waste Shipment depart from the Advanced Mixed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment Facility The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOE�s Advanced Mixed Waste Treatment Project on May 6, years earlier than originally planned, due to funding received through the American Recovery and Reinvestment Act. The 36.5 cubic meter shipment consisted of radioactive and chemically contaminated waste that had been retrieved, characterized, packaged and shipped from

  8. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the "science of

  9. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  10. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  11. On Earth Day Vice President Biden Announces $300 Million in Recovery Act

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funds for Clean Cities Program | Department of Energy On Earth Day Vice President Biden Announces $300 Million in Recovery Act Funds for Clean Cities Program On Earth Day Vice President Biden Announces $300 Million in Recovery Act Funds for Clean Cities Program April 22, 2009 - 12:00am Addthis LANDOVER, MD - During a visit to the WMATA Carmen Turner Maintenance and Training Facility in Landover, MD, Vice President Joe Biden today announced $300 million in funding from the American Recovery

  12. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  13. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions Navigate Section Our Vision National User Facilities Research Areas In...

  14. Facility Representatives

    Energy Savers [EERE]

    063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is

  15. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial,...

  16. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  17. Brookhaven Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  18. Power, Optimization, Waste Estimating, Resourcing Tool

    Energy Science and Technology Software Center (OSTI)

    2009-08-13

    Planning, Optimization, Waste Estimating, Resourcing tool (POWERtool) is a comprehensive relational database software tool that can be used to develop and organize a detailed project scope, plan work tasks, develop bottoms-up field cost and waste estimates for facility Deactivation and Decommissioning (D&D), equipment, and environmental restoration (ER) projects and produces resource-loaded schedules.

  19. Windows and Building Envelope Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Facilities Windows and Building Envelope Facilities Addthis LBNL's Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to measure thermal, daylighting, and occupant impacts of advanced window technologies. In this setup, LBNL staff are evaluating a heat recovery/ ventilation unit (left), a switchable electrochromic window (middle), and a

  20. Windows and Building Envelope Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Windows and Building Envelope » Windows and Building Envelope Facilities Windows and Building Envelope Facilities LBNL's Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to measure thermal, daylighting, and occupant impacts of advanced window technologies. In this setup, LBNL staff are evaluating a heat recovery/ ventilation unit (left), a

  1. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  2. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  3. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  4. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  5. Resource Conservation and Recovery Act | Open Energy Information

    Open Energy Info (EERE)

    to RCRA enabled EPA to address environmental problems that could result from underground tanks storing petroleum and other hazardous substances. Published NA Year Signed...

  6. RCRA (Resource Conservation and Recovery Act) final authorization guidance manual

    SciTech Connect (OSTI)

    Not Available

    1983-06-10

    The document provides guidance regarding final authorization of State Hazardous Waste programs for the pre-HSWA RCRA program. The manual establishes a process and schedule for State Authorization applications, and provides detailed guidance on what State programs must contain in order to qualify for final authorization. The primary audience is U.S. EPA Headquarters and Regional offices and also State agencies, but public requests have also been received so they are included in that broad audience.

  7. New Report Outlines Potential of Future Water Resource Recovery...

    Energy Savers [EERE]

    Such a shift offers the potential to reduce the financial burdens on municipalities, decrease stress on energy systems, cut air and water pollution, improve system resiliency to ...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  9. LANL exceeds Early Recovery Act recycling goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

  10. EM Recovery Act Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Performance EM Recovery Act Performance Footprint Reduction The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently ...

  11. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  12. Recovery Act State Memos Maryland

    Broader source: Energy.gov (indexed) [DOE]

    ......... 4 ELECTRIC GRID ... RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Residential ... Although their power bill was higher this winter - the ...

  13. Recovery Act State Memos Illinois

    Broader source: Energy.gov (indexed) [DOE]

    ......... 13 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Retooled machines bring new green jobs to Illinois ......15 * County partners ...

  14. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  15. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  16. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  17. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  18. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  19. Recovery Act Energy Jobs Bring New Era of Opportunity

    Broader source: Energy.gov [DOE]

    Hundreds of thousands of people found work in the past few years thanks to Recovery Act and Energy Department programs designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  20. Enhanced oil recovery projects data base

    SciTech Connect (OSTI)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  1. An overview of the technology for energy recovery from municipal wastes in Japan

    SciTech Connect (OSTI)

    Hiraoka, M.

    1985-01-01

    Since the Japanese government adopted incineration and landfill systems for treatment of municipal refuse in 1963, a large number of incinerators have been built. After the Oil Embargo in 1973, heat recovery from incinerators in large cities was emphasized, and resource and heat recovery have been developed.

  2. Mark-18A Target Materials Recovery Study (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Conference: Mark-18A Target Materials Recovery Study Citation Details In-Document Search Title: Mark-18A Target Materials Recovery Study Authors: Robinson, Sharon M [1] ; Patton, Bradley D [1] ; Allender, Jeffery [2] ; Loftin, Bradley [2] + Show Author Affiliations ORNL Savannah River Site, U.S. Departmetn of Energy Publication Date: 2014-01-01 OSTI Identifier: 1156742 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference:

  3. Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Citation Details In-Document Search Title: Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Abstract not provided. Authors: Teranishi, Keita ; Heroux, Michael Allen Publication Date: 2014-09-01 OSTI Identifier: 1241722 Report Number(s): SAND2014-18249PE 537867 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed

  4. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect (OSTI)

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  5. Exhibits, Museums, Historic Facilities, and Public Tours | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy History » Historical Resources » Exhibits, Museums, Historic Facilities, and Public Tours Exhibits, Museums, Historic Facilities, and Public Tours Exhibits, Museums, Historic Facilities, and Public Tours New! Manhattan Project National Historical Park The Department of Energy (DOE) supports exhibits, museums, and historic facilities across the country dedicated to displaying and interpreting the history of the Department and its scientific and technological missions and

  6. Research Facilities | ANSER Center | Argonne-Northwestern National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Facilities Home > Research > Research Facilities Facilities Beyond the extensive facilities available in laboratories of ANSER Center members, the participating institutions below bring substantial collateral resources that strengthen ANSER Center programs. The Argonne Advanced Photon Source (APS): a third-generation synchrotron hard x-ray source providing unprecedented brilliance and photon flux for state-of-the-art time-resolved structural characterization The Northwestern

  7. Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Facilities Print Text Size: A A A FeedbackShare Page

  8. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  9. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F:

  10. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  11. Environmental Management American Recovery & Reinvestment Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management American Recovery & Reinvestment Act (ARRA) Lessons Learned Environmental Management American Recovery & Reinvestment Act (ARRA) Lessons Learned EM has ...

  12. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for ...

  14. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  15. CSP Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  16. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD

  17. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  18. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  19. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  20. Pyrolysis with staged recovery

    DOE Patents [OSTI]

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  1. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Resources Resources Filter by Agency Filter by Audience Filter by Resource Type description partner_agency resource_type stakeholder_group publication_date node_url link

  2. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale

    Office of Scientific and Technical Information (OSTI)

    Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility (Technical Report) | SciTech Connect Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility Citation Details In-Document Search Title: Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is

  3. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale

    Office of Scientific and Technical Information (OSTI)

    Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility (Technical Report) | SciTech Connect Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility Citation Details In-Document Search Title: Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This

  4. Disposal techniques with energy recovery for scrapped vehicle tires

    SciTech Connect (OSTI)

    Sladek, T.A.; Demos, E.K.

    1987-06-01

    The scrap tire disposal problem is serious and widespread. However there are a number of promising management options, especially using the rubber as a supplemental fuel for existing combustors. The most cost-effective approach to dealing with Denver's tire stockpile appears to be shredding to a coarse size range, storing the shreds in a secure area, and marketing the rubber to nearby cement kilns, lime kilns, and boilers. This interim step would greatly reduce the volume of the pile, facilitate the Superfund evaluation, reduce fire and disease hazards, and simplify subsequent materials handling. Further processing to obtain rubber chips or crumbs may also be practical. However the industry and the markets would have to emerge over time. New power plants or pyrolysis facilities would be impeded by the low energy prices in Denver and the need for elaborate pollution controls. Landfilling could be considered as a last resort. Landfilling costs would be minimized if the tires are shredded. Chapter 2 discusses the tire disposal problem and the general options for tire management. Chapter 3 describes the methodology used to analyze Denver's situation and presents the results and conclusions obtained. This includes evaluation of strategies to implement the more promising resource recovery options in the Denver area. Chapter 4 summarizes the lessons learned and identifies impediments and uncertainties that need to be addressed in any future studies. The Appendix contains additional acknowledgments, a list of references, definitions for the acronyms and units used in the text, the agenda for the tire workshop, and a brief description of a stockpile fire near Denver in June 1987. 111 refs., 6 tabs.

  5. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  6. Emergency Management: Facility Emergency Plan Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Building 219, 274 and 278 SSRL Building Facility Emergency Plan In Case of Emergency 9-911 from a SLAC phone 911 from a non-SLAC phone Then notify SLAC Site Security, Ext. 5555 SLAC Emergency Resources SLAC Site Security 5555 On-site Palo Alto Fire Station Number 7 2776 Conventional and Experimental Facilities 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Larry Cadapan Assistant building manager Brian Choi Publication date

  7. NREL: Energy Systems Integration Facility - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Themes Access to the Energy Systems Integration Facility and its resources is prioritized based on three research themes aligned with U.S. Department of Energy goals and priorities. The Energy Systems Integration Facility supports the private sector, academia, and the national laboratory system by providing capabilities to accelerate the research, development, and demonstration needed to transform the nation's energy system. Photo of a man in safety glasses in a laboratory. Researchers use the

  8. Shaping Future Supercomputing Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 1 1 a n n u a l r e p o r t Shaping Future Supercomputing Argonne Leadership Computing Facility ANL-12/22 Argonne Leadership Computing Facility 2 0 1 1 a l c f a n n u a l r e p o r t w w w . a l c f . a n l . g o v Contents Overview .......................................2 Mira ..............................................4 Science Highlights ...........................8 Computing Resources ..................... 26 2011 ALCF Publications .................. 28 2012 INCITE Projects

  9. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  10. Institute of Laboratory Animal Resources 1982 annual report

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    ILAR serves as a coordinating agency and a national and international resource for compiling and disseminating information on laboratory animals, promoting education, planning and conducting conferences and symposia, surveying existing and required facilities and resources, upgrading laboratory animal resources, and promoting high-quality, humane care of laboratory animals in the United States. This report discusses activities conducted in 1982. (ACR)

  11. CMI Unique Facility: Ferromagnetic Materials Characterization Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Ferromagnetic Materials Characterization Facility The Ferromagnetic Materials Characterization Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI ferromagnetic materials characterization facility at The Ames Laboratory. In the search for substitute materials to replace rare earths in permanent magnets, whenever promising materials are identified,

  12. Facility for Advanced Accelerator Experimental Tests (FACET) | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Facility for Advanced Accelerator Experimental Tests (FACET) High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Fermilab Accelerator Complex Facility for Advanced Accelerator Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy

  13. User Facility Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facility Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter by Program Or press Esc Key to close. close Select all that

  14. Accelerator Test Facility (ATF) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Test Facility (ATF) High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Fermilab Accelerator Complex Facility for Advanced Accelerator Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW

  15. Recovery Act | Department of Energy

    Energy Savers [EERE]

    Updated July 2010 | Department of Energy Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 A chart indicating the name of awardee,Recovery Act funding awarded, total project value including: cost share, headquarters location for lead applicant,brief project description,map of coverage area for those involved in the Recovery Act selections for Smart Grid Investment

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2010 Facility News ARM Mobile Facility Blogs from Steamboat Springs Bookmark and Share This month, team members for the second ARM Mobile Facility (AMF2) are in Steamboat...

  17. Accounts Policy | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounts Policy All holders of user accounts must abide by all appropriate Argonne Leadership Computing Facility and Argonne National Laboratory computing usage policies. These are described at the time of the account request and include requirements such as using a sufficiently strong password, appropriate use of the system, and so on. Any user not following these requirements will have their account disabled. Furthermore, ALCF resources are intended to be used as a computing resource for

  18. Production Facility System Reliability Analysis Report

    SciTech Connect (OSTI)

    Dale, Crystal Buchanan; Klein, Steven Karl

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  19. Recovery Newsletters | Department of Energy

    Energy Savers [EERE]

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  20. Recovery Act State Memos Kansas

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... in order to double our supply of renewable energy and ... energy portfolios such as wind, renewables, biofuels, etc. ...

  1. Recovery Act State Memos Texas

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... plant, serving the largest medical center in the world. ... voltage AC electrical supply, chilled water cooling ...

  2. Recovery Act State Memos Alaska

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... in order to double our supply of renewable energy and ... new energy portfolios such as wind, renewables and biofuels. ...

  3. Recovery Act State Memos Maine

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... in order to double our supply of renewable energy and ... The result will aid the domestic biofuels industry while ...

  4. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... in order to double our supply of renewable energy and ... as wind, renewables, biofuels, etc. as well as updating ...

  5. Recovery Act State Memos Iowa

    Broader source: Energy.gov (indexed) [DOE]

    ... in the production of biofuels directly from sunlight and ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... in order to double our supply of renewable energy and ...

  6. Recovery Act State Memos Georgia

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... in order to double our supply of renewable energy and ... project. * Solar Sun World, LLC, Madison - 15,000 ...

  7. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act Overview PROGRAMS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant 3,482,831,000 99 Smart Grid Regional and Energy Storage ...

  8. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  9. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  10. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  11. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  12. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  13. ARM - NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  14. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility, Los Alamos National ... Contained Firing Facility Dual Axis Radiographic Hydrodynamic Test Facility High ...

  15. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  16. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  17. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    SciTech Connect (OSTI)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  18. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  19. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs,...

  20. LANSCE | User Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE provides its users with resources critical to their experiements and their experience. Lujan Resources WNR Resources Submit a proposal for beam time Visit...