Powered by Deep Web Technologies
Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

2

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

3

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

4

Energy Resource Potential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Potential Resource Potential of Methane Hydrate Energy Resource Potential An introduction to the science and energy potential of a unique resource Disclaimer Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

5

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential...

6

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

7

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

8

The Potential Wind Power Resource in Australia: A New Perspective*  

E-Print Network [OSTI]

The Potential Wind Power Resource in Australia: A New Perspective* Willow Hallgren, Udaya Bhaskar: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The Potential Wind Power Resource in Australia, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased

9

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network [OSTI]

The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren, Udaya Bhaskar;1 The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren* , Udaya Bhaskar Gunturu, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35

10

United States (48 Contiguous States) Wind Resource Potential...  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates...

11

World Coal Resources and their Future Potential [and Discussion  

Science Journals Connector (OSTI)

30 May 1974 research-article World Coal Resources and their Future Potential...inferences from the published figures of world coal resources which are based on a variety...procedures, there can be no doubt that coal is the world's most abundant fossil fuel...

1974-01-01T23:59:59.000Z

12

Comprehensive Evaluation of the Geothermal Resource Potential within the  

Open Energy Info (EERE)

Comprehensive Evaluation of the Geothermal Resource Potential within the Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed project will provide state-of-the-art characterization information and a detailed analysis of the geothermal resource potential at the Astor Pass site. The information gained during this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new technologies and geothermal data to the geothermal industry and to create and preserve nearly three dozen jobs that will serve to stimulate the economy in accordance with the American Recovery and Reinvestment Act of 2009.

13

Targeting Of Potential Geothermal Resources In The Great Basin From  

Open Energy Info (EERE)

Targeting Of Potential Geothermal Resources In The Great Basin From Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Details Activities (9) Areas (3) Regions (0) Abstract: We apply a new method to target potential geothermal resources on the regional scale in the Great Basin by seeking relationships between geologic structures and GPS-geodetic observations of regional tectonic strain. First, we establish a theoretical basis for underst~dingh ow the rate of fracture opening can be related to the directional trend of faults

14

WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore...

15

United States (48 Contiguous States) Wind Resource Potential Chart  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

16

EIA - Annual Energy Outlook 2009 - chapter Tables  

Gasoline and Diesel Fuel Update (EIA)

Chapter Tables Chapter Tables Annual Energy Outlook 2009 with Projections to 2030 Chapter Tables Table 1. Estimated fuel economy for light-duty vehicles, based on proposed CAFE standards, 2010-2015 Table 2. State appliance efficiency standards and potential future actions Table 3. State renewable portfolio standards Table 4. Key analyses from "issues in Focus" in recent AEOs Table 5. Liquid fuels production in three cases, 2007 and 2030 Table 6. Assumptions used in comparing conventional and plug-in hybrid electric vehicles Table 7. Conventional vehicle and plug-in hybrid system component costs for mid-size vehicles at volume production Table 8. Technically recoverable resources of crude oil and natural gas in the Outer Continental Shelf, as of January 1, 2007

17

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

18

Biomass energy: the scale of the potential resource  

E-Print Network [OSTI]

of biomass energy in the global energy system is dependent on the complex interplay of four major factors as novel biomass-to-fuel conversion processes for increas- ing the yield of usable energy from each unitBiomass energy: the scale of the potential resource Christopher B. Field1 , J. Elliott Campbell1

19

Potential for Development of Solar and Wind Resource in Bhutan  

SciTech Connect (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

20

Estimating the potential of ocean wave power resources  

Science Journals Connector (OSTI)

The realistic assessment of an ocean wave energy resource that can be converted to an electrical power at various offshore sites depends upon many factors, and these include estimating the resource recognizing the random nature of the site-specific wave field, and optimizing the power conversion from particular wave energy conversion devices. In order to better account for the uncertainty in wave power resource estimates, conditional probability distribution functions of wave power in a given sea-state are derived. Theoretical expressions for the deep and shallow water limits are derived and the role of spectral width is studied. The theoretical model estimates were compared with the statistics obtained from the wave-by-wave analysis of JONSWAP based ocean wave time-series. It was shown that the narrow-band approximation is appropriate when the variability due to wave period is negligible. The application of the short-term models in evaluating the long-term wave power resource at a site was illustrated using wave data measured off the California coast. The final example illustrates the procedure for incorporating the local wave data and the sea-state model together with a wave energy device to obtain an estimate of the potential wave energy that could be converted into a usable energy resource.

Amir H. Izadparast; John M. Niedzwecki

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Our Evolving Knowledge Of Nevada's Geothermal Resource Potential | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Abstract The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing new tools

22

Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Details Activities (16) Areas (9) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing

23

Coalbed methane resource potential of the Piceance Basin, northwestern Colorado  

SciTech Connect (OSTI)

As predicted, from an evolving coalbed methane producibility model, prolific coalbed methane production is precluded in the Piceance Basin by the absence of coal bed reservoir continuity and dynamic ground-water flow. The best potential for production may lie at the transition zone from hydropressure to hydrocarbon overpressure and/or in conventional traps basinward of where outcrop and subsurface coals are in good reservoir and hydraulic communication. Geologic and hydrologic synergy among tectonic and structural setting, depositional systems and coal distribution, coal rank, gas content, permeability and hydrodynamics are the controls that determine the coalbed methane resource potential of the Piceance Basin. Within the coal-bearing Upper Cretaceous Williams Fork Formation, the prime coalbed methane target, reservoir heterogeneity and thrust faults cause coal beds along the Grand Hogback and in the subsurface to be in modest to poor reservoir and hydraulic communication, restricting meteoric ground water recharge and basinward flow. Total subsurface coalbed methane resources are still estimated to be approximately 99 Tcf (3.09 Tm{sup 3}), although coalbed methane resource estimates range between 80 (2.49 Tm{sup 3}) and 136 Tcf (4.24 Tm{sup 3}), depending on the calculation method used. To explore for high gas contents or fully gas-saturated coals and consequent high productivity in the Piceance Basin, improved geologic and completion technologies including exploration and development for migrated conventionally and hydrodynamically trapped gases, in-situ generated secondary biogenic gases, and solution gases will be required.

Tyler, R.; Scott, A.R.; Kaiser, W.R. [Univ. of Texas, Austin, TX (United States)

1996-06-01T23:59:59.000Z

24

Water Resources Management Degree Program Examples The tables below show some of the ways in which a student can tailor the Water Resources Management curriculum to fit their interests and needs.  

E-Print Network [OSTI]

Water Resources Management Degree Program Examples The tables below show some of the ways in which a student can tailor the Water Resources Management curriculum to fit their interests and needs. Each Hydrogeology Category B - Water Resources Institutions and Public Decision Making Processes Journalism 315

Sheridan, Jennifer

25

Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential  

SciTech Connect (OSTI)

Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

Helm, C.; Burman, K.

2010-04-01T23:59:59.000Z

26

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

27

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network [OSTI]

Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

Hallgren, Willow

28

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network [OSTI]

Australias wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

Hallgren, Willow

29

DOE Hydrogen Program Record 5011 - Hydrogen Potential from Solar and Wind Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen Program Record Record #: 5011 Date: December 15, 2005 Title: Hydrogen Potential from Solar and Wind Resources Items: - Data/resource maps indicate that the potential exists to use wind and solar resources to produce more than 15 times the amount of hydrogen needed to displace the petroleum used by light duty vehicles in 2040. - About one billion metric tons of hydrogen could be produced by renewable electrolysis annually, based upon solar and wind resource potential. - The other three solar pathways - thermochemical, photoelectrochemical, and photobiological - would have similar or possibly higher productivity per unit of land area. Data: Figure 1: Hydrogen Potential from Solar Resources Note: Map shows total kilograms of hydrogen per county, normalized by

30

Arkansas Water Resources Center  

E-Print Network [OSTI]

Keywords --Algal Assay/Nutrients/Heavy Metals/Toxicity #12;TABLE OF CONTENTS Page Abstract. i ListArkansas Water Resources Center ALGAL GROWTH POTENTIALS AND HEAVY METAL CONCENTRATIONS) demonstrated the probable inhibition of algal growth potential by heavy metals in upper Beaver Lake. Upper

Soerens, Thomas

31

State and National Wind Resource Potential at Various Capacity...  

Wind Powering America (EERE)

4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas > 35% Capacity Factor at 80m These estimates show, for...

32

Geothermal energyA sustainable resource of enormous potential  

Science Journals Connector (OSTI)

Geothermal energy is available at many locations on the earths surface. This clean and reliable energy has enormous potential and can be used ... of the fossil and uranium reserves worldwide. Geothermal energy w...

P. M. Wright

1998-01-01T23:59:59.000Z

33

Table Search (or Ranking Tables)  

E-Print Network [OSTI]

;Table Search #3 #12;Outline · Goals of table search · Table search #1: Deep Web · Table search #3 search Table search #1: Deep Web · Table search #3: (setup): Fusion Tables · Table search #2: WebTables ­Version 1: modify document search ­Version 2: recover table semantics #12;Searching the Deep Web store

Halevy, Alon

34

Resource Adequacy Implications of Forthcoming EPA Air Quality Regulations  

Broader source: Energy.gov (indexed) [DOE]

Resource Adequacy Resource Adequacy Implications of Forthcoming EPA Air Quality Regulations December 2011 RESOURCE ADEQUACY IMPLICATIONS OF FORTHCOMING EPA AIR QUALITY REGULATIONS iii Table of Contents EXECUTIVE SUMMARY ............................................................................................................................... V CHAPTER 1. INTRODUCTION ...................................................................................................................... 1 CHAPTER 2. ALIGNMENT OF POTENTIAL COMPLIANCE PATHWAYS WITH REGULATORY DEADLINES ......... 5 CHAPTER 3. RESOURCE ADEQUACY.......................................................................................................... 15 APPENDIX A: NERC REGIONS ................................................................................................................... 26

35

Geology and Resource Potential of the Manteo prospect  

SciTech Connect (OSTI)

The Manteo exploration unit, located approximately 32 mi northeast of Cape Hatteras, North Carolina, is a potential East Coast elephant-size field. The unit consists of 21 leases that cost industry $296 million in bonuses since 1981. Mobil has estimated that the unit may contain as much as 5 tcf of natural gas, which would be the largest domestic find since Prudhoe Bay. The Manteo prospect, on the seaward margin of the Carolina Platform, lies between two major basins: the Baltimore Canyon Trough to the north and the Carolina Trough to the south. The prospect is within the western Atlantic carbonate trend, a Jurassic-Early Cretaceous reef and platform limestone complex that stretches from the Gulf of Mexico to Newfoundland. Seismic interpretation is complicated by distortions caused by abrupt changes of water depth map near the top of the Jurassic shows a large eat-northeast-trending structure about 30 mi long and 5 mi wide with structural closure of over 1,000 ft. Source rock analyses suggest that Upper Jurassic carbonate reservoirs would more likely contain gas than oil. The Minerals Management Service (MMS) estimates reservoir parameters from wells drilled on trend (Baltimore Canyon Trough) and recovery parameters from worldwide analogs. The 21-block unit was approved by the MMS in May of 1990. Since 1988, the MMS has worked with North Carolina, Federal and local agencies, and Mobil in preparation for wildcat exploration approval. The MMS has prepared an extensive environmental report for this exploration proposal.

Ibrahim, M.; Adinolfi, F.; Edson, G.; Kienzle, J. (Minerals Management Service, Herndon, VA (United States))

1991-08-01T23:59:59.000Z

36

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

E-Print Network [OSTI]

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

Patzek, Tadeusz W.

37

Potential for Hydrogen Production from Key Renewable Resources in the United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Potential for Hydrogen Production Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NREL/TP-640-41134 February 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Prepared under Task No. H278.2100 Technical Report NREL/TP-640-41134 February 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

38

Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning  

Science Journals Connector (OSTI)

Renewable energy sources are considered as strategic opportunities to improve the populations quality of life, to promote the development of more efficient and equitable economic systems, and to favor environmental sustainability in the territorial planning of Lerma Valley (Salta, Argentina). The mapping in raster format (each pixel having a reference value) of the potential renewable energy sources (solar, wind, biomass, hydraulic, mixed) is essential to define ideal locations for different types of renewable applications, and to plan suitable strategies for its implementation. It is necessary considering environmental diversity and site conditions (topographic, natural resource, infrastructure and service availability, social and economical) of the intervention area. Different methodologies are used for mapping of potential energy resources. Solar radiation is spatialized through the application of statistical regressions between altitude, latitude, precise incident solar radiation records, and radiation data estimated with the Geosol V.2.0. software. The Argentina Map program is used for the wind potential resource modeling. It requires as inputs: a Digital Elevation Model, a land use and cover map (to determine roughness), and measured and/or estimated wind speed and frequency data. The hydroelectric potential for microturbine applications is calculated from the topographic drop and the annual mean flow in cumulative models, through the application of the Idrisi Kilimanjaros runoff tool; while the power densities are compared at the watershed. Biomass potential (at this exploratory stage), is interpreted from the available biomass type (land use and cover map), its energy application availability, and some quantitative indicators associated with the biomass types identified as priority. In conclusion, the renewable energy potential in Lerma Valley is very high and diverse, and its close connection with socialenvironmental conditions is basic for the creation of energy resource-related territorial plans.

S. Belmonte; V. Nez; J.G. Viramonte; J. Franco

2009-01-01T23:59:59.000Z

39

Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

40

Kansas coal resources and their potential for utilization in the near future  

SciTech Connect (OSTI)

Preliminary evaluation of deep coal resources in Kansas indicates nearly 50 billion tons (45 billion MT) of coal in eastern Kansas. The Cherokee Group and Marmaton Groups of Middle Pennsylvanian age are the important coal-bearing geologic units. Most of the coal beds are thin, with only a limited amount (1.85 billion tons or 1.68 billion MT) from coal beds exceeding 42 in. (105 cm) in thickness. Most of these coal thicknesses were determined from geophysical logs run for oil and gas tests, and the potential for a much larger resource of thick coal exists in several areas of the state. Depths of this deep-coal resource range from 100 ft (30 m) down to approximately 3,000 ft (900 m) in the deeper parts of the western Cherokee basin.

Brady, L.L. (Kansas Geological Survey, Lawrence (USA))

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential  

Broader source: Energy.gov (indexed) [DOE]

956 956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-47956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman Prepared under Task No. IDHW.9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

42

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect (OSTI)

The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

Ernest A. Mancini; Donald A. Goddard

2004-10-28T23:59:59.000Z

43

Resources  

Broader source: Energy.gov [DOE]

Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

44

Potential hydrologic effects of developing coal and other geoenergy resources in Oregon: a review  

SciTech Connect (OSTI)

Geoenergy resources in Oregon, in addition to coal, include noncommercial deposits of oil shale, natural gas, and geothermal heat. Commercial quantities of natural gas were discovered at Mist in northwestern Oregon in 1979. Gas presently is being produced from five wells and additional exploratory drilling is underway. More than 2 million acres of Oregon land is under lease for petroleum and natural gas exploration, mostly in the Astoria embayment-Willamette syncline, central (Oregon) Paleozoic-Mesozoic basin, and eastern Tertiary nonmarine basin. The Cascade Range and eastern Oregon contain sizable resources of geothermal heat, of which a small part has been developed for space heating at Klamath Falls and Lakeview. Thirteen Known Geothermal Resource Areas (KGRA's) comprising 432,000 acres have been identified, 422,000 acres are currently leased for geothermal development. KGRA's judged to have potential for generation of electrical power are Newberry Crater, Crump Geyser, and Alvord Desert. No adverse hydrologic effects have been noted to date from coal or other geoenergy exploration or development in Oregon, and no effects are expected if federal and state regulations are adhered to. The southwestern Oregon coals would have to be mined by underground methods. Potential hydrologic impacts would be local increases in sedimentation, turbidity, and mineralization of surface and ground water. Water-quality degradation, including both thermal pollution and increased concentrations of dissolved minerals, could result from geothermal development. Other potential problems include land subsidence and consumptive use of water associated with both coal and geothermal development. 53 refs., 3 figs., 1 tab.

Sidle, W.C.

1981-01-01T23:59:59.000Z

45

An overview of the biomass resource potential of Norway for bioenergy use  

Science Journals Connector (OSTI)

This paper provides an overview of the Norwegian biomass resources for bioenergy use, bioenergy market and frame conditions through a comparison with Denmark, Finland and Sweden, which have a leading role in bioenergy production in the European Union. Although the contribution of renewable energy in Norway is among the highest in Europe (58%), mainly due to hydroelectricity, bioenergy has a low contribution to Norwegian energy supply (6%). As the experience from the other EU Member States showed, long-term, stable policies and relatively strong incentives are needed to initiate and build up a bioenergy market. In Norway, there is still a significant available potential for increasing the bioenergy contribution to the energy supply. The abundance and relatively low prices of energy (i.e. fossil fuels and electricity), in connection with the need of high investment costs, did not favour so far bioenergy production. Additional forest biomass may be mobilized in Norway by more intensive management of currently exploited forests. However, there are several limitations related to topography, accessibility and economics. The biomass resources and the full range of technologies available for heat or electricity generation both at small and large scale that can provide good opportunities for increased bioenergy production. The experience gained in Denmark, Finland and Sweden may be relevant for Norway, as well as for other EU Member States, where there is a deficit of mobilization of biomass resources and insufficient industrial integration of bioenergy with other forest-based sectors.

Nicolae Scarlat; Jean-Francois Dallemand; Odd Jarle Skjelhaugen; Dan Asplund; Lars Nesheim

2011-01-01T23:59:59.000Z

46

Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

47

RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

Ernest A. Mancini

2004-04-16T23:59:59.000Z

48

Development of an improved methodology to assess potential unconventional gas resources in North America  

E-Print Network [OSTI]

(USGS) has assessed the amount of unconventional gas resources in North America, and its estimates are used by other government agencies as the basis for their resource estimates. While the USGS employs a probabilistic methodology, it is apparent from...

Salazar Vanegas, Jesus

2007-09-17T23:59:59.000Z

49

Measuring the Potential to Adopt Self Governance for the Management of a Common Pool Resource  

E-Print Network [OSTI]

Self governance has proved to be a suitable instrument for the management of a common pool resource like fisheries. Under self governance, individuals organize themselves for the use of a resource, to deal with problems derived from the free access...

Colin Castillo, Sergio

2012-02-14T23:59:59.000Z

50

The hydroelectric problem of porous rocks: inversion of the position of the water table from self-potential data  

Science Journals Connector (OSTI)

......Potential Field and Applied Geophysics The hydroelectric problem of porous rocks: inversion...Green's functions for the coupled hydroelectric problem yields an integral equation...water flow through the electrokinetic (hydroelectric) coupling (e.g. Jouniaux et al......

A. Revil; V. Naudet; J. D. Meunier

2004-11-01T23:59:59.000Z

51

Assessment of the Potential for the Direct Application of Renewable Resources. Staff Issue Paper  

SciTech Connect (OSTI)

This issue paper is intended to take a general look at the direct application of renewable resources. The focus of the paper is to provide background information on what is currently known about these resources. The Council is interested in comments to supplement the information discussed in this paper. Perhaps more importantly, the Council is looking for recommendations on how to treat these resources in the next power plan. The Council is faced with at least two important questions related to this issue. First, should the Council attempt to develop detailed supply curves for these resources? Second, should programs be developed to encourage the acquisition of these resources? The direct application of renewable resources is generally defined as the use of a renewable resource such as solar, hydro, wind, geothermal and biomass for the direct reduction of electrical energy use by a consumer. While there have been previous staff analysis of these resources they have not been explicitly treated in previous power plans. Given the renewed emphasis on evaluating the environmental consequences of resource development, these relatively benign resources merit further analysis. This paper will provide the basis for treatment of direct application of renewable resources in the 1990 Power Plan. Most of these resources tend to be site specific and typically require large collection areas to capture a significant amount of energy. Because of high fixed installation costs, they also tend to be most cost effective with higher usage. These characteristics generally prevent widespread regional application and limit the size of any particular resource. Early programs designed to encourage these resources focused on individual end use applications. However, given the unique characteristics of these resources, it is likely that future programs will treat these resources as one option among several conservation measures applied to a given end use or sector. Several of the direct application of renewable resources appear cost effective today or are close enough to justify further analysis. Examples include solar domestic water heating, passive solar heating east of the cascades, geothermal heating systems and daylighting in commercial buildings. This paper will examine these uses of direct application of renewable resources as well as others in detail and will provide recommendations for treatment in the 1990 Power Plan.

None

1989-10-16T23:59:59.000Z

52

Clearwater Subbasin Assessment 360 November 2003 9 Resource Synthesis and Definition of Potential Management Units  

E-Print Network [OSTI]

management units. For the purposes of planning at the subbasin scale, and given limitations in data availability and accuracy based on the broad scale nature of this assessment, subjective PMU delineations (Table 66). Due to the large amount of information being synthesized, raw data were often categorized (e

53

Additional Resources for Estimating Building Energy and Cost Savings to  

Broader source: Energy.gov (indexed) [DOE]

Additional Resources for Estimating Building Energy and Cost Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases October 7, 2013 - 11:06am Addthis For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type. When deciding what resource to use for developing energy- and cost-savings estimates, a program should consider items detailed in Table 1. Table 1.Resources for Estimating Energy Savings Resource Items to consider Advanced Energy Retrofit Guides Based on representative building models of commercial buildings. Guidance available for a limited number of building types using the most common technologies.

54

Geothermal energy resources in Trans-Pecos Texas - characteristics and potential for development  

SciTech Connect (OSTI)

Convective geothermal systems in Trans-pecos Texas, and Chihuahua and Coahuila, Mexico, are potential energy resources. The geothermal systems, which lie along a narrow belt near the Rio Grand River, are characterized by hot springs and shallow hot wells located along normal faults. The hot water is meteoric water that has circulated to depths of 2-3 km (1-2 mi), been heated, and risen to the surface through fractures along fault zones. The heat source is the Earth's normal thermal gradient, which as high as 40/sup 0/C/km (202/sup 0/F/100 ft); no young magma bodies are involved. Maximum measured temperatures are 90/sup 0/C (194/sup 0/F) at a hot spring in Chihuahua, about 80/sup 0/C (176/sup 0/F) in 2 well in the Sierra Vieja, and about 75/sup 0/C (167/sup 0/F) in several wells east of El Paso. Many springs have temperature in the range 35-50/sup 0/C (95-122/sup 0/F). Maximum subsurface temperatures estimated from chemical geothermometers are 100-160/sup 0/C (212-320/sup 0/F); most are considerably lower. Chemical constraints on use should be negligible except for the El Paso-area waters, which have moderately high dissolved solids (10,000 mg/L). Hydrologic data to evaluate possible production rates are generally sparse. None of the waters are hot enough to generate electricity by currently available technology. The highest temperature waters could be used for industrial or space heating, but, except for the area near El Paso, they are too far from population centers.

Henry, C.D.

1984-04-01T23:59:59.000Z

55

Table 4-3 Site Wide Environmental Management Matrix  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Table 4-3. Site-Wide Environmental Management Matrix National Renewable Energy Laboratory's South Table Mountain Complex FINAL POTENTIAL ISSUES PROGRAM OF IMPROVEMENTS Off- Site...

56

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

E-Print Network [OSTI]

Table 4. Table 5. Table 6. Utility Resource Plans Included2 Carbon Emission Price Projections in Utility11 Utility Approaches to Incorporating Energy Efficiency

Barbose, Galen

2008-01-01T23:59:59.000Z

57

Conversion Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

58

Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale  

SciTech Connect (OSTI)

Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

2014-04-21T23:59:59.000Z

59

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

60

Quantitative appraisal of biomass resources and their energy potential in Egypt  

Science Journals Connector (OSTI)

Abstract The utilization of biomass as a renewable source of energy is important from the energetic as well as the environmental viewpoint. It can reduce the rate of fossil fuel depletion caused by the rapid increase in energy consumption. This paper presents an estimation of the biomass and its potential energy in Egypt. Four main types of biomass energy sources are included: agricultural residues (dedicated bioenergy crop residues), municipal solid wastes, animal wastes, and sewage sludge. The potential biomass quantity and its theoretical energy content were computed according to statistical reports, literature reviews, and personal investigations. The results show that Egypt produces a considerable amount of biomass with a total theoretical energy content of 416.91015J. The dry biomass produced from bioenergy crop residue sources has been estimated at about 12.33 million tons/year, of which 63.75% is produced from rice straw. This source represents the highest percentage (44.6%) of the total theoretical potential energy in Egypt, followed by municipal solid wastes, which could produce 41.7% from an annual amount of 34.6 million tons. Meanwhile, the rest of the total theoretical potential energy could be produced from animal and sewage wastes. The estimated biomass with its considerable potential energy content represents an important renewable energy source in Egypt.

N. Said; S.A. El-Shatoury; L.F. Daz; M. Zamorano

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CO2/EOR and Geological Carbon Storage Resource Potential in the Niagaran Pinnacle Reef Trend, Lower Michigan, USA  

Science Journals Connector (OSTI)

Abstract Early Silurian age, Niagaran pinnacle reef trend (NPRT) oil fields in the Guelph Formation in Northern Lower Michigan (NNPRT) comprise a giant oil province with nearly 63.6 million cubic meters (Mm3) of cumulative petroleum and 680 billion cubic meters (Bm3) of natural gas production (through 2010) from over 700 discrete reservoirs at depths of 800-2100 m. Several NNPRT fields are the main target of a proposed, DOE-NETL funded, large scale carbon dioxide (CO2) utilization and sequestration project. The NNPRT comprises closely-spaced, but highly geologically compartmentalized and laterally discontinuous oil and gas fields many of which have either reached or are nearing their economic limit in primary production mode. Total oil production from the largest 207 oil fields in the NNPRT, each with more than 80,000 m3 of cumulative oil production per field, constitutes 86% or 54.6 Mm3 of trend oil production totals and are considered most likely targets for CO2/EOR activities in the future. We have evaluated regional CO2/Enhanced Oil Recovery (EOR) potential in these NNPRT fields from historic production data in addition to recovery efficiencies observed in seven, on-going, commercial CO2/EOR projects and determined that incremental CO2/EOR potential in these fields ranges from 22-33 Mm3. We have also evaluated trend-wide Geological Storage Resource (GSR) potential using 2 different approaches: 1) a produced fluid volumes approach, and 2) a gross storage capacity approach using petrophysical well log estimates of net, effective porosity in NNPRT field wells and estimates of reservoir acreage from GIS data. These approaches provide robust low and high estimates of more than 200 Mmt but less than 500 Mmt (respectively) for Geological Storage Resource (GSR) potential in the NNPRT.

David Barnes; Bill Harrison; G. Michael Grammer; Jason Asmus

2013-01-01T23:59:59.000Z

62

Potential benefits of a resource-recovery facility coupled with district heating in Detroit, Michigan  

SciTech Connect (OSTI)

The City of Detroit, Michigan, announced plans for a 2.7-Gg/d (3000-ton/d) Resource Recovery Facility to be located in the central part of the city. The facility will process and burn waste collected by the municipal forces. Steam generated in the facility's boilers will be used to produce electricity; the surplus electricity will be sold to the Detroit Edison Company. When needed by the Central Heating System (CHS), large portions of the steam can be extracted from the turbine and sold to the Detroit Edison Company. The facility will meet its primary purpose of greatly relieving Detroit's solid waste disposal problem. A second very important benefit is that it will be a source of reasonably priced steam for the CHS, which serves the downtown area. Detroit is now in a local depression, and the downtown areas have suffered urban decay. The city is focusing on the redevelopment of these areas, and a viable, cost-effective district heating system would be a major asset. Currently, the CHS is losing money, although it charges relatively high rates for steam, because it uses primarily natural gas to generate steam. The economic feasibility of converting the CHS's relatively oil boiler units to burn coal, a much cheaper fuel, is doubtful. The Resource Recovery Facility can provide CHS with a major part of its steam needs at competitive prices in the near future. This would do much to relieve the CHS's financial problems and help it to become a viable system. This, in turn, would assist the city in the redevelopment of the downtown areas. An overall strategy for district heating in Detroit is being developed. It is suggested that a comprehensive study of a regional district heating system in the city be made.

McLain, H.A.; Brinker, M.J.; Gatton, D.W.

1982-09-01T23:59:59.000Z

63

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

64

Resource recovery potential from secondary components of segregated municipal solid wastes  

E-Print Network [OSTI]

(MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash for decentralized biogas plants to be operated in the vicinity. We characterized the fermen- tation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using

Columbia University

65

PARENT HANDBOOK TABLE OF CONTENTS  

E-Print Network [OSTI]

PARENT HANDBOOK 1 TABLE OF CONTENTS The Parent's Role 3 Academics 7 Academic Advising 7 Academic Services 26 Athletics, Physical Education and Recreation 28 Campus Resources and Student Services 30 to seeing you in person and connecting with you online! PARENT HANDBOOK THEPARENT'SROLE PARENT HANDBOOK 3

Adali, Tulay

66

A procedure for producing maps and resource tables of coals assessed during the US Geological Survey`s National Coal Assessment  

SciTech Connect (OSTI)

In the Colorado Plateau region of the US, more than 20 coal zones in 5 formations are currently being assessed for the US Geological Survey (USGS) National Coal Resource Assessment. Certain steps in the process of calculating coal resource estimates and producing the numerous accompanying maps for each assessment unit must therefore, be automated. Through trial and error the authors have established an accurate, reliable, and time-efficient method of taking an ASCII formatted file containing location (x,y) and coal thickness data, combining this with multiple layers of digital spatial data pertaining to coal distribution and coal resource reporting parameters, to ultimately arrive at high quality end products. They utilize as many as six commercially available software packages in conjunction with three custom programs to process the digital data. These programs range from simple conversion programs to highly sophisticated Geographic Information Systems (GIS), 2-dimensional modeling programs, graphics packages, and spread sheet software. The method is explained.

Roberts, L.N.R.; Mercier, T.J.; Biewick, L.R.H.; Blake, D. [Geological Survey (United States)

1998-12-31T23:59:59.000Z

67

State and National Wind Resource Potential at Various Capacity Factor Ranges for 80 and 100 Meters  

Wind Powering America (EERE)

February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) State Total (km 2 ) Excluded 2 (km 2 ) Available (km 2 ) Available % of State % of Total Windy Land Excluded Installed Capacity 3 (MW) Annual Generation (GWh) Alabama 15.9 13.3 2.6 0.00% 83.4% 13.2 42 Alaska 267,897.7 209,673.4 58,224.3 3.87% 78.3% 291,121.3 1,051,210 Arizona 611.7 417.3 194.4 0.07% 68.2% 972.1 3,100 Arkansas 1,130.0 687.5 442.5 0.32% 60.8% 2,212.5 7,215 C lif i 11 456 4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas >= 35% Capacity Factor at 80m These estimates show, for each of the 50 states and the total U.S., the windy land area with a gross capacity factor (without losses) of 35% and greater at 80-m height above ground and the wind energy potential that could be possible from development of the "available" windy land area

68

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

69

Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential  

SciTech Connect (OSTI)

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

NONE

1995-04-01T23:59:59.000Z

70

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

71

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

72

Notices TABLE  

Broader source: Energy.gov (indexed) [DOE]

7 Federal Register 7 Federal Register / Vol. 76, No. 160 / Thursday, August 18, 2011 / Notices TABLE 2-NET BURDEN CHANGE-Continued 2011-2012 2012-2013 Change % Change Burden disposition Total Applicants .................................... 23,611,500 24,705,864 +1,094,364 +4.63 Net decrease in burden. The increase in applicants is offset by the results of the Department's simplification changes. This has created an over- all decrease in burden of 8.94% or 2,881,475 hours. Total Applicant Burden ......................... 32,239,328 29,357,853 ¥2,881,475 ¥8.94 Total Annual Responses ....................... 32,239,328 46,447,024 +14,207,696 +44.07 Cost for All Applicants .......................... $159,370.20 $234,804.24 $75,434.04 +47.33 The Department is proud that efforts to simplify the FAFSA submission

73

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

74

Nutritional, Biochemical, and Pharmaceutical Potential of Proteins and Peptides from Jatropha: Review  

Science Journals Connector (OSTI)

Nutritional, Biochemical, and Pharmaceutical Potential of Proteins and Peptides from Jatropha: Review ... Increased bioenergy consciousness and high demand for animal products have propelled the search for alternative resources that could meet the dual demands. ... In the following section we discuss the literature available on jatropha cyclic peptides (Table 1) emphasizing chemistry and its potential toward agricultural/pharmaceutical properties. ...

Rakshit K. Devappa; Harinder P. S. Makkar; Klaus Becker

2010-05-13T23:59:59.000Z

75

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network [OSTI]

resources such as coalbed methane (Warner, 2007). Policies,the development of coalbed methane, which, after properly

Moridis, George J.

2008-01-01T23:59:59.000Z

76

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

77

Estimating potential photovoltaic yield with r.sun and the open source Geographical Resources Analysis Support System  

SciTech Connect (OSTI)

The package r.sun within the open source Geographical Resources Analysis Support System (GRASS) can be used to compute insolation including temporal and spatial variation of albedo and solar photovoltaic yield. A complete algorithm is presented covering the steps of data acquisition and preprocessing to post-simulation whereby candidate lands for incoming solar farms projects are identified. The optimal resolution to acquire reliable solar energy outputs to be integrated into PV system design software was determined to be 1 square km. A case study using the algorithm developed here was performed on a North American region encompassing fourteen counties in South-eastern Ontario. It was confirmed for the case study that Ontario has a large potential for solar electricity. This region is found to possess over 935,000 acres appropriate for solar farm development, which could provide 90 GW of PV. This is nearly 60% of Ontario's projected peak electricity demand in 2025. The algorithm developed and tested in this paper can be generalized to any region in the world in order to foster the most environmentally-responsible development of large-scale solar farms. (author)

Nguyen, H.T.; Pearce, J.M. [Department of Mechanical and Materials Engineering, Queen's University, 60 Union Street, Kingston, Ontario (Canada)

2010-05-15T23:59:59.000Z

78

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network [OSTI]

13 Table 5. 2006 Renewable Capacity and EstimatedMW)13 Table 6. 2006 Renewable Energy & Estimatedcapacity of renewable resources. ..16

Budhraja, Vikram

2008-01-01T23:59:59.000Z

79

The Geothermal System Near Paisley Oregon: A Tectonomagmatic Framework for Understanding the Geothermal Resource Potential of Southeastern Oregon.  

E-Print Network [OSTI]

??The tectonic and magmatic framework of southeast Oregon provides the conditions necessary for the existence of geothermal energy resources. However, few detailed studies of geothermal (more)

Makovsky, Kyle Aaron

2013-01-01T23:59:59.000Z

80

Potential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and and Frictional Drag on a Floating Sphere in a Flowing Plasma I. H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge, MA, USA The interaction of an ion-collecting sphere at floating potential with a flowing colli- sionless plasma is investigated using the "Specialized Coordinate Electrostatic Particle and Thermals In Cell" particle-in-cell code SCEPTIC[1, 2]. Code calculations are given of potential and the total force exerted on the sphere by the flowing plasma. This force is of crucial importance to the problem of dusty plasmas, and the present results are the first for a collisionless plasma to take account of the full self-consistent potential. They reveal discrepancies amounting to as large as 20% with the standard analytic expressions, in parameter regimes where the analytic approximations might have been expected

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

82

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

83

Influence of reservoir heterogeneity on gas resource potential for geologically based infill drilling, Brooks and I-92 reservoirs, Frio Formation, south Texas  

SciTech Connect (OSTI)

Gas resource potential for strategic infill drilling or recompletion in a reservoir can be calculated by subtracting gas volumes derived using the material balance (pressure decline) method from volumes derived using a volumetric method. This resource potential represents remaining gas that is not in communication with existing wells. Frio reservoirs in mature, nonassociated gas plays located downdip from the Vicksburg fault zone are characterized by multiple, vertically stacked sandstones. The Brooks reservoir, in La Gloria field, lies in a fluvial-dominated system that contains dip-elongate channel sandstone belts 1-2 mi wide. Within these belts are six or more vertically stacked channel-fill, point-bar and splay deposits. Depositional environments were interpreted from SP logs. Individual sandstones are separated vertically by thin mudstone layers and pinch out laterally into flood-plain deposits.

Jackson, M.L.W.; Ambrose, W.A. (Bureau of Economic Geology, Austin, TX (USA))

1989-09-01T23:59:59.000Z

84

Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for extraction of groundwater from the deep carbonate aquifer. Grazing and hunting are unlikely to be potential causes for inadvertent human intrusion into waste areas because of vegetation characteristics and lack of significant game animal populations.

NSTec Environmental Management

2007-06-01T23:59:59.000Z

85

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

86

FY 2005 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

87

STUDENT HANDBOOK Table of Contents Page Number  

E-Print Network [OSTI]

STUDENT HANDBOOK Campus #12;Table of Contents Page Number Welcome 1 The School 1 Mission Statement Student Resources 8 Financial Aid and Funding Sources Writing Supports 9 Special Needs Computers Libraries RefWorks 10 Student Services 11 Administrative Information 14 Student ID, and Email Accounts U of R

Saskatchewan, University of

88

Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries  

Science Journals Connector (OSTI)

Abstract The absence of clean cooking facilities and electricity means billions of rural people are deprived of much needed socioeconomic development. Livestock residues (dung) and solar radiation are two renewable energy resources that are abundantly available in rural areas of developing countries. Although it is not feasible for these two resources separately to meet both thermal (cooking) and electricity demands, hybrid applications have not been given due attention. To facilitate integrating these two resources in rural energy planning, and to promote their dissemination through hybrid applications, it is necessary to evaluate their economic merits, and assess their ability to deal with the demands. In this paper, we examine the techno-economic performance of hybrid applications of these two resources by applying a simulation technique using the HOMER tool, and by giving derived cost-saving equations. We also quantify the monetary savings from replacing traditional fuels, and perform a sensitivity analysis on a number of variables (e.g. dung cost, fuelwood cost) to see how they affect the performance of different energy supply alternatives. Furthermore, we examine the practical applicability of the biogas system in the households through a structured survey of 72 ongoing household biogas plants. This study finds that households that have between three and six cattle can potentially meet their cooking and electricity loads through a hybrid implementation of biogas and solar PV (Photovoltaic) system. By replacing conventional fuels households can achieve savings that are more than the total annualized costs incurred for installing new services.

Md. Mizanur Rahman; Mohammad Mahmodul Hasan; Jukka V. Paatero; Risto Lahdelma

2014-01-01T23:59:59.000Z

89

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

The AEO Supplementary tables were generated for the reference case of the The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2002 (AEO2002) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2002, but contain regional and other more detailed projections underlying the AEO2002 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seven tables is presented. The data for tables 10 and 20 match those published in AEO2002 Appendix tables A2 and A3, respectively. Forecasts for 2000-2002 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current

90

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

91

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. The data for tables 10 and 20 match those published in AEO200 Appendix tables A2 and A3, respectively. Forecasts for 1998, and 2000 may differ slightly from values published in the Short Term Energy Outlook, Fourth Quarter 1999 or Short Term Energy Outlook, First Quarter 2000, which are the official EIA short-term forecasts and are based on more current information than the AEO.

92

Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model  

Science Journals Connector (OSTI)

The energy density in each grid cell was computed using Eq. 10 and ... 11 is employed. To further explore the impact of potential changes in the speed distribution on the wind energy sector we also computed the f...

S. C. Pryor; R. J. Barthelmie; E. Kjellstrm

2005-12-01T23:59:59.000Z

93

FY 2005 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

94

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

95

Wind Career Map: Resource List  

Broader source: Energy.gov [DOE]

The following resources were used in the development of the Wind Career Map, associated job profile information, or are potential resources for interested Wind Career Map viewers.

96

Engineering and Mineral Resources  

E-Print Network [OSTI]

News ????????????????? ® College of Engineering and Mineral Resources Winter 2008 table of contents. . . . . . . . . . . . . . . . . . . . 7 wvCROSSROADS DepartmentofCivilandEnvironmentalEngineering Civil engineering exchange program and environmental engineering with a focus in transportation will have the opportunity to study abroad as part

Mohaghegh, Shahab

97

Louisiana Block Grant Tables | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Louisiana Block Grant Tables Louisiana Block Grant Tables This table details funding for state, city, and county governments in the state of Louisiana. Louisiana Block Grant Tables...

98

Mississippi Block Grant Tables | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mississippi Block Grant Tables Mississippi Block Grant Tables A table describing where state funding is being distributed Mississippi Block Grant Tables More Documents &...

99

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

100

Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs  

SciTech Connect (OSTI)

The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

2014-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

102

Computer resources Computer resources  

E-Print Network [OSTI]

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

103

ARM - Instrument Location Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

104

An Assessment of Potential Oil Spill Damage to Salt Marsh Habitats and Fishery Resources in Galveston Bay, Texas  

Science Journals Connector (OSTI)

We sampled nekton, benthic infauna, and sediments in salt marshes of upper Galveston Bay, Texas to examine relationships between habitat use and sediment hydrocarbon concentration. Most marsh sediment samples were contaminated with relatively low concentrations of weathered petroleum hydrocarbons. We found few statistically significant negative relationships between animal density and hydrocarbon concentration (6 of 63 taxa examined using simple linear regression). Hydrocarbon concentration did not contribute significantly to Stepwise Multiple Regression models we used to explore potential relationships between animal densities and environmental parameters; in most cases where hydrocarbon concentration was an important variable in the models, the relationship was positive (i.e., animal densities increased with hydrocarbon concentration). Low hydrocarbon concentrations in sediments of upper Galveston Bay marshes could have contributed to our results either because levels were too low to be toxic or levels were toxic but too low to be detected by most organisms.

Lawrence P Rozas; Thomas J Minello; Charles B Henry

2000-01-01T23:59:59.000Z

105

Chapter 13 Cultural Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proposed routes for the action alternatives and the extensive area covered by the APE, BPA developed a predictive analysis to assess the potential for cultural resources along...

106

FY 2009 State Table  

Broader source: Energy.gov (indexed) [DOE]

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

107

FY 2005 State Table  

Broader source: Energy.gov (indexed) [DOE]

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

108

FY 2010 State Table  

Broader source: Energy.gov (indexed) [DOE]

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

109

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

110

FY 2006 State Table  

Broader source: Energy.gov (indexed) [DOE]

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

111

FY 2010 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

112

Table of Contents  

Broader source: Energy.gov (indexed) [DOE]

E N N E E R R A A L L Semiannual Report toCongress DOEIG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ......

113

FY 2008 State Table  

Broader source: Energy.gov (indexed) [DOE]

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

114

PROHIBITED USE OF ELECTRONIC RESOURCES FOR THREATS, HARASSMENT, AND PORNOGRAPHY  

E-Print Network [OSTI]

Page 1 PROHIBITED USE OF ELECTRONIC RESOURCES FOR THREATS, HARASSMENT, AND PORNOGRAPHY Policy, and prohibits the use of University Electronic Resources for threats, harassment, and pornography. Reason threats, engaging in harassing behavior, and viewing, downloading, or communicating pornography. Table

Shahriar, Selim

115

Analysis of the California Solar Resource--Volume 3: Appendices  

E-Print Network [OSTI]

6782, ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE Volume 3:Analysis of the California Solar Resource is a three-volume~). Table F-2. of California's solar data statiQns Period of

erdahl, P.

2011-01-01T23:59:59.000Z

116

Resource Analysis  

Broader source: Energy.gov [DOE]

Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount...

117

SPACE RESOURCES ROUNDTABLE IX  

E-Print Network [OSTI]

in developing the resources of space, including the Moon, Mars, asteroids, comets, and other bodies organizations. The ninth Space Resources Roundtable solicits presentations about: · Orbital or landed measurements of the Moon, Mars, and/or asteroids and comets to identify and characterize potential resources

Rathbun, Julie A.

118

EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources  

Gasoline and Diesel Fuel Update (EIA)

A1. Notes and Sources A1. Notes and Sources Tables Chapter 1: Greenhouse gas emissions overview Table 1. U.S. emissions of greenhouse gases, based on global warming potential, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008, DOE/EIA-0573(2008) (Washington, DC, December 2009). Global warming potentials: Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis: Errata (Cambridge, UK: Cambridge University Press, 2008), website http://ipcc-wg1.ucar.edu/wg1/Report/AR4WG1_Errata_2008-12-01.pdf. Table 2. U.S. greenhouse gas intensity and related factors, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the

119

FY 2011 State Table  

Broader source: Energy.gov (indexed) [DOE]

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

120

FY 2007 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FY 2011 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

122

FY 2008 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

123

FY 2006 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

124

Fy 2009 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

125

FY 2013 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................ 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology.................................................................. -16,500 -- --

126

FY 2009 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and conservation Operation and maintenance..........................................

127

Table of Contents Page i Table of Contents  

E-Print Network [OSTI]

Table of Contents Page i Table of Contents 4. Building HVAC Requirements ....................................................................................1 4.1.2 What's New for the 2013 Standards.............................................................................................3 4.1.4 California Appliance Standards and Equipment Certification

128

Cost Recovery Charge (CRC) Calculation Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Recovery Charge (CRC) Calculation Table Updated: October 6, 2014 FY 2016 September 2014 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

129

TABLE OF CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

/2011 /2011 Decades of Discovery Decades of Discovery Page 2 6/1/2011 TABLE OF CONTENTS 1 INTRODUCTION ...................................................................................................................... 6 2 BASIC ENERGY SCIENCES .................................................................................................. 7 2.1 Adenosine Triphosphate: The Energy Currency of Life .............................................. 7 2.2 Making Better Catalysts .............................................................................................. 8 2.3 Understanding Chemical Reactions............................................................................ 9 2.4 New Types of Superconductors ................................................................................ 10

130

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)  

SciTech Connect (OSTI)

Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

2012-04-01T23:59:59.000Z

131

Emerging energy security issues: Natural gas in the Gulf Nations, An overview of Middle East resources, export potentials, and markets. Report Series No. 4  

SciTech Connect (OSTI)

This paper proceeds with a presentation of the natural gas resource base of the Gulf nations of the Middle East. The resource base is put in the context of the world natural gas resource and trade flows. This is followed by a discussion of the existing and planned project to move Gulf natural gas to consuming regions. Then a discussion of the source of demand in the likely target markets for the Gulf resource follows. Next, the nature of LNG pricing is discussed. A brief summary concludes the paper.

Ripple, R.D.; Hagen, R.E.

1995-09-01T23:59:59.000Z

132

QR-Coded Audio Periodic Table of the Elements: A Mobile-Learning Tool  

Science Journals Connector (OSTI)

QR-Coded Audio Periodic Table of the Elements: A Mobile-Learning Tool ... A quick response coded audio periodic table of the elements (QR-APTE) was developed using free online resources. ... (4) In this regard the existence of organized audio chemical information is highly desirable, speeding up the learning process by avoiding Braille reading. ...

Vasco D. B. Bonifcio

2012-01-30T23:59:59.000Z

133

Marine and Hydrokinetic Resource Assessment and Characterization...  

Energy Savers [EERE]

Characterization Marine and Hydrokinetic Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the resource potential of the...

134

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

135

FY 2006 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2004 FY 2005 FY 2006 Comparable Comparable Request to FY 2006 vs. FY 2005 Approp Approp Congress Discretionary Summary By Appropriation Energy And Water Development Appropriation Summary: Energy Programs Energy supply Operation and maintenance................................................. 787,941 909,903 862,499 -47,404 -5.2% Construction......................................................................... 6,956 22,416 40,175 17,759 +79.2% Total, Energy supply................................................................ 794,897 932,319 902,674 -29,645 -3.2% Non-Defense site acceleration completion............................. 167,272 157,316 172,400 15,084 +9.6%

136

FY 2013 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

137

FY 2010 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2008 FY 2009 FY 2009 FY 2010 Current Current Current Congressional Approp. Approp. Recovery Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 1,704,112 2,178,540 16,800,000 2,318,602 +140,062 +6.4% Electricity delivery and energy reliability........................................ 136,170 137,000 4,500,000 208,008 +71,008 +51.8% Nuclear energy.............................................................................. 960,903 792,000 -- 761,274 -30,726 -3.9% Legacy management..................................................................... 33,872 -- -- --

138

FY 2012 State Table  

Broader source: Energy.gov (indexed) [DOE]

6 6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled

139

FY 2012 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

2Statistical Table by Appropriation 2Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2010 FY 2011 FY 2011 FY 2012 Current Congressional Annualized Congressional Approp. Request CR Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 2,216,392 2,355,473 2,242,500 3,200,053 +983,661 +44.4% Electricity delivery and energy reliability........................................ 168,484 185,930 171,982 237,717 +69,233 +41.1% Nuclear energy............................................................................. 774,578 824,052 786,637 754,028 -20,550 -2.7% Fossil energy programs Fossil energy research and development................................... 659,770 586,583 672,383 452,975

140

FY 2007 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance............................................ 1,779,399 1,791,372 1,917,331 +125,959 +7.0% Construction................................................................... 22,416 21,255 6,030 -15,225 -71.6% Total, Energy supply and conservation.............................. 1,801,815 1,812,627 1,923,361 +110,734 +6.1% Fossil energy programs Clean coal technology..................................................... -160,000 -20,000 -- +20,000 +100.0% Fossil energy research and development.......................

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FY 2012 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

142

FY 2008 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 1,917,331 2,187,943 +270,612 +14.1% Construction.................................................................... 31,155 6,030 -- -6,030 -100.0% Total, Energy supply and conservation............................. 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology.................................................... -20,000 -- -58,000 -58,000 N/A Fossil energy research and development......................

143

Marketing Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Reports, Publications, and Research Utility Toolkit Informational...

144

Table of Contents  

Broader source: Energy.gov (indexed) [DOE]

COMMUNICATIONS REQUIREMENTS COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information ....................................................................... 7 b. Other Federal Government Smart Grid Initiatives .................................... 9 III. Communications Requirements of Smart Grid Applications .................. 11 a. Advanced Metering Infrastructure ............................................................12

145

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

146

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

2003 Detailed Tables 2003 Detailed Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed explanation.

147

NATURAL RESOURCES University of California, Berkeley  

E-Print Network [OSTI]

. . . . . . . . . . . .17 Sustainable Design Approach . . . . . . . . . . .19 Existing Buildings and Test Fits on issues related to sustainability the College of Natural Resources (CNR) at UC Berkeley has becomeCOLLEGE OF NATURAL RESOURCES University of California, Berkeley #12;#12;1 Table of Con

Wildermuth, Mary C

148

Draft Fourth Northwest Conservation and Electric Power Plan, Appendix K RENEWABLE RESOURCE CONFIRMATION AGENDA  

E-Print Network [OSTI]

RESOURCE CONFIRMATION AGENDA The renewable resource confirmation agenda is a set of coordinated research and wind resources. The activities include resource assessment, conflict resolution and renewable-power objectives. Table K-1 Status and Recommendations Regarding the Renewable Resources Confirmation Agenda

149

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NT0005638 NT0005638 Cruise Report 1-19 July 2009 HYFLUX Sea Truth Cruise Northern Gulf of Mexico Submitted by: Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, TX 78412 Principal Authors: Ian R. MacDonald and Thomas Naehr Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2009 Office of Fossil Energy HYFLUX Seatruth Cruise Report -1- Texas A&M University - Corpus Christi Table of Contents Summary ............................................................................................................................. 2 Participating Organizations ................................................................................................. 3 Major Equipment ................................................................................................................ 4

150

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

151

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

152

Help:Tables | Open Energy Information  

Open Energy Info (EERE)

Tables Tables Jump to: navigation, search Tables may be authored in wiki pages using either XHTML table elements directly, or using wikicode formatting to define the table. XHTML table elements and their use are well described on various web pages and will not be discussed here. The benefit of wikicode is that the table is constructed of character symbols which tend to make it easier to perceive the table structure in the article editing view compared to XHTML table elements. As a general rule, it is best to avoid using a table unless you need one. Table markup often complicates page editing. Contents 1 Wiki table markup summary 2 Basics 2.1 Table headers 2.2 Caption 3 XHTML attributes 3.1 Attributes on tables 3.2 Attributes on cells 3.3 Attributes on rows 3.4 HTML colspan and rowspan

153

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

154

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

155

CARINA Data Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cruise Summary Table and Data Cruise Summary Table and Data Users are requested to report any data or metadata errors in the CARINA cruise files to CDIAC. Parameter units in all CARINA data files are in CCHDO exchange format. No Cruise Namea (Alias) Areab Number of Stations Datec Ship Chief Scientist Carbon PI Oxygen Nutrients TCO2d TALK pCO2e pHf CFC Other Measurements Data Files 1 06AQ19920929g (06ANTX_6) (See map) 2 118 9/29-11/30/1992 Polarstern V. Smetacek M. Stoll, J. Rommets, H. De Baar, D. Bakker 62 114h 53 54i U C 0 Choloroa,b Fluorescence, NH4 Data Files (Metadata) 2 06AQ19930806 (06ARKIX_4) (See map) 4 64 8/6-10/5/1993 Polarstern D.K. Fütterer L. Anderson 64 63 63j, bb 0 0 0 59he 3H, 3He, 18O, 14C, 85Kr, Bak Data Files

156

Supplement Tables - Contact  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the AEO99 Supplement Tables to the AEO99 bullet1.gif (843 bytes) Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage furtherinfo.gif (5474 bytes) The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441), Director of the International, Economic, and Greenhouse Gas Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; or Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. Detailed questions about the forecasts and related model components may be addressed to the following analysts:

157

Appendix B: Summary Tables  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix B: Summary Tables Table B1. The BCES and alternative cases compared to the Reference case, 2025 2009 2025 Ref Ref BCES All Clean Partial Credit Revised Baseline Small Utilities Credit Cap 2.1 Credit Cap 3.0 Stnds + Cds Generation (billion kilowatthours) Coal 1,772 2,049 1,431 1,305 1,387 1,180 1,767 1,714 1,571 1,358 Petroleum 41 45 43 44 44 44 45 45 45 43 Natural Gas 931 1,002 1,341 1,342 1,269 1,486 1,164 1,193 1,243 1,314 Nuclear 799 871 859 906 942 889 878 857 843 826 Conventional Hydropower 274 306 322 319 300 321 316 298 312 322 Geothermal 15 25 28 25 31 24 27 22 23 24 Municipal Waste 18 17 17 17 17 17 17 17 17 17 Wood and Other Biomass 38 162 303 289 295 301 241 266

158

Teacher Resource Center: Curricular Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

159

Human Resources hs_pro08 Page 1 of 12 Human Resources: Health, Safety & Wellbeing  

E-Print Network [OSTI]

to Worksafe NZ , any restricted work as defined in regulation 2 and 26 of The Health and Safety in EmploymentHuman Resources ­ hs_pro08 Page 1 of 12 Human Resources: Health, Safety & Wellbeing Protocol & Safety Manager Contact: Health & Safety Team Table of Contents Introduction

Hickman, Mark

160

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microsoft Word - table_87  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 6. Natural gas processed, liquids extracted, and natural gas plant liquids production, by state, 2012 Alabama 87,269 5,309 7,110 Alabama Onshore Alabama 33,921 2,614 3,132 Alabama Offshore Alabama 53,348 2,695 3,978 Alaska 2,788,997 18,339 21,470 Alaska 2,788,997 18,339 21,470 Arkansas 6,872 336 424 Arkansas 6,872 336 424 California 169,203 9,923 12,755 California Onshore California 169,203 9,923 12,755 California Offshore California NA NA NA Federal Offshore California NA NA NA

162

TABLE OF CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 5 B. Detailed Reports 1.1 Magnets & Supports 8 1.2 Vacuum System 12 1.3 Power Supplies 14 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.7 Beam Line Front Ends 19 1.8 Facilities 19 1.9 Installation 20 2.1 Accelerator Physics 21 2 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress The progress and highlights of each major technical system are summarized below. Additional details are provided in Section B. Magnets - As of the end of this quarter (March 31, 2002), the status of magnet fabrication is as follows: Magnet Type Number Received % of Total Received Dipoles 40 100% Quadrupoles 102 100% Sextupoles 76 100%

163

Reviews, Tables, and Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Review of Particle Physics 4 Review of Particle Physics Please use this CITATION: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (bibtex) Standalone figures are now available for these reviews. Categories: * Constants, Units, Atomic and Nuclear Properties * Standard Model and Related Topics * Particle Properties * Hypothetical Particles * Astrophysics and Cosmology * Experimental Methods and Colliders * Mathematical Tools * Kinematics, Cross-Section Formulae, and Plots * Authors, Introductory Text, History plots PostScript help file PDF help file Constants, Units, Atomic and Nuclear Properties Physical constants (Rev.) PS PDF (1 page) Astrophysical constants (Rev.) PS PDF (2 pages) International System of units (SI) PS PDF (2 pages) Periodic table of the elements (Rev.) errata PS PDF (1 page)

164

Table G3  

U.S. Energy Information Administration (EIA) Indexed Site

1905-0194 1905-0194 Expiration Date: 07/31/2013 May 28, 2010 Voluntary Reporting of Greenhouse Gases 14 Table G3. Decision Chart for a Start Year Report for a Large Emitter Intending To Register Reductions Report Characteristics Reporting Requirements Schedule I Schedule II (For Each Subentity) Schedule III Schedule IV Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 1 Sec. 2 & Add. A Sec. 3 Sec. 1 Sec. 2 Sec. 1 Sec. 2 Part A Part B Part C Part D Part E Part A Part B Part C Independent Verification? All A- or B-Rated Methods? Foreign Emissions? Entity-Wide Reductions Only? Entity Statement Aggregated Emissions by Gas (Domestic and Foreign) † Emissions Inventory by Source

165

TABLE OF CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

through June 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 9 1.2 Vacuum System 16 1.3 Power Supplies 21 1.4 RF System 25 1.5 Instrumentation & Controls 26 1.6 Cable Plant 28 1.8 Facilities 28 2.0 Accelerator Physics 29 2.1 ES&H 31 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress Magnet System - The project has received three shipments of magnets from IHEP. A total of 55 dipole, quadrupole and sextupole magnets out of 218 have arrived. All main magnets will arrive by December. The additional mechanical and electrical checks of the magnets at SSRL have been successful. Only minor mechanical problems were found and corrected. The prototype

166

TABLE OF CONTENTS  

National Nuclear Security Administration (NNSA)

AC05-00OR22800 AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295, 290, 284, 280, 270, 257, 239, 238, 219, M201, M180, M162, M153, M150, M141, M132, M103, M092, M080, M055, M051, M049, M034, M022, M003, A002) ..........................................................B-2 SECTION C - DESCRIPTION/SPECIFICATION/WORK STATEMENT DESCRIPTION OF

167

Table of Contents  

Broader source: Energy.gov (indexed) [DOE]

U U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3 Positive Outcomes ...................................................................................................... 3 Reports Investigative Outcomes .............................................................................................. 6 Audits ......................................................................................................................... 8

168

TABLE OF CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October October through December 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 7 1.2 Vacuum System 9 1.3 Power Supplies 13 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.9 Installation 19 2.0 Accelerator Physics 20 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress In the magnet area, the production of all major components (dipoles, quadrupoles, and sextupoles) has been completed on schedule. This results from a highly successful collaboration with our colleagues at the Institute of High Energy Physics (IHEP) in Beijing. The production of corrector magnets is still in progress with completion scheduled for May 2002.

169

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Expenditures by Major Fuel c2-pdf c2.xls c2.html Table C3. Consumption and Gross Energy Intensity for Sum of Major Fuels c3.pdf c3.xls c3.html Table C4. Expenditures for...

170

2014 Headquarters Facilities Master Security Plan - Table of...  

Broader source: Energy.gov (indexed) [DOE]

Table of Contents 2014 Headquarters Facilities Master Security Plan - Table of Contents June 2014 2014 Headquarters Facilities Master Security Plan - Table of Contents The Table of...

171

FY 2014 Budget Request Summary Table | Department of Energy  

Office of Environmental Management (EM)

Summary Table FY 2014 Budget Request Summary Table Summary Table by Appropriations Summary Table by Organization More Documents & Publications FY 2014 Budget Request Statistical...

172

ARM - Instrument - s-table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentss-table govInstrumentss-table Documentation S-TABLE : Instrument Mentor Monthly Summary (IMMS) reports S-TABLE : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Stabilized Platform (S-TABLE) Instrument Categories Ocean Observations For ship-based deployments, some instruments require actively stabilized platforms to compensate for the ship's motion, especially rotations around the long axis of the ship (roll), short axis (pitch), and, for some instruments, vertical axis (yaw). ARM currently employs two types of stabilized platforms: one electrically controlled for lighter instruments that includes yaw control (dubbed RPY for Roll, Pitch, Yaw) and one

173

DOE NEPA Guidance and Requirements - Search Index - Table of Contents |  

Broader source: Energy.gov (indexed) [DOE]

DOE NEPA Guidance and Requirements - Search Index - Table of DOE NEPA Guidance and Requirements - Search Index - Table of Contents DOE NEPA Guidance and Requirements - Search Index - Table of Contents Return to Download Page The DOE NEPA Guidance and Requirements - Search Index includes: NEPA Guidance and Requirements Documents Issued by Published A Brief Guide - DOE-wide Contracts For NEPA Documentation DOE 2003 A Citizen's Guide to the NEPA - Having Your Voice Heard CEQ 2007 A Resource Handbook on DOE Transportation Risk Assessment DOE 2002 Actions During the NEPA Process - Interim Actions DOE 2003 Administrative Record Guidance DOJ 1991 Aligning the NEPA Process with EMS CEQ 2007 Alternative Actions For Analysis in Site-wide NEPA Reviews DOE 1992 Amended Environmental Impact Statement Filing System Guidance EPA 2012 Analysis of Impacts on Prime and Unique Agricultural Lands and NEPA

174

DOE NEPA Guidance and Requirements - Search Index - Table of Contents |  

Broader source: Energy.gov (indexed) [DOE]

Table of Table of Contents DOE NEPA Guidance and Requirements - Search Index - Table of Contents Return to Download Page The DOE NEPA Guidance and Requirements - Search Index includes: NEPA Guidance and Requirements Documents Issued by Published A Brief Guide - DOE-wide Contracts For NEPA Documentation DOE 2003 A Citizen's Guide to the NEPA - Having Your Voice Heard CEQ 2007 A Resource Handbook on DOE Transportation Risk Assessment DOE 2002 Actions During the NEPA Process - Interim Actions DOE 2003 Administrative Record Guidance DOJ 1991 Aligning the NEPA Process with EMS CEQ 2007 Alternative Actions For Analysis in Site-wide NEPA Reviews DOE 1992 Amended Environmental Impact Statement Filing System Guidance EPA 2012 Analysis of Impacts on Prime and Unique Agricultural Lands and NEPA

175

OECD Input-Output Tables | Open Energy Information  

Open Energy Info (EERE)

OECD Input-Output Tables OECD Input-Output Tables Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Input-Output Tables Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: Co-benefits assessment, Market analysis, Co-benefits assessment, Pathways analysis Resource Type: Dataset Website: www.oecd.org/document/3/0,3343,en_2649_34445_38071427_1_1_1_1,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India, Canada, New Zealand, United States, Denmark, Norway, Spain, Austria, Italy, Netherlands, Ireland, France, Belgium, Brazil, Czech Republic, Estonia, Germany, Hungary, Luxembourg, Mexico, Slovenia, South Africa, Turkey, Indonesia, Switzerland, Taiwan, Russia

176

Annual resources report. [Glossary on technical terms  

SciTech Connect (OSTI)

The report is separated into the following sections: acknowledgments; a table of contents; a list of tables and figures; a glossary; an introduction; an overview of the role of energy resources in New Mexico; separate sections on oil and gas, coal, electrical generation, uranium, and geothermal energy; a section on the geologic setting of oil and gas, coal, and uranium; an appendix of additional tables pertaining to oil and gas development; and a listing of selected references. The glossary is a brief listing of technical terms used in the report with simplified definitions for the reader's use. The overview contains highlights of data found in the report as well as comparisons of New Mexico's resources with those of other states and the nation. In general, each section covering a resource area describes reserves, production, prices, consumption, transportation, employment, and revenue statistics over the past ten or more years and projections to the year 2000.

Not Available

1982-01-01T23:59:59.000Z

177

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications  

E-Print Network [OSTI]

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples of Tables Table 1-A. Analyses of biomass materials found in the State of Hawaii

178

Tools of the Job Queries, Reports, Resources Account Management  

E-Print Network [OSTI]

Tools of the Job ­ Queries, Reports, Resources Account Management The minimum required review trans detail, Ledger, grants award, and Invoice tables. The invoice tables are used by the dean's office of a grant or contract such as the chartstring, begin date, end date, sponsor, etc. The ledger data contains

179

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

180

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

table14.xls  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 AEO 1993 1.85 1.94 2.09 2.30 2.44 2.60 2.85 3.12 3.47 3.84 4.31 4.81 5.28

182

Code Tables | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

System NMMSS Information, Reports & Forms Code Tables Code Tables U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

183

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

184

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

185

TABLE OF CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbines The Gas Turbine Handbook The Gas Turbine Handbook TABLE OF CONTENTS Acknowledgements Updated Author Contact Information Introduction - Rich Dennis, Turbines Technology Manager 1.1 Simple and Combined Cycles - Claire Soares 1.1-1 Introduction 1.1-2 Applications 1.1-3 Applications versatility 1.1-4 The History of the Gas Turbine 1.1-5 Gas Turbine, Major Components, Modules, and systems 1.1-6 Design development with Gas Turbines 1.1-7 Gas Turbine Performance 1.1-8 Combined Cycles 1.1-9 Notes 1.2 Integrated Coal Gasification Combined Cycle (IGCC) - Massod Ramezan and Gary Stiegel 1.2-1 Introduction 1.2-2 The Gasification Process 1.2-3 IGCC Systems 1.2-4 Gasifier Improvements 1.2-5 Gas Separation Improvements 1.2-6 Conclusions 1.2-7 Notes 1.2.1 Different Types of Gasifiers and Their Integration with Gas Turbines - Jeffrey Phillips

186

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

An overview. Electric Power Systems Research 79(4), 511-520.research has shown that EDVs offer a number of potential complementarities to the conventional system of electric power

Greer, Mark R

2012-01-01T23:59:59.000Z

187

MECS 1991 Publications and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication and Tables Publication and Tables Publication and Tables Figure showing the Largest Energy Consumers in the Manufacturing Sector You have the option of downloading the entire report or selected sections of the report. Full Report - Manufacturing Consumption of Energy 1991 (file size 17.2 MB) pages:566 Selected Sections Main Text (file size 380,153 bytes) pages: 33, includes the following: Contacts Contents Executive Summary Introduction Energy Consumption in the Manufacturing Sector: An Overview Energy Consumption in the Manufacturing Sector, 1991 Manufacturing Capability To Switch Fuels Appendices Appendix A. Detailed Tables Appendix B. Survey Design, Implementation, and Estimates (file size 141,211 bytes) pages: 22. Appendix C. Quality of the Data (file size 135,511 bytes) pages: 8.

188

TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v  

E-Print Network [OSTI]

............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL. MONTHLY HEAT GAIN/LOSS FACTORS ........................... 5 TABLE 2. BASE TEMPERATURES

Oak Ridge National Laboratory

189

Warner College of Natural Resources Table of Contents  

E-Print Network [OSTI]

understand how history is told in samples from the polar ice caps that will help us affect climate change immediately. They require less training and produce results" said one industry representative. Whether its

190

Wind Resource Maps (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

191

E-Print Network 3.0 - australia potential sources Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of revenue for Australia and for this reason... resources 12;8 Table 1. WEC and BGR coal resource and reserve estimates for Australia. Data source: Hk et... , Australia *...

192

Resources & Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Smart grid fact sheet Department of...

193

EIA - Appendix A - Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Tables (2005-2035) Tables (2005-2035) International Energy Outlook 2010 Reference Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix A. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

194

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

195

The 1980-1982 Geothermal Resource Assessment Program in Washington  

SciTech Connect (OSTI)

Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

1983-08-01T23:59:59.000Z

196

Energy Efficiency Resource Standards Resources  

Broader source: Energy.gov [DOE]

Energy efficiency resource standards mandate a quantified energy efficiency goal for an energy provider or jurisdiction within a predetermined timeframe.

197

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

10 10 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

198

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

09 09 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

199

THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE  

SciTech Connect (OSTI)

Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

Phillips, S.L.; Hale, F.V.; Silvester, L.F.

1988-05-01T23:59:59.000Z

200

Fueling America Through Renewable Resources Purdue extension  

E-Print Network [OSTI]

Fueling America Through Renewable Resources BioEnergy Purdue extension u.s. ethanol Policy of U.S. ethanol policy, explains the economics of ethanol production in today's market environment. Table 1. History of Ethanol Subsidy Legislation #12; Fueling America Through Renewable Crops BioEnergy U

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

National Electric Sector Cybersecurity Organization Resource (NESCOR)  

SciTech Connect (OSTI)

The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

None, None

2014-06-30T23:59:59.000Z

202

Nature Bulletin Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Table of Contents: Table of Contents: Here is our table of contents for the Forset Preserve District of Cook Country Nature Bulletins. To search, go to the Natuere Bulletin's Search Engine and type in your topic. You can also use your browser's "FIND" command to search the 750+ article titles here for a specific subject! Fish Smother Under Ice Coyotes in Cook County Tough Times for the Muskrats Wild Geese and Ducks Fly North Squirrels Spring Frogs Snapping Turtles A Phenomenal Spring Good People Do Not Pick Wildflowers Fire is the Enemy of Field and Forest Crows Earthworms Bees Crayfish Floods Handaxes and Knives in the Forest Preserves Ant Sanctuary Conservation Mosquitoes More About Mosquitoes Fishing in the Forest Preserve Our River Grasshoppers Chiggers Ticks Poison Ivy Fireflies

203

COST AND QUALITY TABLES 95  

Gasoline and Diesel Fuel Update (EIA)

5 Tables 5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) will no longer be pub- lished by the EIA. The tables presented in this docu- ment are intended to replace that annual publication. Questions regarding the availability of these data should be directed to: Coal and Electric Data and Renewables Division

204

MTS Table Top Load frame  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTS Table Top Load frame MTS Table Top Load frame The Non-destructive Evaluation group operates an MTS Table Top Load frame for ultimate strength and life cycle testing of various ceramic, ceramic-matrix (FGI), carbon, carbon fiber, cermet (CMC) and metal alloy engineering samples. The load frame is a servo-hydraulic type designed to function in a closed loop configuration under computer control. The system can perform non-cyclic, tension, compression and flexure testing and cyclic fatigue tests. The system is comprised of two parts: * The Load Frame and * The Control System. Load Frame The Load Frame (figure 1) is a cross-head assembly which includes a single moving grip, a stationary grip and LVDT position sensor. It can generate up to 25 kN (5.5 kip) of force in the sample under test and can

205

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

206

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 to 116 Complete set of Supplemental Tables Complete set of Supplemental Tables. Need help, please contact the National Energy Information Center at 202-586-8800. Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central

207

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

208

Additional Resources  

Broader source: Energy.gov [DOE]

The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

209

Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Resources Argonne Site Office (ASO) ASO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Argonne Site Office U.S. Department of Energy 9800 South Cass Avenue Building 201 Argonne, IL 60439 P: (630) 252-8637 Resources Print Text Size: A A A RSS Feeds FeedbackShare Page Community Leaders Round Table The Argonne National Laboratory/U.S. Department of Energy Community Leaders Round Table provides an informal and convenient forum for sharing information about Argonne plans and activities with its neighbors. Founded in 1996, the round table consists of citizens with constituencies from communities around Argonne's site southwest of Chicago. Members include elected officials on the village, city, township, count and state levels;

210

FRAUD POLICY Table of Contents  

E-Print Network [OSTI]

FRAUD POLICY Table of Contents Section 1 - General Statement Section 2 - Management's Responsibility for Preventing Fraud Section 3 - Consequences for Fraudulent Acts Section 4 - Procedures for Reporting Fraud Section 5 - Procedures for the Investigation of Alleged Fraud Section 6 - Protection Under

Shihadeh, Alan

211

CHP NOTEBOOK Table of Contents  

E-Print Network [OSTI]

-Specific Standard Operating Procedures (SOPs) Section 8 Employee Training Section 9 Inspections and Exposure1 CHP NOTEBOOK Table of Contents Section 1 Safety Program Key Personnel Section 2 Laboratory Protective Equipment (PPE) Assessment Section 18 Hazard Assessment Information and PPE Selection Information

Braun, Paul

212

Microsoft Word - table_04.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Table 4. Offshore gross withdrawals of natural gas by state and the Gulf of Mexico, 2009-2013 (million cubic feet) 2009 Total 259,848 327,105 586,953 1,878,928 606,403 2,485,331...

213

Automatic Construction of Diagnostic Tables  

Science Journals Connector (OSTI)

......more usual, at least in microbiology.) Keys and diagnostic tables...Mechanization and Data Handling in Microbiology, Society for Applied Bacteriology...by A. Baillie and R. J. Gilbert, London: Academic Press...cultures, Canadian Journal of Microbiology, Vol. 14, pp. 271-279......

W. R. Willcox; S. P. Lapage

1972-08-01T23:59:59.000Z

214

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

215

GRADUATE BULLETIN Table of Contents  

E-Print Network [OSTI]

Resource Sciences and Engineering ............ 77 Economics and Business of Engineering & Computational Sciences ................. 46 Applied Mathematics & Statistics ...................................... 46 Civil & Environmental Engineering ................................... 51 Electrical Engineering

216

Mobile Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobile Resources Mobile Resources Mobile Resources Have a mobile device? Find tips and information here. Questions? 505-667-5809 Email For information call the Service Desk at (505) 667-5809 or email mobilelibrary@lanl.gov The following resources are optimized for mobile devices or have mobile apps available for download. Resource Available App Mobile Website Available off Yellow Network with Pairing or Login Additional Information AACR Journals Apple Yes, the Journals are optimized for mobile viewing. Not the whole AACR site. Instructional pdf on pairing with voucher ACS Apple Android No American Institute of Physics Apple No American Mathematical Society No Yes Instructions for pairing mobile devices, tablets, laptops, etc. American Physical Society No Annual Reviews No Yes Instructions for pairing with mobile device available on website.

217

An optimal filtering algorithm for table constraints  

Science Journals Connector (OSTI)

Filtering algorithms for table constraints are constraint-based, which means that the propagation queue only contains information on the constraints that must be reconsidered. This paper proposes four efficient value-based algorithms for table constraints, ...

Jean-Baptiste Mairy; Pascal Van Hentenryck; Yves Deville

2012-10-01T23:59:59.000Z

218

Table Name query? | OpenEI Community  

Open Energy Info (EERE)

Table Name query? Home > Groups > Databus Is there an API feature which returns the names of tables? Submitted by Hopcroft on 28 October, 2013 - 15:37 1 answer Points: 0 if you are...

219

Chemistry Department Assessment Table of Contents  

E-Print Network [OSTI]

0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

Bogaerts, Steven

220

SECTION 49 Table of Contents 49 Lake Rufus Woods Subbasin Inventory of Existing Programs  

E-Print Network [OSTI]

49-1 SECTION 49 ­ Table of Contents 49 Lake Rufus Woods Subbasin Inventory of Existing Programs #12;49-2 49 Lake Rufus Woods Subbasin Inventory of Existing Programs ­ Terrestrial 49.1 Current Management Directions Within the Lake Rufus Woods Subbasin, fish and wildlife resources are co

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

222

Online Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Online Resources Online Resources       General Information Discovering New Physics - Fermilab: where physicists unravel the mysteries of the universe Electromagnetic Simulation: Charged Particle Motion in E/M Field (by Fu-Kwun Hwang, National Taiwan Normal University) Fermilabyrinth - Online versions of exhibits at the Lederman Science Center Fermilab Virtual Tour - Photos of accelerators and detectors with figure captions International Particle Physics Outreach Group (from CERN) Fermilab Homepage - Links to general information, experiments and projects (Fermilab at Work), particle physics (inquiring minds), resources for students (education) and more High-Energy Physics Acronyms - (from Fermilab) Particle Physics - a list of links from the American Physical Society)

223

NREL: Renewable Resource Data Center - Wind Resource Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

224

Microsoft Word - table_11.doc  

U.S. Energy Information Administration (EIA) Indexed Site

25 25 Table 11 Created on: 12/12/2013 2:10:53 PM Table 11. Underground natural gas storage - storage fields other than salt caverns, 2008-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2008 Total b -- -- -- -- -- 2,900 2,976 76 2009 Total b -- -- -- -- -- 2,856 2,563 -293 2010 Total b -- -- -- -- -- 2,781 2,822 41 2011 January 4,166 2,131 6,298 -63 -2.9 27 780 753 February 4,166 1,597 5,763 -10 -0.6 51 586 535 March 4,165 1,426 5,591 -114 -7.4 117 288 172

225

Microsoft Word - table_08.doc  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 8 Created on: 12/12/2013 2:07:39 PM Table 8. Underground natural gas storage - all operators, 2008-2013 (million cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total a Volume Percent Injections Withdrawals Net Withdrawals b 2008 Total c -- -- -- -- -- 3,340 3,374 34 2009 Total c -- -- -- -- -- 3,315 2,966 -349 2010 Total c -- -- -- -- -- 3,291 3,274 -17 2011 January 4,303 2,306 6,609 2 0.1 50 849 799 February 4,302 1,722 6,024 39 2.3 82 666 584 March 4,302 1,577 5,879 -75 -4.6 168 314 146 April 4,304 1,788 6,092 -223 -11.1 312 100

226

Action Codes Table | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Action Codes Table | National Nuclear Security Administration Action Codes Table | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Action Codes Table Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > Code Tables > Action Codes Table

227

Center Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources for Planning Center Activities Resources for Planning Center Activities       QuarkNet at Work - Resources Home QuarkNet is a teacher professional development effort funded by the National Science Foundation and the US Department of Energy. Teachers work on particle physics experiments during a summer and join a cadre of scientists and teachers working to introduce some aspects of their research into their classrooms. This allows tomorrow's particle physicists to peek over the shoulder of today's experimenters. These resources are available for lead teachers and mentors at Quartnet Centers as they design activities for associate teacher workshops and follow-on activities. Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit

228

Description of Energy Intensity Tables (12)  

U.S. Energy Information Administration (EIA) Indexed Site

3. Description of Energy Intensity Data Tables 3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1985, 1988, 1991, and 1994; along with the percentage changes between 1985 and the three subsequent years (1988, 1991, and 1994) tables 3 and 4 present 1988, 1991, and 1994 energy-intensity ratios that have been adjusted to the mix of products shipped from manufacturing establishments in 1985 tables 5 and 6 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1988, 1991, and 1994; along with the percentage changes between 1988 and the two subsequent

229

Sandia National Labs: PCNSC: IBA Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Ion Beam Analysis (IBA) Periodic Table (HTML) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) The purpose of this table is to quickly give the visitor to this site information on the sensitivity, depth of analysis and depth resolution of most of the modern ion beam analysis techniques in a single easy to use format: a periodic table. Note that you can click on each panel of this

230

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

6 6 Supplemental Tables to the Annual Energy Outlook 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2006 (AEO2006) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2030. Most of the tables were not published in the AEO2006, but contain regional and other more detailed projections underlying the AEO2006 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2006 Appendix tables A2 and A3, respectively. Forecasts for 2004-2006 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

231

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

7 7 Supplemental Tables to the Annual Energy Outlook 2007 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2007 (AEO2007) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005 to 2030. Most of the tables were not published in the AEO2007, but contain regional and other more detailed projections underlying the AEO2007 projections. The files containing these tables are in spreadsheet format. A total of one hundred and eighteen tables is presented. The data for tables 10 and 20 match those published in AEO2007 Appendix tables A2 and A3, respectively. Projections for 2006 and 2007 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term projections and are based on more current information than the AEO.

232

Tools & Resources: Resource Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Directory Resource Directory The guidance documents and reports below have been used by Better Buildings Neighborhood Program partners to build their programs and guide them to early successes. The tools and calculators can be used by homeowners, business owners, and program designers to help determine energy savings and other benefits associated with energy efficiency upgrades. Guidance Documents and Reports Background Program Evaluation Program Updates and Lessons Learned Program Design Marketing and Driving Demand Financing and Incentives Workforce Development Partnering with Utilities Technical Resources Tools and Calculators For Homes For Commercial Buildings Emissions and Equivalency Calculators Guidance Documents and Reports Background Recovery Through Retrofit Report

233

NREL: Energy Analysis: Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Assessment Resource Assessment NREL has developed maps and tools to conduct renewable energy resource assessments at the state, national and international level. Around the world, interest is growing in renewable energy as a strategy to mitigate greenhouse gas emissions and increase energy security. The starting point for new renewable energy projects is a characterization of the renewable resources available across a region, a resource assessment. NREL uses geospatial data sets to identify regions that are appropriate for renewable development and those that should be excluded such as water bodies, urban areas, cropland, forests, very steep terrain, and protected areas. Once resource data are available for a region, NREL can estimate the theoretical potential, or upper limit, for renewable energy in an area.

234

Annual Energy Outlook 2007 - Low Price Case Tables  

Gasoline and Diesel Fuel Update (EIA)

4-2030) 4-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Price Case Tables (2004-2030) Table Title Formats Summary Low Price Case Tables Low Price Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity Table 10. Electricity Trade Table 11. Petroleum Supply and Disposition Balance

235

Annual Energy Outlook 2007 - Low Economic Growth Case Tables  

Gasoline and Diesel Fuel Update (EIA)

Low Macroeconomic Growth Case Tables (2004-2030) Low Macroeconomic Growth Case Tables (2004-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Economic Growth Case Tables (2004-2030) Table Title Formats Summary Low Economic Growth Case Tables Low Economic Growth Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity

236

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in B-100 Bone-equivalent plastic Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52740 1.450 85.9 0.05268 3.7365 0.1252 3.0420 3.4528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.435 7.435 7.443 × 10 -1 14.0 MeV 5.616 × 10 1 5.803 5.803 1.360 × 10 0 20.0 MeV 6.802 × 10 1 4.535 4.535 2.543 × 10 0 30.0 MeV 8.509 × 10 1 3.521 3.521 5.080 × 10 0 40.0 MeV 1.003 × 10 2 3.008 3.008 8.173 × 10 0 80.0 MeV 1.527 × 10 2 2.256 2.256 2.401 × 10 1 100. MeV 1.764 × 10 2 2.115 2.115 3.319 × 10 1 140. MeV 2.218 × 10 2 1.971 1.971 5.287 × 10 1 200. MeV 2.868 × 10 2 1.889 1.889 8.408 × 10 1 300. MeV 3.917 × 10 2 1.859 0.000 1.859 1.376 × 10 2 314. MeV 4.065 × 10 2 1.859 0.000 1.859 Minimum ionization 400. MeV 4.945 × 10 2 1.866 0.000 1.866 1.913 × 10 2 800. MeV 8.995 × 10 2 1.940 0.000 0.000 1.940 4.016 × 10 2 1.00 GeV 1.101 × 10 3 1.973 0.000 0.000 1.974 5.037 × 10 2 1.40

237

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Sodium monoxide Na 2 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.48404 2.270 148.8 0.07501 3.6943 0.1652 2.9793 4.1892 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.330 6.330 8.793 × 10 -1 14.0 MeV 5.616 × 10 1 4.955 4.956 1.601 × 10 0 20.0 MeV 6.802 × 10 1 3.883 3.884 2.984 × 10 0 30.0 MeV 8.509 × 10 1 3.024 3.024 5.943 × 10 0 40.0 MeV 1.003 × 10 2 2.588 2.588 9.541 × 10 0 80.0 MeV 1.527 × 10 2 1.954 1.954 2.789 × 10 1 100. MeV 1.764 × 10 2 1.840 1.840 3.846 × 10 1 140. MeV 2.218 × 10 2 1.725 1.725 6.102 × 10 1 200. MeV 2.868 × 10 2 1.663 1.664 9.656 × 10 1 283. MeV 3.738 × 10 2 1.646 0.000 1.647 Minimum ionization 300. MeV 3.917 × 10 2 1.647 0.000 1.647 1.571 × 10 2 400. MeV 4.945 × 10 2 1.659 0.000 1.660 2.177 × 10 2 800. MeV 8.995 × 10 2 1.738 0.000 0.000 1.738 4.531 × 10 2 1.00 GeV 1.101 × 10 3 1.771 0.000 0.000 1.772 5.670 × 10 2 1.40 GeV 1.502

238

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Tissue-equivalent gas (Propane based) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55027 1.826 × 10 -3 59.5 0.09802 3.5159 1.5139 3.9916 9.3529 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.132 8.132 6.782 × 10 -1 14.0 MeV 5.616 × 10 1 6.337 6.337 1.241 × 10 0 20.0 MeV 6.802 × 10 1 4.943 4.944 2.326 × 10 0 30.0 MeV 8.509 × 10 1 3.831 3.831 4.656 × 10 0 40.0 MeV 1.003 × 10 2 3.269 3.269 7.500 × 10 0 80.0 MeV 1.527 × 10 2 2.450 2.450 2.209 × 10 1 100. MeV 1.764 × 10 2 2.303 2.303 3.053 × 10 1 140. MeV 2.218 × 10 2 2.158 2.158 4.855 × 10 1 200. MeV 2.868 × 10 2 2.084 2.084 7.695 × 10 1 263. MeV 3.527 × 10 2 2.068 0.000 2.069 Minimum ionization 300. MeV 3.917 × 10 2 2.071 0.000 2.072 1.252 × 10 2 400. MeV 4.945 × 10 2 2.097 0.000 2.097 1.732 × 10 2 800. MeV 8.995 × 10 2 2.232 0.000 0.000 2.232 3.580 × 10 2 1.00 GeV 1.101 × 10 3 2.289 0.000 0.000 2.290

239

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Lead oxide (PbO) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.40323 9.530 766.7 0.19645 2.7299 0.0356 3.5456 6.2162 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.046 4.046 1.411 × 10 0 14.0 MeV 5.616 × 10 1 3.207 3.207 2.532 × 10 0 20.0 MeV 6.802 × 10 1 2.542 2.542 4.656 × 10 0 30.0 MeV 8.509 × 10 1 2.003 2.003 9.146 × 10 0 40.0 MeV 1.003 × 10 2 1.727 1.727 1.455 × 10 1 80.0 MeV 1.527 × 10 2 1.327 1.327 4.176 × 10 1 100. MeV 1.764 × 10 2 1.256 1.256 5.729 × 10 1 140. MeV 2.218 × 10 2 1.188 1.189 9.017 × 10 1 200. MeV 2.868 × 10 2 1.158 1.158 1.415 × 10 2 236. MeV 3.250 × 10 2 1.155 0.000 1.155 Minimum ionization 300. MeV 3.917 × 10 2 1.161 0.000 0.000 1.161 2.279 × 10 2 400. MeV 4.945 × 10 2 1.181 0.000 0.000 1.181 3.133 × 10 2 800. MeV 8.995 × 10 2 1.266 0.001 0.000 1.267 6.398 × 10 2 1.00 GeV 1.101 × 10 3 1.299 0.001 0.000 1.301 7.955 × 10 2 1.40

240

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Liquid argon (Ar) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 18 (Ar) 39.948 (1) 1.396 188.0 0.19559 3.0000 0.2000 3.0000 5.2146 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.687 5.687 9.833 × 10 -1 14.0 MeV 5.616 × 10 1 4.461 4.461 1.786 × 10 0 20.0 MeV 6.802 × 10 1 3.502 3.502 3.321 × 10 0 30.0 MeV 8.509 × 10 1 2.731 2.731 6.598 × 10 0 40.0 MeV 1.003 × 10 2 2.340 2.340 1.058 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.084 × 10 1 100. MeV 1.764 × 10 2 1.669 1.670 4.250 × 10 1 140. MeV 2.218 × 10 2 1.570 1.570 6.732 × 10 1 200. MeV 2.868 × 10 2 1.518 1.519 1.063 × 10 2 266. MeV 3.567 × 10 2 1.508 0.000 1.508 Minimum ionization 300. MeV 3.917 × 10 2 1.509 0.000 1.510 1.725 × 10 2 400. MeV 4.945 × 10 2 1.526 0.000 0.000 1.526 2.385 × 10 2 800. MeV 8.995 × 10 2 1.610 0.000 0.000 1.610 4.934 × 10 2 1.00 GeV 1.101 × 10 3 1.644 0.000 0.000 1.645 6.163

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Freon-13 (CF 3 Cl) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.47966 0.950 126.6 0.07238 3.5551 0.3659 3.2337 4.7483 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.416 6.416 8.659 × 10 -1 14.0 MeV 5.616 × 10 1 5.019 5.019 1.578 × 10 0 20.0 MeV 6.802 × 10 1 3.930 3.930 2.945 × 10 0 30.0 MeV 8.509 × 10 1 3.057 3.057 5.870 × 10 0 40.0 MeV 1.003 × 10 2 2.615 2.615 9.430 × 10 0 80.0 MeV 1.527 × 10 2 1.971 1.971 2.760 × 10 1 100. MeV 1.764 × 10 2 1.857 1.857 3.809 × 10 1 140. MeV 2.218 × 10 2 1.745 1.745 6.041 × 10 1 200. MeV 2.868 × 10 2 1.685 1.685 9.551 × 10 1 283. MeV 3.738 × 10 2 1.668 0.000 1.668 Minimum ionization 300. MeV 3.917 × 10 2 1.668 0.000 1.668 1.553 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.151 × 10 2 800. MeV 8.995 × 10 2 1.762 0.000 0.000 1.763 4.473 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.596 × 10 2 1.40 GeV 1.502

242

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Lutetium silicon oxide [Lu 2 SiO 5 ] Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42793 7.400 472.0 0.20623 3.0000 0.2732 3.0000 5.4394 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.679 4.679 1.209 × 10 0 14.0 MeV 5.616 × 10 1 3.692 3.693 2.181 × 10 0 20.0 MeV 6.802 × 10 1 2.916 2.916 4.029 × 10 0 30.0 MeV 8.509 × 10 1 2.287 2.287 7.953 × 10 0 40.0 MeV 1.003 × 10 2 1.968 1.968 1.270 × 10 1 80.0 MeV 1.527 × 10 2 1.503 1.503 3.666 × 10 1 100. MeV 1.764 × 10 2 1.421 1.422 5.038 × 10 1 140. MeV 2.218 × 10 2 1.344 1.344 7.944 × 10 1 200. MeV 2.868 × 10 2 1.308 1.308 1.248 × 10 2 242. MeV 3.316 × 10 2 1.304 1.304 Minimum ionization 300. MeV 3.917 × 10 2 1.309 0.000 0.000 1.309 2.014 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.329 2.773 × 10 2 800. MeV 8.995 × 10 2 1.415 0.001 0.000 1.416 5.684 × 10 2 1.00 GeV 1.101 × 10 3 1.449 0.001 0.000 1.450 7.080

243

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Boron oxide (B 2 O 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49839 1.812 99.6 0.11548 3.3832 0.1843 2.7379 3.6027 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.889 6.889 8.045 × 10 -1 14.0 MeV 5.616 × 10 1 5.381 5.381 1.468 × 10 0 20.0 MeV 6.802 × 10 1 4.208 4.208 2.744 × 10 0 30.0 MeV 8.509 × 10 1 3.269 3.269 5.477 × 10 0 40.0 MeV 1.003 × 10 2 2.794 2.794 8.807 × 10 0 80.0 MeV 1.527 × 10 2 2.102 2.103 2.583 × 10 1 100. MeV 1.764 × 10 2 1.975 1.975 3.567 × 10 1 140. MeV 2.218 × 10 2 1.843 1.843 5.674 × 10 1 200. MeV 2.868 × 10 2 1.768 1.768 9.010 × 10 1 300. MeV 3.917 × 10 2 1.742 0.000 1.742 1.472 × 10 2 307. MeV 3.990 × 10 2 1.742 0.000 1.742 Minimum ionization 400. MeV 4.945 × 10 2 1.750 0.000 1.750 2.045 × 10 2 800. MeV 8.995 × 10 2 1.822 0.000 0.000 1.823 4.285 × 10 2 1.00 GeV 1.101 × 10 3 1.854 0.000 0.000 1.855 5.373 × 10 2 1.40 GeV 1.502

244

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Liquid H-note density shift (H 2 ) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 1 (H) 1.00794 (7) 7.080 × 10 -2 21.8 0.32969 3.0000 0.1641 1.9641 2.6783 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 16.508 16.508 3.316 × 10 -1 14.0 MeV 5.616 × 10 1 12.812 12.812 6.097 × 10 -1 20.0 MeV 6.802 × 10 1 9.956 9.956 1.147 × 10 0 30.0 MeV 8.509 × 10 1 7.684 7.684 2.307 × 10 0 40.0 MeV 1.003 × 10 2 6.539 6.539 3.727 × 10 0 80.0 MeV 1.527 × 10 2 4.870 4.870 1.105 × 10 1 100. MeV 1.764 × 10 2 4.550 4.550 1.531 × 10 1 140. MeV 2.218 × 10 2 4.217 4.217 2.448 × 10 1 200. MeV 2.868 × 10 2 4.018 0.000 4.018 3.912 × 10 1 300. MeV 3.917 × 10 2 3.926 0.000 3.926 6.438 × 10 1 356. MeV 4.497 × 10 2 3.919 0.000 3.919 Minimum ionization 400. MeV 4.945 × 10 2 3.922 0.000 3.922 8.988 × 10 1 800. MeV 8.995 × 10 2 4.029 0.000 4.030 1.906 × 10 2 1.00 GeV 1.101 × 10 3 4.084 0.001

245

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Cortical bone (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52130 1.850 106.4 0.06198 3.5919 0.1161 3.0919 3.6488 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.142 7.142 7.765 × 10 -1 14.0 MeV 5.616 × 10 1 5.581 5.581 1.417 × 10 0 20.0 MeV 6.802 × 10 1 4.366 4.366 2.646 × 10 0 30.0 MeV 8.509 × 10 1 3.393 3.393 5.281 × 10 0 40.0 MeV 1.003 × 10 2 2.900 2.901 8.489 × 10 0 80.0 MeV 1.527 × 10 2 2.179 2.179 2.489 × 10 1 100. MeV 1.764 × 10 2 2.044 2.044 3.440 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.475 × 10 1 200. MeV 2.868 × 10 2 1.830 1.830 8.700 × 10 1 300. MeV 3.917 × 10 2 1.803 0.000 1.803 1.422 × 10 2 303. MeV 3.950 × 10 2 1.803 0.000 1.803 Minimum ionization 400. MeV 4.945 × 10 2 1.812 0.000 1.812 1.976 × 10 2 800. MeV 8.995 × 10 2 1.888 0.000 0.000 1.889 4.138 × 10 2 1.00 GeV 1.101 × 10 3 1.922 0.000 0.000 1.923 5.187 × 10 2 1.40 GeV 1.502

246

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Freon-13B1 (CF 3 Br) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.45665 1.500 210.5 0.03925 3.7194 0.3522 3.7554 5.3555 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.678 5.678 9.844 × 10 -1 14.0 MeV 5.616 × 10 1 4.454 4.454 1.788 × 10 0 20.0 MeV 6.802 × 10 1 3.498 3.498 3.325 × 10 0 30.0 MeV 8.509 × 10 1 2.729 2.729 6.606 × 10 0 40.0 MeV 1.003 × 10 2 2.339 2.339 1.059 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.086 × 10 1 100. MeV 1.764 × 10 2 1.671 1.671 4.251 × 10 1 140. MeV 2.218 × 10 2 1.574 1.574 6.729 × 10 1 200. MeV 2.868 × 10 2 1.524 1.524 1.062 × 10 2 266. MeV 3.567 × 10 2 1.513 0.000 1.513 Minimum ionization 300. MeV 3.917 × 10 2 1.515 0.000 1.515 1.721 × 10 2 400. MeV 4.945 × 10 2 1.531 0.000 0.000 1.532 2.378 × 10 2 800. MeV 8.995 × 10 2 1.616 0.000 0.000 1.616 4.919 × 10 2 1.00 GeV 1.101 × 10 3 1.650 0.001 0.000 1.651 6.142 × 10 2 1.40 GeV

247

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Sodium carbonate (Na 2 CO 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49062 2.532 125.0 0.08715 3.5638 0.1287 2.8591 3.7178 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.575 6.575 8.449 × 10 -1 14.0 MeV 5.616 × 10 1 5.142 5.142 1.540 × 10 0 20.0 MeV 6.802 × 10 1 4.026 4.026 2.874 × 10 0 30.0 MeV 8.509 × 10 1 3.131 3.131 5.729 × 10 0 40.0 MeV 1.003 × 10 2 2.679 2.679 9.204 × 10 0 80.0 MeV 1.527 × 10 2 2.017 2.017 2.695 × 10 1 100. MeV 1.764 × 10 2 1.895 1.895 3.721 × 10 1 140. MeV 2.218 × 10 2 1.771 1.772 5.914 × 10 1 200. MeV 2.868 × 10 2 1.703 1.703 9.381 × 10 1 298. MeV 3.894 × 10 2 1.681 0.000 1.681 Minimum ionization 300. MeV 3.917 × 10 2 1.681 0.000 1.681 1.531 × 10 2 400. MeV 4.945 × 10 2 1.690 0.000 1.691 2.125 × 10 2 800. MeV 8.995 × 10 2 1.764 0.000 0.000 1.764 4.440 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.563 × 10 2 1.40

248

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Tungsten hexafluoride (WF 6 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42976 2.400 354.4 0.03658 3.5134 0.3020 4.2602 5.9881 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.928 4.928 1.143 × 10 0 14.0 MeV 5.616 × 10 1 3.880 3.880 2.067 × 10 0 20.0 MeV 6.802 × 10 1 3.057 3.057 3.828 × 10 0 30.0 MeV 8.509 × 10 1 2.393 2.393 7.574 × 10 0 40.0 MeV 1.003 × 10 2 2.056 2.056 1.211 × 10 1 80.0 MeV 1.527 × 10 2 1.565 1.565 3.509 × 10 1 100. MeV 1.764 × 10 2 1.479 1.479 4.827 × 10 1 140. MeV 2.218 × 10 2 1.396 1.396 7.623 × 10 1 200. MeV 2.868 × 10 2 1.353 1.353 1.200 × 10 2 253. MeV 3.431 × 10 2 1.346 0.000 1.346 Minimum ionization 300. MeV 3.917 × 10 2 1.349 0.000 0.000 1.349 1.942 × 10 2 400. MeV 4.945 × 10 2 1.367 0.000 0.000 1.367 2.679 × 10 2 800. MeV 8.995 × 10 2 1.451 0.001 0.000 1.452 5.516 × 10 2 1.00 GeV 1.101 × 10 3 1.485 0.001 0.000 1.486 6.877

249

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Standard rock Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.50000 2.650 136.4 0.08301 3.4120 0.0492 3.0549 3.7738 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.619 6.619 8.400 × 10 -1 14.0 MeV 5.616 × 10 1 5.180 5.180 1.530 × 10 0 20.0 MeV 6.802 × 10 1 4.057 4.057 2.854 × 10 0 30.0 MeV 8.509 × 10 1 3.157 3.157 5.687 × 10 0 40.0 MeV 1.003 × 10 2 2.701 2.702 9.133 × 10 0 80.0 MeV 1.527 × 10 2 2.028 2.029 2.675 × 10 1 100. MeV 1.764 × 10 2 1.904 1.904 3.695 × 10 1 140. MeV 2.218 × 10 2 1.779 1.779 5.878 × 10 1 200. MeV 2.868 × 10 2 1.710 1.710 9.331 × 10 1 297. MeV 3.884 × 10 2 1.688 0.000 1.688 Minimum ionization 300. MeV 3.917 × 10 2 1.688 0.000 1.688 1.523 × 10 2 400. MeV 4.945 × 10 2 1.698 0.000 1.698 2.114 × 10 2 800. MeV 8.995 × 10 2 1.774 0.000 0.000 1.775 4.418 × 10 2 1.00 GeV 1.101 × 10 3 1.808 0.000 0.000 1.808 5.534 × 10 2 1.40 GeV 1.502 × 10

250

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Ceric sulfate dosimeter solution Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55279 1.030 76.7 0.07666 3.5607 0.2363 2.8769 3.5212 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.909 7.909 6.989 × 10 -1 14.0 MeV 5.616 × 10 1 6.170 6.170 1.278 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.391 × 10 0 30.0 MeV 8.509 × 10 1 3.739 3.739 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.193 3.193 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.398 2.398 2.261 × 10 1 100. MeV 1.764 × 10 2 2.255 2.255 3.123 × 10 1 140. MeV 2.218 × 10 2 2.102 2.102 4.968 × 10 1 200. MeV 2.868 × 10 2 2.013 2.014 7.896 × 10 1 300. MeV 3.917 × 10 2 1.980 0.000 1.980 1.292 × 10 2 317. MeV 4.096 × 10 2 1.979 0.000 1.979 Minimum ionization 400. MeV 4.945 × 10 2 1.986 0.000 1.986 1.797 × 10 2 800. MeV 8.995 × 10 2 2.062 0.000 0.000 2.062 3.774 × 10 2 1.00 GeV 1.101 × 10 3 2.096 0.000 0.000 2.097 4.735 × 10

251

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Silicon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 14 (Si) 28.0855 (3) 2.329 173.0 0.14921 3.2546 0.2015 2.8716 4.4355 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.363 6.363 8.779 × 10 -1 14.0 MeV 5.616 × 10 1 4.987 4.987 1.595 × 10 0 20.0 MeV 6.802 × 10 1 3.912 3.912 2.969 × 10 0 30.0 MeV 8.509 × 10 1 3.047 3.047 5.905 × 10 0 40.0 MeV 1.003 × 10 2 2.608 2.608 9.476 × 10 0 80.0 MeV 1.527 × 10 2 1.965 1.965 2.770 × 10 1 100. MeV 1.764 × 10 2 1.849 1.849 3.822 × 10 1 140. MeV 2.218 × 10 2 1.737 1.737 6.064 × 10 1 200. MeV 2.868 × 10 2 1.678 1.678 9.590 × 10 1 273. MeV 3.633 × 10 2 1.664 0.000 1.664 Minimum ionization 300. MeV 3.917 × 10 2 1.665 0.000 1.666 1.559 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.157 × 10 2 800. MeV 8.995 × 10 2 1.767 0.000 0.000 1.768 4.475 × 10 2 1.00 GeV 1.101 × 10 3 1.803 0.000 0.000 1.804 5.595 × 10 2 1.40 GeV

252

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Polyethylene terephthalate (Mylar) (C 10 H 8 O 4 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52037 1.400 78.7 0.12679 3.3076 0.1562 2.6507 3.3262 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.420 7.420 7.451 × 10 -1 14.0 MeV 5.616 × 10 1 5.789 5.789 1.362 × 10 0 20.0 MeV 6.802 × 10 1 4.522 4.522 2.548 × 10 0 30.0 MeV 8.509 × 10 1 3.509 3.509 5.093 × 10 0 40.0 MeV 1.003 × 10 2 2.997 2.997 8.197 × 10 0 80.0 MeV 1.527 × 10 2 2.250 2.250 2.409 × 10 1 100. MeV 1.764 × 10 2 2.108 2.108 3.329 × 10 1 140. MeV 2.218 × 10 2 1.963 1.964 5.305 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.440 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.849 1.382 × 10 2 317. MeV 4.096 × 10 2 1.848 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.855 0.000 1.855 1.922 × 10 2 800. MeV 8.995 × 10 2 1.926 0.000 0.000 1.926 4.039 × 10 2 1.00 GeV 1.101 × 10 3 1.958 0.000 0.000 1.959

253

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Dichlorodiethyl ether C 4 Cl 2 H 8 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51744 1.220 103.3 0.06799 3.5250 0.1773 3.1586 4.0135 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.789 × 10 -1 14.0 MeV 5.616 × 10 1 5.561 5.561 1.421 × 10 0 20.0 MeV 6.802 × 10 1 4.349 4.349 2.655 × 10 0 30.0 MeV 8.509 × 10 1 3.380 3.380 5.300 × 10 0 40.0 MeV 1.003 × 10 2 2.889 2.889 8.521 × 10 0 80.0 MeV 1.527 × 10 2 2.174 2.174 2.499 × 10 1 100. MeV 1.764 × 10 2 2.042 2.042 3.450 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.486 × 10 1 200. MeV 2.868 × 10 2 1.832 1.832 8.708 × 10 1 298. MeV 3.894 × 10 2 1.807 0.000 1.807 Minimum ionization 300. MeV 3.917 × 10 2 1.807 0.000 1.807 1.422 × 10 2 400. MeV 4.945 × 10 2 1.817 0.000 1.817 1.974 × 10 2 800. MeV 8.995 × 10 2 1.895 0.000 0.000 1.896 4.129 × 10 2 1.00 GeV 1.101 × 10 3 1.930 0.000 0.000 1.931 5.174 × 10

254

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Lead Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 82 (Pb) 207.2 (1) 11.350 823.0 0.09359 3.1608 0.3776 3.8073 6.2018 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.823 3.823 1.524 × 10 0 14.0 MeV 5.616 × 10 1 3.054 3.054 2.705 × 10 0 20.0 MeV 6.802 × 10 1 2.436 2.436 4.927 × 10 0 30.0 MeV 8.509 × 10 1 1.928 1.928 9.600 × 10 0 40.0 MeV 1.003 × 10 2 1.666 1.666 1.521 × 10 1 80.0 MeV 1.527 × 10 2 1.283 1.283 4.338 × 10 1 100. MeV 1.764 × 10 2 1.215 1.215 5.943 × 10 1 140. MeV 2.218 × 10 2 1.151 1.152 9.339 × 10 1 200. MeV 2.868 × 10 2 1.124 1.124 1.463 × 10 2 226. MeV 3.145 × 10 2 1.122 0.000 1.123 Minimum ionization 300. MeV 3.917 × 10 2 1.130 0.000 0.000 1.131 2.352 × 10 2 400. MeV 4.945 × 10 2 1.151 0.000 0.000 1.152 3.228 × 10 2 800. MeV 8.995 × 10 2 1.237 0.001 0.000 1.238 6.572 × 10 2 1.00 GeV 1.101 × 10 3 1.270 0.001 0.000 1.272 8.165 × 10 2 1.40

255

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Sodium iodide (NaI) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42697 3.667 452.0 0.12516 3.0398 0.1203 3.5920 6.0572 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.703 4.703 1.202 × 10 0 14.0 MeV 5.616 × 10 1 3.710 3.710 2.169 × 10 0 20.0 MeV 6.802 × 10 1 2.928 2.928 4.009 × 10 0 30.0 MeV 8.509 × 10 1 2.297 2.297 7.917 × 10 0 40.0 MeV 1.003 × 10 2 1.975 1.975 1.264 × 10 1 80.0 MeV 1.527 × 10 2 1.509 1.509 3.652 × 10 1 100. MeV 1.764 × 10 2 1.427 1.427 5.019 × 10 1 140. MeV 2.218 × 10 2 1.347 1.348 7.916 × 10 1 200. MeV 2.868 × 10 2 1.310 1.310 1.245 × 10 2 243. MeV 3.325 × 10 2 1.305 1.305 Minimum ionization 300. MeV 3.917 × 10 2 1.310 0.000 0.000 1.310 2.010 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.330 2.768 × 10 2 800. MeV 8.995 × 10 2 1.417 0.001 0.000 1.418 5.677 × 10 2 1.00 GeV 1.101 × 10 3 1.452 0.001 0.000 1.453 7.070 × 10 2 1.40 GeV

256

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Polyvinyl alcohol (C 2 H3-O-H) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54480 1.300 69.7 0.11178 3.3893 0.1401 2.6315 3.1115 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.891 7.891 6.999 × 10 -1 14.0 MeV 5.616 × 10 1 6.153 6.153 1.280 × 10 0 20.0 MeV 6.802 × 10 1 4.804 4.804 2.396 × 10 0 30.0 MeV 8.509 × 10 1 3.726 3.726 4.793 × 10 0 40.0 MeV 1.003 × 10 2 3.181 3.181 7.717 × 10 0 80.0 MeV 1.527 × 10 2 2.383 2.384 2.270 × 10 1 100. MeV 1.764 × 10 2 2.231 2.232 3.140 × 10 1 140. MeV 2.218 × 10 2 2.076 2.076 5.007 × 10 1 200. MeV 2.868 × 10 2 1.986 1.986 7.974 × 10 1 300. MeV 3.917 × 10 2 1.950 0.000 1.950 1.307 × 10 2 324. MeV 4.161 × 10 2 1.949 0.000 1.949 Minimum ionization 400. MeV 4.945 × 10 2 1.955 0.000 1.955 1.820 × 10 2 800. MeV 8.995 × 10 2 2.026 0.000 0.000 2.026 3.830 × 10 2 1.00 GeV 1.101 × 10 3 2.059 0.000 0.000 2.059 4.809 × 10 2 1.40

257

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Cesium Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 55 (Cs)132.9054519 (2) 1.873 488.0 0.18233 2.8866 0.5473 3.5914 6.9135 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.464 4.464 1.277 × 10 0 14.0 MeV 5.616 × 10 1 3.532 3.532 2.294 × 10 0 20.0 MeV 6.802 × 10 1 2.794 2.794 4.224 × 10 0 30.0 MeV 8.509 × 10 1 2.195 2.195 8.315 × 10 0 40.0 MeV 1.003 × 10 2 1.890 1.890 1.325 × 10 1 80.0 MeV 1.527 × 10 2 1.444 1.444 3.820 × 10 1 100. MeV 1.764 × 10 2 1.366 1.366 5.248 × 10 1 140. MeV 2.218 × 10 2 1.291 1.291 8.274 × 10 1 200. MeV 2.868 × 10 2 1.257 1.257 1.300 × 10 2 236. MeV 3.250 × 10 2 1.254 1.254 Minimum ionization 300. MeV 3.917 × 10 2 1.261 0.000 0.000 1.261 2.096 × 10 2 400. MeV 4.945 × 10 2 1.284 0.000 0.000 1.285 2.882 × 10 2 800. MeV 8.995 × 10 2 1.378 0.001 0.000 1.380 5.881 × 10 2 1.00 GeV 1.101 × 10 3 1.415 0.001 0.000 1.417 7.311 × 10 2

258

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Propane (C 3 H 8 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.58962 1.868 × 10 -3 47.1 0.09916 3.5920 1.4339 3.8011 8.7939 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.969 8.969 6.137 × 10 -1 14.0 MeV 5.616 × 10 1 6.982 6.982 1.125 × 10 0 20.0 MeV 6.802 × 10 1 5.441 5.441 2.109 × 10 0 30.0 MeV 8.509 × 10 1 4.212 4.213 4.228 × 10 0 40.0 MeV 1.003 × 10 2 3.592 3.592 6.815 × 10 0 80.0 MeV 1.527 × 10 2 2.688 2.688 2.010 × 10 1 100. MeV 1.764 × 10 2 2.525 2.526 2.780 × 10 1 140. MeV 2.218 × 10 2 2.365 2.365 4.424 × 10 1 200. MeV 2.868 × 10 2 2.281 2.281 7.018 × 10 1 267. MeV 3.577 × 10 2 2.262 0.000 2.263 Minimum ionization 300. MeV 3.917 × 10 2 2.265 0.000 2.265 1.143 × 10 2 400. MeV 4.945 × 10 2 2.291 0.000 2.291 1.582 × 10 2 800. MeV 8.995 × 10 2 2.434 0.000 0.000 2.435 3.275 × 10 2 1.00 GeV 1.101 × 10 3 2.495 0.000 0.000 2.496 4.086 × 10 2 1.40 GeV 1.502

259

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Polystyrene ([C 6 H 5 CHCH 2 ] n ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53768 1.060 68.7 0.16454 3.2224 0.1647 2.5031 3.2999 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.803 7.803 7.077 × 10 -1 14.0 MeV 5.616 × 10 1 6.084 6.084 1.294 × 10 0 20.0 MeV 6.802 × 10 1 4.749 4.749 2.424 × 10 0 30.0 MeV 8.509 × 10 1 3.683 3.683 4.848 × 10 0 40.0 MeV 1.003 × 10 2 3.144 3.144 7.806 × 10 0 80.0 MeV 1.527 × 10 2 2.359 2.359 2.296 × 10 1 100. MeV 1.764 × 10 2 2.210 2.211 3.174 × 10 1 140. MeV 2.218 × 10 2 2.058 2.058 5.059 × 10 1 200. MeV 2.868 × 10 2 1.970 1.971 8.049 × 10 1 300. MeV 3.917 × 10 2 1.937 0.000 1.937 1.318 × 10 2 318. MeV 4.105 × 10 2 1.936 0.000 1.936 Minimum ionization 400. MeV 4.945 × 10 2 1.942 0.000 1.943 1.834 × 10 2 800. MeV 8.995 × 10 2 2.015 0.000 0.000 2.015 3.856 × 10 2 1.00 GeV 1.101 × 10 3 2.048 0.000 0.000 2.049 4.841 × 10 2 1.40

260

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Air (dry, 1 atm) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49919 1.205 × 10 -3 85.7 0.10914 3.3994 1.7418 4.2759 10.5961 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.039 7.039 7.862 × 10 -1 14.0 MeV 5.616 × 10 1 5.494 5.495 1.436 × 10 0 20.0 MeV 6.802 × 10 1 4.294 4.294 2.686 × 10 0 30.0 MeV 8.509 × 10 1 3.333 3.333 5.366 × 10 0 40.0 MeV 1.003 × 10 2 2.847 2.847 8.633 × 10 0 80.0 MeV 1.527 × 10 2 2.140 2.140 2.535 × 10 1 100. MeV 1.764 × 10 2 2.013 2.014 3.501 × 10 1 140. MeV 2.218 × 10 2 1.889 1.889 5.562 × 10 1 200. MeV 2.868 × 10 2 1.827 1.827 8.803 × 10 1 257. MeV 3.471 × 10 2 1.815 0.000 1.816 Minimum ionization 300. MeV 3.917 × 10 2 1.819 0.000 1.819 1.430 × 10 2 400. MeV 4.945 × 10 2 1.844 0.000 1.844 1.977 × 10 2 800. MeV 8.995 × 10 2 1.968 0.000 0.000 1.968 4.074 × 10 2 1.00 GeV 1.101 × 10 3 2.020 0.000 0.000 2.021 5.077 × 10 2 1.40 GeV 1.502

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Lead tungstate (PbWO 4 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.41315 8.300 600.7 0.22758 3.0000 0.4068 3.0023 5.8528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.333 4.333 1.311 × 10 0 14.0 MeV 5.616 × 10 1 3.426 3.426 2.360 × 10 0 20.0 MeV 6.802 × 10 1 2.710 2.711 4.350 × 10 0 30.0 MeV 8.509 × 10 1 2.131 2.131 8.566 × 10 0 40.0 MeV 1.003 × 10 2 1.835 1.835 1.365 × 10 1 80.0 MeV 1.527 × 10 2 1.406 1.406 3.931 × 10 1 100. MeV 1.764 × 10 2 1.331 1.331 5.397 × 10 1 140. MeV 2.218 × 10 2 1.261 1.261 8.498 × 10 1 200. MeV 2.868 × 10 2 1.231 1.231 1.333 × 10 2 227. MeV 3.154 × 10 2 1.229 1.230 Minimum ionization 300. MeV 3.917 × 10 2 1.237 0.000 0.000 1.238 2.145 × 10 2 400. MeV 4.945 × 10 2 1.260 0.000 0.000 1.260 2.946 × 10 2 800. MeV 8.995 × 10 2 1.349 0.001 0.000 1.350 6.007 × 10 2 1.00 GeV 1.101 × 10 3 1.383 0.001 0.000 1.385 7.469 × 10 2 1.40

262

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Carbon (compact) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) [12.0107 (8)] 2.265 78.0 0.26142 2.8697 -0.0178 2.3415 2.8680 0.12 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.116 7.116 7.772 × 10 -1 14.0 MeV 5.616 × 10 1 5.549 5.549 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.331 4.331 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.355 3.355 5.318 × 10 0 40.0 MeV 1.003 × 10 2 2.861 2.861 8.567 × 10 0 80.0 MeV 1.527 × 10 2 2.126 2.127 2.531 × 10 1 100. MeV 1.764 × 10 2 1.991 1.992 3.505 × 10 1 140. MeV 2.218 × 10 2 1.854 1.854 5.597 × 10 1 200. MeV 2.868 × 10 2 1.775 1.775 8.917 × 10 1 300. MeV 3.917 × 10 2 1.745 0.000 1.745 1.462 × 10 2 317. MeV 4.096 × 10 2 1.745 0.000 1.745 Minimum ionization 400. MeV 4.945 × 10 2 1.751 0.000 1.751 2.034 × 10 2 800. MeV 8.995 × 10 2 1.819 0.000 0.000 1.820 4.275 × 10 2 1.00 GeV 1.101 × 10 3 1.850 0.000 0.000 1.851 5.365 × 10

263

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Methanol (CH 3 OH) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56176 0.791 67.6 0.08970 3.5477 0.2529 2.7639 3.5160 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.169 8.169 6.759 × 10 -1 14.0 MeV 5.616 × 10 1 6.369 6.369 1.236 × 10 0 20.0 MeV 6.802 × 10 1 4.972 4.972 2.315 × 10 0 30.0 MeV 8.509 × 10 1 3.855 3.855 4.631 × 10 0 40.0 MeV 1.003 × 10 2 3.291 3.291 7.457 × 10 0 80.0 MeV 1.527 × 10 2 2.469 2.469 2.194 × 10 1 100. MeV 1.764 × 10 2 2.321 2.322 3.032 × 10 1 140. MeV 2.218 × 10 2 2.166 2.166 4.823 × 10 1 200. MeV 2.868 × 10 2 2.074 2.074 7.664 × 10 1 300. MeV 3.917 × 10 2 2.039 0.000 2.039 1.254 × 10 2 318. MeV 4.105 × 10 2 2.038 0.000 2.039 Minimum ionization 400. MeV 4.945 × 10 2 2.045 0.000 2.045 1.744 × 10 2 800. MeV 8.995 × 10 2 2.121 0.000 0.000 2.122 3.665 × 10 2 1.00 GeV 1.101 × 10 3 2.156 0.000 0.000 2.157 4.600 × 10 2 1.40 GeV 1.502 ×

264

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Carbon (amorphous) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) 12.0107 (8) 2.000 78.0 0.20240 3.0036 -0.0351 2.4860 2.9925 0.10 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.771 × 10 -1 14.0 MeV 5.616 × 10 1 5.550 5.551 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.332 4.332 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.357 3.357 5.317 × 10 0 40.0 MeV 1.003 × 10 2 2.862 2.862 8.564 × 10 0 80.0 MeV 1.527 × 10 2 2.129 2.129 2.529 × 10 1 100. MeV 1.764 × 10 2 1.994 1.994 3.502 × 10 1 140. MeV 2.218 × 10 2 1.857 1.857 5.591 × 10 1 200. MeV 2.868 × 10 2 1.778 1.779 8.905 × 10 1 300. MeV 3.917 × 10 2 1.749 0.000 1.749 1.459 × 10 2 313. MeV 4.055 × 10 2 1.749 0.000 1.749 Minimum ionization 400. MeV 4.945 × 10 2 1.755 0.000 1.756 2.030 × 10 2 800. MeV 8.995 × 10 2 1.824 0.000 0.000 1.825 4.266 × 10 2 1.00 GeV 1.101 × 10 3 1.855 0.000 0.000 1.856 5.353 × 10

265

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Mix D wax Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56479 0.990 60.9 0.07490 3.6823 0.1371 2.7145 3.0780 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.322 8.322 6.628 × 10 -1 14.0 MeV 5.616 × 10 1 6.485 6.486 1.213 × 10 0 20.0 MeV 6.802 × 10 1 5.060 5.060 2.273 × 10 0 30.0 MeV 8.509 × 10 1 3.922 3.922 4.549 × 10 0 40.0 MeV 1.003 × 10 2 3.347 3.347 7.327 × 10 0 80.0 MeV 1.527 × 10 2 2.505 2.506 2.158 × 10 1 100. MeV 1.764 × 10 2 2.346 2.346 2.985 × 10 1 140. MeV 2.218 × 10 2 2.182 2.182 4.761 × 10 1 200. MeV 2.868 × 10 2 2.087 2.087 7.584 × 10 1 300. MeV 3.917 × 10 2 2.049 0.000 2.049 1.243 × 10 2 328. MeV 4.201 × 10 2 2.048 0.000 2.048 Minimum ionization 400. MeV 4.945 × 10 2 2.053 0.000 2.053 1.731 × 10 2 800. MeV 8.995 × 10 2 2.125 0.000 0.000 2.125 3.647 × 10 2 1.00 GeV 1.101 × 10 3 2.158 0.000 0.000 2.159 4.581 × 10 2 1.40 GeV 1.502 × 10 3 2.213

266

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Sodium nitrate NaNO 3 Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49415 2.261 114.6 0.09391 3.5097 0.1534 2.8221 3.6502 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.702 6.702 8.281 × 10 -1 14.0 MeV 5.616 × 10 1 5.239 5.239 1.510 × 10 0 20.0 MeV 6.802 × 10 1 4.100 4.100 2.820 × 10 0 30.0 MeV 8.509 × 10 1 3.187 3.187 5.624 × 10 0 40.0 MeV 1.003 × 10 2 2.726 2.726 9.039 × 10 0 80.0 MeV 1.527 × 10 2 2.053 2.053 2.648 × 10 1 100. MeV 1.764 × 10 2 1.927 1.927 3.656 × 10 1 140. MeV 2.218 × 10 2 1.800 1.800 5.814 × 10 1 200. MeV 2.868 × 10 2 1.729 1.729 9.228 × 10 1 298. MeV 3.894 × 10 2 1.705 0.000 1.705 Minimum ionization 300. MeV 3.917 × 10 2 1.705 0.000 1.705 1.507 × 10 2 400. MeV 4.945 × 10 2 1.714 0.000 1.714 2.092 × 10 2 800. MeV 8.995 × 10 2 1.787 0.000 0.000 1.787 4.377 × 10 2 1.00 GeV 1.101 × 10 3 1.819 0.000 0.000 1.819 5.486 × 10 2 1.40 GeV 1.502

267

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Freon-12B2 (CF 2 Br 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.44901 1.800 284.9 0.05144 3.5565 0.3406 3.7956 5.7976 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.330 5.330 1.053 × 10 0 14.0 MeV 5.616 × 10 1 4.190 4.190 1.908 × 10 0 20.0 MeV 6.802 × 10 1 3.297 3.297 3.540 × 10 0 30.0 MeV 8.509 × 10 1 2.577 2.577 7.017 × 10 0 40.0 MeV 1.003 × 10 2 2.212 2.212 1.123 × 10 1 80.0 MeV 1.527 × 10 2 1.680 1.680 3.263 × 10 1 100. MeV 1.764 × 10 2 1.586 1.586 4.491 × 10 1 140. MeV 2.218 × 10 2 1.496 1.496 7.099 × 10 1 200. MeV 2.868 × 10 2 1.452 1.452 1.118 × 10 2 252. MeV 3.421 × 10 2 1.445 0.000 1.445 Minimum ionization 300. MeV 3.917 × 10 2 1.448 0.000 1.449 1.809 × 10 2 400. MeV 4.945 × 10 2 1.467 0.000 0.000 1.468 2.496 × 10 2 800. MeV 8.995 × 10 2 1.556 0.000 0.000 1.557 5.139 × 10 2 1.00 GeV 1.101 × 10 3 1.592 0.001 0.000 1.593 6.409 × 10 2 1.40 GeV

268

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Eye lens (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54977 1.100 73.3 0.09690 3.4550 0.2070 2.7446 3.3720 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.912 7.912 6.984 × 10 -1 14.0 MeV 5.616 × 10 1 6.171 6.171 1.277 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.390 × 10 0 30.0 MeV 8.509 × 10 1 3.738 3.738 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.192 3.192 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.396 2.396 2.262 × 10 1 100. MeV 1.764 × 10 2 2.251 2.251 3.125 × 10 1 140. MeV 2.218 × 10 2 2.095 2.096 4.976 × 10 1 200. MeV 2.868 × 10 2 2.006 2.006 7.914 × 10 1 300. MeV 3.917 × 10 2 1.971 0.000 1.971 1.296 × 10 2 318. MeV 4.105 × 10 2 1.971 0.000 1.971 Minimum ionization 400. MeV 4.945 × 10 2 1.977 0.000 1.977 1.803 × 10 2 800. MeV 8.995 × 10 2 2.051 0.000 0.000 2.051 3.790 × 10 2 1.00 GeV 1.101 × 10 3 2.085 0.000 0.000 2.085 4.756 × 10 2 1.40 GeV 1.502 × 10

269

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Compact bone (ICRU) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53010 1.850 91.9 0.05822 3.6419 0.0944 3.0201 3.3390 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.406 7.406 7.477 × 10 -1 14.0 MeV 5.616 × 10 1 5.783 5.783 1.365 × 10 0 20.0 MeV 6.802 × 10 1 4.521 4.521 2.552 × 10 0 30.0 MeV 8.509 × 10 1 3.511 3.511 5.097 × 10 0 40.0 MeV 1.003 × 10 2 3.000 3.000 8.199 × 10 0 80.0 MeV 1.527 × 10 2 2.247 2.247 2.408 × 10 1 100. MeV 1.764 × 10 2 2.106 2.106 3.330 × 10 1 140. MeV 2.218 × 10 2 1.962 1.962 5.307 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.444 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.850 1.382 × 10 2 314. MeV 4.065 × 10 2 1.849 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.856 0.000 1.857 1.922 × 10 2 800. MeV 8.995 × 10 2 1.930 0.000 0.000 1.930 4.036 × 10 2 1.00 GeV 1.101 × 10 3 1.963 0.000 0.000 1.964 5.063 × 10 2 1.40 GeV 1.502

270

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Polyimide film (C 22 H 10 N 2 O 5 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51264 1.420 79.6 0.15972 3.1921 0.1509 2.5631 3.3497 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.299 7.299 7.576 × 10 -1 14.0 MeV 5.616 × 10 1 5.695 5.695 1.385 × 10 0 20.0 MeV 6.802 × 10 1 4.449 4.449 2.590 × 10 0 30.0 MeV 8.509 × 10 1 3.453 3.453 5.177 × 10 0 40.0 MeV 1.003 × 10 2 2.949 2.949 8.332 × 10 0 80.0 MeV 1.527 × 10 2 2.214 2.214 2.448 × 10 1 100. MeV 1.764 × 10 2 2.074 2.074 3.384 × 10 1 140. MeV 2.218 × 10 2 1.932 1.932 5.392 × 10 1 200. MeV 2.868 × 10 2 1.851 1.851 8.577 × 10 1 300. MeV 3.917 × 10 2 1.820 0.000 1.820 1.404 × 10 2 314. MeV 4.065 × 10 2 1.820 0.000 1.820 Minimum ionization 400. MeV 4.945 × 10 2 1.826 0.000 1.827 1.953 × 10 2 800. MeV 8.995 × 10 2 1.897 0.000 0.000 1.898 4.102 × 10 2 1.00 GeV 1.101 × 10 3 1.929 0.000 0.000 1.930 5.147 × 10 2 1.40

271

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Silicon dioxide (fused quartz) (SiO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49930 2.200 139.2 0.08408 3.5064 0.1500 3.0140 4.0560 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.591 6.591 8.438 × 10 -1 14.0 MeV 5.616 × 10 1 5.158 5.158 1.537 × 10 0 20.0 MeV 6.802 × 10 1 4.041 4.041 2.866 × 10 0 30.0 MeV 8.509 × 10 1 3.145 3.145 5.710 × 10 0 40.0 MeV 1.003 × 10 2 2.691 2.691 9.170 × 10 0 80.0 MeV 1.527 × 10 2 2.030 2.030 2.682 × 10 1 100. MeV 1.764 × 10 2 1.908 1.908 3.701 × 10 1 140. MeV 2.218 × 10 2 1.786 1.786 5.878 × 10 1 200. MeV 2.868 × 10 2 1.719 1.719 9.315 × 10 1 288. MeV 3.788 × 10 2 1.699 0.000 1.699 Minimum ionization 300. MeV 3.917 × 10 2 1.699 0.000 1.699 1.518 × 10 2 400. MeV 4.945 × 10 2 1.711 0.000 1.711 2.105 × 10 2 800. MeV 8.995 × 10 2 1.789 0.000 0.000 1.790 4.391 × 10 2 1.00 GeV 1.101 × 10 3 1.823 0.000 0.000 1.824 5.497

272

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Radon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 86 (Rn) [222.01758 (2)]9.066 × 10 -3 794.0 0.20798 2.7409 1.5368 4.9889 13.2839 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.782 3.782 1.535 × 10 0 14.0 MeV 5.616 × 10 1 3.018 3.018 2.730 × 10 0 20.0 MeV 6.802 × 10 1 2.405 2.405 4.980 × 10 0 30.0 MeV 8.509 × 10 1 1.902 1.902 9.715 × 10 0 40.0 MeV 1.003 × 10 2 1.644 1.644 1.540 × 10 1 80.0 MeV 1.527 × 10 2 1.267 1.267 4.394 × 10 1 100. MeV 1.764 × 10 2 1.201 1.201 6.019 × 10 1 140. MeV 2.218 × 10 2 1.140 1.140 9.452 × 10 1 200. MeV 2.868 × 10 2 1.116 1.117 1.479 × 10 2 216. MeV 3.039 × 10 2 1.116 1.116 Minimum ionization 300. MeV 3.917 × 10 2 1.127 0.000 0.000 1.128 2.372 × 10 2 400. MeV 4.945 × 10 2 1.154 0.000 0.000 1.154 3.249 × 10 2 800. MeV 8.995 × 10 2 1.258 0.001 0.000 1.260 6.559 × 10 2 1.00 GeV 1.101 × 10 3 1.300 0.001 0.000 1.302 8.119

273

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Muons Muons in Solid carbon dioxide (dry ice; CO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49989 1.563 85.0 0.43387 3.0000 0.2000 2.0000 3.4513 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.057 7.057 7.841 × 10 -1 14.0 MeV 5.616 × 10 1 5.508 5.508 1.432 × 10 0 20.0 MeV 6.802 × 10 1 4.304 4.304 2.679 × 10 0 30.0 MeV 8.509 × 10 1 3.341 3.341 5.353 × 10 0 40.0 MeV 1.003 × 10 2 2.854 2.854 8.612 × 10 0 80.0 MeV 1.527 × 10 2 2.145 2.145 2.529 × 10 1 100. MeV 1.764 × 10 2 2.017 2.017 3.493 × 10 1 140. MeV 2.218 × 10 2 1.886 1.886 5.554 × 10 1 200. MeV 2.868 × 10 2 1.812 1.812 8.811 × 10 1 300. MeV 3.917 × 10 2 1.787 0.000 1.787 1.438 × 10 2 303. MeV 3.950 × 10 2 1.787 0.000 1.787 Minimum ionization 400. MeV 4.945 × 10 2 1.795 0.000 1.795 1.997 × 10 2 800. MeV 8.995 × 10 2 1.866 0.000 0.000 1.866 4.182 × 10 2 1.00 GeV 1.101 × 10 3 1.896 0.000 0.000 1.897 5.245 × 10

274

The Resource Potential of Natural Gas Hydrates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complementary Program Research Complementary Program Research Office of Research and Development National Energy Technology Laboratory EPAct Complementary Program- Extreme Offshore 2 The NETL Complementary Program - Targeting top offshore/UDW spill risks Schematic representation of offshore spill risk profile % of recorded spills & drilling phase in the GOM & North Sea -Source: SINTEF Database * Cementing Failures * Equipment & Casing Failures * Higher risk targets, "exploratory" systems -Izon et al. 2007 IAM Tools for GOM Barriers & Controls - Cements Barriers & Controls - Metals Multiphase flow HPHT Fluids/EOS Risk & Impacts 3 Initial risk assessment requires a firm basis of materials behavior in extreme environments.

275

The Resource Potential of Natural Gas Hydrates  

Broader source: Energy.gov (indexed) [DOE]

Complementary Program Research Complementary Program Research Office of Research and Development National Energy Technology Laboratory September 26 th , 2012 EPAct Complementary Program- Extreme Offshore 2 The NETL Complementary Program - Targeting top offshore/UDW spill risks Schematic representation of offshore spill risk profile % of recorded spills & drilling phase in the GOM & North Sea -Source: SINTEF Database * Cementing Failures * Equipment & Casing Failures * Higher risk targets, "exploratory" systems -Izon et al. 2007 IAM Tools for GOM Barriers & Controls - Cements Barriers & Controls - Metals Multiphase flow HPHT Fluids/EOS Risk & Impacts 3 Initial risk assessment requires a firm basis of materials behavior in extreme environments.

276

Resource Constraints in Petroleum Production Potential  

Science Journals Connector (OSTI)

...the assumption of 2% consumption growth and the low scenario, OPEC would achieve 50% ofworld production in 1998. OPEC's highest crude oil production was 32 mmbbl per day in 1973 and 1979. About 10% ofthe liquid petroleum produced outside...

C. D. MASTERS; D. H. ROOT; E. D. ATTANASI

1991-07-12T23:59:59.000Z

277

Comprehensive Evaluation of the Geothermal Resource Potential...  

Open Energy Info (EERE)

American Recovery and Reinvestment Act of 2009. State Nevada Objectives Characterize the geothermal reservoir, the Astor Pass Site, using novel technologies and integrating this...

278

Fort Stewart integrated resource assessment. Volume 3: Resource assessment  

SciTech Connect (OSTI)

The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

1993-10-01T23:59:59.000Z

279

Resource Assessment and Characterization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resource Assessment and Characterization Resource Assessment and Characterization Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the total technically recoverable energy available in the nation's powered dams, non-powered dams, and untapped stream-reaches. These resource assessments are pivotal to understanding hydropower's potential for future electricity production. Hydropower already provides 6-8% of the nation's electricity, but more potential resides in our flowing waters to provide clean electricity to communities and cities across the United States. There are three levels of resource assessments performed by the water industry. Theoretical potential is the annual average amount of physical energy that is hypothetically available. Technical resource potential is

280

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000, DOE/EIA-0383(2000) (Washington, DC, December 1999), Table A11. Energy Information Administration, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge, SR/RNGD/87-01 (Washington, DC, September 1987). U.S. Department of Interior, Arctic National Wildlife Refuge, Alaska, Coastal Plain Resource Assessment, (Washington, DC, November, 1986). U.S. Department of Interior, Bureau of Land Management, Minerals Management Service. Northeast National Petroleum Reserve-Alaska Final Integrated Activity Plan / Environmental Impact Statement, (Anchorage , Alaska, August, 1998).

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Variable White Dwarf Data Tables  

SciTech Connect (OSTI)

Below, I give a brief explanation of the information in these tables. In all cases, I list the WD {number_sign}, either from the catalog of McCook {ampersand} Sion (1987) or determined by me from the epoch 1950 coordinates. Next, I list the most commonly used name (or alias), then I list the variable star designation if it is available. If not, I list the constellation name and a V** or?? depending on what the last designated variable star for that constellation is. I present epoch 2000 coordinates for all of the stars, which I precessed from the 1950 ones in most cases. I do not include proper motion effects; this is negligible for all except the largest proper motion DAV stars, such as L 19-2, BPM 37093, B 808, and G 29-38. Even in these cases, the error is no more than 30` in declination and 2 s in right ascension. I culled effective temperatures from the latest work (listed under each table); they are now much more homogeneous than before. I pulled the magnitude estimates from the appropriate paper, and they are mean values integrated over several cycles. The amplitude given is for the height of a typical pulse in the light curve. The periods correspond the dominant ones found in the light curve. In some cases, there is a band of power in a given period range, or the light curve is very complex, and I indicate this in the table. In the references, I generally list the paper with the most comprehensive pulsation analysis for the star in question. In some cases, there is more than one good reference, and I list them as well.

Bradley, P. A.

1997-12-31T23:59:59.000Z

282

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2008 (Million Cubic Feet) Colorado ......................... 0 2 0 6,256 6,258 Delaware ........................ 0 2 0 0 2 Georgia........................... 0 * 0 0 * Hawaii............................. 2,554 5 0 0 2,559 Illinois.............................. 0 15 0 0 15 Indiana............................ 0 30 0 0 30 Iowa ................................ 0 24 3 0 27 Kentucky......................... 0 15 0 0 15 Maryland ......................... 0 181 0 0 181 Massachusetts................ 0 13 0 0 13 Minnesota ....................... 0 46 0 0 46 Missouri .......................... * 6 0 0 6 Nebraska ........................ 0 28 0 0 28 New Hampshire .............. 0 44 0 0 44 New Jersey ..................... 0 0 0 489 489 New York ........................

283

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2009 (Million Cubic Feet) Colorado ......................... 0 3 0 7,525 7,527 Connecticut..................... 0 * 0 0 * Delaware ........................ 0 2 0 0 2 Georgia........................... 0 0 52 * 52 Hawaii............................. 2,438 9 0 0 2,447 Illinois.............................. 0 20 0 0 20 Indiana............................ 0 * 0 0 * Iowa ................................ 0 3 0 0 3 Kentucky......................... 0 18 0 0 18 Maryland ......................... 0 170 0 0 170 Massachusetts................ 0 10 0 0 10 Minnesota ....................... 0 47 0 0 47 Missouri .......................... * 10 0 0 10 Nebraska ........................ 0 18 0 0 18 New Jersey ..................... 0 0 0 454 454 New York ........................

284

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2010 (Million Cubic Feet) Colorado ......................... 0 4 0 5,144 5,148 Delaware ........................ 0 1 0 0 1 Georgia........................... 0 0 732 0 732 Hawaii............................. 2,465 6 0 0 2,472 Illinois.............................. 0 17 0 0 17 Indiana............................ 0 1 0 0 1 Iowa ................................ 0 2 0 0 2 Kentucky......................... 0 5 0 0 5 Louisiana ........................ 0 0 249 0 249 Maryland ......................... 0 115 0 0 115 Massachusetts................ 0 * 0 0 * Minnesota ....................... 0 12 0 0 12 Missouri .......................... * 18 0 0 18 Nebraska ........................ 0 12 0 0 12 New Jersey ..................... 0 0 0 457 457 New York ........................

285

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2007 (Million Cubic Feet) Colorado ......................... 0 3 0 6,866 6,869 Delaware ........................ 0 5 0 0 5 Georgia........................... 0 2 0 0 2 Hawaii............................. 2,679 4 0 0 2,683 Illinois.............................. 0 11 0 0 11 Indiana............................ 0 81 0 554 635 Iowa ................................ 0 2 38 0 40 Kentucky......................... 0 124 0 0 124 Maryland ......................... 0 245 0 0 245 Massachusetts................ 0 15 0 0 15 Minnesota ....................... 0 54 0 0 54 Missouri .......................... 7 60 0 0 66 Nebraska ........................ 0 33 0 0 33 New Hampshire .............. 0 9 0 0 9 New Jersey ..................... 0 0 0 379 379 New York ........................

286

Table-top job analysis  

SciTech Connect (OSTI)

The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

Not Available

1994-12-01T23:59:59.000Z

287

EIA-Annual Energy Outlook 2010 - Low Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007- 2035) Economic Growth Tables (2007- 2035) Annual Energy Outlook 2010 Main Low Economic Growth Tables (2007- 2035) Table Title Formats Summary Low Economic Growth Case Tables PDF Gif Year-by-Year Low Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply, Disposition, and Price Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions

288

EIA-Annual Energy Outlook 2010 - High Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007-2035) Economic Growth Tables (2007-2035) Annual Energy Outlook 2010 Main High Economic Growth Tables (2007- 2035) Table Title Formats Summary High Economic Growth Case Tables PDF Gif Year-by-Year High Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif

289

Environmental Regulatory Update Table, October 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-11-01T23:59:59.000Z

290

Environmental Regulatory Update Table, August 1991  

SciTech Connect (OSTI)

This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

1991-09-01T23:59:59.000Z

291

Environmental Regulatory Update Table, September 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-10-01T23:59:59.000Z

292

Environmental Regulatory Update Table, November 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-12-01T23:59:59.000Z

293

Environmental regulatory update table, July 1991  

SciTech Connect (OSTI)

This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-08-01T23:59:59.000Z

294

Environmental Regulatory Update Table, November 1990  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Hawkins, G.T.; Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

1990-12-01T23:59:59.000Z

295

Microsoft Word - table_09.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 9 Created on: 12/12/2013 2:08:24 PM Table 9. Underground natural gas storage - by season, 2011-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year, Season, and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2011 Refill Season April 4,304 1,788 6,092 -223 -11.1 312 100 -212 May 4,304 2,187 6,491 -233 -9.6 458 58 -399 June 4,302 2,530 6,831 -210 -7.7 421 80 -340 July 4,300 2,775 7,075 -190 -6.4 359 116 -244 August 4,300 3,019 7,319 -134 -4.2 370 126 -244 September 4,301 3,416 7,717 -92 -2.6 454 55

296

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

1) 1) June 2013 State Energy Price and Expenditure Estimates 1970 Through 2011 2011 Price and Expenditure Summary Tables Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 3.09 5.66 26.37 22.77 25.54 27.12 13.18 19.42 25.90 0.61 3.01 8.75 2.56 27.08 19.85 Alaska 3.64 6.70 29.33 23.12 29.76 31.60 20.07 34.62 26.61 - 14.42 20.85 6.36 47.13 25.17 Arizona 1.99 7.07 27.73 22.84 31.95 26.97 17.00 17.23 26.71 0.75 6.31 10.79 2.16 28.46 25.23 Arkansas 1.93 6.94 26.37 22.45 26.66 27.35 17.35 33.22

297

Microsoft Word - table_13.doc  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration | Natural Gas Monthly 31 Table 13 Created on: 12/12/2013 2:28:44 PM Table 13. Activities of underground natural gas storage operators, by state, September 2013 (volumes in million cubic feet) State Field Count Total Storage Capacity Working Gas Storage Capacity Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Base Gas Working Gas Total Volume Percent Injections Withdrawals Alabama 2 35,400 27,350 8,050 21,262 29,312 2,852 15.5 1,743 450 Alaska a 5 83,592 67,915 14,197 20,455 34,652 NA NA 1,981 30 Arkansas 2 21,853 12,178 9,648 3,372 13,020 -1,050 -23.7 204 0 California 14 599,711 374,296

298

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

299

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

300

Microsoft Word - table_01.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 1 Table 1. Summary of natural gas supply and disposition in the United States, 2008-2013 (billion cubic feet) Year and Month Gross Withdrawals Marketed Production NGPL Production a Dry Gas Production b Supplemental Gaseous Fuels c Net Imports Net Storage Withdrawals d Balancing Item e Consumption f 2008 Total 25,636 21,112 953 20,159 61 3,021 34 2 23,277 2009 Total 26,057 21,648 1,024 20,624 65 2,679 -355 -103 22,910 2010 Total 26,816 22,382 1,066 21,316 65 2,604 -13 115 24,087 2011 January 2,299 1,953 92 1,861 5 236 811 R -24 R 2,889 February 2,104 1,729 82 1,647 4 186 594 R 20 R 2,452 March 2,411 2,002 95 1,908 5 171 151 R -4 R 2,230 April 2,350 1,961 93 1,868 5 R 152 -216 R 17 R 1,825 May 2,411 2,031

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2012 (million cubic feet) U.S. Energy Information Administration | Natural Gas Annual 4 Table 2 Alabama 215,710 7,110 -162,223 617,883 0 -2,478 0 666,738 Alaska 351,259 21,470 22,663 0 -9,342 0 0 343,110 Arizona 117 0 -13,236 389,036 -43,838 0 0 332,079 Arkansas 1,146,168 424 -18,281 -831,755 0 -103 0 295,811 California 246,822 12,755 104,820 2,222,355 -109,787 48,071 0 2,403,385 Colorado 1,709,376 81,943 -107,940 -1,077,968 0 2,570 4,412 443,367 Connecticut 0 0 4,191 225,228 0 260 0 229,159 Delaware 0 0 21,035 80,692 0 51 * 101,676 District of Columbia 0 0 497 28,075 0 0 0 28,572 Florida 18,681 0 15,168 1,294,620 0 0 0 1,328,469

302

TableHC2.12.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Detached Attached 2 to 4 Units Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

303

TableHC10.13.xls  

Gasoline and Diesel Fuel Update (EIA)

or More... 0.3 Q Q Q Q Lighting Usage Indicators U.S. Census Region Northeast Midwest Table HC10.13 Lighting Usage...

304

TABLE54.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

305

TABLE19.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

306

TABLE15.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

307

TABLE53.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

308

TABLE11.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

309

2011 Annual Report Table of Contents  

E-Print Network [OSTI]

) ...................12 Smart Grid Cyber Security.....................................................13 ICT Supply ChainComputer Security Division 2011 Annual Report #12;Table of Contents Welcome ................................................................. 1 Division Organization .................................................2 The Computer Security

310

Summary Statistics Table 1. Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Cost Report." Figure Energy Information Administration Petroleum Marketing Annual 1996 3 Table 2. U.S. Refiner Prices of Petroleum Products to End Users (Cents per Gallon...

311

GIS DEVELOPMENT GUIDE Table of Contents  

E-Print Network [OSTI]

GIS DEVELOPMENT GUIDE Volume II Table of Contents SURVEY OF AVAILABLE DATA Introduction ...................................................................................13 EVALUATING GIS HARDWARE AND SOFTWARE Introduction ...................................................................................14 Sources of Information About GIS......................................................14 GIS

Ghelli, Giorgio

312

Tennessee Water Resources Information Act (Tennessee) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tennessee Water Resources Information Act (Tennessee) Tennessee Water Resources Information Act (Tennessee) Tennessee Water Resources Information Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Tennessee Program Type Environmental Regulations Provider Tennessee Department Of Environment and Conservation The Tennessee Water Resources Information Act is designed to prevent the lowering of the ground water table by requiring that adequate information

313

TABLE OF CONTENTS Introduction 5  

E-Print Network [OSTI]

: Magnetic Induction 108 Problem #2: Magnetic Flux 109 Problem #3: The Sign of the Induced Potential Difference 112 Problem #4: The Magnitude of the Induced Potential Difference 114 Problem #5: The Generator

Minnesota, University of

314

Online Legal Resources | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Online Legal Resources Online Legal Resources Online Legal Resources Legislative Documents US Code Public and Private Laws Congressional Bills Congressional Record Congressional Hearings Appropriations Legislation Regulatory Documents Code of Federal Regulations Federal Register DOE Safety and Employee Protection Authorities Presidential Documents Executive Orders More Legal Research Resources Energy Law Net Legal Citation Style Guide Nuclear Regulatory Legislation Open CRS Public Library of Law Treaties U.S. Code Classification Tables U.S. Congressional Documents and Debates 1774-1875 Compilation of Laws Communications Law Consumer Protection Law Environmental Law Volume 1 Environmental Law Volume 2 Food, Drug, And Related Law Health Law Nuclear Energy And Radioactive Waste Selected Energy-Related Legislation: Electricity

315

offshore resource | OpenEI  

Open Energy Info (EERE)

resource resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

316

Teacher Resource Center: Fermilab Web Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab Web Resources Fermilab Web Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The following materials are on the webserver. Fermilab Resources for Students - You might bookmark some of these resources to give your students easy access to information. Fermilab Resources for Students - You might bookmark some of these resources to give your students easy access to information. Photographs and video clips from Fermilab's Visual Media Services

317

Annual Energy Outlook 2009 - High Price Case Tables  

Gasoline and Diesel Fuel Update (EIA)

6-2030) 6-2030) Annual Energy Outlook 2009 with Projections to 2030 XLS GIF Spreadsheets are provided in Excel High Price Case Tables (2006-2030) Table Title Formats Summary High Price Case Tables PDF GIF High Price Case Tables XLS GIF Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and Source XLS GIF Table 3. Energy Prices by Sector and Source XLS GIF Table 4. Residential Sector Key Indicators and Consumption XLS GIF Table 5. Commercial Sector Indicators and Consumption XLS GIF Table 6. Industrial Sector Key Indicators and Consumption XLS GIF Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption XLS GIF Table 8. Electricity Supply, Disposition, Prices, and Emissions XLS GIF Table 9. Electricity Generating Capacity

318

Use Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill deep resource wells  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. Project Objectives: A cost effective three (3) Phased Program to locate and confirm up to Five (5) commercial geothermal resources in Colorado. The heat resources to be prioritized will be those able to support a minimum electrical generation capacity of 10 MW by location.

319

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

320

Utility Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Sponsored E-Source Membership Utility Potential...

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Image Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mosaic of earth and sky images Mosaic of earth and sky images Image Resources Free image resources covering energy, environment, and general science. Here are some links to energy- and environment-related photographic databases. Berkeley Lab Photo Archive Berkeley Lab's online digital image collection. National Science Digital Library (NSDL) NSDL is the Nation's online library for education and research in science, technology, engineering, and mathematics. The World Bank Group Photo Library A distinctive collection of over 11,000 images that illustrate development through topics such as Agriculture, Education, Environment, Health, Trade and more. Calisphere Compiles the digital collections of libraries, museums, and cultural heritage organizations across California, and organizes them by theme, such

322

Teacher Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources Resources Teacher Programs JLab Science Activities for Teachers - An afternoon science program for 5th, 6th and 8th grade teachers. [Program Dates: September 2013 - May 2014] Teacher Night at Jefferson Lab - Teacher Night will be held on April 2nd, 2014. Please sign-up by March 19th, 2014! Education Events Physics Fest - Cryogenics, electricity and more! Reserve your space today! Science Series - Science lectures for high school and middle school students! [Video Archive] Education Events Mailing List - An electronic mailing list to keep you informed of Jefferson Lab's public education events! Workshops and Local Groups The Virginia Section of the American Nuclear Society - Single and multi-day workshops on the science of nuclear energy and radiation.

323

Exhibit C Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exhibit C Schedules and Lists Exhibit C Schedules and Lists Dated 5-20-13 Subcontract No. 241314 Page 1 of 5 EXHIBIT "C" SCHEDULES AND LISTS TABLE OF CONTENTS Form Title A Schedule of Quantities and Prices B Milestone and Payment Schedule C Lower-Tier Subcontractor and Vendor List Exhibit C Schedules and Lists Dated 5-20-13 Subcontract No. 241314 Page 2 of 5 EXHIBIT "C" FORM A SCHEDULE OF QUANTITIES AND PRICES NOTE: This Exhibit "C" Form A is part of the model subcontract for Trinity and is provided to Offerors for informational purposes only. It is not intended that this form be returned with the Offeror's proposal. 1.0 WORK TO BE PERFORMED Work shall be performed strictly in accordance with requirements of the Subcontract

324

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2005 Alabama .................................. 255,157 9,748 13,759 37,048 Alaska...................................... 3,089,229 23,700 27,956 105,449 Arkansas.................................. 16,756 177 231 786 California ................................. 226,230 11,101 13,748 45,926 Colorado .................................. 730,948 25,603 34,782 95,881 Florida...................................... 3,584 359 495 1,400 Illinois....................................... 280 37 46 129 Kansas..................................... 476,656 22,165 31,521 85,737 Kentucky.................................. 38,792 1,411 1,716 5,725 Louisiana ................................. 2,527,636 73,035 103,381

325

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 5. Number of Producing Gas Wells by State and the Gulf of Mexico, December 31, 2006-2010 Alabama .......................................................... 6,227 6,591 6,860 6,913 7,026 Alaska.............................................................. 231 239 261 261 269 Arizona ............................................................ 7 7 6 6 5 Arkansas.......................................................... 3,814 4,773 5,592 6,314 7,397 California ......................................................... 1,451 1,540 1,645 1,643 1,580 Colorado .......................................................... 20,568 22,949 25,716 27,021 28,813 Gulf of Mexico.................................................. 2,419 2,552 1,527 1,984 1,852 Illinois...............................................................

326

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas, 2004-2008, and by State, 2008 2004 Total ............................ 15,223,749 -- 5.46 19,517,491 106,521,974 2005 Total ............................ 15,425,867 -- 7.33 18,927,095 138,750,746 2006 Total ............................ 15,981,421 -- 6.39 19,409,674 124,074,399 2007 Total ............................ R 16,335,710 -- R 6.25 R 20,196,346 R 126,164,553 2008 Total ............................ 18,424,440 -- 7.96 21,239,516 169,038,089 Alabama ............................... 246,747 2,382,188 9.65 257,884 2,489,704 Alaska................................... 337,359 2,493,128 7.39 398,442 2,944,546 Arizona ................................. 503 3,568 7.09 523 3,710 Arkansas...............................

327

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 21. Number of Natural Gas Industrial Consumers by Type of Service and State, 2008-2009 Alabama ...................... 2,476 281 2,757 2,789 271 3,060 Alaska.......................... 2 4 6 2 1 3 Arizona ........................ 285 98 383 274 116 390 Arkansas...................... 648 456 1,104 582 443 1,025 California ..................... 36,124 R 3,467 R 39,591 35,126 3,762 38,888 Colorado ...................... 341 4,475 4,816 297 4,787 5,084 Connecticut.................. 2,386 810 3,196 2,228 910 3,138 Delaware ..................... 96 69 165 39 73 112 Florida.......................... 161 288 449 123 484 607 Georgia........................ 1,003 1,887 2,890 956 1,298 2,254 Hawaii.......................... 27 0 27 25 0 25 Idaho............................ 108 91 199 109 78 187 Illinois...........................

328

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 21. Number of Natural Gas Industrial Consumers by Type of Service and State, 2004-2005 Alabama ...................... 2,495 R 304 R 2,799 2,487 299 2,786 Alaska.......................... 6 4 10 7 5 12 Arizona ........................ 328 86 414 319 106 425 Arkansas...................... 782 R 441 R 1,223 671 449 1,120 California ..................... 39,426 2,061 41,487 38,150 2,076 40,226 Colorado ...................... 393 3,782 4,175 364 3,954 4,318 Connecticut.................. 2,625 845 3,470 2,618 819 3,437 Delaware ..................... 134 52 186 124 55 179 Florida.......................... R 174 224 R 398 159 273 432 Georgia........................ R 993 2,168 R 3,161 854 2,599 3,453 Hawaii.......................... 29 0 29 28 0 28 Idaho............................ 117 79 196 116 79 195

329

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 5. Number of Wells Producing Gas and Gas Condensate by State and the Gulf of Mexico, December 31, 2001-2005 Alabama .......................................................... 4,597 4,803 5,157 5,526 5,523 Alaska.............................................................. 170 165 195 224 227 Arizona ............................................................ 8 7 9 6 6 Arkansas.......................................................... 4,825 6,755 7,606 3,460 2,878 California ......................................................... 1,244 1,232 1,249 1,272 1,356 Colorado .......................................................... 22,117 23,554 18,774 16,718 22,691 Gulf of Mexico.................................................. 3,271 3,245 3,039 2,781 2,123 Illinois...............................................................

330

EM International Program Action Table  

Broader source: Energy.gov (indexed) [DOE]

EM INTERNATIONAL COOPERATIVE PROGRAM] October, 2012 EM INTERNATIONAL COOPERATIVE PROGRAM] October, 2012 E M I n t e r n a t i o n a l P r o g r a m s Page 1 ACTION TABLE Subject Lead Office Engaging Country Meeting Location Purpose Status Date of Event 3 rd US/German Workshop on Salt Repository Research, Design and Operations N. Buschman, EM-22 Germany Albuquerque & Carlsbad, NM Continue collaboration with Germans on salt repository research, design and operations. Draft agenda prepared. October 8-12, 2012 International Framework for Nuclear Energy Cooperation (IFNEC) Ministerial R. Elmetti, EM- 2.1 Multilateral Marrakech, Morocco To support the development of nuclear energy infrastructure globally through workforce training, information sharing, and approaches related to the safe, secure and responsible use of

331

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2009 Alabama .................................. 248,232 11,667 17,232 42,984 Alaska...................................... 2,830,034 19,542 22,925 86,767 Arkansas.................................. 2,352 125 168 541 California ................................. 198,213 11,042 13,722 45,669 Colorado .................................. 1,233,260 47,705 67,607 174,337 Illinois....................................... 164 24 31 84 Kansas..................................... 370,670 18,863 26,948 72,922 Kentucky.................................. 60,167 2,469 3,270 9,982 Louisiana ................................. 2,175,026 67,067 95,359 250,586 Michigan .................................. 23,819 2,409

332

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2006 (Million Cubic Feet) Colorado ...................... 0 11 0 0 6,138 6,149 Connecticut.................. 0 91 0 0 0 91 Delaware ..................... 0 * 0 0 0 * Georgia........................ 0 3 0 0 0 3 Hawaii.......................... 2,610 3 0 0 0 2,613 Illinois........................... 0 13 0 0 0 13 Indiana......................... 0 2 0 0 1,640 1,642 Iowa ............................. 0 * 0 0 46 46 Kentucky...................... 0 3 0 0 0 3 Maryland ...................... 0 41 0 0 0 41 Massachusetts............. 0 51 0 0 0 51 Minnesota .................... 0 13 0 0 0 13 Missouri ....................... 0 78 0 0 0 78 Nebraska ..................... 0 19 0 0 0 19 New Hampshire ........... 0 92 0 0 0 92 New Jersey .................. 0 0 0 0 175 175 New York .....................

333

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

20 20 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2004-2008 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,606,543 3,700,454 3,589,995 3,782,708 3,589,221 Mexico ...................................................... 0 9,320 12,749 54,062 43,314 Total Pipeline Imports............................. 3,606,543 3,709,774 3,602,744 3,836,770 3,632,535 LNG Algeria....................................................... 120,343 97,157 17,449 77,299 0 Australia.................................................... 14,990 0 0 0 0 Egypt......................................................... 0 72,540 119,528 114,580 54,839 Equatorial Guinea .....................................

334

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2007 Alabama .................................. 257,443 13,381 19,831 48,922 Alaska...................................... 2,965,956 22,419 26,332 99,472 Arkansas.................................. 11,532 126 162 552 California ................................. 206,239 11,388 13,521 47,045 Colorado .................................. 888,705 27,447 38,180 102,563 Florida...................................... 2,422 103 132 423 Illinois....................................... 235 38 48 131 Kansas..................................... 391,022 19,600 28,063 74,941 Kentucky.................................. 38,158 1,455 1,957 5,917 Louisiana ................................. 2,857,443 77,905 110,745

335

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

336

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2008 Alabama .................................. 253,028 11,753 17,222 43,191 Alaska...................................... 2,901,760 20,779 24,337 92,305 Arkansas.................................. 6,531 103 139 446 California ................................. 195,272 11,179 13,972 46,176 Colorado .................................. 1,029,641 37,804 53,590 139,332 Florida...................................... 300 16 22 65 Illinois....................................... 233 33 42 115 Kansas..................................... 397,587 19,856 28,302 76,021 Kentucky.................................. 58,899 1,783 2,401 7,233 Louisiana ................................. 2,208,920 66,369 94,785 245,631

337

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2002-2006 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,784,978 3,437,230 3,606,543 3,700,454 3,589,995 Mexico ...................................................... 1,755 0 0 9,320 12,749 Total Pipeline Imports............................. 3,786,733 3,437,230 3,606,543 3,709,774 3,602,744 LNG Algeria....................................................... 26,584 53,423 120,343 97,157 17,449 Australia.................................................... 0 0 14,990 0 0 Brunei ....................................................... 2,401 0 0 0 0 Egypt.........................................................

338

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2001-2005 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,728,537 3,784,978 3,437,230 3,606,543 3,700,454 Mexico ...................................................... 10,276 1,755 0 0 9,320 Total Pipeline Imports............................. 3,738,814 3,786,733 3,437,230 3,606,543 3,709,774 LNG Algeria....................................................... 64,945 26,584 53,423 120,343 97,157 Australia.................................................... 2,394 0 0 14,990 0 Brunei ....................................................... 0 2,401 0 0 0 Egypt.........................................................

339

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 5. Number of Wells Producing Gas and Gas Condensate by State and the Gulf of Mexico, December 31, 2002-2006 Alabama .......................................................... 4,803 5,157 5,526 5,523 6,227 Alaska.............................................................. 165 195 224 227 231 Arizona ............................................................ 7 9 6 6 7 Arkansas.......................................................... 6,755 7,606 3,460 R 3,462 3,811 California ......................................................... 1,232 1,249 1,272 1,356 1,451 Colorado .......................................................... 23,554 18,774 16,718 22,691 20,568 Gulf of Mexico.................................................. 3,245 3,039 2,781 2,123 1,946 Illinois...............................................................

340

Microsoft Word - table_21.doc  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Table 21. Number of natural gas commercial consumers by type of service and state, 2011-2012 R Revised data. Note: Totals may not equal sum of components due to independent rounding. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Please see the cautionary note regarding the number of residential and commercial customers located on the second page of Appendix A of this report. Alabama R 67,561 135 R 67,696 67,099 135 67,234 Alaska R 12,724 303 R 13,027 13,073 61 13,134 Arizona 56,349 198 56,547 56,252 280 56,532 Arkansas 67,454 361 67,815 68,151 614 68,765

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 5. Number of Wells Producing by State and the Gulf of Mexico, December 31, 2003-2007 Alabama .......................................................... 5,157 5,526 5,523 6,227 6,591 Alaska.............................................................. 195 224 227 231 239 Arizona ............................................................ 9 6 6 7 7 Arkansas.......................................................... 7,606 3,460 3,462 R 3,814 4,773 California ......................................................... 1,249 1,272 1,356 1,451 1,540 Colorado .......................................................... 18,774 16,718 22,691 20,568 22,949 Gulf of Mexico.................................................. 3,039 2,781 2,123 R 2,419 2,552 Illinois...............................................................

342

Microsoft Word - table_09.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 9. Summary of U.S. Natural Gas Imports and Exports, 2003-2007 Imports Volume (million cubic feet) Pipeline Canada a .................................................... 3,437,230 3,606,543 3,700,454 3,589,995 3,782,708 Mexico ...................................................... 0 0 9,320 12,749 54,062 Total Pipeline Imports............................. 3,437,230 3,606,543 3,709,774 3,602,744 3,836,770 LNG Algeria....................................................... 53,423 120,343 97,157 17,449 77,299 Australia.................................................... 0 14,990 0 0 0 Egypt......................................................... 0 0 72,540 119,528 114,580 Equatorial Guinea .....................................

343

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 21. Number of Natural Gas Industrial Consumers by Type of Service and State, 2007-2008 Alabama ...................... 2,409 295 2,704 2,476 281 2,757 Alaska.......................... 7 4 11 2 4 6 Arizona ........................ 296 99 395 285 98 383 Arkansas...................... 637 418 1,055 648 456 1,104 California ..................... 35,814 3,320 39,134 36,124 3,533 39,657 Colorado ...................... 298 4,294 4,592 341 4,475 4,816 Connecticut.................. 2,472 845 3,317 2,386 810 3,196 Delaware ..................... 125 60 185 96 69 165 Florida.......................... 156 311 467 161 288 449 Georgia........................ R 1,013 1,900 R 2,913 1,003 1,887 2,890 Hawaii.......................... 27 0 27 27 0 27 Idaho............................ 109 79 188 108 91 199 Illinois...........................

344

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2006 Alabama .................................. 287,278 14,736 21,065 54,529 Alaska...................................... 2,665,742 20,993 24,638 93,346 Arkansas.................................. 13,702 166 212 734 California ................................. 223,580 11,267 14,056 46,641 Colorado .................................. 751,036 26,111 36,317 97,697 Florida...................................... 3,972 357 485 1,416 Illinois....................................... 242 37 47 128 Kansas..................................... 453,111 21,509 30,726 83,137 Kentucky.................................. 39,559 1,666 2,252 6,763 Louisiana ................................. 2,511,802 73,551 105,236

345

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas by State, 2005-2009 2005 Total ............................ 15,425,867 -- 7.33 18,927,095 138,750,746 2006 Total ............................ 15,981,421 -- 6.39 19,409,674 124,074,399 2007 Total ............................ 16,335,710 -- 6.25 20,196,346 126,164,553 2008 Total ............................ R 18,305,411 -- R 7.97 R 21,112,053 R 168,342,230 2009 Total ............................ 18,763,726 -- 3.67 21,604,158 79,188,096 Alabama ............................... 225,666 975,789 4.32 236,029 1,020,599 Alaska................................... 397,077 1,163,555 2.93 397,077 1,163,554 Arizona ................................. 695 2,214 3.19 712 2,269 Arkansas............................... 680,613 2,332,956 3.43

346

Microsoft Word - table_21.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 21. Number of natural gas commercial consumers by type of service and state, 2010-2011 R Revised data. Note: Totals may not equal sum of components due to independent rounding. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Please see the cautionary note regarding the number of residential and commercial customers located on the second page of Appendix A of this report. Alabama R 68,017 146 R 68,163 67,522 135 67,657 Alaska 12,673 325 12,998 12,721 303 13,024 Arizona 56,510 166 56,676 56,349 198 56,547 Arkansas 67,676 311 67,987 67,454 361 67,815 California 399,290 40,282

347

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas by State, 2006-2010 2006 Total ............................ 15,981,421 -- 6.39 19,409,674 124,074,399 2007 Total ............................ 16,335,710 -- 6.25 20,196,346 126,164,553 2008 Total ............................ 18,305,411 -- 7.97 21,112,053 168,342,230 2009 Total ............................ 18,763,726 -- 3.67 R 21,647,936 R 79,348,561 2010 Total ............................ 19,262,198 -- 4.48 22,402,141 100,272,654 Alabama ............................... 212,769 949,340 4.46 222,932 994,688 Alaska................................... 316,546 1,002,566 3.17 374,226 1,185,249 Arizona ................................. 165 676 4.11 183 753 Arkansas............................... 936,600 3,594,843 3.84

348

Microsoft Word - table_10.doc  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Created on: 12/12/2013 2:09:15 PM Table 10. Underground natural gas storage - salt cavern storage fields, 2008-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2008 Total b -- -- -- -- -- 440 398 -42 2009 Total b -- -- -- -- -- 459 403 -56 2010 Total b -- -- -- -- -- 511 452 -58 2011 January 137 174 311 65 59.3 23 69 46 February 137 125 262 48 62.5 30 80 49 March 137 151 288 39 34.8 51 25 -25 April 140 172 312 17 11.2 42 21 -22 May 140 211 352

349

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 8. Supplemental Gas Supplies by State, 2005 (Million Cubic Feet) Colorado ...................... 0 2 0 0 5,283 5,285 Connecticut.................. 0 273 0 0 0 273 Delaware ..................... 0 * 0 0 0 * Georgia........................ 0 * 0 0 0 * Hawaii.......................... 2,593 14 0 0 0 2,606 Illinois........................... 0 11 0 4 0 15 Indiana......................... 0 30 0 0 1,958 1,988 Iowa ............................. 0 2 0 30 0 31 Kentucky...................... 0 15 0 0 0 15 Maryland ...................... 0 382 0 0 0 382 Massachusetts............. 0 46 0 0 0 46 Minnesota .................... 0 154 0 0 0 154 Missouri ....................... 0 15 0 0 0 15 Nebraska ..................... 0 16 0 * 0 16 New Hampshire ........... 0 84 0 0 0 84 New Jersey .................. 0 0 0 0 435 435 New York

350

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

351

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas, 2003-2007, and by State, 2007 2003 Total ............................ 14,589,545 -- 4.88 19,974,360 97,555,375 2004 Total ............................ 15,223,749 -- 5.46 19,517,491 106,521,974 2005 Total ............................ 15,425,867 -- 7.33 18,927,095 138,750,746 2006 Total ............................ R 15,981,421 -- R 6.39 R 19,409,674 R 124,074,399 2007 Total ............................ 16,031,199 -- 6.37 20,019,321 127,530,680 Alabama ............................... 259,062 1,926,374 7.44 270,407 2,010,736 Alaska................................... 368,344 2,072,647 5.63 433,485 2,439,193 Arizona ................................. 634 3,791 5.98 655 3,913 Arkansas...............................

352

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2010 Alabama .................................. 242,444 13,065 19,059 47,741 Alaska...................................... 2,731,803 17,798 20,835 79,355 Arkansas.................................. 9,599 160 213 692 California ................................. 204,327 10,400 13,244 42,509 Colorado .................................. 1,434,003 57,924 82,637 209,191 Kansas..................................... 341,778 18,424 26,251 70,425 Kentucky.................................. 66,579 3,317 4,576 13,311 Louisiana ................................. 2,207,760 71,231 102,448 262,178 Michigan .................................. 23,449 2,207 2,943 8,272 Mississippi ...............................

353

Microsoft Word - table_07.doc  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 7. Supplemental gas supplies by state, 2012 (million cubic feet) Colorado 0 99 0 4,313 4,412 Georgia 0 0 660 0 660 Hawaii 2,491 20 0 0 2,510 Illinois 0 1 0 0 1 Indiana 0 1 0 0 1 Kentucky 0 1 0 0 1 Louisiana 0 0 553 0 553 Maryland 0 116 0 0 116 Minnesota 0 9 0 0 9 Missouri * 0 0 0 * Nebraska 0 4 0 0 4 New Jersey 0 0 0 139 139 North Dakota 52,541 0 0 0 52,541 Ohio 0 6 360 0 366 Pennsylvania 0 2 0 0 2 Vermont 0 3 0 0 3 Virginia 0 48 0 0 48 Total 55,032 309 1,573 4,452 61,366 State Synthetic Natural Gas Propane-Air Biomass Gas Other Total * Volume is less than 500,000 cubic feet.

354

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Price and Expenditure Estimates 1970 Through 2004 2004 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2004 (Nominal Dollars per Million Btu) State Primary Energy Electric Power Sector d,e Retail Electricity Total Energy d,f Coal Natural Gas Petroleum Nuclear Fuel Biomass c Total d,e,f Distillate Fuel Jet Fuel LPG a Motor Gasoline Residual Fuel Other b Total Alabama 1.57 7.72 11.91 8.82 15.78 13.68 4.78 8.25 12.28 0.43 1.81 5.32 1.68 18.01 11.29 Alaska 1.91 3.59 12.43 9.61 19.64 15.55 3.63 12.09 11.05 - 6.68 9.07 3.18 32.29 11.09 Arizona 1.31 6.84 13.59 9.53 18.40 15.33 5.29 7.23 13.92 0.45 5.90 6.68 2.18 21.83 15.24 Arkansas 1.25 8.09 12.01 8.30 14.80 13.97 4.67 11.02 12.77 0.49 1.79 6.59 1.43 16.76 11.89 California 1.82 7.63 13.58

355

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

7) 7) August 2009 State Energy Price and Expenditure Estimates 1970 Through 2007 2007 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2007 (Nominal Dollars per Million Btu) State Primary Energy Electric Power Sector e,f Retail Electricity Total Energy e,g Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total e,f,g Distillate Fuel Oil Jet Fuel LPG b Motor Gasoline Residual Fuel Oil Other c Total Wood and Waste d Alabama 2.17 9.06 19.43 16.20 21.84 21.26 8.46 14.19 19.62 0.42 2.71 7.47 2.29 22.46 16.01 Alaska 2.34 5.76 19.43 16.35 28.63 22.14 11.51 23.69 17.97 - 10.51 14.88 4.94 38.96 17.87 Arizona 1.61 8.44 19.84 16.24 27.16 21.95 10.04 11.27 20.50 0.57 10.86 9.61 2.78 25.02 20.72 Arkansas 1.65 9.33 19.63 15.73 21.10 21.54 8.65 18.76 20.42 0.57 2.66 9.45 1.98 20.57

356

TABLE OF CONTENTS SECTION A: PREINTERVIEW OBSERVATION  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE OF CONTENTS TABLE OF CONTENTS SECTION A: PREINTERVIEW OBSERVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SECTION B: HOUSING TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SECTION C: HOME HEATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SECTION D: AIR CONDITIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 SECTION E: WATER HEATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SECTION F: LIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SECTION G: APPLIANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Cooking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Refrigerators and Freezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

357

Supplemental Tables to the Annual Energy Outlook  

Reports and Publications (EIA)

The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

2014-01-01T23:59:59.000Z

358

Tables in Context: Integrating Horizontal Displays with  

E-Print Network [OSTI]

design challenges for tabletop interfaces: integrating access to public and private information, managing a cooperative gesture to organize digital documents on an interactive table. Our tabletop interface designTables in Context: Integrating Horizontal Displays with Ubicomp Environments Abstract Our work

Klemmer, Scott

359

Tafel Musik: Formatting algorithm of tables  

Science Journals Connector (OSTI)

This paper provides a description on the formatting algorithm of tables that the authors have developed. This algorithm is an important component of the so called TafeMusik (Tafel Musik) environment. TafeMusikprovides the user with an environment to ... Keywords: First-fit algorithm, Linear programming, Optimization, Tables, Tabular formatting, Tabular layout

K. -H. Shin; K. Kobayashi; A. Suzuki

1997-07-01T23:59:59.000Z

360

Lighting in Commercial Buildings (1986 Data)> -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Executive Summary > Publication and Tables Executive Summary > Publication and Tables Publication and Tables Figure ES1. Ranges of Potential Savings, Maintaining Current Lighting Levels Figure on Ranges of Potential Savings, Maintaining Current Lighting Levels Note: Each shaded band indicates the range of savings estimates obtained, under varying assumptions for the effectiveness of the conservation features considered for each case. The potential savings are shown for each case as a percent of the base case lighting energy estimate (321 billion kilowatthours). Additional savings are possible if lighting levels are reduced. Sources: Adapted from Energy Information Administration, Office of Energy Markets and End Use, Form EIA-871A, "Building Questionnaire" of the 1986 Nonresidential Buildings Energy Consumption Survey; and sources described in Appendices B and C.

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Resource descriptions, ontology, and resource discovery  

Science Journals Connector (OSTI)

Resource discovery systems may assist scientists in the selection of bioinformatics resources suitable to implement scientific workflows. In this paper we address several problems related to resource discovery. They include resource publication formats, resource registration, and syntactic vs. semantic discovery. We analyse the BioMoby registry and present an algorithm that curates the BioMoby hierarchy into an ontology for use in semantic-driven resource discovery.

Zoe Lacroix; Maliha Aziz

2010-01-01T23:59:59.000Z

362

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

7 7 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 5. South Atlantic Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800.

363

EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain  

Broader source: Energy.gov (indexed) [DOE]

440-S1: National Renewable Energy Laboratory's South Table 440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory SUMMARY ThIs EA evaluates the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado: Construction of the Research Support Facilities (RSF), a new office building or multi-building office complex; Installation of Phase 1 of planned Site Infrastructure Improvements (Phase 1 of Full Site Development); Upgrades to the Thermochemical User Facility (TCUF), TCUF

364

ResourceResource AdequacyAdequacy  

E-Print Network [OSTI]

resources (diesel generators, etc.) Standby Resources Type 2 Buyback provisions on load Modeled in Post Review final assessment Council Power Review final Power Council Approval 7 #12;

365

Liberia-NREL Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Liberia-NREL Biomass Resource Assessment Liberia-NREL Biomass Resource Assessment Jump to: navigation, search Logo: Liberia Biomass Resource Assessment Name Liberia Biomass Resource Assessment Agency/Company /Organization National Renewable Energy Laboratory Partner U.S. Agency for International Development Sector Energy Focus Area Biomass Topics Resource assessment, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/docs/fy09o Country Liberia Western Africa References Assessment of Biomass Resources in Liberia [1] Abstract This study was conducted to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels

366

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network [OSTI]

onward. Table A-4: Carbon Emission Factors of ElectricityAdjustment factor Carbon Emission Factor (kg C/kWh)L ABORATORY Mitigating Carbon Emissions: the Potential of

Lin, Jiang

2006-01-01T23:59:59.000Z

367

For Researchers: Entrepreneurial Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Entrepreneurial Resources Entrepreneurial Resources What determines which technologies become the foundation for a new company? In essence, a technology must attract the necessary financing from venture capital or other sources. In order to do this, the technology must offer a fundamental improvement or the basis for a new product or service. Generally the improvement must be significant, as opposed to an incremental, with great potential for market impact. It is also important that the technology enjoy a strong proprietary position. It must have, for example, an issued patent or a patent pending, with strong claims that separate it from competing technologies. The cutting-edge nature of research here at Berkeley Lab often results in technologies that meet these criteria. The Technology Transfer Department

368

GrIPP-NET A S M Renewable Resources in Southeast Asia RENEWABLE RESOURCES IN SOUTHEAST ASIA (SEA)  

E-Print Network [OSTI]

This paper summarizes the wind, small hydro, biomass resource potentials of SEA. 2. Wind Resources Selected areas in the region have good wind energy potential. Based on a World Bank-AAEP study, there are good to excellent wind resource areas for large-scale wind generation that can be found in the

N. C. Domingo; F. V. Ferraris

369

Resources to reserves  

Science Journals Connector (OSTI)

The resource bases and resources of the various energy forms of natural resources have been discussed. It is now opportune to consider the transformation of resources to reserves. This is effected by explorati...

D. C. Ion

1980-01-01T23:59:59.000Z

370

Geothermal resources of Montana  

SciTech Connect (OSTI)

The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

Metesh, J.

1994-06-01T23:59:59.000Z

371

Thermodynamics of resource recycling  

Science Journals Connector (OSTI)

Thermodynamics of resource recycling ... The author applies principles of thermodynamics to analyze the efficiency of resource recycling. ...

W. B. Hauserman

1988-01-01T23:59:59.000Z

372

National Marine Fisheries Service Maine Department of Marine Resources  

E-Print Network [OSTI]

and Wildlife Service Penobscot Indian Nation Atlantic Salmon Recovery Framework #12;DRAFT ­ 8/16/2010 2August 2010 DRAFT National Marine Fisheries Service Maine Department of Marine Resources U.S. Fish Atlantic Salmon Recovery Framework Table of Contents Background and Justification

373

NATURAL RESOURCE SURVEY AND INVENTORY B-BAR RANCH, MONTANA  

E-Print Network [OSTI]

the best management decisions for the property. The Land Resources and Environmental Sciences senior and Environmental Sciences Montana State University Fall 2005 #12;Table of Contents 1. Introduction on production into a focus on conservation and holistic practices. The goals of these ranches are shifting from

Maxwell, Bruce D.

374

Strategic Plan Information Resources Management  

E-Print Network [OSTI]

for Information Technology Approved: _________________________________________ Dr. David Schmidly, President, Strategies, and Programs 3 Table 2: Agency Databases 8 Table 3: Agency Applications 10 Table 4: Information university, provides the highest standards of excellence in higher education, fosters intellectual

Gelfond, Michael

375

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

376

T-583: Linux Kernel OSF Partition Table Buffer Overflow Lets...  

Broader source: Energy.gov (indexed) [DOE]

3: Linux Kernel OSF Partition Table Buffer Overflow Lets Local Users Obtain Information T-583: Linux Kernel OSF Partition Table Buffer Overflow Lets Local Users Obtain Information...

377

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

378

A New Global Unconventional Natural Gas Resource Assessment  

E-Print Network [OSTI]

. Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

Dong, Zhenzhen

2012-10-19T23:59:59.000Z

379

WATER RESOURCES NEBRASKA WATER RESOURCES RESEARCH INSTITUTE  

E-Print Network [OSTI]

and energy are inextricably bound. Energy is consumed and sometimes produced by every form of water resourcesWATER RESOURCES NEBRASKA WATER RESOURCES RESEARCH INSTITUTE 212 AGRICULTURAL ENGINEERING BUILDING of the National Environmental Policy Act of 1969, water resources professionals squarely faced the fact that water

Nebraska-Lincoln, University of

380

Microsoft Word - table_03.doc  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Created on: 12/12/2013 2:04:58 PM Table 3. Selected national average natural gas prices, 2008-2013 (dollars per thousand cubic feet, except where noted) Year and Month NGL Composite Spot Price a Natural Gas Spot Price b Citygate Price Delivered to Consumers Electric Power Price d Residential Commercial Industrial Price % of Total c Price % of Total c Price % of Total c 2008 Annual Average 15.20 8.86 9.18 13.89 97.5 12.23 79.7 9.65 20.4 9.26 2009 Annual Average 8.99 5.24 6.48 12.14 97.4 10.06 77.8 5.33 18.8 4.93 2010 Annual Average 11.83 4.37 6.18 11.39 97.4 9.47 77.5 5.49 18.0 5.27 2011 January 13.03 4.49 5.69 9.90 96.5 R 8.74 72.8 R 5.66 R 16.8 5.66 February 13.64 4.09 5.75 10.14 96.5 8.88 72.0 R 5.77 R 16.6

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 6. Natural gas processed, liquids extracted, and estimated extraction loss by state, 2011 Alabama 230,546 12,265 17,271 43,636 Alaska 2,721,396 18,314 21,554 82,255 Arkansas 5,611 212 268 883 California 180,648 9,831 12,095 39,909 Colorado 1,507,467 63,075 90,801 223,858 Illinois 15,727 705 1,043 2,409 Kansas 322,944 18,098 25,804 67,845 Kentucky 60,941 3,398 4,684 13,377 Louisiana 2,048,175 66,426 95,630 239,349 Michigan 21,518 2,132 2,465 7,875 Mississippi 126,859 7,732 11,221 28,404 Montana 11,185 927 1,252 3,744 New Mexico 795,069 61,857 90,291 223,829 North Dakota 112,206 10,199 14,182 41,156 Oklahoma 1,218,855 91,963 134,032 328,694 Pennsylvania 131,959 6,721 8,931 26,896 Tennessee 6,200

382

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural Gas Delivered to Industrial Consumers for the Account of Others by State, 2001-2005 (Volumes in Million Cubic Feet) Alabama ............................... 120,717 77.85 125,467 78.45 124,857 78.77 R 129,337 R 79.22 115,449 76.41 Alaska................................... 2,539 3.78 6,411 9.76 11,433 27.77 15,472 R 33.10 16,582 31.35 Arizona ................................. 11,380 53.61 10,089 58.81 9,174 60.05 9,290 44.85 9,569 56.37 Arkansas............................... 114,976 94.00 112,544 95.03 105,215 94.65 R 94,613 R 94.06 84,177 94.77 California .............................. 606,097 90.94 682,886 92.26 740,589 95.06 791,981 94.75 738,704 94.54 Colorado ............................... 136,704 99.27 128,709 98.75 111,291 99.07 111,316 99.23 125,618 99.41

383

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table 5. Number of producing gas wells by state and the Gulf of Mexico, December 31, 2008-2012 Alabama 6,860 6,913 7,026 7,063 6,327 Alaska 261 261 269 277 185 Arizona 6 6 5 5 5 Arkansas 5,592 6,314 7,397 8,388 8,538 California 1,645 1,643 1,580 1,308 1,423 Colorado 25,716 27,021 28,813 30,101 32,000 Gulf of Mexico 1,527 1,984 1,852 1,559 1,474 Illinois 45 51 50 40 40 Indiana 525 563 620 914 819 Kansas 17,862 21,243 22,145 25,758 24,697 Kentucky 16,290 17,152 17,670 14,632 17,936 Louisiana 19,213 18,860 19,137 21,235 19,792 Maryland 7 7 7 8 9 Michigan 9,995 10,600 10,100 11,100 10,900 Mississippi 2,343 2,320 1,979 5,732 1,669 Missouri 0 0 0 53 100 Montana 7,095 7,031 6,059 6,477 6,240 Nebraska 322 285 276 322 270 Nevada 0 0 0 0 0 New Mexico 44,241 44,784

384

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2011 (million cubic feet) Alabama 195,581 17,271 -53,277 480,317 0 7,282 0 598,068 Alaska 356,225 21,554 14,450 0 -16,398 0 0 332,723 Arizona 168 0 -17,607 348,820 -42,026 0 0 289,357 Arkansas 1,072,212 268 3,943 -791,878 0 212 0 283,797 California 250,177 12,095 72,353 1,954,947 -91,287 20,598 0 2,153,498 Colorado 1,637,576 90,801 -76,093 -1,005,837 0 3,128 4,268 465,985 Connecticut 0 0 1,253 228,585 0 129 0 229,710 Delaware 0 0 11,756 67,928 0 -31 0 79,716 District of Columbia 0 0 1,961 31,016 0 0 0 32,976 Florida 15,125 0 -5,102 1,208,317 0 0 0 1,218,340 Georgia 0 0 -10,315 459,390 75,641 2,542 701 522,874 Gulf of Mexico 1,812,328 0 -82 -1,711,029 0

385

Microsoft Word - table_26.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 26. Percent distribution of natural gas supply and disposition by state, 2011 Alabama 0.8 2.5 Alaska 1.5 1.4 Arizona < 1.2 Arkansas 4.7 1.2 California 1.0 8.8 Colorado 6.8 1.9 Connecticut -- 0.9 Delaware -- 0.3 District of Columbia -- 0.1 Florida 0.1 5.0 Georgia -- 2.1 Gulf of Mexico 7.9 0.4 Hawaii -- < Idaho -- 0.3 Illinois < 4.0 Indiana < 2.6 Iowa -- 1.3 Kansas 1.2 1.1 Kentucky 0.5 0.9 Louisiana 12.8 5.7 Maine -- 0.3 Maryland < 0.8 Massachusetts -- 1.8 Michigan 0.6 3.2 Minnesota -- 1.7 Mississippi 0.3 1.8 Missouri -- 1.1 Montana 0.3 0.3 Nebraska < 0.7 Nevada < 1.0 New Hampshire -- 0.3 New Jersey -- 2.7 New Mexico 5.0 1.0 New York 0.1

386

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2008 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 18.30 100.00 15.58 80.17 10.57 27.20 17.32 10.03 Alaska................................... 8.72 100.00 8.66 74.90 5.49 78.23 -- W Arizona ................................. 17.60 100.00 13.01 93.06 10.47 29.65 11.00 8.60 Arkansas............................... 14.09 100.00 11.32 64.49 10.56 3.87 -- 9.23 California .............................. 12.75 99.31 11.75 56.69 10.80 4.85 11.32 8.23 Colorado ............................... 9.77 100.00 9.01 95.24 8.76 0.56 13.57 7.02 Connecticut........................... 17.85 97.75 13.81 70.71 12.63 47.28 24.04 10.48 Delaware .............................. 16.07 100.00 14.24

387

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 18. Natural Gas Delivered to Industrial Consumers for the Account of Others by State, 2004-2008 (Volumes in Million Cubic Feet) Alabama ............................... 129,337 79.22 115,449 76.41 114,699 76.48 R 114,325 R 75.97 103,662 72.80 Alaska................................... 15,472 33.10 16,582 31.35 11,619 36.94 5,934 30.04 1,304 21.77 Arizona ................................. 9,290 44.85 9,569 56.37 11,457 62.11 13,292 68.67 14,200 70.35 Arkansas............................... 94,613 94.06 84,177 94.77 83,347 95.22 82,213 95.85 81,841 96.13 California .............................. 791,981 94.75 738,704 94.54 690,491 94.32 699,283 94.69 726,927 95.15 Colorado ............................... 111,316 99.23 125,618 99.41 110,565 99.38 116,699 99.55 119,032 99.44 Connecticut...........................

388

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2005-2009 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Pipeline (Canada) Calais, ME .......................... 0 -- 0 -- 0 -- 0 -- 2,131 5.62 Detroit, MI ........................... 40,255 8.12 22,156 7.61 22,904 6.88 27,220 8.37 43,980 4.01 Eastport, ID......................... 0 -- 0 -- 0 -- 252 7.43 113 4.49 Marysville, MI...................... 5,222 7.92 3,483 7.36 9,158 7.77 8,756 7.48 14,925 4.85 Sault Ste. Marie, MI ............ 5,537 8.13 5,070 8.11 4,389 7.13 3,122 8.75 2,044 5.04 St. Clair, MI ......................... 286,804 7.77 286,582 7.39 418,765 7.24 R 492,235 R 8.96 612,369 4.62 Noyes, MN .......................... 0 -- 0 -- 0 -- 0 -- 0 -- Babb, MT ............................

389

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 22. Average City Gate Price of Natural Gas in the United States, 2003-2007 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 6.06 6.65 8.47 10.26 8.78 Alaska................................... 2.33 3.05 3.74 5.25 6.75 Arizona ................................. 4.87 5.63 7.32 7.67 8.25 Arkansas............................... 6.07 7.12 8.83 7.96 8.55 California .............................. 5.16 6.04 7.88 6.76 6.82 Colorado ............................... 4.11 5.02 6.10 7.61 6.23 Connecticut........................... 5.59 7.56 9.74 9.11 8.67 Delaware .............................. 5.88 6.13 8.32 8.84 7.58 Florida................................... 5.87 6.60 9.30 8.32 7.97 Georgia................................. 6.25 6.81 9.85 9.37 8.15

390

Microsoft Word - table_14.doc  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Table 14. Underground natural gas storage capacity by state, December 31, 2012 (million cubic feet) Alabama 1 16,150 21,900 0 0 0 1 11,200 13,500 2 27,350 35,400 Arkansas 0 0 0 0 0 0 2 12,178 21,853 2 12,178 21,853 California 0 0 0 0 0 0 14 349,296 592,411 14 349,296 592,411 Colorado 0 0 0 0 0 0 10 60,582 124,253 10 60,582 124,253 Illinois 0 0 0 17 215,594 779,862 11 87,368 220,070 28 302,962 999,931 Indiana 0 0 0 12 19,215 80,746 10 13,809 30,003 22 33,024 110,749 Iowa 0 0 0 4 90,313 288,210 0 0 0 4 90,313 288,210 Kansas 1 375 931 0 0 0 18 122,968 283,974 19 123,343 284,905 Kentucky 0 0 0 3 6,629 9,567 20 100,971 212,184 23 107,600 221,751 Louisiana 11 200,702 297,020 0 0 0 7 211,780 402,626 18 412,482

391

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 18. Natural Gas Delivered to Industrial Consumers for the Account of Others by State, 2005-2009 (Volumes in Million Cubic Feet) Alabama ............................... 115,449 76.4 114,699 76.5 114,325 76.0 103,662 72.8 94,597 72.1 Alaska................................... 16,582 31.4 11,619 36.9 5,934 30.0 1,304 21.8 1,827 27.5 Arizona ................................. 9,569 56.4 11,457 62.1 13,292 68.7 14,200 70.4 12,730 70.9 Arkansas............................... 84,177 94.8 83,347 95.2 82,213 95.8 81,841 96.1 74,752 96.4 California .............................. 738,704 94.5 690,491 94.3 699,283 94.7 R 683,512 R 94.9 673,034 95.3 Colorado ............................... 125,618 99.4 110,565 99.4 116,699 99.5 119,032 99.4 112,995 99.5 Connecticut...........................

392

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2006 (Capacity in Million Cubic Feet) Alabama ............................... 1 8,300 0 0 1 11,000 2 19,300 0.23 Arkansas............................... 0 0 0 0 2 22,000 2 22,000 0.26 California .............................. 0 0 0 0 12 484,711 12 484,711 5.82 Colorado ............................... 0 0 0 0 8 98,068 8 98,068 1.18 Illinois.................................... 0 0 18 881,037 11 103,731 29 984,768 11.82 Indiana.................................. 0 0 12 81,490 10 32,804 22 114,294 1.37 Iowa ...................................... 0 0 4 275,200 0 0 4 275,200 3.30 Kansas.................................. 1 1,088 0 0 18 287,295 19 288,383 3.46 Kentucky............................... 0 0 3 9,567 20 208,827 23 218,394

393

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2002-2006 (Million Cubic Feet) 2002 Total ................ 485,126 211,778 696,905 3,722,249 893,193 4,615,443 5,312,348 Alabama.................. 202,002 0 202,002 NA NA NA 202,002 Alaska..................... 102,972 190,608 293,580 0 0 0 293,580 California................. 0 7,068 7,068 3,080 64,735 67,816 74,884 Gulf of Mexico......... 0 0 0 3,719,169 828,458 4,547,627 4,547,627 Louisiana ................ 125,481 11,711 137,192 NA NA NA 137,192 Texas...................... 54,672 2,391 57,063 NA NA NA 57,063 2003 Total ................ 456,090 254,150 710,240 3,565,614 939,828 4,505,443 5,215,683 Alabama.................. 194,339 0 194,339 NA NA NA 194,339 Alaska..................... 85,606 236,404 322,010

394

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2004-2008 (Volumes in Million Cubic Feet, Prices in Nominal Dollars per Thousand Cubic Feet) Pipeline (Canada) Eastport, ID......................... 48 5.36 0 -- 0 -- 0 -- 252 7.43 Detroit, MI ........................... 40,030 6.47 40,255 8.12 22,156 7.61 22,904 6.88 27,220 8.37 Marysville, MI...................... 4,455 6.83 5,222 7.92 3,483 7.36 9,158 7.77 8,756 7.48 Sault Ste. Marie, MI ............ 6,666 6.38 5,537 8.13 5,070 8.11 4,389 7.13 3,122 8.75 St. Clair, MI ......................... 317,797 6.56 286,804 7.77 286,582 7.39 418,765 7.24 524,065 8.98 Noyes, MN .......................... 2,193 5.77 0 -- 0 -- 0 -- 0 -- Babb, MT ............................ 1,429 4.98 0 -- 0 -- 0 -- 0 -- Havre, MT ...........................

395

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 22. Average City Gate Price of Natural Gas in the United States, 2004-2008 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 6.65 8.47 10.26 8.78 9.84 Alaska................................... 3.05 3.74 5.25 6.75 6.74 Arizona ................................. 5.63 7.32 7.67 8.25 8.49 Arkansas............................... 7.12 8.83 7.96 8.55 8.88 California .............................. 6.04 7.88 6.76 6.82 8.11 Colorado ............................... 5.02 6.10 7.61 6.23 6.98 Connecticut........................... 7.56 9.74 9.11 8.67 10.24 Delaware .............................. 6.13 8.32 8.84 7.58 8.32 Florida................................... 6.60 9.30 8.32 7.97 9.73 Georgia................................. 6.81 9.85 9.37 8.15 9.35

396

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 8. Summary of U.S. natural gas imports, 2007-2011 Imports Volume (million cubic feet) Pipeline Canada a 3,782,708 3,589,089 3,271,107 3,279,752 3,117,081 Mexico 54,062 43,314 28,296 29,995 2,672 Total Pipeline Imports 3,836,770 3,632,403 3,299,402 3,309,747 3,119,753 LNG Algeria 77,299 0 0 0 0 Egypt 114,580 54,839 160,435 72,990 35,120 Equatorial Guinea 17,795 0 0 0 0 Nigeria 95,028 12,049 13,306 41,733 2,362 Norway 0 14,882 29,327 26,014 15,175 Peru 0 0 0 16,045 16,620 Qatar 18,352 3,108 12,687 45,583 90,972 Trinidad/Tobago 447,758 266,821 236,202 189,748 128,620 Yemen 0 0 0 38,897 60,071 Total LNG Imports 770,812 351,698

397

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2007 (Nominal Dollars per Thousand Cubic Feet) Alabama ............................... 18.13 100.00 15.07 79.82 8.70 24.02 -- 7.19 Alaska................................... 8.68 100.00 7.57 76.01 4.67 69.96 -- 3.58 Arizona ................................. 17.21 100.00 12.84 93.36 10.49 31.33 9.40 6.84 Arkansas............................... 13.08 100.00 10.07 70.38 9.51 4.15 8.39 7.04 California .............................. 11.57 99.50 10.20 60.63 9.07 5.31 7.71 6.72 Colorado ............................... 8.84 100.00 8.10 95.70 7.21 0.45 8.72 4.35 Connecticut........................... 16.39 98.20 12.61 71.49 10.54 50.04 20.57 7.81 Delaware .............................. 16.21 100.00 14.48

398

Microsoft Word - table_13.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 13. Additions to and Withdrawals from Gas Storage by State, 2005 (Million Cubic Feet) Alabama ................... 15,572 15,356 216 493 606 -114 103 Alaska....................... 0 0 0 738 738 0 0 Arkansas................... 4,394 4,707 -313 72 51 20 -293 California .................. 190,055 179,359 10,696 82 50 31 10,727 Colorado ................... 38,588 39,442 -854 0 0 0 -854 Connecticut............... 0 0 0 1,383 682 701 701 Delaware .................. 0 0 0 138 145 -7 -7 Georgia..................... 0 0 0 4,179 2,660 1,520 1,520 Idaho......................... 0 0 0 46 189 -143 -143 Illinois........................ 260,515 259,288 1,226 3 405 -402 824 Indiana...................... 21,405 22,827 -1,422 831 1,066 -236 -1,658 Iowa .......................... 66,827 70,206 -3,379 2,626 2,845 -219

399

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2005-2009 (Million Cubic Feet) 2005 Total ................ 363,652 321,019 684,671 2,474,076 730,830 3,204,906 3,889,577 Alabama.................. 152,902 0 152,902 NA NA NA 152,902 Alaska..................... 74,928 305,641 380,568 0 0 0 380,568 California................. 0 6,685 6,685 684 53,404 54,088 60,773 Gulf of Mexico......... 0 0 0 2,473,392 677,426 3,150,818 3,150,818 Louisiana ................ 99,290 8,294 107,584 NA NA NA 107,584 Texas...................... 36,532 400 36,932 NA NA NA 36,932 2006 Total ................ 321,261 308,391 629,652 2,272,669 681,869 2,954,538 3,584,190 Alabama.................. 145,762 0 145,762 NA NA NA 145,762 Alaska..................... 62,156 292,660 354,816

400

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 20. Number of natural gas residential consumers by type of service and state, 2011-2012 Alabama R 772,892 0 R 772,892 767,412 0 767,412 Alaska 121,736 0 121,736 122,983 0 122,983 Arizona 1,146,280 6 1,146,286 1,157,682 6 1,157,688 Arkansas 551,795 0 551,795 549,959 0 549,959 California R 10,545,585 R 79,605 10,625,190 10,547,706 134,210 10,681,916 Colorado 1,645,711 5 1,645,716 1,659,803 5 1,659,808 Connecticut 494,065 905 494,970 503,241 897 504,138 Delaware 152,005 0 152,005 153,307 0 153,307 District of Columbia 130,888 14,636 145,524 129,674 16,264 145,938 Florida 664,564 R 14,635 R 679,199 672,160 14,861 687,021 Georgia 321,515 1,418,491 1,740,006 319,179 1,420,364 1,739,543 Hawaii 25,305 0 25,305

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2003-2007 (Volumes in Million Cubic Feet, Prices in Nominal Dollars per Thousand Cubic Feet) Pipeline (Canada) Eastport, ID......................... 15 4.34 48 5.36 0 -- 0 -- 0 -- Detroit, MI ........................... 19,737 5.47 40,030 6.47 40,255 8.12 22,156 7.61 22,904 6.88 Marysville, MI...................... 811 5.06 4,455 6.83 5,222 7.92 3,483 7.36 9,158 7.77 Sault Ste. Marie, MI ............ 605 4.94 6,666 6.38 5,537 8.13 5,070 8.11 4,389 7.13 St. Clair, MI ......................... 238,444 6.13 317,797 6.56 286,804 7.77 286,582 7.39 418,765 7.24 Noyes, MN .......................... 172 5.43 2,193 5.77 0 -- 0 -- 0 -- Babb, MT ............................ 38 6.48 1,429 4.98 0 -- 0 -- 0 -- Havre, MT ...........................

402

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2006-2010 (Million Cubic Feet) 2006 Total ................ 321,261 308,391 629,652 2,272,669 681,869 2,954,538 3,584,190 Alabama.................. 145,762 0 145,762 NA NA NA 145,762 Alaska..................... 62,156 292,660 354,816 0 0 0 354,816 California................. 156 6,654 6,809 2,094 38,313 40,407 47,217 Gulf of Mexico......... 0 0 0 2,270,575 643,556 2,914,131 2,914,131 Louisiana ................ 88,657 8,822 97,479 NA NA NA 97,479 Texas...................... 24,529 255 24,785 NA NA NA 24,785 2007 Total ................ 276,117 341,925 618,042 2,204,379 654,334 2,858,713 3,476,755 Alabama.................. 134,451 0 134,451 NA NA NA 134,451 Alaska..................... 48,876 325,328 374,204

403

Microsoft Word - table_03.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 3. Gross withdrawals and marketed production of natural gas by state and the Gulf of Mexico, 2008-2012 (million cubic feet) 2008 Total 15,134,644 5,609,425 2,022,228 2,869,960 25,636,257 3,638,622 166,909 718,674 21,112,053 953,451 20,158,602 2009 Total 14,414,287 5,674,120 2,010,171 3,958,315 26,056,893 3,522,090 165,360 721,507 21,647,936 1,024,082 20,623,854 2010 Total 13,247,498 5,834,703 1,916,762 5,817,122 26,816,085 3,431,587 165,928 836,698 22,381,873 1,066,366 21,315,507 2011 Total 12,291,070 5,907,919 1,779,055 8,500,983 28,479,026 3,365,313 209,439 867,922 24,036,352 1,134,473 22,901,879 2012 Total 12,736,678 4,969,668 1,539,395 10,296,572 29,542,313 3,259,680 212,848 761,836 25,307,949 1,250,340 24,057,609

404

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Created on: 1/7/2014 9:25:31 AM Table 7. Marketed production of natural gas in selected states and the Federal Gulf of Mexico, 2008-2013 (million cubic feet) Year and Month Alaska Louisiana New Mexico Oklahoma Texas Wyoming Other a States Federal Gulf of Mexico U.S. Total 2008 Total 398,442 1,377,969 1,446,204 1,886,710 6,960,693 2,274,850 4,452,843 2,314,342 21,112,053 2009 Total 397,077 1,548,607 1,383,004 1,901,556 6,818,973 2,335,328 4,834,474 2,428,916 21,647,936 2010 Total 374,226 2,210,099 1,292,185 1,827,328 6,715,294 2,305,525 5,412,154 2,245,062 22,381,873 2011 January 31,027 224,410 100,352 154,940 588,714 178,331 496,362 178,597 1,952,732 February 31,076 208,495 88,553

405

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2007 (Capacity in Million Cubic Feet) Alabama ............................... 1 8,300 0 0 1 11,000 2 19,300 0.23 Arkansas............................... 0 0 0 0 2 22,000 2 22,000 0.26 California .............................. 0 0 0 0 12 487,711 12 487,711 5.80 Colorado ............................... 0 0 0 0 8 98,068 8 98,068 1.17 Illinois.................................... 0 0 18 876,960 11 103,731 29 980,691 11.67 Indiana.................................. 0 0 12 81,490 10 32,804 22 114,294 1.36 Iowa ...................................... 0 0 4 278,238 0 0 4 278,238 3.31 Kansas.................................. 1 931 0 0 18 287,996 19 288,926 3.44 Kentucky............................... 0 0 3 9,567 20 210,792 23 220,359

406

Microsoft Word - table_03.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 3. Gross Withdrawals and Marketed Production of Natural Gas by State and the Gulf of Mexico, 2004-2008 (Million Cubic Feet) 2004 Total ............. 17,885,247 6,084,431 NA 23,969,678 3,701,656 96,408 654,124 19,517,491 926,600 18,590,891 2005 Total ............. 17,471,847 5,984,975 NA 23,456,822 3,699,535 119,097 711,095 18,927,095 876,497 18,050,598 2006 Total ............. 17,995,554 5,539,464 NA 23,535,018 3,264,929 129,469 730,946 19,409,674 906,069 18,503,605 2007 Total ............. 17,065,375 R 5,818,405 1,779,875 R 24,663,656 R 3,662,685 R 143,457 R 661,168 R 20,196,346 930,320 R 19,266,026 2008 Total ............. 18,011,151 5,844,798 1,898,399 25,754,348 3,638,563 166,588 709,681 21,239,516 953,451 20,286,065 Alabama Total ...... 159,912 6,368 111,273 277,553 475 1,801 17,394

407

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2004-2008 (Million Cubic Feet) 2004 Total ................ 401,662 279,249 680,911 3,214,488 840,852 4,055,340 4,736,252 Alabama.................. 165,630 0 165,630 NA NA NA 165,630 Alaska..................... 73,457 260,667 334,125 0 0 0 334,125 California................. 0 6,966 6,966 850 53,805 54,655 61,622 Gulf of Mexico......... 0 0 0 3,213,638 787,047 4,000,685 4,000,685 Louisiana ................ 117,946 11,299 129,245 NA NA NA 129,245 Texas...................... 44,630 316 44,946 NA NA NA 44,946 2005 Total ................ 363,652 321,019 684,671 2,474,076 730,830 3,204,906 3,889,577 Alabama.................. 152,902 0 152,902 NA NA NA 152,902 Alaska..................... 74,928 305,641 380,568

408

Microsoft Word - table_02.doc  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Created on: 12/12/2013 1:57:32 PM Table 2. Natural gas consumption in the United States, 2008-2013 (billion cubic feet) Delivered to Consumers Year and Month Lease and Plant Fuel a Pipeline and Distribution Use b Residential Commercial Industrial Electric Power Vehicle Fuel Total Total Consumption 2008 Total 1,220 648 4,892 3,153 6,670 6,668 26 21,409 23,277 2009 Total 1,275 670 4,779 3,119 6,167 6,873 27 20,965 22,910 2010 Total 1,286 674 4,782 3,103 6,826 7,387 29 22,127 24,087 2011 January 107 R 83 970 528 R 659 540 3 R 2,699 R 2,889 February 97 70 R 768 432 R 600 484 2 R 2,285 R 2,452 March 111 63 R 595 R 361 R 616 482 3 R 2,056 R 2,230 April 109 51 R 341 R 232 R 569 521 R 2 R 1,665 R 1,825 May 112 46 R 205 R 166 R

409

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2008 (Capacity in Million Cubic Feet) Alabama ............. 1 11,900 15,900 0 0 0 1 9,000 11,000 2 20,900 26,900 Arkansas............. 0 0 0 0 0 0 2 14,500 22,000 2 14,500 22,000 California ............ 0 0 0 0 0 0 12 283,796 498,705 12 283,796 498,705 Colorado ............. 0 0 0 0 0 0 8 42,579 95,068 8 42,579 95,068 Illinois.................. 0 0 0 18 244,900 874,384 10 51,418 103,606 28 296,318 977,989 Indiana................ 0 0 0 12 19,978 81,991 10 12,791 32,946 22 32,769 114,937 Iowa .................... 0 0 0 4 87,350 284,747 0 0 0 4 87,350 284,747 Kansas................ 1 375 931 0 0 0 18 118,885 281,291 19 119,260 282,221 Kentucky............. 0 0 0 3 6,629 9,567 20 94,598 210,792 23 101,227 220,359 Louisiana ............

410

Microsoft Word - table_13.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 13. Additions to and Withdrawals from Gas Storage by State, 2006 (Million Cubic Feet) Alabama ................... 20,604 12,127 8,477 704 698 7 8,484 Arkansas................... 4,789 4,081 707 45 57 -12 695 California .................. 168,957 182,247 -13,290 92 76 16 -13,274 Colorado ................... 35,836 38,506 -2,670 0 0 0 -2,670 Connecticut............... 0 0 0 532 246 286 286 Delaware .................. 0 0 0 68 68 * * Georgia..................... 0 0 0 7,705 1,963 5,742 5,742 Idaho......................... 0 0 0 415 275 140 140 Illinois........................ 242,754 235,590 7,163 238 358 -119 7,044 Indiana...................... 23,598 20,707 2,891 1,447 1,172 275 3,165 Iowa .......................... 68,750 65,187 3,563 2,438 1,540 899 4,462 Kansas...................... 103,105 99,698 3,407

411

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2001-2005 (Million Cubic Feet) 2001 Total ................ 508,374 170,206 678,580 4,146,993 989,969 5,136,962 5,815,542 Alabama.................. 200,862 0 200,862 NA NA NA 200,862 Alaska..................... 113,870 149,067 262,937 0 0 0 262,937 California................. 0 7,262 7,262 3,913 67,034 70,947 78,209 Gulf of Mexico......... 0 0 0 4,143,080 922,935 5,066,015 5,066,015 Louisiana ................ 140,358 13,513 153,871 NA NA NA 153,871 Texas...................... 53,285 364 53,649 NA NA NA 53,649 2002 Total ................ 485,126 211,778 696,905 3,722,249 893,193 4,615,443 5,312,348 Alabama.................. 202,002 0 202,002 NA NA NA 202,002 Alaska..................... 102,972 190,608 293,580

412

Microsoft Word - table_25.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 25. Average Price of Natural Gas Delivered to Residential and Commercial Sector Consumers by Local Distribution and Marketers in Selected States, 2009-2010 (Dollars per Thousand Cubic Feet) Florida................................... 20.22 R 18.41 20.18 97.7 17.85 19.44 17.89 97.9 Georgia................................. 13.20 16.81 16.30 14.1 12.18 15.67 15.17 14.3 Maryland ............................... 13.09 R 16.80 13.73 82.8 12.20 13.51 12.44 81.7 New Jersey ........................... 14.49 R 16.52 14.54 97.7 12.77 14.87 12.84 96.6 New York .............................. 14.96 R 15.38 15.05 77.1 13.87 14.55 14.04 74.6 Ohio ...................................... 11.64 13.64 12.68 47.8 10.28 11.80 11.13 43.7 Pennsylvania ........................ 14.56 R 16.46 14.74 90.9

413

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table 22. Average City Gate Price of Natural Gas in the United States, 2002-2006 (Dollars per Thousand Cubic Feet) Alabama ............................... 4.74 6.06 6.65 8.47 10.26 Alaska................................... 2.36 2.33 3.05 3.74 5.25 Arizona ................................. 3.77 4.87 5.63 7.32 7.67 Arkansas............................... 5.17 6.07 7.12 8.83 7.96 California .............................. 3.20 5.16 6.04 7.88 6.76 Colorado ............................... 2.72 4.11 5.02 6.10 7.61 Connecticut........................... 6.42 5.59 7.56 R 9.74 9.11 Delaware .............................. 5.37 5.88 6.13 8.32 8.84 Florida................................... 3.90 5.87 6.60 9.30 8.32 Georgia................................. 4.55 6.25 6.81 9.85 9.37 Hawaii...................................

414

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 20. Number of Natural Gas Residential Consumers by Type of Service and State, 2009-2010 Alabama ...................... R 785,005 0 R 785,005 768,921 0 768,921 Alaska.......................... 120,124 0 120,124 121,166 0 121,166 Arizona ........................ 1,130,047 0 1,130,047 1,138,448 0 1,138,448 Arkansas...................... 557,355 0 557,355 549,970 0 549,970 California ..................... R 10,454,747 R 56,203 R 10,510,950 10,469,734 72,850 10,542,584 Colorado ...................... 1,622,429 5 1,622,434 1,634,582 5 1,634,587 Connecticut.................. 488,614 735 489,349 489,380 805 490,185 Delaware ..................... 149,006 0 149,006 150,458 0 150,458 District of Columbia...... 129,738 13,698 143,436 130,048 14,103 144,151 Florida.......................... 659,725 14,365

415

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 20. Number of Natural Gas Commercial Consumers by Type of Service and State, 2008-2009 Alabama ...................... R 65,193 120 R 65,313 67,468 128 67,596 Alaska.......................... 12,267 497 12,764 12,854 363 13,217 Arizona ........................ 57,481 105 57,586 57,022 169 57,191 Arkansas...................... 68,943 201 69,144 68,794 249 69,043 California ..................... 417,531 29,629 447,160 406,270 35,225 441,495 Colorado ...................... 144,543 176 144,719 145,455 169 145,624 Connecticut.................. 50,023 3,880 53,903 50,106 4,404 54,510 Delaware ..................... 12,619 84 12,703 12,726 113 12,839 District of Columbia...... 6,838 3,186 10,024 6,706 3,582 10,288 Florida.......................... 41,164 16,961 58,125 41,748 17,801 59,549

416

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2009 (Dollars per Thousand Cubic Feet) Alabama ............................... 18.12 100.0 14.93 78.7 6.48 27.9 19.17 4.30 Alaska................................... 10.23 100.0 9.51 85.3 4.02 72.5 -- W Arizona ................................. 17.65 100.0 12.15 88.0 8.19 29.1 14.96 4.16 Arkansas............................... 13.39 100.0 10.71 59.4 8.47 3.6 -- 4.14 California .............................. 9.43 98.9 7.75 54.9 6.57 4.7 7.61 4.44 Colorado ............................... 8.80 100.0 7.56 94.8 6.57 0.5 9.12 4.27 Connecticut........................... 14.81 97.5 9.92 69.0 8.44 37.5 15.26 4.89 Delaware .............................. 17.79 100.0 15.87 53.5 13.99 2.1 14.12 W District of Columbia...............

417

Microsoft Word - table_13.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 13. Additions to and Withdrawals from Gas Storage by State, 2010 (Million Cubic Feet) Alabama ................... 23,026 16,740 6,286 946 968 -21 6,264 Arkansas................... 4,672 4,368 304 42 40 2 306 California .................. 226,810 203,653 23,157 56 54 2 23,159 Colorado ................... 43,250 45,010 -1,760 0 0 0 -1,760 Connecticut............... 0 0 0 651 473 178 178 Delaware .................. 0 0 0 73 76 -2 -2 Georgia..................... 0 0 0 2,693 2,314 379 379 Idaho......................... 0 0 0 142 72 70 70 Illinois........................ 247,458 245,135 2,323 398 325 74 2,397 Indiana...................... 21,943 22,454 -511 1,983 1,148 835 324 Iowa .......................... 76,407 78,444 -2,037 1,458 1,312 146 -1,891 Kansas...................... 113,253 121,737 -8,484

418

Microsoft Word - table_24.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 24. Average Price of Natural Gas Delivered to Residential and Commercial Sector Consumers by Local Distribution and Marketers in Selected States, 2006-2007 (Nominal Dollars per Thousand Cubic Feet) Florida................................... 21.48 24.62 21.54 97.95 20.55 23.23 20.61 97.79 Georgia................................. 15.84 18.81 R 18.37 14.70 14.64 18.02 17.53 14.35 Maryland ............................... 16.14 17.41 16.36 82.27 14.95 16.26 15.17 83.26 New Jersey ........................... 14.87 17.69 R 14.91 98.66 14.45 16.50 14.48 98.35 New York .............................. 15.09 16.99 15.35 86.06 15.50 15.46 15.49 84.07 Ohio ...................................... 14.41 14.36 14.39 58.77 13.05 13.95 13.47 53.01 Pennsylvania ........................ 16.48 16.06 16.45

419

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 6. Wellhead Value and Marketed Production of Natural Gas, 2001-2005, and by State, 2005 2001 Total ............................ 19,577,660 -- 4.00 20,570,295 82,202,805 2002 Total ............................ 14,467,289 -- 2.95 19,884,780 58,596,868 2003 Total ............................ 14,589,545 -- 4.88 19,974,360 97,555,375 2004 Total ............................ 15,223,749 -- 5.46 R 19,517,491 R 106,521,974 2005 Total ............................ 15,525,771 -- 7.33 18,950,734 138,987,902 Alabama ............................... 285,237 2,645,780 9.28 296,528 2,750,513 Alaska................................... 502,887 2,387,581 4.75 487,282 2,313,492 Arizona ................................. 211 1,445 6.86 233 1,599 Arkansas............................... 190,533 1,383,193 7.26

420

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2010 (Capacity in Million Cubic Feet) Alabama ............. 1 16,150 21,900 0 0 0 1 9,000 11,000 2 25,150 32,900 Arkansas............. 0 0 0 0 0 0 2 13,898 21,760 2 13,898 21,760 California ............ 0 0 0 0 0 0 13 311,096 542,511 13 311,096 542,511 Colorado ............. 0 0 0 0 0 0 9 49,119 105,768 9 49,119 105,768 Illinois.................. 0 0 0 17 216,132 772,381 11 87,368 218,106 28 303,500 990,487 Indiana................ 0 0 0 13 19,437 81,268 9 13,545 30,003 22 32,982 111,271 Iowa .................... 0 0 0 4 90,613 288,010 0 0 0 4 90,613 288,010 Kansas................ 1 375 931 0 0 0 18 122,814 283,891 19 123,190 284,821 Kentucky............. 0 0 0 3 6,629 9,567 20 100,971 212,184 23 107,600 221,751 Louisiana ............

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microsoft Word - table_24.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 24. Average Price of Natural Gas Delivered to Residential and Commercial Sector Consumers by Local Distribution and Marketers in Selected States, 2007-2008 (Nominal Dollars per Thousand Cubic Feet) Florida................................... 20.55 23.23 20.61 97.79 21.11 25.00 21.19 97.78 Georgia................................. 14.64 18.02 17.53 14.35 15.46 18.73 18.26 14.43 Maryland ............................... 14.95 16.26 15.17 83.26 15.98 16.54 16.08 83.15 New Jersey ........................... 14.45 16.50 14.48 98.35 15.15 18.07 15.21 97.98 New York .............................. R 15.79 15.46 R 15.73 R 82.34 16.79 16.57 16.75 80.64 Ohio ...................................... 13.05 13.95 13.47 53.01 14.60 14.45 14.52 52.47 Pennsylvania ........................

422

Microsoft Word - table_14.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 14. Underground Natural Gas Storage Capacity by State, December 31, 2009 (Capacity in Million Cubic Feet) Alabama ............. 1 11,900 15,900 0 0 0 1 9,000 11,000 2 20,900 26,900 Arkansas............. 0 0 0 0 0 0 2 13,898 21,760 2 13,898 21,760 California ............ 0 0 0 0 0 0 13 296,096 513,005 13 296,096 513,005 Colorado ............. 0 0 0 0 0 0 9 48,129 105,768 9 48,129 105,768 Illinois.................. 0 0 0 18 252,344 885,848 10 51,418 103,606 28 303,761 989,454 Indiana................ 0 0 0 12 19,367 81,328 10 12,791 32,946 22 32,157 114,274 Iowa .................... 0 0 0 4 87,414 284,811 0 0 0 4 87,414 284,811 Kansas................ 1 375 931 0 0 0 18 118,964 281,370 19 119,339 282,300 Kentucky............. 0 0 0 3 6,629 9,567 20 96,855 210,801 23 103,484 220,368 Louisiana ............

423

Microsoft Word - table_08.doc  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 8. Summary of U.S. natural gas imports, 2008-2012 Imports Volume (million cubic feet) Pipeline Canada a 3,589,089 3,271,107 3,279,752 3,117,081 2,962,827 Mexico 43,314 28,296 29,995 2,672 314 Total Pipeline Imports 3,632,403 3,299,402 3,309,747 3,119,753 2,963,140 LNG by Vessel Egypt 54,839 160,435 72,990 35,120 2,811 Nigeria 12,049 13,306 41,733 2,362 0 Norway 14,882 29,327 26,014 15,175 6,212 Peru 0 0 16,045 16,620 0 Qatar 3,108 12,687 45,583 90,972 33,823 Trinidad/Tobago 266,821 236,202 189,748 128,620 112,207 Yemen 0 0 38,897 60,071 19,595 Total LNG Imports 351,698 451,957 431,010 348,939 174,649 Total Imports 3,984,101 3,751,360

424

Microsoft Word - table_19.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 19. Number of Natural Gas Residential Consumers by Type of Service and State, 2004-2005 Alabama ...................... R 806,660 R 0 R 806,660 799,256 0 799,256 Alaska.......................... 104,360 0 104,360 108,401 0 108,401 Arizona ........................ 993,885 0 993,885 1,042,662 0 1,042,662 Arkansas...................... R 554,844 0 R 554,844 555,861 0 555,861 California ..................... 9,921,331 R 36,081 R 9,957,412 10,092,466 31,967 10,124,433 Colorado ...................... R 1,496,873 3 R 1,496,876 1,524,810 3 1,524,813 Connecticut.................. 468,918 414 469,332 474,807 414 475,221 District of Columbia...... 120,709 17,425 138,134 127,139 13,873 141,012 Delaware ..................... 133,197 0 133,197 137,115 0 137,115 Florida.......................... R 628,104 10,910

425

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 20. Number of Natural Gas Commercial Consumers by Type of Service and State, 2006-2007 Alabama ...................... R 66,222 115 R 66,337 65,738 118 65,856 Alaska.......................... 12,858 1,526 14,384 12,491 917 13,408 Arizona ........................ 56,955 136 57,091 57,047 122 57,169 Arkansas...................... 69,318 157 69,475 69,319 176 69,495 California ..................... 426,379 15,673 442,052 421,449 24,671 446,120 Colorado ...................... 139,566 180 139,746 141,201 219 141,420 Connecticut.................. 49,056 3,926 52,982 48,522 3,867 52,389 Delaware ..................... 12,288 57 12,345 12,507 69 12,576 District of Columbia...... 7,004 3,406 10,410 6,867 3,048 9,915 Florida.......................... 41,190 14,069 55,259 41,325 15,995 57,320

426

Microsoft Word - table_11.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 11. Summary of U.S. Natural Gas Exports By Point of Exit, 2001-2005 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Pipeline (Canada) Eastport, ID......................... 0 -- 176 4.40 15 4.34 48 5.36 0 -- Detroit, MI ........................... 35,644 4.57 7,431 3.03 19,737 5.47 40,030 6.47 40,255 8.12 Marysville, MI...................... 3,651 3.92 0 -- 811 5.06 4,455 6.83 5,222 7.92 Sault Ste. Marie, MI ............ 0 -- 0 -- 605 4.94 6,666 6.38 5,537 8.13 St. Clair, MI ......................... 122,293 3.82 164,084 3.42 238,444 6.13 317,797 6.56 286,804 7.77 Noyes, MN .......................... 0 -- 71 1.99 172 5.43 2,193 5.77 0 -- Babb, MT ............................ 549 3.55 143 2.28 38 6.48 1,429 4.98 0 -- Havre, MT ...........................

427

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2005 (Dollars per Thousand Cubic Feet) Alabama ............................... 15.82 100.00 13.13 81.65 9.51 23.59 -- 9.67 Alaska................................... 5.73 100.00 4.93 51.19 2.59 68.65 -- 3.42 Arizona ................................. 13.54 100.00 9.85 93.29 8.53 43.63 7.91 8.24 Arkansas............................... 13.65 100.00 10.20 74.07 9.44 5.23 10.16 8.59 California .............................. 11.86 99.66 10.69 68.67 9.84 5.46 8.80 8.09 Colorado ............................... 10.29 99.99 9.39 95.15 8.68 0.59 8.17 7.41 Connecticut........................... 16.24 98.75 13.00 70.34 11.68 46.41 14.60 9.31 District of Columbia............... 16.87 79.76 13.17 100.00 --

428

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 4. Offshore gross withdrawals of natural gas by state and the Gulf of Mexico, 2007-2011 (million cubic feet) 2007 Total 276,117 341,925 618,042 2,204,379 654,334 2,858,713 3,476,755 Alabama 134,451 0 134,451 NA NA NA 134,451 Alaska 48,876 325,328 374,204 0 0 0 374,204 California 312 6,977 7,289 2,137 43,379 45,516 52,805 Gulf of Mexico 0 0 0 2,202,242 610,955 2,813,197 2,813,197 Louisiana 63,357 9,512 72,868 NA NA NA 72,868 Texas 29,121 108 29,229 NA NA NA 29,229 2008 Total 297,565 356,139 653,704 1,849,891 524,965 2,374,857 3,028,561 Alabama 125,502 0 125,502 NA NA NA 125,502 Alaska 43,079 345,109 388,188 0 0 0 388,188 California 266 6,764 7,029 1,601 43,300 44,902

429

Microsoft Word - table_04.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 4. Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico, 2003-2007 (Million Cubic Feet) 2003 Total ................ 456,090 254,150 710,240 3,565,614 939,828 4,505,443 5,215,683 Alabama.................. 194,339 0 194,339 NA NA NA 194,339 Alaska..................... 85,606 236,404 322,010 0 0 0 322,010 California................. 0 6,866 6,866 1,731 56,363 58,095 64,961 Gulf of Mexico......... 0 0 0 3,563,883 883,465 4,447,348 4,447,348 Louisiana ................ 123,939 9,517 133,456 NA NA NA 133,456 Texas...................... 52,206 1,363 53,569 NA NA NA 53,569 2004 Total ................ 401,662 279,249 680,911 3,214,488 840,852 4,055,340 4,736,252 Alabama.................. 165,630 0 165,630 NA NA NA 165,630 Alaska..................... 73,457 260,667 334,125

430

Microsoft Word - table_25.doc  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Table 25. Average price of natural gas delivered to residential and commercial sector consumers by local distribution and marketers in selected states, 2011-2012 (dollars per thousand cubic feet) Georgia 11.98 16.38 15.72 15.1 12.47 16.82 16.23 13.5 New York 13.52 14.22 13.71 72.4 12.72 13.59 12.97 71.2 Ohio 10.32 11.09 10.78 40.8 8.75 10.42 9.91 30.9 Residential 2011 2012 State Local Distribution Company Average Price a Marketer Average Price b Combined Average Price c Percent Sold by Local Distribution Company Local Distribution Company Average Price a Marketer Average Price b Combined Average Price c Percent Sold by Local Distribution Company a Price derived from Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition."

431

EIA - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Tables (1990-2030) Tables (1990-2030) International Energy Outlook 2006 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region, Reference Case Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel, Reference Case Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800.

432

FY 2005 Control Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

Organization Organization (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 2 National Nuclear Security Administration..................................................... 3 Energy Efficiency and Renewable Energy.................................................... 4 Electric Transmission and Distribution......................................................... 4 Fossil Energy................................................................................................ 5 Nuclear Energy, Science and Technology...................................................

433

Federal Buildings Supplemental Survey -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Publication and Tables Overview > Publication and Tables Publication and Tables Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS buildings and floorspace by selected agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Separater Bar Separater Bar You have the option of downloading the entire report or selected sections of the report. Full Report - Federal Buildings Supplemental Survey, 1993 (file size 1.15 MB) pages: 183 Selected Sections Main Text (file size 161,775 bytes) pages: 17. - Requires Adobe Acrobat Reader Contacts Preface Contents Introduction At a Glance Highlights on Federal Buildings Detailed Tables Appendices Appendix A. How the Survey Was Conducted (file size 45,191 bytes) pages: 8.

434

Precision Flow Table | Open Energy Information  

Open Energy Info (EERE)

Table Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flow Table Length(m) 2.4 Beam(m) 1.2 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent Test Experience Users are District Engineers, Planners, and Engineering Consultants

435

FY 2005 Control Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

Appropriation Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 5 Uranium enrichment D&D fund.................................................................... 5 Non-Defense environmental services.......................................................... 5 Science.........................................................................................................

436

Commercial Buildings Characteristics 1992 - Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics Data > Publication and Tables Buildings Characteristics Data > Publication and Tables Publication and Tables Percent of Buildings and Floorspace by Census Region, 1992 figure on percent of building and floorspace by census region, 1992 separater bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Full Report - Commercial Buildings Characteristics, 1992 with only selected tables (file size 1.34 MB) pages: 157 Selected Sections: Main Text (file size 883,980 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background Organization of the report

437

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Spring 2002 Vol. 3, No. 2 Lightning in Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Colorado Climate in Review

438

TableHC11.12.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 0.3 Q 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC11.12 Home Electronics Usage Indicators by Northeast Census Region,...

439

TableHC6.13.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Q 5 or More... 0.3 N Q Q Q Q Lighting Usage Indicators 4 Members 5 or More Members Table HC6.13 Lighting Usage Indicators by...

440

TABLES3.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

S3. Crude Oil and Petroleum Product Imports, 1988 - Present (Thousand Barrels per Day) See footnotes at end of table. 1988 Average ... 300 58 345 343 92 80 0 0 1989...

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table of Contents Resilient Sustainable Communities  

E-Print Network [OSTI]

..................................... 5 Onondaga County: Sustainable Development Plan....................... 9 Comparison of the Hazard Mitigation Plan and Onondaga County Sustainable Development Plan DraftTable of Contents Resilient Sustainable Communities: Integrating Hazard Mitigation & Sustainability

442

Table of Contents Chapter and Content Pages  

E-Print Network [OSTI]

#12;Page 2 Table of Contents Chapter and Content Pages 1. Field Trip Itinerary ................................................................................. 7 4. Geologic Framework of the Netherlands Antilles 5. Coral Reefs of the Netherlands Antilles

Fouke, Bruce W.

443

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

444

Microsoft Word - table_03.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 3. Gross withdrawals and marketed production of natural gas by state and the Gulf of Mexico, 2007-2011 (million cubic feet) 2007 Total R 14,991,891 R 5,681,871 R 1,999,748 1,990,145 24,663,656 3,662,685 143,457 661,168 20,196,346 930,320 19,266,026 2008 Total R 15,134,644 R 5,609,425 R 2,022,228 R 2,869,960 25,636,257 3,638,622 166,909 718,674 21,112,053 953,451 20,158,602 2009 Total R 14,414,287 R 5,674,120 R 2,010,171 R 3,958,315 26,056,893 3,522,090 165,360 721,507 21,647,936 1,024,082 20,623,854 2010 Total R 13,247,498 R 5,834,703 1,916,762 5,817,122 R 26,816,085 3,431,587 165,928 836,698 R 22,381,873 R 1,066,366 R 21,315,507 2011 Total 12,291,070 5,907,919 1,779,055 8,500,983 28,479,026 3,365,313 209,439 867,922 24,036,352 1,134,473 22,901,879

445

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural gas delivered to commercial consumers for the account of others by state, 2008-2012 (volumes in million cubic feet) Alabama 4,999 19.8 5,160 21.2 5,494 20.3 5,313 21.1 5,126 23.8 Alaska 4,274 25.1 2,448 14.7 1,951 12.3 2,208 R 11.4 1,005 5.1 Arizona 2,258 6.9 3,866 12.0 3,605 11.3 3,988 12.2 4,213 13.4 Arkansas 13,112 35.5 14,776 40.6 17,862 44.4 19,402 48.5 24,772 59.8 California 108,738 43.3 111,702 45.1 113,903 45.9 R 112,448 45.7 126,571 50.0 Colorado 3,132 4.8 3,240 5.2 3,118 5.4 3,457 6.2 4,061 7.8 Connecticut 11,032 29.3 12,324 31.0 14,068 34.6 15,519 34.6 14,774 34.9 Delaware 2,611 29.4 5,438 46.5 6,117 50.2 4,879 46.6 5,647 56.3 District of Columbia 15,110 82.1 15,550 83.1 15,507 83.6 14,029

446

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural gas delivered to commercial consumers for the account of others by state, 2007-2011 (volumes in million cubic feet) Alabama 4,722 20.2 4,999 19.8 5,160 21.2 5,494 R 20.3 5,313 21.1 Alaska 4,499 24.0 4,274 25.1 2,448 14.7 1,951 12.3 2,208 13.3 Arizona 2,172 6.6 2,258 6.9 3,866 12.0 3,605 11.3 3,988 12.2 Arkansas 9,534 29.6 13,112 35.5 14,776 40.6 17,862 44.4 19,402 48.5 California 98,776 39.3 108,738 43.3 111,702 45.1 113,903 45.9 112,561 45.7 Colorado 2,721 4.3 3,132 4.8 3,240 5.2 R 3,118 5.4 3,457 6.2 Connecticut 10,252 28.5 11,032 29.3 12,324 31.0 14,068 34.6 15,519 34.6 Delaware 2,178 25.2 2,611 29.4 5,438 46.5 6,117 50.2 4,879 46.6 District of Columbia 15,703 81.4 15,110 82.1 15,550 83.1 15,507 83.6 14,029

447

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

448

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

449

Microsoft Word - table_24.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 24. Average price of natural gas delivered to consumers by state and sector, 2011 (dollars per thousand cubic feet) Alabama 15.09 100.0 12.37 78.9 5.56 23.4 11.45 4.36 Alaska 8.77 100.0 8.77 86.7 3.84 60.8 -- 5.04 Arizona 15.04 100.0 9.99 87.8 6.86 24.2 7.73 5.02 Arkansas 11.46 100.0 8.90 51.5 7.44 2.1 -- 4.73 California 9.93 98.3 8.28 54.3 7.04 4.5 7.32 4.71 Colorado 8.25 100.0 7.84 93.8 6.42 7.6 9.56 4.97 Connecticut 13.83 96.8 8.48 65.4 9.16 31.4 18.59 5.09 Delaware 15.38 100.0 13.58 53.4 11.69 1.6 28.76 W District of Columbia 13.06 75.0 12.24 16.9 -- -- 4.17 -- Florida 18.16 98.1 11.11 39.8 8.07 3.0 4.93 5.86 Georgia 15.72 100.0 10.51 100.0 5.90 18.2 5.57 4.72 Hawaii 55.28 100.0 45.58

450

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

451

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 State Energy Data 2011: Consumption Table C5. Residential Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal a Natural Gas b Petroleum Biomass Geothermal Solar/PV e Retail Electricity Sales Net Energy f Electrical System Energy Losses g Total f Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama ............. 0.0 37.2 0.1 0.1 6.0 6.2 6.0 0.1 0.2 112.6 162.2 214.7 376.9 Alaska ................. 0.0 20.5 8.1 0.1 0.5 8.8 1.9 0.1 (s) 7.3 38.6 15.1 53.7 Arizona ............... 0.0 39.1 (s) (s) 5.5 5.5 2.6 (s) 7.9 112.9 168.0 226.8 394.7 Arkansas ............. 0.0 34.2 0.1 (s) 5.2 5.3 8.6 0.7 0.2 64.1 113.1 133.2 246.3 California ............ 0.0 522.4 0.6 0.6 30.9 32.2 33.3 0.2 43.2 301.6 932.9 583.1 1,516.1 Colorado ............. 0.0 134.2 0.1 (s) 12.3 12.4 8.3 0.2 0.7 62.4 216.5 136.5 353.0 Connecticut ......... 0.0 46.0 59.6

452

Microsoft Word - table_24.doc  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 24. Average price of natural gas delivered to consumers by state and sector, 2012 (dollars per thousand cubic feet) Alabama 16.20 100.0 12.55 76.2 4.35 22.1 17.99 3.09 Alaska 8.47 100.0 8.09 94.9 5.11 100.0 -- 4.32 Arizona 15.75 100.0 9.35 86.6 5.78 21.4 13.19 3.51 Arkansas 11.82 100.0 7.99 40.2 6.38 1.9 9.04 3.19 California 9.14 97.5 7.05 50.0 5.77 4.2 7.01 3.68 Colorado 8.31 100.0 7.58 92.2 5.79 6.8 11.65 W Connecticut 14.17 96.7 8.40 65.1 8.83 32.3 13.70 3.99 Delaware 15.24 100.0 13.31 43.7 11.61 0.3 30.97 -- District of Columbia 12.10 73.9 11.19 17.9 -- -- 9.38 -- Florida 18.31 97.7 10.41 37.0 6.96 2.7 9.83 4.80 Georgia 16.23 100.0 9.74 100.0 4.60 20.0 14.51 3.40 Hawaii 52.86 100.0 47.03

453

Federal Memorandum of Understanding for Hydropower/Resources | Open Energy  

Open Energy Info (EERE)

Memorandum of Understanding for Hydropower/Resources Memorandum of Understanding for Hydropower/Resources < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources MOU Related Resources Hydropower Resources Assessment at Existing Reclamation Facilities An Assessment of Energy Potential at Non-Powered Dams in the United States Assessment of Potential Capacity Increases at Existing Hydropower Plants Site Inventory and Hydropower Energy Assessment of Reclamation Owned Conduits Potential Hydroelectric Development at Existing Federal Facilities Advanced Conventional Hydropower Planning and Operation Analysis Tools The Integrated Basin-Scale Opportunity Assessment Initiative, FY

454

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel...

455

RSE Table 10.12 Relative Standard Errors for Table 10.12  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 10.12;" " Unit: Percents." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural...

456

Natural resources: the climate change challenge  

E-Print Network [OSTI]

adapt has dominated discussions on climate change, with developing countries seen as bearing the bruntNatural resources: the climate change challenge Policy Message Countries in the South have a potential both to mitigate climate change and to adapt to its effects through good natural resource

Richner, Heinz

457

Water Resources Research Center Annual Technical Report  

E-Print Network [OSTI]

in rural areas. Projects dealing with resource management include two studies assessing aquifer properties, including potential climate effects, and resource management. In addition to efforts of WRRC's staff of potable and recreational waters; addressing sewage contamination of Nawiliwili Stream and Kalapaki Beach

458

WWW Table of Radioactive Isotopes (TORI or ToI) from the Isotopes Project: Lawrence Berkeley National Laboratory - Lund University Collaboration  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The handbook titled "Table of Isotopes" has long been a standard source of information for nuclear structure and decay data. This web page provides online access to the "Table of Isotopes" data. It provides specialized interfaces to search, including: 1) Radiation search - search for by energy range and/or parent properties; 2) Nuclide search - search for nuclides by A, Z, N, and/or half-life range; 3) Atomic data - search for X-rays and Auger electrons; 4) Periodic table interface to the nuclides; 5) Summary drawings for A=1-277 (PDF). This page also provides access to various other resources, including the WWW Table of Nuclear Structure where the user can interactively search adopted nuclear level and gamma-ray properties or display tables, level scheme ladder diagrams and nuclear charts.

R.B. Firestone (LBNL); L.P. Ekstrom (LUNDS Universitet); Chu, S.Y.F. (LBNL)

459

Updating the Classification of Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Updating the Classification of Geothermal Resources Updating the Classification of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Updating the Classification of Geothermal Resources Abstract Resource classification is a key element in the characterization, assessment and development of energy resources, including geothermal energy. Stakeholders at all levels of government, within the geothermal industry, and among the general public need to be able to use and understand consistent terminology when addressing geothermal resource issues such as location, quality, feasibility of development, and potential impacts. This terminology must encompass both the fundamentally geological nature of geothermal resources and the practical technological and economic

460

Qualified Energy Conservation Bond State-by-State Summary Tables  

Broader source: Energy.gov [DOE]

Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building Technologies Office: Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

462

Residential Transportation Historical Data Tables for 1983-2001  

U.S. Energy Information Administration (EIA) Indexed Site

RTECS Historical Data Tables RTECS Historical Data Tables Residential Transportation Historical Data Tables Released: May 2008 Below are historical data tables from the Residential Transportation Energy Consumption Survey (RTECS) and Household Vehicles Energy Use: Latest Data & Trends report. These tables cover the trends in energy consumption for household transportation throughout the survey years. The data focus on several important indicators of demand for transportation: number and type of vehicles per household; vehicle-miles traveled per household and per vehicle; fuel consumption; fuel expenditures; and fuel economy. Excel PDF Trends in Households & Vehicles Table 1. Number of Households with Vehicles excel pdf Table 2. Percent of Households with Vehicles excel pdf

463

EIA - Low Economic Growth Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Low Economic Growth Case Projection Tables (1990-2030) Low Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2006 Low Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 13 complete) Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table C1 World Total Primary Energy Consumption by Region, Low Economic Growth Case Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table C2 World Total Energy Consumption by Region and Fuel, Low Economic Growth Case

464

EIA - Appendix A - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Tables (1990-2030) Tables (1990-2030) International Energy Outlook 2009 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

465

EIA - Appendix D - High Price Case Projections Tables  

Gasoline and Diesel Fuel Update (EIA)

High Price Case Projections Tables (2005-2035) High Price Case Projections Tables (2005-2035) International Energy Outlook 2010 High Oil Price Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 12 complete) High Oil Price Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix D. High Oil Price Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Table D1 World Total Primary Energy Consumption by Region Table D1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table D2 World Total Energy Consumption by Region and Fuel Table D2. World total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

466

EIA - Appendix A - Reference Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections Tables (1990-2030) Reference Case Projections Tables (1990-2030) International Energy Outlook 2008 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

467

EIA - International Energy Outlook 2007-Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections Tables (1990-2030) Reference Case Projections Tables (1990-2030) International Energy Outlook 2007 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

468

NREL: Renewable Resource Data Center - Biomass Resource Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

469

India Solar Resource Data: Enhanced Data for Accelerated Deployment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires...

470

Geothermal: Sponsored by OSTI -- Assessment of Geothermal Resource...  

Office of Scientific and Technical Information (OSTI)

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range?South (UTTR?S)...

471

Mineral resources of China  

Science Journals Connector (OSTI)

...centwereproducedbysmallnon-mechanizedminesin SouthChina. Export andImport. The consumptionOfcoalin...20 milliontons TABLE 8. IMPORT AND EXPORT OF COAL IN CHINA. (In 1,000 metric tons...dependslargely on TABLE 12. IMPORT OF PETROLEUM PRODUCTS TO CHINA. ! Kerosene, Gasoline...

Vei Chow Juan

472

RSE Table 3.5 Relative Standard Errors for Table 3.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 3.5;" 5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Gas","Coke","Black Liquor","Bark","Materials"

473

wvBLACK DIAMONDS table of contents  

E-Print Network [OSTI]

'RE ON THE WEB! www.mine.cemr.wvu.edu Statler College of Engineering and Mineral Resources DEPARTMENT OF MINING

Mohaghegh, Shahab

474

Clean Cities: Information Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Information Resources to someone by E-mail Share Clean Cities: Information Resources on Facebook Tweet about Clean Cities: Information Resources on Twitter Bookmark Clean Cities: Information Resources on Google Bookmark Clean Cities: Information Resources on Delicious Rank Clean Cities: Information Resources on Digg Find More places to share Clean Cities: Information Resources on AddThis.com... Publications Technical Assistance Information Resources Learn about Clean Cities by exploring these information resources. Publications View Clean Cities-branded publications or search for publications about alternative fuels and vehicles. Technical Assistance Learn about technical assistance available to help organizations overcome

475

NREL: Water Power Research - Resource Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Characterization Resource Characterization Building on its success in wind resource characterization and assessment, the National Renewable Energy Laboratory (NREL) has extended its capabilities to the field of water power. NREL's team of scientists, engineers and computer experts has broad experience in physical oceanography, meteorology, modeling, data analysis, and Geographic Information Systems. Many years of experience in wind assessment have enabled NREL to develop the skills and methodologies to evaluate the development potential of many different water-based energy technologies. Read about NREL's current water power resource characterization projects. Printable Version Water Power Research Home Capabilities Design Review & Analysis Device & Component Testing

476

Information Resources - EERE Commercialization Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Site Map Printable Version Share this resource National Laboratories Information Resources Here you will find various informational resources related to the...

477

Shake Table for Calibration of Velocity Pickups  

Science Journals Connector (OSTI)

A Shake Table was developed and built by the Engineering Research Institute to calibrate low?frequency (0 to 200 cps) velocity pickups. The platform that supports the pickup to be tested is 6 in. in diameter and will support a load of approximately 30 lb. This makes the use of a table limited by force it can deliver except at very low frequencies. The table will operate with a 10 lb load to a frequency of 150 cps. The platform displacement is 0.125 in. peak?to?peak. The platform and its load are supported by air bellows. This is an improvement over a spring support due to the fact that it has greater damping and it is more easily adjusted to different loads. The adjustment consists of just putting more air in the bellows. The table is driven by a dc push?pull power amplifier. This delivers a current to a tapped coil on the Shake Table that is located in a magnetic field. The field is set up by a coil energized by 24 volts. The power amplifier can be driven by any convenient source delivering about 1 volt. (Parts of this research were supported by Tri?service Contract No. DA?36?039?sc?52654.)

J. W. Wescott; J. H. Prout; W. H. Follett

1957-01-01T23:59:59.000Z

478

Resources | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

479

Ombuds Self Help Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self Help Resources Ombuds Self Help Resources Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the Laboratory. Contact...

480

Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Filter by Audience Filter by Resource Type Solar Powering America supports solar energy use for a variety of stakeholders in the United States. Here you will find resources...

Note: This page contains sample records for the topic "resource potential tables" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from USA) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

482

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook

483

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from United States of America) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

484

Electronic Safety Resource Tools Supporting Hydrogen and Fuel Cell Commercialization  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

Barilo, Nick F.

2014-09-29T23:59:59.000Z

485

NREL: Wind Research - Wind Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

486

NREL: Wind Research - Offshore Wind Resource Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

487

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

488

EIA - Supplemental Tables to the Annual Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the AEO 2008 Supplemental Tables to the AEO 2008 Supplemental Tables to the Annual Energy Outlook 2008 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2008 (AEO2008) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005 to 2030. Most of the tables were not published in the AEO2008, but contain regional and other more detailed projections underlying the AEO2008 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables are presented. The data for tables 10 and 20 match those published in AEO2008 Appendix tables A2 and A3, respectively. Projections for 2007 and 2008 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term projections and are based on more current information than the AEO.

489

EIA - High Economic Growth Case Projection Tables 1990-2030  

Gasoline and Diesel Fuel Update (EIA)

High Economic Growth Case Projection Tables (1990-2030) High Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2006 High Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 13 complete) High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table B1 World Total Primary Energy Consumption by Region, High Economic Growth Case High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800.

490

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network [OSTI]

MapofSolarResourcePotentialinCalifornia, [http://maps/solar_potential.html]. CaliforniaEnergySolarThermalBarstow,Mohave,andCentralCalifornia For

Budhraja, Vikram

2008-01-01T23:59:59.000Z

491

FY 2013 Control Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

Summary Control Table by Appropriation Summary Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy......................................... 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability.......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology..................................................................

492

Particle Data Group - 2012 Reviews, Tables, Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Downloadable figures are available for these reviews. Complete list of Reviews in the Particle Listings.. Categories: Constants, Units, Atomic and Nuclear Properties Physical Constants (rev.) Astrophysical Constants International System of units (SI) Periodic table of the elements (rev.) Electronic structure of the elements (rev.) Atomic and nuclear properties of materials PDF / Interactive Electromagnetic relations Naming scheme for hadrons Collapse table Standard Model and Related Topics Quantum Chromodynamics (rev.) Electroweak model and constraints on new physics (rev.) Cabibbo-Kobayashi-Maskawa quark-mixing matrix (rev.) CP violation (rev.) Neutrino mass, mixing, and oscillations (rev.) Quark model (rev.) Grand Unified Theories (rev.) Heavy-Quark and Soft-Collinear Effective Theory (new)

493

FY 2009 Control Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

Control Table by Appropriation Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy.................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and Conservation...................................... 2,145,149 -- -- -- -- Fossil energy programs

494

Peetz Table Wind Energy Center (3Q07) | Open Energy Information  

Open Energy Info (EERE)

Peetz Table Wind Energy Center (3Q07) Peetz Table Wind Energy Center (3Q07) Jump to: navigation, search Name Peetz Table Wind Energy Center (3Q07) Facility Peetz Table Wind Energy Center (3Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Florida Power & Light Co. Developer NextEra Energy Resources Energy Purchaser Xcel Energy Location Logan County CO Coordinates 40.98149°, -102.973891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.98149,"lon":-102.973891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

EIA - Annual Energy Outlook (AEO) 2013 Data Tables  

Gasoline and Diesel Fuel Update (EIA)

2013 (See release cycle changes) | correction | full 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices View All Filter By Source Oil Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Other Topics Emissions Prices Macroeconomic International Data TablesAll Tables Reference case summary & detailed tables... + EXPAND ALL Summary Case Tables additional formats Table 1. Total Energy Supply, Disposition, and Price Summary XLS

496

Career Map: Resource Scientist  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Resource Scientist positions.

497

Earth: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Earth: Energy Resources Earth: Energy Resources Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Per Wikipedia, "Earth is the third planet from the Sun, and the largest of the terrestrial planets in the Solar System in terms of diameter, mass and density." Worldwide Alternative Energy Investments The following table summarizes worldwide alternative energy investments over time. All figures are in millions of U.S. dollars. Retrieved from "http://en.openei.org/w/index.php?title=Earth&oldid=72128" Categories: Stubs Places What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

498

Teacher Resource Center: Science Fair Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Fair Resources Science Fair Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center collection is available for use onsite. The TRC is a member of the DuPage Library System. This list was prepared for a presentation to several regional library systems. The Science Fair and Beyond, was presented by Susan Dahl, sdahl@fnal.gov, 630-840-3094. (links checked October 27, 2009) See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Explore the Education Office website for other opportunities and services.

499

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Winter 2001-2002 Vol. 3, No. 1 Why Is the Park Range Colorado's Snowfall Capital? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 The Cold-Land Processes Field Experiment: North-Central Colorado

500

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents An Unusually Heavy Snowfall in North Central Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A Brief History of Colorado's Most Notable Snowstorms" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Colorado Climate Water Year 2003 Vol. 4, No. 1-4 If you have a photo or slide that your would like