Powered by Deep Web Technologies
Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray absorption spectroscopy has become an important tool in understanding the electronic structure of materials. Resonant absorption edges in the soft x-ray regime are especially interesting as they allow the study of the lighter elements, such as in organic or organo-metallic substances, as well as important L-edges of the 3d transition metals important in magnetic and oxide systems. Measurements of soft x-ray absorption spectra are inherently surface sensitive, and are plagued by issues such as extinction (in electron yield measurements) or self absorption (in fluorescence yield

2

Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity  

SciTech Connect

We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

2011-01-12T23:59:59.000Z

3

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS...

4

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

5

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

6

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

7

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

8

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

9

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

10

Resonant Soft X-ray Scattering Studies of Multiferroic YMn2O5  

SciTech Connect

We performed soft x-ray resonant scattering at the MnL{sub 2,3}- and OK edges of YMn{sub 2}O{sub 5}. While the resonant intensity at the MnL{sub 2,3} edges represent the magnetic order parameter, the resonant scattering at the OK edge is found to be directly related to the macroscopic ferroelectric polarization. The latter observation reveals the important role of the spin-dependent Mn-O hybridization for the multiferroicity of YMn{sub 2}O{sub 5}. We present details about how to obtain correct energy dependent lineshapes and discuss the origin of the resonant intensity at the OK edge.

Partzsch, S.; Wilkins, S.B.; Schierle, E.; Soltwisch, V.; Hill, J.P.; Weschke, E.; Souptel, D.; Buchner, B.; Geck, J.

2011-06-17T23:59:59.000Z

11

A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources  

SciTech Connect

We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam (Germany); Rajkovic, Ivan; Quevedo, Wilson; Gruebel, Sebastian; Scholz, Mirko [IFG Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37070 Goettingen (Germany); Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Kalus, Christian [Abteilung Betrieb Beschleuniger BESSYII, Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J. [PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Schlotter, William F.; Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kennedy, Brian [MAX-lab, PO Box 118, 221 00 Lund (Sweden); and others

2012-12-15T23:59:59.000Z

12

Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds  

SciTech Connect

In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 {micro}m thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2{sup +} state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2{sup +} state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS. revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Schmitt, Thorsten

2004-11-01T23:59:59.000Z

13

Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds  

DOE Green Energy (OSTI)

In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 {micro}m thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2{sup +} state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2{sup +} state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS. revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Schmitt, Thorsten

2004-11-01T23:59:59.000Z

14

Soft x-ray laser microscope  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

15

Phase Contrast Microscopy with Soft and Hard X-rays  

E-Print Network (OSTI)

Calibration ­ Uses up part of dynamic range · Solution: ­ Soft x-rays: Back side Illumination ­ Hard xPhase Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector Benjamin Hornberger ­ Phase Contrast 101 · A Segmented Detector for Hard X-ray Microprobes ­ Segmented Silicon Chip ­ Charge

Homes, Christopher C.

16

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

17

Inelastic X-ray and Nuclear Resonant Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Divisions Argonne Home > Advanced Photon Source > Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group...

18

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

19

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

20

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

22

The Soft-X-Ray Spectral Shape of X-Ray-Weak Seyferts  

E-Print Network (OSTI)

(I) We observed eight Seyfert~2s and two X--ray--weak Seyfert~1/QSOs with the ROSAT PSPC, and one Seyfert~2 with the ROSAT HRI. These targets were selected from the Extended 12\\um\\ Galaxy Sample. (II) Both Seyfert~1/QSOs vary by factors of 1.5---2. The photon indices steepen in the more luminous state, consistent with the variability being mainly due to the softest X--rays, which are confined to a size of less than a parsec. (III) Both the Seyfert~2s and Seyfert~1/QSOs are best fit with a photon index of $\\Gamma\\sim3$, which is steeper than the canonical value of $\\Gamma\\sim1.7$ measured for X--ray--strong Seyferts by ROSAT and at higher energies. Several physical explanations are suggested for the steeper slopes of X--ray--weak objects. (IV) We observed one Seyfert~2, NGC~5005, with the ROSAT HRI, finding about 13\\% of the soft X--rays to come from an extended component. This and other observations suggest that different components to the soft X--ray spectrum of some, if not all, X--ray--weak Seyferts may come from spatially distinct regions.

Brian Rush; Matthew A. Malkan

1995-07-27T23:59:59.000Z

23

Low Dose Radiation Research Program: Comparison of Soft X Rays...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Soft X-Rays and Ions Irradiation in a Model of V79 Mammalian Cell Authors: B. Ginovska, J.H. Miller, D. J. Lynch and W. E. Wilson Institutions: School of Electrical...

24

The complex soft X-ray spectrum of NGC 4151  

E-Print Network (OSTI)

We present a detailed analysis of the complex soft X-ray spectrum of NGC 4151 measured by the RGS instruments aboard XMM-Newton. The XMM-Newton RGS spectra demonstrate that the soft X-ray emission is extremely rich in X-ray emission lines and radiative recombination continua (RRC), with no clear evidence for any underlying continuum emission. Line emission, and the associated RRC, are clearly detected from hydrogen-like and helium-like ionization states of neon, oxygen, nitrogen and carbon. The measured lines are blueshifted with a velocity of between ~100-1000 km/s, with respect to the systemic velocity of NGC 4151, approximately consistent with the outflow velocities of the absorption lines observed in the UV, suggestive of an origin for the UV and soft X-ray emission in the same material. Plasma diagnostics imply a range of electron temperatures of ~1-5x10^4 K and electron densities of between 10^8-10^10 cm^-3. The soft X-ray spectrum of NGC 4151 is extremely similar to that of NGC 1068, suggesting that the soft X-ray excesses observed in many Seyfert galaxies may be composed of similar emission features. Modelling the RGS spectra in terms of emission from photoionized and photoexcited gas in an ionization cone reproduces all of the hydrogen-like and helium-like emission features observed in the soft X-ray spectrum of NGC 4151 in detail and confirms the correspondence between the soft X-ray emission in NGC 4151 and NGC 1068.

N. J. Schurch; R. S. Warwick; R. E. Griffiths; S. M. Kahn

2004-01-26T23:59:59.000Z

25

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

26

Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems  

Science Conference Proceedings (OSTI)

The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction. (LEW)

Howells, M.R.

1986-04-01T23:59:59.000Z

27

The complex soft X-ray spectrum of NGC 4151  

E-Print Network (OSTI)

We present a detailed analysis of the complex soft X-ray spectrum of NGC 4151 measured by the RGS instruments aboard XMM-Newton. The XMM-Newton RGS spectra demonstrate that the soft X-ray emission is extremely rich in X-ray emission lines and radiative recombination continua (RRC), with no clear evidence for any underlying continuum emission. Line emission, and the associated RRC, are clearly detected from hydrogen-like and helium-like ionization states of neon, oxygen, nitrogen and carbon. The measured lines are blueshifted with a velocity of between ?100-1000 km s ?1, with respect to the systemic velocity of NGC 4151, approximately consistent with the outflow velocities of the absorption lines observed in the UV spectrum of NGC 4151 (Kriss et al. 1995), suggestive of an origin for the UV and soft X-ray emission in the same material. Plasma diagnostics from the observed helium-like triplets, imply a range of electron temperatures of ?1-510 4 K and electron densities of between 10 8-10 10 cm ?3. The soft X-ray spectrum of NGC 4151 is extremely similar to that of NGC 1068, both in terms of the atomic species present and in terms of the relative strengths

N. J. Schurch; R. S. Warwick; R. E. Griffiths; S. M. Kahn

2004-01-01T23:59:59.000Z

28

The complex soft X-ray spectrum of NGC 4151  

E-Print Network (OSTI)

We present a detailed analysis of the complex soft X-ray spectrum of NGC 4151 measured by the RGS instruments aboard XMM-Newton. The XMM-Newton RGS spectra demonstrate that the soft X-ray emission is extremely rich in X-ray emission lines and radiative recombination continua (RRC), with no clear evidence for any underlying continuum emission. Line emission, and the associated RRC, are clearly detected from hydrogen-like and helium-like ionization states of neon, oxygen, nitrogen and carbon. The measured lines are blueshifted with a velocity of between ~100-1000 km/s, with respect to the systemic velocity of NGC 4151, approximately consistent with the outflow velocities of the absorption lines observed in the UV, suggestive of an origin for the UV and soft X-ray emission in the same material. Plasma diagnostics imply a range of electron temperatures of ~1-5x10^4 K and electron densities of between 10^8-10^10 cm^-3. The soft X-ray spectrum of NGC 4151 is extremely similar to that of NGC 1068, suggesting that th...

Schurch, N J; Griffiths, R E; Kahn, S M

2004-01-01T23:59:59.000Z

29

Soft x-ray diagnostics for pulsed power machines  

SciTech Connect

A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

1995-08-01T23:59:59.000Z

30

Exploring nanomagnetism with soft x-ray microscopy  

SciTech Connect

Magnetic soft X-ray microscopy images magnetism in nanoscale systems with a spatial resolution down to 15nm provided by state-of-the-art Fresnel zone plate optics. X-ray magnetic circular dichroism (X-MCD) is used as element-specific magnetic contrast mechanism similar to photoemission electron microscopy (PEEM), however, with volume sensitivity and the ability to record the images in varying applied magnetic fields which allows to study magnetization reversal processes at fundamental length scales. Utilizing a stroboscopic pump-probe scheme one can investigate fast spin dynamics with a time resolution down to 70 ps which gives access to precessional and relaxation phenomena as well as spin torque driven domain wall dynamics in nanoscale systems. Current developments in zone plate optics aim for a spatial resolution towards 10nm and at next generation X-ray sources a time resolution in the fsec regime can be envisioned.

Fischer, P.; Kim, D.-H.; Mesler, B.L.; Chao, W.; Sakdinawat,A.E.; Anderson, E.H.

2006-10-30T23:59:59.000Z

31

Phase Contrast Microscopy with Soft and Hard X-rays Using a Segmented  

E-Print Network (OSTI)

Phase Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector A Dissertation Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector by Benjamin Hornberger Doctor. In the hard x-ray range (multi-keV), the main focus lies on trace ele- ment mapping by x-ray fluorescence

32

Viewing spin structures with soft x-ray microscopy  

SciTech Connect

The spin of the electron and its associated magnetic moment marks the basic unit for magnetic properties of matter. Magnetism, in particular ferromagnetism and antiferromagnetism is described by a collective order of these spins, where the interaction between individual spins reflects a competition between exchange, anisotropy and dipolar energy terms. As a result the energetically favored ground state of a ferromagnetic system is a rather complex spin configuration, the magnetic domain structure. Magnetism is one of the eldest scientific phenomena, yet it is one of the most powerful and versatile utilized physical effects in modern technologies, such as in magnetic storage and sensor devices. To achieve highest storage density, the relevant length scales, such as the bit size in disk drives is now approaching the nanoscale and as such further developments have to deal with nanoscience phenomena. Advanced characterization tools are required to fully understand the underlying physical principles. Magnetic microscopes using polarized soft X-rays offer a close-up view into magnetism with unique features, these include elemental sensitivity due to X-ray magnetic dichroism effects as contrast mechanism, high spatial resolution provided by state-of-the-art X-ray optics and fast time resolution limited by the inherent time structure of current X-ray sources, which will be overcome with the introduction of ultrafast and high brilliant X-ray sources.

Fischer, Peter

2010-06-01T23:59:59.000Z

33

Soft x-ray laser microscope. Final report  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

34

Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy  

DOE Green Energy (OSTI)

The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

Guo, Jinghua

2008-09-22T23:59:59.000Z

35

Femtosecond diffractive imaging with a soft-X-ray free-electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

diffractive imaging with a soft-X-ray free-electron laser We have demonstrated flash diffractive imaging of nanostructures using pulses from the first soft-X-ray free-electron...

36

DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS  

SciTech Connect

We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

LaMassa, Stephanie M.; Heckman, T. M. [Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD 21218 (United States); Ptak, A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-10-20T23:59:59.000Z

37

Resonant Auger Effect at High X-Ray Intensity  

SciTech Connect

The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.

Rohringer, N; Santra, R

2008-03-27T23:59:59.000Z

38

Materials Analysis by Soft x-ray Scanning Transmission X-ray ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Optical and X-ray Imaging Techniques for Material Characterization.

39

Proton induced quasi-monochromatic x-ray beams for soft x-ray spectroscopy studies and selective x-ray fluorescence analysis  

Science Conference Proceedings (OSTI)

We present the analytical features and performance of an x-ray spectroscopy end station of moderate energy resolution operating with proton-induced quasi-monochromatic x-ray beams. The apparatus was designed, installed and operated at the 5.5 MV Tandem VdG Accelerator Laboratory of the Institute of Nuclear Physics, N.C.S.R. 'Demokritos,' Athens. The setup includes a two-level ultrahigh vacuum chamber that hosts in the lower level up to six primary targets in a rotatable holder; there, the irradiation of pure element materials-used as primary targets-with few-MeV high current ({approx}{mu}A) proton beams produces intense quasi-monochromatic x-ray beams of selectable energy. In the chamber's upper level, a six-position rotatable sample holder hosts the targets considered for x-ray spectroscopy studies. The proton-induced x-ray beam, after proper collimation, is guided to the sample position whereas various filters can be also inserted along the beam's path to eliminate the backscattered protons or/and to absorb selectively components of the x-ray beam. The apparatus incorporates an ultrathin window Si(Li) spectrometer (FWHM 136 eV at 5.89 keV) coupled with low-noise electronics capable of efficiently detecting photons down to carbon K{alpha}. Exemplary soft x-ray spectroscopy studies and results of selective x-ray fluorescence analysis are presented.

Sokaras, D. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Zarkadas, Ch. [PANalytical B.V., 7600 AA Almelo (Netherlands); Fliegauf, R.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Karydas, A. G. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Nuclear Spectrometry and Applications Laboratory, IAEA Laboratories, A-2444 Seibersdorf (Austria)

2012-12-15T23:59:59.000Z

40

Soft x-ray undulator for the Siam Photon Source  

SciTech Connect

An undulator for production of intense soft x-rays has been designed for the Siam Photon Source. The construction of the undulator has been completed. It is now being characterized and prepared for installation. The device, named U60, is a pure permanent magnet planar undulator, consisting of 41 magnetic periods, with 60 mm period length. Utilization of the undulator radiation in the photon energy range of 30 - 900 eV is expected. The design studies of the magnetic structure, including investigation of perturbations arising from the magnetic field of the device, their effects on the SPS storage ring and compensation schemes are described. A magnetic measurement system has been constructed for magnetic characterization of the device. Partial results of magnetic measurements are presented.

Rugmai, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand); School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Dasri, T. [School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Prawanta, S.; Siriwattanapaitoon, S.; Kwankasem, A.; Sooksrimuang, V.; Chachai, W.; Suradet, N.; Juthong, N.; Tancharakorn, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand)

2007-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Anomalous Small-angle Scattering with Soft X-rays at Al and Si K ...  

Science Conference Proceedings (OSTI)

Anomalous Small-angle Scattering with Soft X-rays at Al and Si K Absorption ... and Cooling Cycles in a High Strength Quenched and Tempered Structural Steel.

42

ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS  

SciTech Connect

We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul, 34956 (Turkey)

2012-10-20T23:59:59.000Z

43

The Neutron Stars of Soft X-Ray Transients  

E-Print Network (OSTI)

Soft X-ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of ~10^(32)-10^(33) erg/s, plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron...

Campana, S; Mereghetti, S; Stella, L; Tavani, M

1998-01-01T23:59:59.000Z

44

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00 Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

45

Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures  

SciTech Connect

Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

2007-06-01T23:59:59.000Z

46

Commissioning of soft and deep X-ray lithography beamline on Indus-2  

Science Conference Proceedings (OSTI)

Soft and Deep x-ray lithography (SDXRL) beamline is commissioned on Indus-2. The beamline can be operated between 1.5 to 20 keV and in white beam mode. Beamline consists of two x-ray mirrors, slits, Be-windows, beam diagnostics and filters assemblies and radiation safety systems. A custom built X-ray scanner is used to create 3-D high aspect ratio micro structures. The paper reports the commissioning results of this beamline.

Dhamgaye, V. P.; Sankar, B. Gowri; Garg, C. K.; Lodha, G. S. [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2012-06-05T23:59:59.000Z

47

Imaging nanoscale magnetic structures with polarized soft x-ray photons  

SciTech Connect

Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

Fischer, P.; Im, M.-Y.

2010-01-18T23:59:59.000Z

48

Photon Sciences | Beamlines | CSX: Coherent Soft X-ray Scattering and  

NLE Websites -- All DOE Office Websites (Extended Search)

CSX: Coherent Soft X-ray Scattering and polarization CSX: Coherent Soft X-ray Scattering and polarization X-Ray 1 Poster | X-Ray 2 Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Coherent Soft X-ray Scattering and Polarization (CSX) beamline design (source and optics) has been optimized to the NSLS-II parameters to provide the highest possible flux for experiments requiring either high coherence or full control of the polarization. Beamline Description The CSX beamline will be served by two identical EPU49 sources. Both EPUs are planned to operate in a canted geometry with opposite circular polarization for fast polarization switching experiments at the full polarization control (PC) branch. The EPUs will also be able to operate "phased" as a single device for high coherent flux experiments at the

49

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Brookhaven National Laboratory, Upton, NY Beamline X1A2 - Soft x-ray diffraction and nano-imaging Beamline X17 - X-ray powder diffraction Beamline X22C - Resonant x-ray...

50

Nature of the Soft Gamma Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

I summarize recent developments in the magnetar model of the Soft Gamma Repeaters and Anomalous X-ray Pulsars, give a critical inventory of alternative models for the AXPs, and outline the improved diagnostics expected from present observational efforts.

Christopher Thompson

2001-10-30T23:59:59.000Z

51

Development of in situ, at-wavelength metrology for soft x-ray nano-focusing  

E-Print Network (OSTI)

metrology for soft x-ray nano-focusing Sheng Yuan *1 ,Kirkpatrick-Baez (KB) mirror nano-focusing. We describe herex-ray optics capable of micro- and nano-focusing, brightness

Yuan, Sheng Sam

2010-01-01T23:59:59.000Z

52

Bright High Average Power Table-top Soft X-Ray Lasers  

Science Conference Proceedings (OSTI)

We have demonstrated the generation of bright soft x-ray laser pulses with record-high average power from compact plasma amplifiers excited by ultrafast solid state lasers. These lasers have numerous applications in nanoscience and nanotechnology.

Rocca, Jorge [Colorado State University, Fort Collins; Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Nichols,, Anthony [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Marconi, Mario [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

53

A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH  

Science Conference Proceedings (OSTI)

A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. The results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.

Tomczak, M.; Chmielewska, E., E-mail: tomczak@astro.uni.wroc.pl, E-mail: chmielewska@astro.uni.wroc.pl [Astronomical Institute, University of Wroclaw, ul. Kopernika 11, PL-51-622 Wroclaw (Poland)

2012-03-01T23:59:59.000Z

54

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation -Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutes: Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, HA6 2JR, UK For over a decade, the Gray Cancer Institute (GCI) has been actively engaged in the development and use of micro-irradiation techniques applied to radiobiological research. Our initial investigations made use of a charged-particle microbeam capable of irradiating individual cells with collimated energetic protons or 3He ions. By the end of the 1990's, a second facility had been constructed, which uses diffractive X-ray optics to focus ultrasoft X-rays to a sub-micron spot. The X-ray microprobe was

55

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutions: Gray Cancer Institute, PO BO Box100, Mount Vernon Hospital, Northwood, HA6 2JR, UK The Gray Cancer Institute (GCI) has pioneered the use of X-ray focussing techniques to develop systems for micro-irradiating individual cells and sub-cellular targets. Our prototype X-ray microprobe was developed alongside our existing charged-particle microbeam to address problems specific to low LET radiations, or where very precise targeting accuracy and dose delivery are required. This facility was optimised for focusing 278 eV CK X-rays; however there are a number of reasons for extending the

56

Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy  

Science Conference Proceedings (OSTI)

Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

Mccall, Monnikue M; Fischer, Peter

2008-05-01T23:59:59.000Z

57

A Photoionization Model For The Soft X-Ray Spectrum Of NGC 4151  

E-Print Network (OSTI)

We present analysis of archival data from multiple XMM-Newton observations of the Seyfert 1 galaxy NGC 4151. Spectral data from the RGS instruments reveal several strong soft X-ray emission lines, chiefly from hydrogen-like and helium-like oxygen, nitrogen, neon and carbon. Radiative recombination continua (RRC) from oxygen and carbon are also detected. Our analysis suggests that the emission data are consistent with photoionization. Using the CLOUDY photoionization code, we found that, while a two-component, high column density model (10e23 cm-2) with low covering factor proved adequate in reproducing all detected Lyman series lines, it proved insufficient in modeling He-like triplets observed (neon, oxygen, and nitrogen). If resonance line data were ignored, the two-component model was sufficient to match flux from intercombination and forbidden lines. However, with the inclusion of resonance line data, He-like triplets could no longer be modeled with only two components. We found that observed oxygen G and R ratios especially were anomalous in parameter space investigated. We investigated, and were forced to dismiss, the possibility that a third purely collisional component could be responsible for enhanced resonance line contributions. We succeeded in modeling the observed spectrum with the addition of a third, lower column density (10e20.5 cm-2) component with non-zero microturbulence and high covering factor. While sufficient to reproduce observed soft X-ray flux, our model faces certain shortcomings, particularly in a less-than-ideal visual fit to the line profile. Two of the three emission model components bear similarities to components determined by Kraemer et al. (2005) in their study of NGC 4151 absorption spectra.

B. K. Armentrout; S. B. Kraemer; T. J. Turner

2007-05-04T23:59:59.000Z

58

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

59

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect Melvyn Folkard Gray Cancer Institute Why This Project The aim of this project is to determine the effects of low radiation doses using a machine that makes it possible to radiate one cell at a time. Our soft X-ray microprobe can irradiate individual cells, or locations within cells with defined doses and with sub-micron precision. We can use low doses approaching that of a single electron track, which is of relevance to environmental level exposures. Much of our work is concentrating on irradiating specified individual cells within cell populations to identify "bystander responses" where non-radiated cells respond to signals from nearby radiated cells. Higher energy x-rays are being generated to extend

60

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical devices with nanoscale accuracy has allowed researchers in Berkeley Lab's Center for X-Ray Optics (CXRO), which built and operates the XM-1, to achieve an extraordinary resolution of better than 15 nm, with the promise of even higher resolution in the near future.

62

Focused ion beam patterned Fe thin films A study by selective area Stokes polarimetry and soft x-Ray microscopy  

Science Conference Proceedings (OSTI)

We demonstrate the potential to modify the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no chemical change to the Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions.

Cook, P. J.; Shen, T. H.; Grundy, P. J.; Im, M.-Y.; Fischer, P.; Morton, S. A.; Kilcoyne, A. L. D.

2010-11-14T23:59:59.000Z

63

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kevin M Prise and Barry D Michael. Institutions: Gray Cancer Institute. We are currently engaged on two projects in the Low-dose Program: "Low dose studies with focused X-rays in cell and tissue models: mechanisms of bystander and genomic instability responses" (DE-FG07-99ER62877) and "Mechanistic modeling of bystander effects: An integrated theoretical and experimental approach" (DE-FG02-02ER63305). Central to both of these studies is a unique micro irradiation facility that uses ultrasoft X-rays focused to a sub micron beam for individual cell and sub cellular targeting. This facility allows us to selectively irradiate individual

64

Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis  

Science Conference Proceedings (OSTI)

We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge ({approx}285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

Gann, E.; Collins, B. A.; Ade, H. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Young, A. T.; Nasiatka, J.; Padmore, H. A.; Hexemer, A.; Wang, C. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yan, H. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2012-04-15T23:59:59.000Z

65

Imaging of lateral spin valves with soft x-ray microscopy  

SciTech Connect

We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L{sub 3} absorption edges.

Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.

2009-05-01T23:59:59.000Z

66

The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser  

Science Conference Proceedings (OSTI)

The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Heimann, P. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kelez, N. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W. [Institute for Experimental Physics and CFEL, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); and others

2012-04-15T23:59:59.000Z

67

Overview of the program on soft x-ray lasers and their applications at Princeton  

Science Conference Proceedings (OSTI)

In the last several years, rapid progress in the development of soft x-ray lasers (SXL) has been observed at a number of laboratories worldwide. Although SXLs are very young'' devices they have already been used for microscopy and holography, and new ideas emerging for broader application of SXLs to microscopy, holography and lithography. This paper describes the work at Princeton University on the development of a soft x-ray imaging transmission microscopy using a SXL as a radiation source and work on the development of a novel soft x-ray reflection microscope and its application to biological cell studies and lithography. Progress in the development of a photopumped VUV laser (60 nm), and programs for the development of a small scale SXL and for the application of a powerful subpicosecond KrF laser system are also discussed. 35 refs., 9 figs., 1 tab.

Suckewer, S.; Ilcisin, K. (Princeton Univ., NJ (USA). Plasma Physics Lab. Princeton Univ., NJ (USA). Dept. of Mechanical and Aerospace Engineering)

1991-05-01T23:59:59.000Z

68

Large Scale Soft X-ray Loops And Their Magnetic Chirality In Both Hemispheres  

E-Print Network (OSTI)

The magnetic chirality in solar atmosphere has been studied based on the soft X-ray and magnetic field observations. It is found that some of large-scale twisted soft X-ray loop systems occur for several months in the solar atmosphere, before the disappearance of the corresponding background large-scale magnetic field. It provides the observational evidence of the helicity of the large-scale magnetic field in the solar atmosphere and the reverse one relative to the helicity rule in both hemispheres with solar cycles. The transfer of the magnetic helicity from the subatmosphere is consistent with the formation of large-scale twisted soft X-ray loops in the both solar hemispheres.

Zhang, Hongqi; Gao, Yu; Su, Jiangtao; Sokoloff, D D; Kuzanyan, K

2010-01-01T23:59:59.000Z

69

The autocorrelation function of the soft X-ray background  

E-Print Network (OSTI)

The first positive detection of the X-ray background fluctuations at small angular scales is reported. ROSAT PSPC archive pointed observations are used to measure fluctuations at scales of 0.03 - 0.4 deg. The pointings have been selected from an area free from galactic contamination. At separations below 0.1 deg clusters of galaxies become a substantial source of the background fluctuations. The autocorrelation function of the fluctuations in the power law approximation has a slope of ~1 for all the data but is substantially flatter (with slope of ~0.7) when pointings containing bright clusters are removed. At separations 0.3 - 0.4 deg where the ACF estimates based on the ROSAT pointings and All-Sky Survey are available, both data sets give consistent results.

Andrzej M. Soltan; Michael J. Freyberg

2000-10-20T23:59:59.000Z

70

The puzzle of the soft X-ray excess in AGN: absorption or reflection?  

E-Print Network (OSTI)

The 2-10 keV continuum of AGN is generally well represented by a single power law. However, at smaller energies the continuum displays an excess with respect to the extrapolation of this power law, called the ''soft X-ray excess''. Until now this soft X-ray excess was attributed, either to reflection of the hard X-ray source by the accretion disk, or to the presence of an additional comptonizing medium, giving a steep spectrum. An alternative solution proposed by Gierlinski and Done (2004) is that a single power law well represents both the soft and the hard X-ray emission and the impression of the soft X-ray excess is due to absorption of a primary power law by a relativistic wind. We examine the advantages and drawbacks of reflection versus absorption models, and we conclude that the observed spectra can be well modeled, either by absorption (for a strong excess), or by reflection (for a weak excess). However the physical conditions required by the absorption models do not seem very realistic: we would prefer an ''hybrid model''.

L. Chevallier; S. Collin; A. -M. Dumont; B. Czerny; M. Mouchet; A. C. Goncalves; R. W. Goosmann

2006-01-19T23:59:59.000Z

71

Probing the spin polarization of current by soft x-ray imaging of current-induced magnetic vortex dynamics  

SciTech Connect

Time-resolved soft X-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micron-sized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the resonant motion of the vortex core. The result also provides the spin polarization of the current to be 0.67 {+-} 0.16 for Permalloy by fitting the experimental results with an analytical model in the framework of the spin-transfer torque.

Kasai, Shinya; Fischer, Peter; Im, Mi-Young; Yamada, Keisuke; Nakatani, Yoshinobu; Kobayashi, Kensuke; Kohno, Hiroshi; Ono, Teruo

2008-12-09T23:59:59.000Z

72

Testing consistency of deconfinement heating of strange stars in superbursters and soft X-ray transients  

E-Print Network (OSTI)

Both superbursters and soft X-ray transients probe the thermal structure of the crust on compact stars and are sensitive to the process of deep crustal heating. It was recently shown that the transfer of matter from crust to core in a strange star can heat the crust by deconfinement and ignite superbursts provided certain constraints on the strange quark matter equation of state are fulfilled. Corresponding constraints are derived for soft X-ray transients in a simple parameterized model assuming their quiescent emission is powered in the same way, and the time dependence of this heating mechanism in transient systems is discussed.

M. Stejner

2006-12-29T23:59:59.000Z

73

Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures  

DOE Green Energy (OSTI)

We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

2009-03-03T23:59:59.000Z

74

Writable graphene: Breaking sp2 bonds with soft X-rays  

SciTech Connect

We study the stability of various kinds of graphene samples under soft x-ray irradiation. Our results show that in single-layer exfoliated graphene (a closer analog to two-dimensional material), the in-plane carbon-carbon bonds are unstable under x-ray irradiation, resulting in nanocrystalline structures. As the interaction along the third dimension increases by increasing the number of graphene layers or through the interaction with the substrate (epitaxial graphene), the effect of x-ray irradiation decreases and eventually becomes negligible for graphite and epitaxial graphene. Our results demonstrate the importance of the interaction along the third dimension in stabilizing the long range in-plane carbon-carbon bonding, and suggest the possibility of using x-ray to pattern graphene nanostructures in exfoliated graphene.

Zhou, S.; Girit, C.; Scholl, A.; Jozwiak, C.; Siegel, D.; Yu, P.; Robinson, J.; Wang, F.; Zettl, A.; Lanzara, A.

2010-06-09T23:59:59.000Z

75

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

76

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Lensless Imaging of Whole Biological Cells with Soft X-Rays Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Wednesday, 26 May 2010 00:00 A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

77

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

78

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

79

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

80

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

82

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

83

Lensless Imaging of Whole Biological Cells with Soft X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast cells, achieving the highest resolution-11 to 13 nanometers (billionths of a meter)-ever obtained with this method for biological specimens. Their success indicates that full 3-D tomography of whole cells at equivalent resolution should soon be possible. The National Center for X-Ray Tomography at ALS Beamline 2.1 images whole, frozen hydrated cells in 3-D (see highlight "Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography"). Large numbers of cells can currently be processed in a short time at resolutions of 40 to 60 nanometers, but the ability to increase resolution to the 10-nanometer range would enhance research capabilities in both biology and materials sciences.

84

Absolute, soft x-ray calorimetry on the Z facility at Sandia National Laboratories  

SciTech Connect

Simple and reliable x-ray fluence measurements, in addition to time-resolved diagnostics, are needed to understand the physics of hot Z-pinch plasmas. A commercially available laser calorimeter has been modified for measuring soft x-ray fluence from the Z facility at Sandia National Laboratories. The x-ray absorber of this calorimeter is an aluminum disk, attached to a two-dimensional thermopile and surrounded by an isoperibol shroud. The time-integral and the maximum of the thermopile voltage signal are both proportional to the x-ray energy deposited. Data are collected for 90 seconds, and the instrument has, thus far, been used in the 1--25 mJ range. A wider dynamic measuring range for x-ray fluence (energy/area) can be achieved by varying the area of the defining aperture. The calorimeter is calibrated by an electrical substitution method. Calibrations are performed before and after each x-ray experiment on the Z facility. The calibration of the time-integral of the thermopile voltage vs. energy deposited (or the peak of thermopile voltage vs. energy deposited) is linear with zero offset at the 95% confidence level. The irreproducibility of the calibration is <2%, and the imprecision in the measurement of the incident x-ray energy (inferred from signal noise and the calibration) is estimated to be {approximately}0.9 mJ (95% confidence level). The inaccuracy is estimated at {+-}10%, due to correctable systematic errors (e.g., baseline shifts). Comparisons have been made of the calorimeter to time-resolved x-ray diagnostics, e.g., bolometers and XRD (x-ray diode) arrays, by integrating the flux measured by these instruments over time.

Fehl, D.L.; Muron, D.J.; Leeper, R.J.; Chandler, G.A.; Deeney, C.; Spielman, R.B.

1998-05-01T23:59:59.000Z

85

Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials  

SciTech Connect

Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Mitchell, G.E.; Dekoven, B.M. [Dow Chemical Co., Midland, MI (United States); Yeh, A.T.; Gland, J.L. [Michigan Univ., Ann Arbor, MI (United States); Moodenbaugh, A.R. [Brookhaven National Lab., Upton, NY (United States)

1993-06-01T23:59:59.000Z

86

Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials  

SciTech Connect

Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

Fischer, D.A. (National Institute of Standards and Technology, Gaithersburg, MD (United States)); Mitchell, G.E.; Dekoven, B.M. (Dow Chemical Co., Midland, MI (United States)); Yeh, A.T.; Gland, J.L. (Michigan Univ., Ann Arbor, MI (United States)); Moodenbaugh, A.R. (Brookhaven National Lab., Upton, NY (United States))

1993-01-01T23:59:59.000Z

87

Soft X-Ray Imaging of spin dynamics at high spatial and temporalresolution  

Science Conference Proceedings (OSTI)

Soft X-ray microscopy provides element specific magnetic imaging with a spatial resolution down to 15nm. At XM-1, the full-field soft X-ray microscope at the Advanced Light Source in Berkeley, a stroboscopic pump and probe setup has been developed to study fast magnetization dynamics in ferromagnetic elements with a time resolution of 70ps which is set by the width of the X-ray pulses from the synchrotron. Results obtained with a 2 {micro}m x 4 {micro}m x 45nm rectangular permalloy sample exhibiting a seven domain Landau pattern reveal dynamics up to several nsec after the exciting magnetic field pulse. Domain wall motion, a gyrotropic vortex motion, and a coupling between vortices in the rectangular geometry are observed.

Mesler, Brooke L.; Fischer, Peter; Chao, Weilun; Anderson, Erik H.

2007-06-01T23:59:59.000Z

88

Method and apparatus for molecular imaging using X-rays at resonance wavelengths  

DOE Patents (OSTI)

Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

Chapline, Jr., George F. (Alamo, CA)

1985-01-01T23:59:59.000Z

89

A Photoionization Model For The Soft X-Ray Spectrum Of NGC 4151  

E-Print Network (OSTI)

We present analysis of archival data from multiple XMM-Newton observations of the Seyfert 1 galaxy NGC 4151. Spectral data from the RGS instruments reveal several strong soft X-ray emission lines, chiefly from hydrogen-like and helium-like oxygen, nitrogen, neon and carbon. Radiative recombination continua (RRC) from oxygen and carbon are also detected. Our analysis suggests that the emission data are consistent with photoionization. Using the CLOUDY photoionization code, we found that, while a two-component, high column density model (10e23 cm-2) with low covering factor proved adequate in reproducing all detected Lyman series lines, it proved insufficient in modeling He-like triplets observed (neon, oxygen, and nitrogen). If resonance line data were ignored, the two-component model was sufficient to match flux from intercombination and forbidden lines. However, with the inclusion of resonance line data, He-like triplets could no longer be modeled with only two components. We found that observed oxygen G and...

Armentrout, B K; Turner, T J

2007-01-01T23:59:59.000Z

90

Consistency between deep crustal heating of strange stars in superbursters and soft X-ray transients  

E-Print Network (OSTI)

Both superbursters and soft X-ray transients probe the process of deep crustal heating in compact stars. It was recently shown that the transfer of matter from crust to core in a strange star can heat the crust and ignite superbursts provided certain constraints on the strange quark matter equation of state are fulfilled. We derive corresponding constraints on the equation of state for soft X-ray transients assuming their quiescent emission is powered in the same way, and further discuss the time dependence of this heating mechanism in transient systems. We approach this using a simple parametrized model for deep crustal heating in strange stars assuming slow neutrino cooling in the core and blackbody photon emission from the surface.The constraints derived for hot frequently accreting soft X-ray transients are always consistent with those for superbursters. The colder sources are consistent for low values of the quark matter binding energy, heat conductivity and neutrino emissivity. The heating mechanism is very time dependent which may help to explain cold sources with long recurrence times. Thus deep crustal heating in strange stars can provide a consistent explanation for superbursters and soft X-ray transients.

Morten Stejner; Jes Madsen

2006-03-21T23:59:59.000Z

91

Alcator C-Mod soft X-ray pulse height analysis system  

E-Print Network (OSTI)

A pulse height analysis (PHA) system has been installed on the Alcator C-Mod magnetic confinement fusion experiment. The PHA utilizes a Si(Li) detector to measure soft X-rays in the 1-30 keV range with an energy resolution ...

Gamboa, Eliseo (Eliseo J.)

2007-01-01T23:59:59.000Z

92

X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities  

Science Conference Proceedings (OSTI)

Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

Spoth, Katherine; /SUNY, Buffalo /SLAC

2012-08-28T23:59:59.000Z

93

SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES  

SciTech Connect

There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

Ciaravella, A.; Candia, R.; Collura, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Giarrusso, S. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Barbera, M., E-mail: aciaravella@astropa.unipa.it [Dipartimento di Scienze Fisiche and Astronomiche, Universita di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, I-90134 Palermo (Italy)

2012-02-10T23:59:59.000Z

94

Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays  

SciTech Connect

We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

2010-10-29T23:59:59.000Z

95

Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy  

Science Conference Proceedings (OSTI)

To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

2009-06-05T23:59:59.000Z

96

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Mereghetti, Sandro

2008-01-01T23:59:59.000Z

97

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Sandro Mereghetti

2008-04-01T23:59:59.000Z

98

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

99

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

100

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

102

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print The geometric structure of liquid water has been investigated in detail by many techniques, but many details are still under debate, such as the actual number of hydrogen bonds (at a given time) between the various water molecules. Even less is known about the electronic structure. Since it is the intermittent bonding between water molecules that gives liquid water its peculiar characteristics, the electronic structure plays a crucial role in understanding the properties of the liquid state. Consequently, information essential for insight into chemical and biological processes in aqueous environments is lacking. To address this need, researchers from Germany and the U.S. have used soft x-ray spectroscopy at the ALS to gain detailed insight into the electronic structure of liquid water. Their spectra show a strong isotope and a weak temperature effect, and, for the first time, a splitting of the primary emission line in x-ray emission spectra. By making use of the internal "femtosecond clock" of the core-hole lifetime, a detailed picture of the electronic structure can be painted that involves fast dissociation processes of the probed water molecules.

103

Magnetism studies using resonant, coherent, x-ray scattering...  

NLE Websites -- All DOE Office Websites (Extended Search)

10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron lasers there has been interest in using coherent x-rays to probe condensed matter systems....

104

Analysis of neon soft x-ray spectra from short-pulse laser-produced plasmas  

Science Conference Proceedings (OSTI)

We report preliminary results from the analysis of streaked soft x-ray neon spectra obtained from the interaction of a picosecond Nd:glass laser with a gas jet target. In these experiments streaked spectra show prompt harmonic emission followed by longer time duration soft x-ray line emission. The majority of the line emission observed was found to originate from Li- and Be-like Ne and the major transitions in the observed spectra have been identified. Li-like emission lines were observed to decay faster in time than Be-like transitions, suggesting that recombination is taking place. Line ratios of n=4-2 and n=3-2 transitions supported the view that these lines were optically thin and thick, respectively. The time history of Li-like Ne 2p-4d and 2p-3d lines is in good agreement with a simple adiabatic expansion model coupled to a time dependent collisional-radiative code. Further x-ray spectroscopic analysis is underway which is aimed at diagnosing plasma conditions and assessing the potential of this recombining neon plasma as a quasi-steady-state recombination x-ray laser medium.

Abare, A.C. [Florida Univ., Gainesville, FL (United States); Keane, C.J.; Crane, J.K.; DaSilva, L.B.; Lee, R.W.; Perry, M.D. [Lawrence Livermore National Lab., CA (United States); Falcone, R.W. [California Univ., Berkeley, CA (United States). Dept. of Physics

1993-04-01T23:59:59.000Z

105

Soft x-ray capabilities for investigating the strongly correlated electron  

NLE Websites -- All DOE Office Websites (Extended Search)

Soft x-ray capabilities for investigating the strongly correlated electron Soft x-ray capabilities for investigating the strongly correlated electron materials Friday, September 14, 2012 - 1:00pm SLAC, Bldg. 137, Room 226 Jun-Sik Lee Seminar One of the most challenging extant issues in condensed matter physics and applied materials science is the search for post-silicon based electronics, and multi-functional complex oxides offer hopes that new classes of devices can be developed out of these intriguing materials. In that context, the strongly correlated systems display an extremely rich interplay of charge, spin, and lattice interactions that have extensively been studied. This is because nature has already shown how powerful this interplay is: high Tc superconductivity, multiferroelectric, colossal magnetoresistance, and novel behavior in a heterostructure. Of the complex oxides, perovskites are

106

Fast-switching elliptically polarized soft X-ray beam X13A at NSLS  

SciTech Connect

The X13A beamline at NSLS is dedicated to the generation and uses of fast-switching elliptically polarized soft X-ray radiation in the energy range from 250 to {approx}1600 eV. The source for this beamline is an elliptically polarized wiggler (EPW) that delivers linearly elliptically polarized soft X-rays at a switching rate, between right- and left-handed polarization, up to 100 Hz. The optical design is a spherical grating monochromator (SGM) that focuses and diffracts in plane orthogonal to the polarization switching direction. The X13A beamline scientific program is dedicated to spectroscopy and scattering studies of magnetism and magnetic materials. The fast-switching capability of the EPW enables the use of lock-in techniques, thereby greatly enhancing the detection sensitivity for small polarization-dependent signals.

Sanchez-Hanke, C.; Kao, C.; Hulbert, S.

2009-07-21T23:59:59.000Z

107

Optics Design for a Soft X-ray FEL at the SLAC A-Line  

SciTech Connect

LCLS capabilities can be significantly extended with a second undulator aiming at the soft x-ray spectrum (1-5 nm). To allow for simultaneous hard and soft x-ray operations, 14 GeV beams at the end of the LCLS accelerator can be intermittently switched into the SLAC A-line (the beam transport line to End Station A) where the second undulator may be located. In this paper, we discuss the A-line optics design for transporting the high-brightness LCLS beams using the existing tunnel. To preserve the high brightness of the LCLS beams, special attention is paid to effects of incoherent and coherent synchrotron radiation. Start-to-end simulations using realistic LCLS beam distributions are carried out.

Geng, H; Ding, Y.; Emma, P.; Huang, Z.; Nosochkov, Y.; Woodley, M.; /SLAC

2009-05-15T23:59:59.000Z

108

Development of in situ, at-wavelength metrology for soft x-ray nano-focusing  

SciTech Connect

At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. We describe here details of the metrology beamline endstation, the at-wavelength tests, and an original alignment method that have already allowed us to precisely set a bendable KB mirror to achieve a FWHM focused spot size of ~;;120 nm, at 1-nm soft x-ray wavelength.

Yuan, Sheng Sam; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory Y.; Warwick, Tony; Padmore, Howard A.

2010-09-19T23:59:59.000Z

109

On?line tangential soft x?ray/VUV tomography on COMPASS?C  

Science Conference Proceedings (OSTI)

A tangentially viewing pinhole camera has been used to image the COMPASS?C plasma in the vacuum ultraviolet and soft x?ray spectral regions with framing rates up to 330 Hz. The PC?based system acquires up to 256 128128 pixel images per shot and incorporates an array processor to allow on?line tomographic reconstructions. Data compression is used to reduce the data load by a factor of 4.

R. D. Durst; The COMPASS Group

1990-01-01T23:59:59.000Z

110

On-line tangential soft x-ray/VUV tomography on COMPASS-C  

SciTech Connect

A tangentially viewing pinhole camera has been used to image the COMPASS-C plasma in the vacuum ultraviolet and soft x-ray spectral regions with framing rates up to 330 Hz. The PC-based system acquires up to 256 128{times}128 pixel images per shot and incorporates an array processor to allow on-line tomographic reconstructions. Data compression is used to reduce the data load by a factor of 4.

Durst, R.D. (AEA Fusion/Euratom Association, Culham Laboratory, Abingdon (Great Britain)); The COMPASS Group

1990-10-01T23:59:59.000Z

111

Elimination of higher-order diffraction using zigzag transmission grating in soft x-ray region  

Science Conference Proceedings (OSTI)

We present a realization of the sinusoidal transmission function using a series of zigzag-profiled strips where the transmission takes on the binary values 0 and 1 in a two-dimensional distribution. A zigzag transmission grating of 1000 line/mm has been fabricated and demonstrated on the soft x-ray beam of synchrotron radiation. The axial single-order diffraction indicates that the zigzag transmission grating is adequate for spectroscopic application.

Zang, H. P.; Wang, C. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Gao, Y. L.; Zhou, W. M.; Kuang, L. Y.; Wei, L.; Fan, W.; Zhang, W. H.; Zhao, Z. Q.; Cao, L. F.; Gu, Y. Q.; Zhang, B. H. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Jiang, G. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Zhu, X. L.; Xie, C. Q. [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhao, Y. D.; Cui, M. Q. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

2012-03-12T23:59:59.000Z

112

Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions  

Science Conference Proceedings (OSTI)

The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

2008-09-01T23:59:59.000Z

113

SOFT INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige  

NLE Websites -- All DOE Office Websites (Extended Search)

INELASTIC X-RAY SCATTERING (SIX) INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige 1 Proposal Team: D. Arena 1 , A. Baron 2 , Y. Cai 1 , Y.-D. Chuang 3 , F. de Groot 4 , J. Guo 3 , J.P. Hill 1 , S. Hulbert 1 , C. McGuinness 5 , R. Reininger 9 , J.E. Rubenson 6 , C. Sanchez-Hanke 1 , T. Schmitt 7 , K. Smith 8 1 Brookhaven National Laboratory, 2 SPring-8, 3 Lawrence Berkeley Laboratory, 4 Utrecht University, 5 Trinity College Dublin, 6 Uppsala University, 7 Paul Scherrer Institute, 8 Boston University, 9 Argonne National Laboratory TECHNIQUE AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Resonant inelastic x-ray scattering (RIXS) at unprecedented resolution (10 meV @ 1000 eV) to revolutionize study of low energy excitations in many important materials. * Continuously tunable momentum transfer (q) to study the

114

SELF-SHIELDING OF SOFT X-RAYS IN TYPE Ia SUPERNOVA PROGENITORS  

SciTech Connect

There are insufficient super-soft ({approx}0.1 keV) X-ray sources in either spiral or elliptical galaxies to account for the rate of explosion of Type Ia supernovae (SNe Ia) in either the single-degenerate or the double-degenerate scenarios. We quantify the amount of circumstellar matter that would be required to suppress the soft X-ray flux by yielding a column density in excess of 10{sup 23} cm{sup -2}. We summarize evidence that appropriate quantities of matter are extant in SNe Ia and in recurrent novae that may be supernova precursors. The obscuring matter is likely to have a large, but not complete, covering factor and to be substantially non-spherically symmetric. Assuming that much of the absorbed X-ray flux is re-radiated as blackbody radiation in the UV, we estimate that {approx}<100 sources might be detectable in the Galaxy Evolution Explorer All-sky Survey.

Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX (United States)] [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Pooley, D., E-mail: wheel@astro.as.utexas.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

2013-01-10T23:59:59.000Z

115

Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles  

SciTech Connect

The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied states in the coated sample, indicating an increase in the semiconductor band gap relative to bulk stoichiometric maghemite that was also observed by optical absorption spectroscopy. The results show that the ferrous iron sites within ferric iron oxide nanoparticles coated by an organic ligand can persist under ambient conditions with no evidence of a distinct interior phase and can exert an effect on the global electronic and optical properties of the material. This phenomenon resembles the band gap enlargement caused by electron accumulation in the conduction band of TiO2.

Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger; Waychunas, Glenn A.

2010-10-24T23:59:59.000Z

116

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

2012-05-01T23:59:59.000Z

117

'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments  

Science Conference Proceedings (OSTI)

We are developing large pixel count, fast ({>=}100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory.

Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R. [Johns Hopkins University, Department of Physics and Astronomy, Plasma Spectroscopy Group, Bloomberg Center 3400 N. Charles Street, Baltimore, Maryland 21218 (United States); Princeton University Plasma Physics Laboratory, P. O. Box 451, Princeton, New Jersey 08543 (United States)

2004-10-01T23:59:59.000Z

118

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M. [Directorate Science and Technology, AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

119

Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach  

DOE Green Energy (OSTI)

Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

Weinhardt, L.; Fuchs, O.; Blum, M.; Br, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

2008-06-17T23:59:59.000Z

120

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

122

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

123

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

124

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Wednesday, 24 February 2010 00:00 Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

125

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic phenotype that causes infection. Yeast infections are commonplace, and in otherwise healthy individuals are usually treatable with over-the-counter medications; however, individuals with weakened immune systems can have very serious systemic consequences from a yeast infection. Treating systemic yeast infections is becoming increasingly difficult due to the growing number of yeast strains that have developed resistance to existing antimicrobial drugs. Consequently, there is a pressing need to develop new types of drugs capable of circumventing yeast drug-resistance mechanisms. To this end Stanford, University of California, San Francisco and LBNL researchers have used soft x-ray tomography to image the 3-D structure of both benign and infectious C. albicans yeast. They then imaged this yeast when treated with peptoids, a class of molecules that mimic the peptides our immune system uses as the first line of defense against microbial attack. Unlike conventional antimicrobials, microbes have yet to develop resistance mechanisms against peptides or peptoids, making them appealing candidates for pharmaceutical development.

126

Surface Roughness of Stainless Steel Bender Mirrors for FocusingSoft X-rays  

Science Conference Proceedings (OSTI)

We have used polished stainless steel as a mirror substrate to provide focusing of soft x-rays in grazing incidence reflection. The substrate is bent to an elliptical shape with large curvature and high stresses in the substrate require a strong elastic material. Conventional material choices of silicon or of glass will not withstand the stress required. The use of steel allows the substrates to be polished and installed flat, using screws in tapped holes. The ultra-high-vacuum bender mechanism is motorized and computer controlled. These mirrors are used to deliver focused beams of soft x-rays onto the surface of a sample for experiments at the Advanced Light Source (ALS). They provide an illumination field that can be as small as the mirror demagnification allows, for localized study, and can be enlarged, under computer control,for survey measurements over areas of the surface up to several millimeters. The critical issue of the quality of the steel surface, polished and coated with gold, which limits the minimum achievable focused spot size is discussed in detail. Comparison is made to a polished, gold coated, electroless nickel surface, which provides a smoother finish. Surface measurements are presented as power spectral densities, as a function of spatial frequency. The surface height distributions measured with an interferometric microscope, and complemented by atomic force microscope measurements, are used to compute power spectral densities and then to evaluate the surface roughness. The effects of roughness in reducing the specular reflectivity are verified by soft x-ray measurements.

Yashchuk, Valeriy V.; Gullikson, Eric M.; Howells, Malcolm R.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi,Farhad; Warwick, Tony; Metz, James P.; Tonnessen, Thomas W.

2005-10-11T23:59:59.000Z

127

Design Concept and Performance of the Soft X-ray Beamline HiSOR-BL14  

SciTech Connect

The soft X-ray beamline HiSOR-BL14 has been constructed at Hiroshima Synchrotron Radiation Center, aimed at absorption spectroscopy and photoelectron spectroscopy with linearly and circularly polarized light. The beamline layout is based on a Dragon-type design with a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet part of the HiSOR ring with a wide solid angle. The large horizontal angular acceptance and vertical one contribute to high photon flux and controllability of light polarization, respectively. Our performance test indicates that high resolving power has been achieved with sufficient photon flux to carry out spectroscopic experiments.

Sawada, M.; Namatame, H. [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima, Hiroshima 739-0046 (Japan); Yaji, K. [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan); Nagira, M.; Kimura, A.; Taniguchi, M. [Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-0046 (Japan)

2007-01-19T23:59:59.000Z

128

Phase-matched generation of coherent soft and hard X-rays using IR lasers  

DOE Patents (OSTI)

Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

2013-06-11T23:59:59.000Z

129

Astrophysics of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars  

E-Print Network (OSTI)

I summarize the recent advances in our understanding of the Soft Gamma Repeaters: in particular their spin behavior, persistent emission and hyper-Eddington outbursts. The giant flares on 5 March 1979 and 27 August 1998 provide compelling physical evidence for magnetic fields stronger than 10 B_{QED} = 4.4 x 10^{14} G, consistent with the rapid spindown detected in two of these sources. The persistent X-ray emission and variable spindown of the 6-12 s Anomalous X-ray Pulsars are compared and contrasted with those of the SGRs, and the case made for a close connection between the two types of sources. Their collective properties point to the existence of {\\it magnetars}: neutron stars in which a decaying magnetic field (rather than accretion or rotation) is the dominant source of energy for radiative and particle emissions. Observational tests of the magnetar model are outlined, along with current ideas about the trigger of SGR outbursts, new evidence for the trapped fireball model, and the influence of QED processes on X-ray spectra and lightcurves. A critical examination is made of coherent radio emission from bursting strong-field neutron stars. I conclude with an overview of the genetic connection between neutron star magnetism and the violent fluid motions in a collapsing supernova core.

Christopher Thompson

2000-10-02T23:59:59.000Z

130

Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH  

DOE Green Energy (OSTI)

We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

2009-07-15T23:59:59.000Z

131

Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse  

Science Conference Proceedings (OSTI)

Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasma is generated.

Namba, S.; Takiyama, K. [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

2011-11-15T23:59:59.000Z

132

The Next Challenge in X-Ray Science: Control of Resonant Electronic  

NLE Websites -- All DOE Office Websites (Extended Search)

The Next Challenge in X-Ray Science: Control of Resonant Electronic The Next Challenge in X-Ray Science: Control of Resonant Electronic Processes Wednesday, September 11, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Joachim Stöhr, LCLS My talk will give a historic perspective of the revolutionary science that was enabled by the advent of high power sources of coherent electromagnetic radiation and the implications for future scientific opportunities with x-ray free electron lasers (X-FELs). The historical journey starts with the development of radar microwave sources in the 1940s that fueled the development of nuclear magnetic resonance (NMR) techniques which by now have led to 6 Nobel Prizes. The theoretical description of NMR as coherent processes between nuclear states by Rabi and Bloch also provided the theoretical basis for the optical laser and its applications. Over the last

133

Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)  

Science Conference Proceedings (OSTI)

2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

Stafford, D

2009-06-01T23:59:59.000Z

134

Aerosol Imaging with a Soft X-ray Free Electron Laser  

SciTech Connect

Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

Bogan, Michael J.; /SLAC /LLNL, Livermore; Boutet, Sebastien; /SLAC; Chapman, Henry N.; /DESY /Hamburg U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry /LLNL, Livermore; Rohner, Urs; /LLNL, Livermore /TOFWERK AG; Frank, Matthias; Hau-Riege, Stefan P.; /LLNL, Livermore; Bajt, Sasa; /DESY; Woods, Bruce; /LLNL, Livermore; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; /Uppsala U.; Schulz, Joachim; /DESY

2011-08-22T23:59:59.000Z

135

Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation  

Science Conference Proceedings (OSTI)

A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a strongly coupled cluster nanoplasma with several eV was generated.

Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T. [Graduate School of Engineering, Hiroshima University,Kagamiyama 1-4-1, Higashi-Hiroshima, Hiroshima, 739-8527 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, Umemidai 8-1, Kizugawa, Kyoto, 619-0215 (Japan)

2012-07-11T23:59:59.000Z

136

Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources  

DOE Patents (OSTI)

Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

Kublak, G.D.; Richardson, M.C.

1996-11-19T23:59:59.000Z

137

Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources  

DOE Patents (OSTI)

Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

Kublak, Glenn D. (124 Turquoise Way, Livermore, Alameda County, CA 94550); Richardson, Martin C. (CREOL

1996-01-01T23:59:59.000Z

138

Soft x-ray array system with variable filters for the DIII-D tokamak  

Science Conference Proceedings (OSTI)

Recent upgrades to the soft x-ray (SXR) array system on the DIII-D tokamak are described. The system consists of two 32-channel arrays at one toroidal location and three toroidally distributed 12-channel arrays. The 32-channel arrays have been completely rebuilt to allow the switching of SXR filters without breaking vacuum. The 12-channel arrays have had upgrades performed to detectors, view slits, and data acquisition. Absolute extreme ultraviolet (AXUV) photodiodes are used as detectors in all arrays, allowing detection of photons ranging in energy from 2 eV to 10 keV. In the fixed-filter arrays, 127 {mu}m Be filters are used. In the variable-filter arrays, filter wheels are used to switch between five different possible pinhole/filter combinations.

Hollmann, E. M.; Chousal, L.; Hernandez, R. [University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Fisher, R. K.; Jackson, G. L.; Pidcoe, S. V.; Taussig, D. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Lanctot, M. J. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Shankara, J. [Institute for Plasma Research, Bhat, Gandhinagar (India)

2011-11-15T23:59:59.000Z

139

Novel Approaches to Soft X-ray Spectroscopy: Scanning TransmissionX-ray Microscopy and Ambient Pressure X-Ray PhotoelectronSpectroscopy  

Science Conference Proceedings (OSTI)

This workshop focused on novel spectroscopies at Beamlines 11.0.2, 5.3.2 and 9.3.2 at the ALS. The workshop brought together users from a wide range of fields to highlight recent experimental and technical developments both in scanning transmission X-ray spectroscopy (STXM) and ambient pressure photoelectron spectroscopy (APPES). The morning session featured talks on experiments involving new developments at the STXM, while the afternoon session was devoted to those using APXPS. In the morning session, Tolek Tyliszczak discussed the improved detector developments at the STXM, such as an avalanche photodiode detector and fluorescence and electron detection, as well as the continued development of in situ cells for heating, gas flow, and electrochemical cells. Of these, only the avalanche photodiode in combination with a novel multichannel photon-counting system is in routine use in time-resolved studies. Bartel Van Waeyenberge (Ghent University) presented results of magnetic imaging with a time resolution of 70-100 ps combined with a lateral resolution of 20-40 nm performed with the STXM (Beamline 11.0.2). As a complement to the time-domain ''pump-and-probe'' measurements, they developed a frequency-domain ''sine-excitation'' technique in order to study specific eigenmodes of these ferromagnetic patterns with high spatial resolution. This new approach was used to study the gyrotropic vortex motions in micron-sized ferromagnetic patterns. Adam Hitchcock (McMaster University) presented the development, in collaboration with Daniel Guay (INRS, Varennes) and Sherry Zhang, of the apparatus and techniques for applying STXM to in-situ studies of electrochemistry, in particular electrochromism in polyaniline. In addition, substantial progress was reported on a joint project to develop substrates and methods for chemically selective lithography of multilayer polymer systems. Selective patterns, such as that displayed in the figure, can now be written efficiently with the bend magnet STXM on Beamline 5.3.2. Yves Acremann (SSRL) discussed time and spatially resolved X-ray magnetic circular dichroism (XMCD) experiments on spin transfer devices at the STXM (Beamline 11.0.2). These elegant experiments explore time resolved measurements of the magnetization dynamics within a 100 x 150 nm sample influenced by a spin-polarized current. This experiment shows that the magnetization in these magnetic nanostructures are not uniform, as they are influenced by the Oersted field of the charge current needed to generate the spin current. The implementation of a novel multichannel photon counting system in combination with an avalanche photon detector decreased the data-acquisition time by a factor of 10, owing to its ability to resolve the structure of multi bunch mode. Gordon E. Brown, Jr. (Stanford University and SSRL) described ''Applications of STXM to Microbial Bioweathering and Biomineralization''. In the interaction of bacteria with ferrihydrite nanoparticles, microenvironments that were very different than the bulk material were observed, showing that bulk thermodynamics may not be useful for predicting micro phases. Gordon also presented work showing that iron nanoparticles are attracted to the negatively charged bacteria and form a coating that reduces iron oxide minerals. The afternoon session started with presentations by Simon Mun and Hendrik Bluhm, who discussed the current status and the future plans for the two APPES end-stations at the ALS, which are located at Beamlines 9.3.2 and 11.0.2, respectively. In both end-stations, samples can be measured in gaseous environments at pressures of up to several Torr, which makes possible the investigation of numerous phenomena, in particular in the fields of atmospheric and environmental science as well as heterogeneous catalysis. Specific examples of the application of APPES were shown in the following presentations. John Hemminger (University of California, Irvine) reported on APPES investigations at Beamlines 9.3.2 and 11.0.2 of the interaction of alkali halide surfaces with water. The m

Bluhm, Hendrik; Gilles, Mary K.; Mun, Simon B.; Tyliszczak, Tolek

2006-02-01T23:59:59.000Z

140

The role of absorption and reflection in the soft X-ray excess of Active Galactic Nuclei : 1. Preliminary results  

E-Print Network (OSTI)

The 2-10 keV continuum of AGN is well represented by a single power law, generally attributed to a hot comptonizing medium, such as a corona above the accretion disk. At smaller energies the continuum displays an excess with respect to the extrapolation of this power law, called the ``soft X-ray excess". Until now it was attributed, either to reflection of the hard X-ray source by the accretion disk, or to the presence of an additional comptonizing medium. An alternative solution proposed by Gierli\\'nski & Done (2004) is that a single power law represents correctly both the soft and the hard X-ray emission, and the soft X-ray excess is an artefact due to the absorption of the primary power law by a relativistic wind. We examine the advantages and drawbacks of the reflection versus absorption models. We argue that in the absorption hypothesis, the absorbing medium should be in total pressure equilibrium, to constrain the spectral distribution which otherwise would be too strongly variable in time and from one object to the other, as compared to observations. We conclude that some X-ray spectra, in particular those with strong soft X-ray excesses, can be modelled by absorption in the 0.3-10 keV range. However, due to the lack of a complete grid of models and good data extending above 10 keV, we are not able to conclude presently that all objects can be accommodated with such models. These absorption models imply either strong relativistic outflowing winds with mass rates of the order of the Eddington value (or even larger), or quasi-spherical inhomogeneous accretion flows. Only weak excesses can be modelled by reflection, unless the primary continuum is not directly seen. Finally, a reflection model absorbed by a modest relativistic wind could be the best solution to the problem.

Loc Chevallier; Suzy Collin; Anne-Marie Dumont; Bozena Czerny; Martine Mouchet; Anabela C. Gonalves; Ren Goosmann

2005-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO. 9, PAGES 1255-1258, MAY 1, 1999 Measurements of the solar soft x-ray irradiance  

E-Print Network (OSTI)

. Introduction Solar soft x-ray ( energy is deposited into the lower thermosphere at altitudes between values of bandpass integrated energy flux are reported. For the present analysis, the SC#21REFW solar of the solar soft x-ray irradiance from the Student Nitric Oxide Explorer Scott M. Bailey Center

Bailey, Scott

142

Soft x-ray absorption and photoemission spectroscopy study of superoxide KO2 J.-S. Kang,* D. H. Kim, and J. H. Hwang  

E-Print Network (OSTI)

Soft x-ray absorption and photoemission spectroscopy study of superoxide KO2 J.-S. Kang,* D. H. Kim of superoxide KO2 was investigated by employing soft x-ray absorption spectros- copy XAS and core cooling, O2 - molecular bond axes seem to tilt to have a lower crystal monoclinic symme- try. By lowering

Min, Byung Il

143

Soft X-ray emission spectroscopy of liquids and lithium batterymaterials  

SciTech Connect

Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite {pi}-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular orbital and orbital mixing between water molecules upon hydrogen bonding. Apart from the four-hydrogen-bonding structure in water, a structure where one hydrogen bond is broken could be separated and identified. The soft x-ray emission study of methanol showed the existence of ring and chain formations in the liquid phase and the dominating structures are formed of 6 and 8 molecules. Upon mixing of the two liquids, a segregation at the molecular level was found and the formation of new structures, which could explain the unexpected low increase of the entropy.

Augustsson, Andreas

2004-10-27T23:59:59.000Z

144

Design and fabrication of a multi-purpose soft x-ray array diagnostic system for KSTAR  

Science Conference Proceedings (OSTI)

A multi-purpose soft x-ray array diagnostic system was developed for measuring two-dimensional x-ray emissivity profile, electron temperature, Ar impurity transport, and total radiation power. A remotely controlled filter wheel was designed with three different choices of filters. The electron temperature profile can be determined from the ratio of two channels having different thickness of Be layer, and the Ar impurity concentration transport can be determined from a pair of Ar Ross filters (CaF{sub 2} and NaCl thin films). Without any filters, this diagnostic system can also be used as a bolometer.

Lee, Seung Hun; Chai, Kil Byoung; Jang, Siwon; Choe, Wonho [Department of Physics, Korea Advanced Institute of Science and Technology 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ko, Won-Ha; Kim, Junghee; Seo, Dongcheol; Lee, Jongha [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Bogatu, I. N.; Kim, Jin-Soo [FAR-TECH, Inc., 10350 Science Center Drive, Building 14, Suite 150, San Diego, California 92121-1136 (United States)

2012-10-15T23:59:59.000Z

145

Electronic State Interferences in Resonant X-Ray Emission after K-Shell Excitation in HCl  

SciTech Connect

We have measured a series of high-resolution x-ray spectra emitted upon resonant photoexcitation of HCl. The photon energy was tuned across the dissociative 1s{yields}6{sigma}* resonance and the Rydberg states converging to the Cl 1s{sup -1} threshold, and inelastic photon scattering was observed in the region of KL emission lines. Excellent agreement is found between fully ab initio calculated and measured spectra if interferences between different excitation-emission paths are taken into account. The effect of electronic state interferences is enhanced due to dynamical broadening of the 6{sigma}* resonance in HCl.

Kavcic, M.; Zitnik, M.; Bucar, K.; Mihelic, A.; Carniato, S.; Journel, L.; Guillemin, R.; Simon, M. [Jozef Stefan Institute, Post Office Box 3000, SI-1001 Ljubljana (Slovenia); UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France)

2010-09-10T23:59:59.000Z

146

R&D for a Soft X-Ray Free Electron Laser Facility  

Science Conference Proceedings (OSTI)

Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating structure. Demonstration experiments in advanced seeding techniques, such as EEHG, and other optical manipulations to enhance the FEL process are required to reduce technical risk in producing temporally coherent and ultrashort x-ray output using optical seed lasers. Success of EEHG in particular would result in reduced development and cost of laser systems and accelerator hardware for seeded FELs. With a 1.5-2.5 GeV linac, FELs could operate in the VUV-soft x-ray range, where the actual beam energy will be determined by undulator technology; for example, to use the lower energy would require the use of advanced designs for which undulator R&D is needed. Significant reductions in both unit costs and accelerator costs resulting from the lower electron beam energy required to achieve lasing at a particular wavelength could be obtained with undulator development. Characterization of the wakefields of the vacuum chambers in narrow-gap undulators will be needed to minimize risk in ability to deliver close to transform limited pulses. CW superconducting RF technology for an FEL facility with short bunches at MHz rate and up to mA average current will require selection of design choices in cavity frequency and geometry, higher order mode suppression and power dissipation, RF power supply and distribution, accelerating gradient, and cryogenics systems. R&D is needed to define a cost and performance optimum. Developments in laser technology are proceeding at rapid pace, and progress in high-power lasers, harmonic generation, and tunable sources will need to be tracked.

Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Sthr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

2009-06-08T23:59:59.000Z

147

High-resolution bent-crystal spectrometer for the ultra-soft x-ray region  

SciTech Connect

A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda/sub 0/ = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

1988-10-01T23:59:59.000Z

148

High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region  

DOE R&D Accomplishments (OSTI)

A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

1988-10-00T23:59:59.000Z

149

A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies  

SciTech Connect

We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

Szlachetko, J. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bokhoven, J. A. van [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zuerich (Switzerland); Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y. [Department of Physics, University of Fribourg, 1700 Fribourg (Switzerland); Jagodzinski, P. [University of Technology, Kielce (Poland)

2012-10-15T23:59:59.000Z

150

Resonantly photo-pumped nickel-like erbium x-ray laser  

DOE Patents (OSTI)

A resonantly photo-pumped x-ray laser (10) that enhances the gain of several laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32). 3 figs., 1 tab.

Nilsen, J.

1990-03-29T23:59:59.000Z

151

Soft x-ray circular dichroism and scattering using a modulated elliptically polarizing wiggler and double synchronous detection  

Science Conference Proceedings (OSTI)

We have constructed an experimental station (beamline) at the National Synchrotron Light Source to measure circular dichroism (CD) using soft x-rays (250 {le} hv {le} 900 eV) from a time modulated elliptically polarizing wiggler. The polarization of the soft x-ray beam switches periodically between two opposite polarizations, hence permitting the use of phase-sensitive (lock-in) detection. While the wiggler can be modulated at frequencies up to 100 Hz, switching transients limit the actual practical frequency to {approx}25 Hz. With analog detection, switching transients are blocked by a chopper synchronized to the frequency and phase of the wiggler. The CD is obtained from the ratio of the signal recovered at the frequency of polarization modulation, f, to the average beam intensity, which is recovered by synchronous detection at frequency 2f.

Sutherland, J.C.; Polewski, K.; Monteleone, D.C. [and others

1998-01-23T23:59:59.000Z

152

Application of soft x-ray appearance potential spectroscopy to light lanthanides, 4d transition metals, and insulators  

SciTech Connect

Evaporated films of La, Ce, Yb, Y, Ag--Mn(5 percent), KCl, MnF$sub 2$, CsCl and LaF$sub 3$ were studied using the soft x-ray appearance potential spectroscopy (SXAPS) technique. Studies were also made of bulk polycrystalline samples of Y, Zr, Nb, and Mo. The results are discussed in terms of existing SXAPS theories. Several similarities between soft x-ray absorption (SXA) data and the SXAPS results are discussed, and it is shown that the SXA data can aid in the interpretation of SXAPS spectra when using the well-known self-convolution model. In this approximation the absorption coefficient, $alpha$(E), is substituted for the density of states, N(E-E/sub c/) $Yields$ $alpha$(E). For more localized excitations, a convolution of $alpha$(E) with bremsstrahlung isochromat data, based on Wendin's two density of states formalism is used to predict SNAPS results. (auth)

Smith, R. J.

1975-10-01T23:59:59.000Z

153

Isotope and Temperature Effects in Liquid Water Probed by X-RayAbsorption and Resonant X-Ray Emission Spectroscopy  

DOE Green Energy (OSTI)

High-resolution x-ray absorption and emission spectra ofliquid water exhibit a strong isotope effect. Further, the emissionspectra show a splitting of the 1b1 emission line, a weak temperatureeffect, and a pronounced excitation-energy dependence. They can bedescribed as a superposition of two independent contributions. Bycomparing with gasphase, ice, and NaOH/NaOD, we propose that the twocomponents are governed by the initial state hydrogen bondingconfiguration and ultrafast dissociation on the time scale of the O 1score hole decay.

Fuchs, O.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; Zubavichus, Y.; Bar, M.; Maier, F.; Denlinger, J.D.; Heske, C.; Grunze,M.; Umbach, E.

2007-03-10T23:59:59.000Z

154

High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments  

Science Conference Proceedings (OSTI)

Multilayer coated blazed gratings with high groove density are the best candidates for use in high resolution EUV and soft x-ray spectroscopy. Theoretical analysis shows that such a grating can be potentially optimized for high dispersion and spectral resolution in a desired high diffraction order without significant loss of diffraction efficiency. In order to realize this potential, the grating fabrication process should provide a perfect triangular groove profile and an extremely smooth surface of the blazed facets. Here we report on recent progress achieved at the Advanced Light Source (ALS) in fabrication of high quality multilayer coated blazed gratings. The blazed gratings were fabricated using scanning beam interference lithography followed by wet anisotropic etching of silicon. A 200 nm period grating coated with a Mo/Si multilayer composed with 30 bi-layers demonstrated an absolute efficiency of 37.6percent in the 3rd diffraction order at 13.6 nm wavelength. The groove profile of the grating was thoroughly characterized with atomic force microscopy before and after the multilayer deposition. The obtained metrology data were used for simulation of the grating efficiency with the vector electromagnetic PCGrate-6.1 code. The simulations showed that smoothing of the grating profile during the multilayer deposition is the main reason for efficiency losses compared to the theoretical maximum. Investigation of the grating with cross-sectional transmission electron microscopy revealed a complex evolution of the groove profile in the course of the multilayer deposition. Impact of the shadowing and smoothing processes on growth of the multilayer on the surface of the sawtooth substrate is discussed.

Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Goray, Leonid; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

2011-07-26T23:59:59.000Z

155

A Soft X-ray Split and Delay System for LCLS | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Room 108A Brendan Murphy, LCLS In this talk I will describe the development and commissioning of the x-ray split and delay (XRSD) system at LCLS. The XRSD is a two-mirror delay...

156

Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales  

Science Conference Proceedings (OSTI)

The magnetic properties of low dimensional solid state matter is of the utmost interest both scientifically as well as technologically. In addition to the charge of the electron which is the base for current electronics, by taking into account the spin degree of freedom in future spintronics applications open a new avenue. Progress towards a better physical understanding of the mechanism and principles involved as well as potential applications of nanomagnetic devices can only be achieved with advanced analytical tools. Soft X-ray microscopy providing a spatial resolution towards 10nm, a time resolution currently in the sub-ns regime and inherent elemental sensitivity is a very promising technique for that. This article reviews the recent achievements of magnetic soft X-ray microscopy by selected examples of spin torque phenomena, stochastical behavior on the nanoscale and spin dynamics in magnetic nanopatterns. The future potential with regard to addressing fundamental magnetic length and time scales, e.g. imaging fsec spin dynamics at upcoming X-ray sources is pointed out.

Fischer, Peter

2008-08-01T23:59:59.000Z

157

Development of a soft x-ray diffractometer for a wideband multilayer grating with a novel layer structure in the 2-4 keV range  

Science Conference Proceedings (OSTI)

We have been developing a wavelength-dispersive soft x-ray spectrograph covering an energy region of 50-4000 eV to attach to a conventional electron microscope. Observation of soft x-ray emission in the 2-4 keV range needs a multilayer coated grating. In order to evaluate the performance of the optical component in the energy region, a goniometric apparatus has been newly developed and the preliminary performance has been tested using synchrotron radiation.

Imazono, Takashi; Koike, Masato; Kawachi, Tetsuya; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi; Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan); Device Dept., Shimadzu Corp., 1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 (Japan); IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); ECBU, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)

2012-07-11T23:59:59.000Z

158

Mechanical design and analysis of an eight-pole superconducting vector magnet for soft x-ray magnetic dichroism measurements  

Science Conference Proceedings (OSTI)

An eight-pole superconducting magnet is being developed for soft x-ray magnetic dichroism (XMD) experiments at the Advanced Light Source, Lawrence Berkley National Laboratory (LBNL). Eight conical Nb{sub 3}Sn coils with Holmium poles are arranged in octahedral symmetry to form four dipole pairs that provide magnetic fields of up to 5 T in any direction relative to the incoming x-ray beam. The dimensions of the magnet yoke as well as pole taper, diameter, and length were optimized for maximum peak field in the magnet center using the software package TOSCA. The structural analysis of the magnet is performed using ANSYS with the coil properties derived using a numerical homogenization scheme. It is found that the use of orthotropic material properties for the coil has an important influence in the design of the magnet.

Arbelaez, D.; Black, A.; Prestemon, S.O.; Wang, S.; Chen, J.; Arenholz, E.

2010-01-13T23:59:59.000Z

159

Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source  

Science Conference Proceedings (OSTI)

Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

Warwick, T.; Padmore, H. [Lawrence Berkeley National Lab., CA (United States); Ade, H. [North Carolina State Univ., Raleigh, NC (United States); Hitchcock, A.P. [McMaster Univ., Hamilton, Ontario (Canada); Rightor, E.G. [Dow Texas Polymer Center, Freeport, TX (United States); Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States)

1996-08-01T23:59:59.000Z

160

Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory  

Science Conference Proceedings (OSTI)

We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

2012-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator  

Science Conference Proceedings (OSTI)

The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

162

Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications  

Science Conference Proceedings (OSTI)

The evolution of the Mn charge state, chemical composition, and electronic structure of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) cathodes during the catalytic activation of solid oxide fuel cell (SOFC) has been studies using X-ray spectroscopy of as-processed, exposed, and activated dense thin LSMO films. Comparison of O K-edge and Mn L{sub 3,2}-edge X-ray absorption spectra from the different stages of LSMO cathodes revealed that the largest change after the activation occurred in the Mn charge state with little change in the oxygen environment. Core-level X-ray photoemission spectroscopy and Mn L{sub 3} resonant photoemission spectroscopy studies of exposed and as-processed LSMO determined that the SOFC environment (800 C ambient pressure of O{sub 2}) alone results in La deficiency (severest near the surface with Sr doping >0.55) and a stronger Mn{sup 4+} contribution, leading to the increased insulating character of the cathode prior to activation. Meanwhile, O K-edge X-ray absorption measurements support Sr/La enrichment nearer the surface, along with the formation of mixed Sr{sub x}Mn{sub y}O{sub z} and/or passive MnO{sub x} and SrO species.

L Piper; A Preston; S Cho; A DeMasi; J Laverock; K Smith; L Miara; J Davis; S Basu; et al.

2011-12-31T23:59:59.000Z

163

Resonant Auger Decay of Molecules in Intense X-Ray Laser Fields: Light-Induced Strong Nonadiabatic Effects  

Science Conference Proceedings (OSTI)

The resonant Auger process is studied in intense x-ray laser fields. It is shown that the dressing of the initial and decaying states by the field leads to coupled complex potential surfaces which, even for diatomic molecules, possess intersections at which the nonadiabatic couplings are singular. HCl is studied as an explicit showcase example. The exact results differ qualitatively from those without rotations. A wealth of nonadiabatic phenomena is expected in decay processes in intense x-ray fields.

Cederbaum, Lorenz S.; Chiang, Ying-Chih; Demekhin, Philipp V. [Theoretische Chemie, Universitaet Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany); Moiseyev, Nimrod [Schulich Faculty of Chemistry and Minerva Center, Technion--Israel Institute of Technology, Haifa 32000 (Israel)

2011-03-25T23:59:59.000Z

164

FAILED GAMMA-RAY BURSTS: THERMAL ULTRAVIOLET/SOFT X-RAY EMISSION ACCOMPANIED BY PECULIAR AFTERGLOWS  

SciTech Connect

We show that the photospheres of 'failed' gamma-ray bursts (GRBs), whose bulk Lorentz factors are much lower than 100, can be outside of internal shocks. The resulting radiation from the photospheres is thermal and bright in the UV/soft X-ray band. The photospheric emission lasts for about 1000 s with a luminosity about several times 10{sup 46} erg s{sup -1}. These events can be observed by current and future satellites. It is also shown that the afterglows of failed GRBs are peculiar at the early stage, which makes it possible to distinguish failed GRBs from ordinary GRBs and beaming-induced orphan afterglows.

Xu, M.; Huang, Y. F. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Nagataki, S.; Lee, S.-H., E-mail: hyf@nju.edu.cn [Yukawa Institute for Theoretical Physics, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

2012-02-10T23:59:59.000Z

165

High-reflectivity Cr/Sc multilayer condenser for compact soft x-ray microscopy  

Science Conference Proceedings (OSTI)

The condenser is a critical component in compact water-window x-ray microscopes as it influences the exposure time via its efficiency and the resolution via its numerical aperture. Normal-incidence multilayer mirrors can reach large geometrical collection efficiencies and match the numerical aperture of the zone plate but require advanced processing for high total reflectivity. In the present article we demonstrate large-diameter normal-incidence spherical Cr/Sc multilayer condensers with high and uniform reflectivity. Dc-magnetron sputtering was used to deposit 300 bilayers of Cr/Sc with a predetermined d-spacing matching the {lambda}=3.374 nm operating wavelength on spherical substrates. The mirrors show a uniform reflectivity of {approx}3% over the full 58 mm diameter condenser area. With these mirrors an improvement in exposure time by a factor of 10 was achieved, thereby improving the performance of the compact x-ray microscope significantly.

Stollberg, H.; Yulin, S.; Takman, P. A. C.; Hertz, H. M. [Biomedical and X-Ray Physics, Department of Applied Physics, KTH-AlbaNova, 10691 Stockholm (Sweden); Fraunhofer-Institut fur Angewandte Optik und Feinmechanik, Albert-Einstein-Strasse 7, 07745 Jena (Germany); Biomedical and X-Ray Physics, Department of Applied Physics, KTH-AlbaNova, 10691 Stockholm (Sweden)

2006-12-15T23:59:59.000Z

166

SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY  

DOE Green Energy (OSTI)

A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

2010-12-01T23:59:59.000Z

167

Soft X-Ray Microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction  

Science Conference Proceedings (OSTI)

The Helmholtz-Zentrum Berlin (HZB) operates a transmission x-ray microscope (TXM) in the soft x-ray photon energy range with an energy resolution up to E/{Delta}E = 10{sup 4}. An approach to achieve ultrahigh spatial resolution with conventional, standard zone plate optics is to employ higher orders of diffraction of the zone plate objective. In this paper, we demonstrate that 11-nm lines and spaces of a multilayer test structure are clearly resolved by the x-ray microscope using the third order of diffraction of a zone plate objective with 20-nm outermost zone width. The disadvantage of high-order imaging is an about one order of magnitude lower diffraction efficiency of the used zone plates employed in the third order compared to the first order of diffraction. In addition, the measured background signal in the TXM images is no longer negligible. Therefore, we worked on the fabrication of zone plates with sub-20-nm outermost zone width to increase the spatial resolution in the first order of diffraction. A new high-resolution 100-keV e-beam lithography system from VISTEC, which was recently installed at the Helmholtz-Zentrum Berlin, makes these developments possible. Initial results on zone plates with an outermost zone width down to 15 nm exposed with the new e-beam system are presented. Furthermore, the contrast transfer function of the transmission x-ray microscope operating in partial coherence mode is measured by using the first and third diffraction order of the zone plate objective.

Rehbein, S.; Guttmann, P.; Werner, S.; Schneider, G. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Wilhelm-Conrad-Roentgen-Campus, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

2011-09-09T23:59:59.000Z

168

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy  

DOE Green Energy (OSTI)

We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

2009-04-24T23:59:59.000Z

169

Nuclear resonant X-ray spectroscopy of (Mg,Fe)SiO3 orthoenstatites JENNIFER M. JACKSON1,*, EMILY A. HAMECHER1  

E-Print Network (OSTI)

Nuclear resonant X-ray spectroscopy of (Mg,Fe)SiO3 orthoenstatites JENNIFER M. JACKSON1,*, EMILY A, 9700 S. Cass Ave., Argonne, IL 60439, USA Abstract: We present nuclear resonant inelastic X-ray scattering (NRIXS) and synchrotron Mo¨ssbauer spectroscopy (SMS) measurements, both nuclear resonant X

Jackson, Jennifer M.

170

Magnetic order and interfacial coupling in oxide thin films and heterostructures probed with soft x-ray dichroism  

SciTech Connect

The combination of novel magnetic properties induced by reduced dimensionality and strong magnetic interactions across interfaces leads to intriguing new properties in magnetic hetero- and nanostructures not observed in the constituent materials in bulk form. It is the careful optimization of the characteristics of the individual layers as well as the magnetic coupling across the interface that allows us to control the magnetic properties and tailor them for devices, e.g., in information storage and processing technology. Soft x-ray magnetic spectroscopies can make unique contributions to improving our understanding of complex magnetic nanostructures since these techniques provide elemental, valence- and site-symmetry specific information with high sensitivity and tunable probing depth. X-ray magnetic circular dichroism (XMCD) is sensitive to (unidirectional) ferromagnetic order, while x-ray magnetic linear dichroism (XMLD) can also detect (uniaxial) antiferromagnetic order. A crystalline electric field with cubic symmetry induces only a weak angular dependence in XMCD spectra [1] but can cause a very pronounced anisotropy in XMLD spectra [2]. Furthermore, non-magnetic sites with a distorted local cubic symmetry can give rise to an x-ray linear dichroism (XLD). In this presentation, we discuss how to distinguish between the individual contributions to soft x-ray dichroism spectra in order to extract the wealth of information about magnetic thin films, interfaces and hetero- and nanostructures contained in the data [3, 4, 5] We determined the magnetic structure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO)/La{sub 0.7}Sr{sub 0.3}FeO{sub 3} (LSFO) superlattices with 6 unit cell thick sublayers using soft x-ray magnetic dichroism [5]. Circular dichroism was employed to study the characteristics of the ferromagnetic LSMO layer indicating a reduced magnetic ordering temperature of 200 K compared to the bulk value of 360 K. Linear dichroism is used to analyze the antiferromagnetic order in the LSFO layers which persists up to the bulk Neel temperature near 400 K. Our experiments clearly show that when the magnetization of the LSMO layer is aligned with a magnetic field, a torque is created on the Fe moments in the LSFO layer through exchange coupling at the interface realigning the Fe moments as well. Through comparison with theoretical calculations we are able to show that independent of the LSMO magnetization direction in the sample surface plane, the Fe moments are always oriented perpendicular to the Mn moments. This perpendicular alignment is due to the frustrated exchange coupling at the interface and the weak anisotropy in the thin LSFO layer. Revisiting previous XMLD studies of the Co/NiO(001) interface taking the impact of the crystal electric field on the XMLD into account for the first time, we show that NiO(001) exhibits a crystallographic and magnetic domain structure near the surface that is identical to that of the bulk. Upon Co deposition perpendicular coupling of Co and Ni moments is observed [2, 3] that persists even in the presence of uncompensated interface moments. We also measured the asphericity and the energy splitting of the 4f states in EuO thin films [4] - a material with fascinating properties and of technological importance for spintronics applications - using XMLD. Our measurements, which are confirmed by multiplet calculations, show that there is significant 4f anisotropy. This suggests that pinning of the f states by the local environment becomes feasible and can be tuned by external conditions, chemical doping, and strain for use in device applications. Moreover, we will discuss the impact of epitaxial strain on the magnetic properties and XMLD spectra of complex oxide thin films.

Arenholz, Elke; van der Laan, G.

2009-02-01T23:59:59.000Z

171

SOFT X-RAY SPECTROSCOPY OF THE CYGNUS LOOP SUPERNOVA REMNANT  

SciTech Connect

We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 A bandpass with a resolution up to {approx}60 ({lambda}/{Delta}{lambda}). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at {approx}22 A. Another emission feature at {approx}45 A is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

Oakley, Phil [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., 37-582F, Cambridge, MA 02139 (United States)] [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., 37-582F, Cambridge, MA 02139 (United States); McEntaffer, Randall [Department of Physics and Astronomy, Van Allen Hall, University of Iowa, Iowa City, IA 52242 (United States)] [Department of Physics and Astronomy, Van Allen Hall, University of Iowa, Iowa City, IA 52242 (United States); Cash, Webster, E-mail: Oakley@mit.edu [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)] [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

2013-03-20T23:59:59.000Z

172

X-ray Variability of Cygnus X-1 In Its Soft State  

E-Print Network (OSTI)

We reported previously that for Cyg X-1 there is a settling period following the transition from hard to soft state (Cui et al. 1996). During the transiton, The low energy spectrum (below ? 10 keV) varies significantly from observation to observation while the high energy portion changes little. The source reaches nominal soft-state brightness during the settling period. It can be characterized by a soft low-energy spectrum and significant low-frequency 1/f noise and white noise on the power density spectrum (PDS). The low-energy spectrum becomes even softer, and the PDS is completely dominated by the 1/f noise, when the true soft state is reached. In this paper, subsequent RXTE observations of Cyg X-1 in the soft state are examined, and the results confirm our earlier conclusions. Furthermore, we show the results from observations taken during a soft-to-hard transition. As expected, the white noise appears again, and accordingly, the 1/f noise becomes less dominant, similar to the settling period at the end of the hardto-soft transition. The low-frequency 1/f noise has not been observed when Cyg X-1 is in the hard state. Therefore, it seems to be positively correlated with the disk mass accretion rate which is low in the hard state and high in the soft state. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a simple fluctuating corona model (Cui et al. 1996). Here we present more evidence for it.

W. Cui; S. N. Zhang; K. Jahoda; W. Focke; J. Swank; W. A. Heindl; R. E. Rothschild

1996-01-01T23:59:59.000Z

173

X-ray Variability of Cygnus X-1 In Its Soft State  

E-Print Network (OSTI)

We reported previously that for Cyg X-1 there is a settling period following the transition from hard to soft state (astro-ph/9610071). During the transiton, The low energy spectrum (below ~10 keV) varies significantly from observation to observation while the high energy portion changes little. The source reaches nominal soft-state brightness during the settling period. It can be characterized by a soft low-energy spectrum and significant low-frequency 1/f noise and white noise on the power density spectrum (PDS). The low-energy spectrum becomes even softer, and the PDS is completely dominated by the 1/f noise, when the ``true'' soft state is reached. In this paper, subsequent RXTE observations of Cyg X-1 in the soft state are examined, and the results confirm our earlier conclusions. Furthermore, we show the results from observations taken during a soft-to-hard transition. As expected, the white noise appears again, and accordingly, the 1/f noise becomes less dominant, similar to the settling period at the end of the hard-to-soft transition. The low-frequency 1/f noise has not been observed when Cyg X-1 is in the hard state. Therefore, it seems to be positively correlated with the disk mass accretion rate which is low in the hard state and high in the soft state. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a simple ``fluctuating corona'' model (astro-ph/9610071). Here we present more evidence for it.

W. Cui; S. N. Zhang; K. Jahoda; W. Focke; J. Swank; W. A. Heindl; R. E. Rothschild

1996-10-10T23:59:59.000Z

174

X-ray Variability of Cygnus X-1 In Its Soft State  

E-Print Network (OSTI)

We reported previously that for Cyg X-1 there is a settling period following the transition from hard to soft state (astro-ph/9610071). During the transiton, The low energy spectrum (below ~ 10 keV) varies significantly from observation to observation while the high energy portion changes little. The source reaches nominal soft-state brightness during the settling period. It can be characterized by a soft low-energy spectrum and significant low-frequency 1/f noise and white noise on the power density spectrum (PDS). The low-energy spectrum becomes even softer, and the PDS is completely dominated by the 1/f noise, when the ``true'' soft state is reached. In this paper, subsequent RXTE observations of Cyg X-1 in the soft state are examined, and the results confirm our earlier conclusions. Furthermore, we show the results from observations taken during a soft-to-hard transition. As expected, the white noise appears again, and accordingly, the 1/f noise becomes less dominant, similar to the settling period at the...

Cui, W; Jahoda, K; Focke, W B; Swank, J H; Heindl, W A; Rothschild, R E

1996-01-01T23:59:59.000Z

175

Soft X-ray Studies of Pu Electronic Structure: Past Lessons and Future Directions  

Science Conference Proceedings (OSTI)

Photoelectron Spectroscopy (PES) and X-ray Absorption Spectroscopy (XAS, Figure 1) have contributed greatly to our improved understanding of Pu electronic structure. From these and related measurements, the following has been determined: (1) The Pu 5f spin-orbit splitting is large; (2) The number of Pu5f electrons is near 5; and (3) The Pu 5f spin-orbit splitting effect dominates 5f itineracy. Significant questions remain concerning the nature of Pu electronic structure. Perhaps the missing piece of the puzzle is the direct experimental determination of the unoccupied electronic structure using high energy inverse photoelectron spectroscopy or Bremstrahlung Isochromat Spectroscopy (BIS). Past BIS studies of Th and U indicate the feasibility and utility of Pu studies.

Tobin, J G; Yu, S W

2008-02-07T23:59:59.000Z

176

The Next Challenge in X-Ray Science: Control of Resonant Electronic...  

NLE Websites -- All DOE Office Websites (Extended Search)

and the implications for future scientific opportunities with x-ray free electron lasers (X-FELs). The historical journey starts with the development of radar microwave...

177

A compact, sample-in-atmospheric-pressure soft x-ray microscope developed at Pohang Light Source  

Science Conference Proceedings (OSTI)

A full-field transmission soft x-ray microscope (TXM) was developed at the Pohang Light Source. With a 2 mm diameter condenser zone plate and a 40 nm outermost-zone-width objective zone plate, the TXM's achieved spatial resolution is better than 50 nm at the photon energy of 500 eV (wavelength: 2.49 nm). The TXM is portable and mounted in tandem with a 7B1 spectroscopy end station. The sample position is outside the vacuum, allowing for quick sample changes and enhanced in situ experimental capability. In addition, the TXM is pinhole-free and easy to align, having commercial mounts located outside the vacuum components.

Lim, Jun; Shin, Hyun-Joon [Pohang Accelerator Laboratory, POSTECH, San31, Pohang 790-784 (Korea, Republic of); Department of Physics, POSTECH, San31, Pohang 790-784 (Korea, Republic of); Chae, Keun Hwa [Materials Science and Technology Research Division, KIST, Seoul 130-791 (Korea, Republic of); Hwang, Chan-Cuk; Hwang, Han-Na [Pohang Accelerator Laboratory, POSTECH, San31, Pohang 790-784 (Korea, Republic of); Hong, Chung Ki [Department of Physics, POSTECH, San31, Pohang 790-784 (Korea, Republic of)

2010-06-15T23:59:59.000Z

178

Autocorrelation function of the soft X-ray background produced by warm-hot gas in dark halos  

E-Print Network (OSTI)

We calculate the angular two-point autocorrelation function (ACF) of the soft X-ray background (SXRB) produced by the warm-hot intergalactic medium (WHIM) associated with dark halos, motivated primarily by searching for missing baryons and distinguishing different physical processes of the WHIM in dark halos. We employ a purely analytic model for the halo population which is completely determined by the universal density profile and the Press-Schechter mass function. We then adopt a phenomenological approach to nongravitational processes of the WHIM such as preheating and radiative cooling. It shows that the power spectra of the SXRB predicted by three WHIM models, namely, the self-similar model, preheating model and cooling model demonstrate remarkably different signatures in both amplitude and shape, with the peak locations moving from 4X10^4 for the self-similar model to a smaller value of (3-5)X10^3 when nongravitational processes are taken into account. The corresponding ACFs for preheating and cooling models become shallower too as compared with the prediction of the self-similar model. This may permit an effective probe of the physical processes of the WHIM in massive halos in conjunction with the observationally determined power spectrum or ACF of the SXRB from diffuse WHIM. However, a direct comparison of our theoretical predictions with existing data (e.g. the ACF determined from ROSAT observations) is still difficult because of the dominant contribution of AGNs in the soft X-ray sky. We discuss briefly the implication of our results for resolving the missing baryon problem in the local universe.

Xiang-Ping Wu; Yan-Jie Xue

2003-02-21T23:59:59.000Z

179

Soft X-ray Studies of Pu Electronic Structure: Past Lessons and Future Directions  

Science Conference Proceedings (OSTI)

Photoelectron Spectroscopy (PES) and X-ray Absorption Spectroscopy (XAS) have contributed greatly to our improved understanding of Pu electronic structure. From these and related measurements, the following has been determined. 1. The Pu 5f spin-orbit splitting is large. 2. The number of Pu 5f electrons is near 5. 3. The Pu 5f spin-orbit splitting effect dominates 5f itinerancy. Significant questions remain concerning the nature of Pu electronic structure. Perhaps the missing piece of the puzzle is the direct experimental determination of the unoccupied electronic structure using high energy inverse photoelectron spectroscopy or Bremsstrahlung Isochromat Spectroscopy (BIS). Past BIS studies of Th and U indicate the feasibility and utility of Pu studies. To this end, a new BIS capability has been developed in our laboratory. Electron stimulated emission of photons has been carried out using the XES-350 monochromator and detector system. Some of our preliminary results are shown, using an electron excitation beam energy of 3000 eV. (authors)

Tobin, J.G.; Yu, S.W. [LLNL, Livermore, CA, 94550 (United States)

2008-07-01T23:59:59.000Z

180

An experimental apparatus for diffraction-limites soft x-ray nanofocusing  

Science Conference Proceedings (OSTI)

Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

2011-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fatigue expectations in a molybdenum/silicon multilayer under pulsed soft X-ray radiation  

Science Conference Proceedings (OSTI)

The temperature rise in a Mo/a-Si multilayer x-ray reflective film due to radiation absorption is modeled for the first condenser mirror in a projection lithography system such as the one designed by the Advanced Microtechnology Program at LLNL. The radiation load is pulsed at 1000 Hz with a time average intensity of 500mW/cm{sup 2}. This intensity is the expected maximum on the first condenser mirror. The temperature rise is calculated using the integral transform technique. The film is assumed to have the thermal properties of its poorly conducting substrate, yielding a more conservative (higher) temperature estimate. The surface temperature rise is found to range between 35.6{degrees}C and 76.3{degrees}C. The stress due to this rise is greatest in the molybdenum film and ranges between 73MPa and 166MPa compressive. This fluctuating stress level, however, is believed to be insufficient, by a factor of five or so, to cause fatigue failure of the film.

Weber, F.J.; Kassner, M.E. [Oregon State Univ., Corvallis, OR (United States); Stearns, D.G. [Lawrence Livermore National Lab., CA (United States)

1995-01-19T23:59:59.000Z

182

A new method to derive electronegativity from resonant inelastic x-ray scattering  

SciTech Connect

Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p{sup -1}LUMO{sup 1} electronic states reached after Cl 1s{yields} LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p{sub z} atomic orbital contributing to the Cl 2p{sub 3/2} molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

Carniato, S.; Journel, L.; Guillemin, R.; Piancastelli, M. N.; Simon, M. [UPMC Univ Paris 06, UMR7614, Laboratoire de Chimie Physique-Matiere et Rayonnement, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); CNRS, LCPMR (UMR 7614), 11 rue Pierre et Marie Curie, 75231 Parix Cedex 05 (France); Stolte, W. C. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4009 (United States); Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas, Nevada, 89154-4003 (United States); Lindle, D. W. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4009 (United States)

2012-10-14T23:59:59.000Z

183

Resonant Inelastic X-ray Scattering of Rare-Earth and CopperSystems  

Science Conference Proceedings (OSTI)

Rare earths and copper systems were studied using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The use of monochromased synchotron radiation and improved energy resolution for RIXS made possible to obtain valuable information on the electronic structure in 4f, 5f and 3d systems. Experimental results for rare-earths (Ho, Gd, Cm, U, Np, Pu) were analyzed by atomic multiplet theory based on the Hartree-Fock calculations. The inelastic scattering structures in RIXS spectra at 5d edge of actinides found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248-curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248 curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge indicate the reduction of U(VI), NP(V) and Pu(VI) to U(IV), Np(IV) and Pu(IV) by presence of iron ions. This thesis is also addressed to the study of changes in the electronic structure of copper films during interaction with synthetic groundwater solutions. The surface modifications induced by chemical reactions of oxidized 100 Angstrom Cu films with CL{sup -}, SO{sub 4}{sup 2-} and HCO{sub 3}{sup -} ions in aqueous solutions with various concentrations were studied in-situ using XAS. It was shown that the pH value, the concentration of Cl{sup -} ion and presence of HC{sub 3}{sup -} ion in the solutions strongly affect the speed of the corrosion reaction. The Cu 2p RIXS was used to distinguish between the species present on the copper surface while in contact with groundwater solution.

Kvashnina, Kristina

2007-07-11T23:59:59.000Z

184

Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales  

E-Print Network (OSTI)

of current third generation sources where due to themagnet source at a third generation X-ray synchrotron such

Fischer, Peter

2008-01-01T23:59:59.000Z

185

Measuring Feedback Using the Intergalactic Medium State and Evolution Inferred from the Soft X-ray Background  

E-Print Network (OSTI)

We explore the intergalactic medium (IGM) as a potential source of the unresolved soft X-ray background (XRB) and the feasibility to extract the IGM state and evolution from XRB observations. We build two analytical models, the continuum field model and the halo model, to calculate the IGM XRB mean flux, angular auto correlation and cross correlation with galaxies. Our results suggest that the IGM may contribute a significant fraction to the unresolved soft XRB flux and correlations. We calibrated non-Gaussian errors estimated against our $512^3$ moving mesh hydro simulation and estimate that the ROSAT all sky survey plus Sloan galaxy photometric redshift survey would allow a $\\sim 10%$ accuracy in the IGM XRB-galaxy cross correlation power spectrum measurement for $800small scales, non-gravitational heating, e.g. feedback, dominates over gravity and leaves unique signatures in the IGM XRB, which allows a comparable accuracy in the measurement of the amount of non-gravitational heating and the length scales where non-gravitational energy balances gravity.

Pengjie Zhang; Ue-Li Pen

2002-02-06T23:59:59.000Z

186

Demonstration of an 8.85 nm Gain-Saturated Table-Top Soft X-Ray Laser and Lasing down to 7.4 nm  

Science Conference Proceedings (OSTI)

We report the efficient generation of a gain-saturated 8.85 nm wavelength table-top soft x-ray laser operating at 1 Hz repetition rate and the observation of lasing at wavelengths as short as 7.36 nm in lanthanide ions.

Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

187

Resonant Auger decay of the core-excited C{sup *}O molecule in intense x-ray laser fields  

SciTech Connect

The dynamics of the resonant Auger (RA) process of the core-excited C*O(1s{sup -1}{pi}*,v{sub r}=0) molecule in an intense x-ray laser field is studied theoretically. The theoretical approach includes the analog of the conical intersections of the complex potential energy surfaces of the ground and 'dressed' resonant states due to intense x-ray pulses, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the same final ionic states coherently, as well as the direct photoionization of the resonance state itself. The light-induced nonadiabatic effect of the analog of the conical intersections of the resulting complex potential energy surfaces gives rise to strong coupling between the electronic, vibrational, and rotational degrees of freedom of the diatomic CO molecule. The interplay of the direct photoionization of the ground state and of the decay of the resonance increases dramatically with the field intensity. The coherent population of a final ionic state via both the direct photoionization and the resonant Auger decay channels induces strong interference effects with distinct patterns in the RA electron spectra. The individual impact of these physical processes on the total electron yield and on the CO{sup +}(A {sup 2}{Pi}) electron spectrum are demonstrated.

Demekhin, Philipp V.; Chiang, Ying-Chih; Cederbaum, Lorenz S. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

2011-09-15T23:59:59.000Z

188

Orbital Parameters for the Soft X-ray Transient 4U 1543-47: Evidence for a Black Hole  

E-Print Network (OSTI)

(shortened) Spectroscopic observations of the soft X-ray transient 4U 1543-47 reveal a radial velocity curve with a period of P=1.123 +/- 0.008 days and a semi-amplitude of K_2 = 124 +/- 4 km/sec. The mass function is f(M) = 0.22 +/- 0.02 solar masses. We derive a distance of d = 9.1 +/-1.1 kpc if the secondary is on the main sequence. The V and I light curves exhibit two waves per orbital cycle with amplitudes of about 0.08 mag. We modeled the light curves as ellipsoidal variations in the secondary star and derive extreme inclination limits of 20 1. However, there are systematic effects in the data that the model does not account for, so the above constraints should be treated with caution. We argue that the secondary star is still on the main sequence and if the secondary star has a mass near the main sequence values for early A-stars (2.3 solar masses), then the best fits for the 3 sigma inclination range (24 solar masses) imply a primary mass in the range 2.7 solar masses. Thus the mass of the compact object in 4U 1543-47 is likely to be in excess of approximately 3 solar masses and we conclude 4U 1543-47 most likely contains a black hole.

Jerome A. Orosz; Raj K. Jain; Charles D. Bailyn; Jeffrey E. McClintock; Ronald A. Remillard

1997-12-01T23:59:59.000Z

189

IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS  

SciTech Connect

Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia)

2012-08-10T23:59:59.000Z

190

Lithium production on a low-mass secondary in a black hole soft X-ray transient  

E-Print Network (OSTI)

We examine production of Li on the surface of a low-mass secondary in a black hole soft X-ray transient (BHSXT) through the spallation of CNO nuclei by neutrons which are ejected from a hot (> 10 MeV) advection-dominated accretion flow (ADAF) around the black hole. Using updated binary parameters, cross sections of neutron-induced spallation reactions, and mass accretion rates in ADAF derived from the spectrum fitting of multi-wavelength observations of quiescent BHSXTs, we obtain the equilibrium abundances of Li by equating the production rate of Li and the mass transfer rate through accretion to the black hole. The resulting abundances are found to be in good agreement with the observed values in seven BHSXTs. We note that the abundances vary in a timescale longer than a few months in our model. Moreover, the isotopic ratio Li6/Li7 is calculated to be about 0.7--0.8 on the secondaries, which is much higher than the ratio measured in meteorites. Detection of such a high value is favorable to the production of Li via spallation and the existence of a hot accretion flow, rather than an accretion disk corona system in quiescent BHSXT.

Shin-ichiro Fujimoto; Ryuichi Matsuba; Kenzo Arai

2007-10-10T23:59:59.000Z

191

Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses  

Science Conference Proceedings (OSTI)

Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole.

Biggs, Jason D.; Zhang Yu; Healion, Daniel; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

2012-05-07T23:59:59.000Z

192

Two-Dimensional Stimulated Resonance Raman Spectroscopy of Molecules with Broadband X-ray Pulses  

E-Print Network (OSTI)

Expressions for the two-dimensional Stimulated x-ray Raman Spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (FWHM ~14.2eV, 181 as) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core hole.

Jason D. Biggs; Yu Zhang; Daniel Healion; Shaul Mukamel

2012-04-26T23:59:59.000Z

193

Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources  

E-Print Network (OSTI)

132] J. Arthur. Status of the LCLS x-ray FEL program. Reviewelectron lasers(such as LCLS at Stanford[132]) are expected

Aquila, Andrew Lee

2009-01-01T23:59:59.000Z

194

End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy  

SciTech Connect

We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Kishimizu, Yusuke; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

2012-12-15T23:59:59.000Z

195

AUTOMATED SOLAR FLARE STATISTICS IN SOFT X-RAYS OVER 37 YEARS OF GOES OBSERVATIONS: THE INVARIANCE OF SELF-ORGANIZED CRITICALITY DURING THREE SOLAR CYCLES  

SciTech Connect

We analyzed the soft X-ray light curves from the Geostationary Operational Environmental Satellites over the last 37 years (1975-2011) and measured with an automated flare detection algorithm over 300,000 solar flare events (amounting to Almost-Equal-To 5 times higher sensitivity than the NOAA flare catalog). We find a power-law slope of {alpha}{sub F} = 1.98 {+-} 0.11 for the (background-subtracted) soft X-ray peak fluxes that is invariant through three solar cycles and agrees with the theoretical prediction {alpha}{sub F} = 2.0 of the fractal-diffusive self-organized criticality (FD-SOC) model. For the soft X-ray flare rise times, we find a power-law slope of {alpha}{sub T} = 2.02 {+-} 0.04 during solar cycle minima years, which is also consistent with the prediction {alpha}{sub T} = 2.0 of the FD-SOC model. During solar cycle maxima years, the power-law slope is steeper in the range of {alpha}{sub T} Almost-Equal-To 2.0-5.0, which can be modeled by a solar-cycle-dependent flare pile-up bias effect. These results corroborate the FD-SOC model, which predicts a power-law slope of {alpha}{sub E} = 1.5 for flare energies and thus rules out significant nanoflare heating. While the FD-SOC model predicts the probability distribution functions of spatio-temporal scaling laws of nonlinear energy dissipation processes, additional physical models are needed to derive the scaling laws between the geometric SOC parameters and the observed emissivity in different wavelength regimes, as we derive here for soft X-ray emission. The FD-SOC model also yields statistical probabilities for solar flare forecasting.

Aschwanden, Markus J.; Freeland, Samuel L., E-mail: aschwanden@lmsal.com [Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Org. ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2012-08-01T23:59:59.000Z

196

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

197

X-ray resonant magnetic scattering study of magnetic stripe domains in a-GdFe thin films  

SciTech Connect

X-ray resonant magnetic scattering (XRMS) has been used to investigate the structure of magnetic stripe domain patterns in thin amorphous GdFe films. Under the influence of a perpendicular magnetic field, the scattered intensity displays a smooth transition from a structure factor of correlated stripes to the form factor of isolated domains. We derive a quite general expression that relates the total scattered intensity of XRMS to the absolute value of the magnetization. Furthermore, we compare our results for the domain period with domain theory. We obtain good agreement for prealigned stripes, but disorder tends to lead to an overestimation of the period measured with XRMS.

Miguel, J.; Peters, J. F.; Toulemonde, O. M.; Goedkoop, J. B. [Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, 1018 XE, Amsterdam (Netherlands); Dhesi, S. S.; Brookes, N. B. [European Synchrotron Radiation Facility, ESRF, Boite Postale 220, F-38043 Grenoble Cedex (France)

2006-09-01T23:59:59.000Z

198

Polarization Dependence of L- and M-Edge Resonant Inelastic X-Ray Scattering in Transition-Metal Compounds  

SciTech Connect

The resonant inelastic x-ray scattering (RIXS) cross section at the L and M edges of transition-metal compounds is studied using an effective scattering operator. The intensities of the elastic peak and for spin-flip processes are derived. It is shown how the polarization dependence can be used to select transitions. Comparisons are made with experiment. A detailed analysis of the polarization and angular dependence of L- and M-edge RIXS for divalent copper compounds, such as the high-T{sub c} superconductors, is given.

van Veenendaal, Michel (ANL/NIU)

2010-12-03T23:59:59.000Z

199

Determining the electron-phonon coupling strength from Resonant Inelastic X-ray Scattering at transition metal L-edges  

SciTech Connect

We show that high-resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis indicates how the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross-section. An alternative manner to extract the coupling is to use the one- and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole lifetime. This allows the determination of the e-p coupling on an absolute energy scale.

Ament, L.J.P.; van Veenendaal, M.; van den Brink, J. (Leiden); (NIU); (IFW Dresden)

2012-04-02T23:59:59.000Z

200

Fe K-edge X-ray resonant magnetic scattering from Ba(Fe1?xCox)2As2 superconductors  

SciTech Connect

We present an X-ray resonant magnetic scattering study at the Fe-K absorption edge of the BaFe2As2 compound. The energy spectrum of the resonant scattering, together with our calculation using the full-potential linear-augmented plane wave method with a local density functional suggests that the observed resonant scattering arises from electric dipole (E1) transitions. We discuss the role of Fe K-edge X-ray resonant magnetic scattering in understanding the relationship between the structure and the antiferromagnetic transition in the doped Ba(Fe1?xCox)2As2 superconductors.

Kim, Min Gyu; Kreyssig, Andreas; Lee, Yongbin; McQueeney, Robert J.; Harmon, Bruce N.; Goldman, Alan I.

2012-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

X-ray lithography source  

SciTech Connect

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

202

X-ray lithography source  

DOE Patents (OSTI)

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

203

Dissecting X-Ray Raman Resonances Using Four-Wave Mixing  

SciTech Connect

The stimulated x-ray Raman signal has been calculated for the amino acid cysteine using broadband (FWHM ?14.2eV, 128 as) pulses tuned to the nitrogen K-edge. Peaks correspond to those valence excited states and reveal electronic Frank-Condon overlaps between canonical valence orbitals and relaxed orbitals in the presence of the core hole. The coupling between excited states with valence- and core-holes is further explored using a coherent, wave-vector matched photon echo technique, where it is possible to eliminate stimulated emission and excited-state absorption by taking the waiting time to be longer the lifetime of the core hole (? 7:1 fs for nitrogen).

Biggs, Jason D.; Zhang, Yu; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

2013-03-13T23:59:59.000Z

204

Soft x-ray microanalysis and microscopy: A unique probe of the organic chemistry of heterogeneous solids  

SciTech Connect

STXM and C-NEXAFS (carbon near edge absorption micro-spectroscopy) microanalysis were used to analysis the microchemistry of cokes and highly carbonaceous materials. The issue of molecular orientation is addressed by using the intrinsic polarization of the x-ray beam at X1A beamline at NSLS.

Cody, G.D.; Botto, R.E. [Argonne National Lab., IL (United States); Ade, H. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Wirick, S. [SUNY at Stony Brook, NY (United States). Dept. of Physics; Davis, A.; Mitchell, G. [Pennsylvania State Univ., University Park, PA (United States). Coal and Organic Petrology Labs.

1995-08-01T23:59:59.000Z

205

Observation of coupled vortex gyrations by 70-ps-time and 20-nm-space- resolved full-field magnetic transmission soft x-ray microscopy  

SciTech Connect

We employed time-and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni{sub 80}Fe{sub 20}) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators.

Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Im, Mi-Young; Fischer, Peter; Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido; Kim, Sang-Koog

2010-09-01T23:59:59.000Z

206

Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm  

Science Conference Proceedings (OSTI)

We have demonstrated the efficient generation of sub-9-nm-wavelength picosecond laser pulses of microjoule energy at 1-Hz repetition rate with a tabletop laser. Gain-saturated lasing was obtained at =8.85 nm in nickel-like lanthanum ions excited by collisional electron-impact excitation in a precreated plasma column heated by a picosecond optical laser pulse of 4-J energy. Furthermore, isoelectronic scaling along the lanthanide series resulted in lasing at wavelengths as short as =7.36 nm. Simulations show that the collisionally broadened atomic transitions in these dense plasmas can support the amplification of subpicosecond soft-x-ray laser pulses.

Alessi, David [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Liu, Yanwei [University of California, Berkeley & LBNL; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

2011-01-01T23:59:59.000Z

207

Reply to Comment on"Isotope and Temperature Effects in Liquid Water Probed by X-ray Absorption and Resonant X-ray Emission Spectroscopy"  

Science Conference Proceedings (OSTI)

In Ref. [1], we present and analyze experimental high resolution x-ray emission spectra (XES) of liquid water which exhibit a splitting of the 1b1 line into two components. We also suggest a qualitative model to explain the experimental spectra which, even though tentative (as clearly stated in the summary of Ref. [1]), is able to explain ALL available experimental data. In the preceding Comment, Pettersson et al. [3]claim that a spectrum with two similarly sharp 1b1 features both from a dissociated product (d2) and from the intact molecule (d1) would be"unphysical and unsubstantiated" since"the path connecting initial and final structure" is not taken into account. In the meantime, we have collected new data [2], which further support and strengthen our model.

Heske, C.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; Zubavichus, Y.; Bar, M.; Maier, F.; Denlinger, J. D.; Fuchs, O.; Grunze, M.; Umbach, E.

2008-05-14T23:59:59.000Z

208

Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods  

Science Conference Proceedings (OSTI)

The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

Loo Jr., Billy W.

2000-06-09T23:59:59.000Z

209

Extended Field of View Soft X-Ray Fourier Transform Holography: Toward Imaging Ultrafast Evolution in a Single Shot  

Science Conference Proceedings (OSTI)

Panoramic full-field imaging is demonstrated by applying spatial multiplexing to Fourier transform holography. Multiple object and reference waves extend the effective field of view for lensless imaging without compromising the spatial resolution. In this way, local regions of interest distributed throughout a sample can be simultaneously imaged with high spatial resolution. A method is proposed for capturing multiple ultrafast images of a sample with a single x-ray pulse.

Schlotter, W.F.; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL; Luening, J.; /Paris, Lab Chim. Quantique /SOLEIL, Saint-Aubin /BESSY, Berlin; Rick, R.; Chen, K.; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL; Scherz, A.; /SLAC, SSRL; Eisebitt, S.; Guenther, C.M.; Eberhardt, W.; /BESSY, Berlin; Hellwig, O.; /Hitachi Global Stor. Tech., San Jose; Stohr, J.; /SLAC, SSRL

2009-04-29T23:59:59.000Z

210

Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies  

SciTech Connect

We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei [Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Hiraoka, Koichi [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Kojima, Kenichi [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Hyogo 679-5148 (Japan); Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke [NIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Oguchi, Tamio [ISIR, Osaka University, Ibaraki 567-0047 (Japan); Taniguchi, Masaki [Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan)

2011-09-15T23:59:59.000Z

211

Resonant X-Ray Diffraction Study of an Unusually Large Phase Coexistance in Smectic Liquid-Crystal Films  

Science Conference Proceedings (OSTI)

The recent discovery of the new smectic-C{sub d6}* (SmC{sub d6}*) phase [S. Wang et al. Phys. Rev. Lett. 104 027801 (2010)] also revealed the existence of a noisy region in the temperature window between the SmC{sub d6}* phase and the smectic-C{sub d4}* (SmC{sub d4}*) phase. Characterized by multiple resonant peaks spanning a wide region in Q{sub Z}, the corresponding structure of this temperature window has been a mystery. In this Letter, through a careful resonant x-ray diffraction study and simulations of the diffraction spectra, we show that this region is in fact an unusually large coexistence region of the SmC{sub d6}* phase and the SmC{sub d4}* phase. The structure of the noisy region is found to be a heterogeneous mixture of local SmC{sub d6}* and SmC{sub d4}* orders on the sub-{micro}m scale.

Pan L.; Pindak R.; Barois, P.; Liu, Z.Q.; McCoy, B.K. & Hyang, C.C.

2012-01-19T23:59:59.000Z

212

Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography  

Science Conference Proceedings (OSTI)

In order to understand the correlation between coal structure and physical property of coal, samples with different coal structures were collected from the Late Permian period coal seams in the Laochang area, Yunnan Province, China. A set of experiments ... Keywords: Adsorption capacities, Coal structure, Nuclear magnetic resonance (NMR), Seepage capacities, X-ray computed tomography (X-CT)

Song Li; Dazhen Tang; Hao Xu; Zi Yang

2012-11-01T23:59:59.000Z

213

Ionized Ultraviolet and Soft-X-ray Absorptions in the Low Redshift Active Galactic Nucleus PG1126-041  

E-Print Network (OSTI)

We present here the analysis of ultraviolet spectra from IUE and an X-ray spectrum from ROSAT PSPC observations of the X-ray weak, far-infrared loud AGN, PG 1126-041 (Mrk 1298). The first UV spectra taken in June 1992, simultaneously with ROSAT, show strong absorption lines of NV, CIV and SiIV, extending over a velocity range from -1000 to -5000 km/s with respect to the corresponding line centre. Our analysis shows that the Broad Emission Line Region (BELR) is, at least partially, covered by the material causing these absorption lines. In the IUE spectrum taken in Jan. 1995, the continuum was a factor of two brighter and the UV absorption lines are found to be considerably weaker than in 1992, but only little variation in the emission line fluxes is found. With UV spectral indices of A_{uv} \\simeq 1.82 and 1.46 for the 1992 and 1995 data, the far UV spectrum is steep. Based on the emission line ratios and the broad band spectral energy distribution, we argue that the steepness of the UV spectrum is unlikely t...

Wang, T G; Wamsteker, W; Yuan, W; Wang, J X

1999-01-01T23:59:59.000Z

214

**TITLE** ASP Conference Series, Vol. **VOLUME**, **PUBLICATION YEAR** **EDITORS** The autocorrelation function of the soft X-ray background  

E-Print Network (OSTI)

Abstract. The first positive detection of the X-ray background fluctuations at small angular scales is reported. ROSAT PSPC archive pointed observations are used to measure fluctuations at scales of 0. ? 03 ?0. ? 4. The pointings have been selected from an area free from galactic contamination. At separations below ? 0. ? 1 clusters of galaxies become a substantial source of the background fluctuations. The autocorrelation function of the fluctuations in the power law approximation has a slope of ? 1 for all the data but is substantially flatter (with slope of ? 0.7) when pointings containing bright clusters are removed. At separations 0. ? 3 ? 0. ? 4 where the ACF estimates based on the ROSAT pointings and All-Sky Survey are available, both data sets give consistent results. 1.

Andrzej M. Soltan; Michael J. Freyberg

2000-01-01T23:59:59.000Z

215

VLBI OBSERVATION OF MICROQUASAR CYG X-3 DURING AN X-RAY STATE TRANSITION FROM SOFT TO HARD IN THE 2007 MAY-JUNE FLARE  

SciTech Connect

We present a radio observation of microquasar Cyg X-3 during an X-ray state transition from ultrasoft to hard state in the 2007 May-June flare using the VLBI Exploration of Radio Astrometry at 22 GHz. During the transition, a short-lived mini-flare of {approx}< 3 hr was detected prior to the major flare. In such a transition, a jet ejection is believed to occur, but there have been no direct observations to support it. An analysis of Gaussian fits to the observed visibility amplitudes shows a time variation of the source axis, or a structural change, during the mini-flare. Our model fits, together with other multiwavelength observations in the radio, soft, and hard X-rays, and the shock-in-jet models for other flaring activities at GHz wavebands, suggest a high possibility of synchrotron flares during the mini-flare, indicative of a predominant contribution from jet activity. Therefore, the mini-flare with an associated structural change is indicative of a jet ejection event in the state transition from ultrasoft to hard state.

Kim, Jeong-Sook; Kim, Sang Joon [School of Space Science, Kyunghee University, Seocheon-dong, Giheung-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Soon-Wook [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Kurayama, Tomoharu [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Honma, Mareki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sasao, Tetsuo, E-mail: evony@kasi.re.kr, E-mail: skim@kasi.re.kr [Yaeyama Star Club, Ookawa, Ishigaki, Okinawa 904-0022 (Japan)

2013-07-20T23:59:59.000Z

216

Comparison of the Radially Produced Electric-Field Shear Effects Analyzed from End-Loss Current and Central-Cell Soft X-Ray Data  

Science Conference Proceedings (OSTI)

Significant effects of sheared transverse electric fields in plasmas on both turbulent fluctuations and drift waves are experimentally demonstrated with improvement in plasma confinement for the first time in the tandem mirror GAMMA 10. Here, electron-cyclotron heatings (ECH) for ion-confining potential formation are applied in association with a significant rise in the absolute value of the central-cell potential and the resulting formation of a strong shear of electric fields of the order of 10 kV/m2 in the radial direction of the plasma column (dEr/dr). The central-cell line density increases during ECH in association with decreasing fluctuations. Various fluctuation diagnostics, in particular, the frequency analyses of end-loss ion currents and central soft x-ray brightness, show the consistent features. This encourages the usefulness of potentials and radial electric-field shear for confinement improvements.

Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Yoshida, M. [Plasma Research Centre, University of Tsukuba (Japan); Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan)

2005-01-15T23:59:59.000Z

217

Spectral linewidth of a Ne-like Ar capillary discharge soft x-ray laser and its dependence on amplification beyond gain-saturation  

Science Conference Proceedings (OSTI)

We report the measurement of the linewidth and temporal coherence of a = 46.9 nm neon-like argon capillary discharge soft x-ray laser and its variation with plasma column length. A wavefront division interferometer was used to resolve the 3p 1S0-3s 1P1 laser line, resulting in a measured relative linewidths of / = 3-4 10 -5. The measurements do not observe saturation re-broadening as this clearly dominantly Doppler-broadened inhomogeneous line is amplified beyond the intensity corresponding to gain saturation. Model simulations indicate that this is the result of comparatively small collisional broadening that homogenizes the line profile to practically eliminate inhomogeneous saturation re-broadening. Collisional re-distribution is computed to only play a minor role in homogenizing the line profile.

Urbanski, Lukasz [Colorado State University, Fort Collins; Marconi, Mario [Colorado State University, Fort Collins; Meng, L. M. [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Guilbaud, O. [Universite Paris Sud, Orsay, France; Klisnick, Annie [Universite Paris Sud, Orsay, France; Rocca, Jorge [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

218

Improvements and recent performance of a double-crystal monochromator for a soft x-ray undulator at the Photon Factory  

Science Conference Proceedings (OSTI)

A cooling system for the first crystal of a double-crystal monochromator for a 60-period soft x-ray undulator at the Photon Factory is newly designed and installed. In order to keep smooth movements of the original mechanism in a high-vacuum chamber, heat pipes and a liquid-metal bath are utilized. A fear for melting of an InSb crystal and the instability caused by warming of mechanisms have vanished and significantly improved energy resolution of 5000--8000 is achieved by Si crystals for high photon flux of about 10{sup 11} photons/s in a beam size of 3{times}3 mm{sup 2} at a sample position with the cooling system.

Kitajima, Y.; Takata, Y.; Toyoshima, A.; Maezawa, H. (Photon Factory, National Laboratory for High Energy Physics, Oho 1-1, Tsukuba, Ibaraki 305 (Japan))

1992-01-01T23:59:59.000Z

219

Photo-Induced Spin-State Conversion in Solvated Transition Metal Complexes Probed via Time-Resolved Soft X-ray Spectroscopy  

SciTech Connect

Solution-phase photoinduced low-spin to high-spin conversion in the FeII polypyridyl complex [Fe(tren(py)3)]2+ (where tren(py)3 is tris(2-pyridylmethyliminoethyl)amine) has been studied via picosecond soft X-ray spectroscopy. Following 1A1 --> 1MLCT (metal-to-ligand charge transfer) excitation at 560 nm, changes in the iron L2- and L3-edges were observed concomitant with formation of the transient high-spin 5T2 state. Charge-transfer multiplet calculations coupled with data acquired on low-spin and high-spin model complexes revealed a reduction in ligand field splitting of 1 eV in the high-spin state relative to the singlet ground state. A significant reduction in orbital overlap between the central Fe-3d and the ligand N-2p orbitals was directly observed, consistent with the expected ca. 0.2 Angstrom increase in Fe-N bond length upon formation of the high-spin state. The overall occupancy of the Fe-3d orbitals remains constant upon spin crossover, suggesting that the reduction in sigma-donation is compensated by significant attenuation of pi-back-bonding in the metal-ligand interactions. These results demonstrate the feasibility and unique potential of time-resolved soft X-ray absorption spectroscopy to study ultrafast reactions in the liquid phase by directly probing the valence orbitals of first-row metals as well as lighter elements during the course of photochemical transformations.

Huse, Nils; Kim, Tae Kyu; Jamula, Lindsey; McCusker, James K.; de Groot, Frank M. F.; Schoenlein, Robert W.

2010-04-30T23:59:59.000Z

220

Experimental and Theoretical Comparison of the O K-Edge Non-Resonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO4  

Science Conference Proceedings (OSTI)

Accurate X-ray absorption spectra (XAS) of first row atoms, e.g. O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation effects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO41- and provide methodology for obtaining trustworthy and quantitative data on non-conducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by non-resonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO41-, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Time dependent density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t2 molecular orbitals that result from Re 5d and O 2p covalent mixing in Td symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time-dependent density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO4 may serve as a well-defined O K-edge energy and intensity standard for future O K edge XAS studies.

Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, T.; Wilkerson, Marianne P.; Wolfsberg, Laura E.

2010-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Resonant soft X-ray emission spectroscopy of vanadium oxides and related compounds  

E-Print Network (OSTI)

lithium-ion battery comprises a lithium containing transition metal oxide (TMO) cathode,ion battery using a Li- TMO cathode [95] (e.g. LiCoO 2 ), lithium

Schmitt, Thorsten

2004-01-01T23:59:59.000Z

222

Analysis of Order Formation in Block Copolymer Thin Films Using Resonant Soft X-Ray Scattering  

E-Print Network (OSTI)

Radiation Laboratory (SSRL). The beamline was configuredwere performed at the SSRL. Both are national userassistance at the SSRL. Table 1: Block Copolymer

Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara, Nitash P.; Segalman, Rachel A.

2006-01-01T23:59:59.000Z

223

A Large-Area Cross-Correlation Study of High Galactic Latutude Soft and Hard X-ray Skies  

E-Print Network (OSTI)

We have made cross-correlation analyses of (2 -- 15 keV) HEAO A2 and 1 keV ROSAT PSPC All-Sky Survey maps over a selected area ($\\sim$ 4000 deg$^2$) with high galactic latitude (b>40 deg). We have calculated the correlations for the bright ROSAT sources and residual background separately with the \\HEAO A2 TOT (2 -- 10 keV) and HRD (5 -- 15 keV) maps. The amplitude of the bright \\ROSAT source -- A2 CCFs are consistent with expectations from model populations of AGNs and clusters of galaxies, which emit in both bands. However, the residual ROSAT background -- A2 CCFs amplitude at zero degree are about a factor of three larger than that expected from the model populations. Our soft-hard zero-lag and angular CCF results have been compared with the 1 keV auto-correlation function (ACF) found by Soltan et al. (1995) for the same ROSAT data. Their significant angular CCF at a scale of ACF has a hot plasma spectrum with kT\\sim 2 keV, contribution of this component is consistent with both our zero-lag CCF in excess of the population synthesis model prediction and the upper-limit to the angular CCF at \\theta \\sim 2.5 deg. On the other hand, if this component has a lower temperature or a steeper spectrum, a major modification to the population synthesis model and/or an introduction of new classes would be needed.

Takamitsu Miyaji; Guenther Hasinger; Roland Egger; Joachim Truemper; Michael J. Freyberg

1996-01-30T23:59:59.000Z

224

BURST FLUENCE DISTRIBUTIONS OF SOFT GAMMA REPEATERS 1806-20 AND 1900+14 IN THE ROSSI X-RAY TIMING EXPLORER PCA ERA  

SciTech Connect

We study the fluence distributions of over 3040 bursts from SGR 1806-20 and over 1963 bursts from SGR 1900+14 using the complete set of observations available from the Rossi X-Ray Timing Explorer/Proportional Counter Array through 2011 March. Cumulative event distributions are presented for both sources and are fitted with single and broken power laws as well as an exponential cutoff. The distributions are best fitted by a broken power law with exponential cutoff; however the statistical significance of the cutoff is not high and the upper portion of the broken power law can be explained as the expected number of false bursts due to random noise fluctuations. Event distributions are also examined in high and low burst rate regimes and power-law indices are found to be consistent, independent of the burst rate. The contribution function of the event fluence is calculated. This distribution shows that the energy released in the soft gamma repeater (SGR) bursts is dominated by the most powerful events for both sources. The power-law nature of these distributions combined with the dominant energy dissipation of the system occurring in the large, less frequent bursts is indicative of a self-organized critical system, as suggested by Gogus et al. in 1999.

Prieskorn, Zachary; Kaaret, Philip, E-mail: prieskorn@psu.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

2012-08-10T23:59:59.000Z

225

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

226

Strengthened lithium for x-ray blast windows  

Science Conference Proceedings (OSTI)

Lithium's high x-ray transparency makes it an attractive material for windows intended to protect soft x-ray diagnostics in high energy density experiments. Pure lithium is soft and weak, but lithium mixed with lithium hydride powder becomes harder and stronger, in principle without any additional x-ray absorption. A comparison with the standard material for x-ray windows, beryllium, suggests that lithium or lithium strengthened by lithium hydride may well be an excellent option for such windows.

Pereira, N. R. [Ecopulse Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Imam, M. A. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2008-05-15T23:59:59.000Z

227

Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system  

SciTech Connect

Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.

Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

2013-02-15T23:59:59.000Z

228

Direct Characterization of Kerogen by X-ray and Solid-State [superscript 13]C Nuclear Magnetic Resonance Methods  

Science Conference Proceedings (OSTI)

A combination of solid-state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS) and sulfur X-ray absorption near edge structure (S-XANES) techniques are used to characterize organic oxygen, nitrogen, and sulfur species and carbon chemical/structural features in kerogens. The kerogens studied represent a wide range of organic matter types and maturities. A van Krevelen plot based on elemental H/C data and XPS derived O/C data shows the well established pattern for type I, type II, and type III kerogens. The anticipated relationship between the Rock-Eval hydrogen index and H/C is independent of organic matter type. Carbon structural and lattice parameters are derived from solid-state {sup 13}C NMR analysis. As expected, the amount of aromatic carbon, measured by both {sup 13}C NMR and XPS, increases with decreasing H/C. The correlation between aromatic carbon and Rock-Eval T{sub max}, an indicator of maturity, is linear for types II and IIIC kerogens, but each organic matter type follows a different relationship. The average aliphatic carbon chain length (Cn) decreases with an increasing amount of aromatic carbon in a similar manner across all organic matter types. The fraction of aromatic carbons with attachments (FAA) decreases, while the average number of aromatic carbons per cluster (C) increases with an increasing amount of aromatic carbon. FAA values range from 0.2 to 0.4, and C values range from 12 to 20 indicating that kerogens possess on average 2- to 5-ring aromatic carbon units that are highly substituted. There is basic agreement between XPS and {sup 13}C NMR results for the amount and speciation of organic oxygen. XPS results show that the amount of carbon oxygen single bonded species increases and carbonyl-carboxyl species decrease with an increasing amount of aromatic carbon. Patterns for the relative abundances of nitrogen and sulfur species exist regardless of the large differences in the total amount of organic nitrogen and sulfur seen in the kerogens. XPS and S-XANES results indicate that the relative level of aromatic sulfur increases with an increasing amount of aromatic carbon for all kerogens. XPS show that the majority of nitrogen exists as pyrrolic forms in comparable relative abundances in all kerogens studied. The direct characterization results using X-ray and NMR methods for nitrogen, sulfur, oxygen, and carbon chemical structures provide a basis for developing both specific and general average chemical structural models for different organic matter type kerogens.

Kelemen, S. R.; Afeworki, M.; Gorbaty, M.L.; Sansone, M.; Kwiatek, P.J.; Walters, C.C.; Freund, H.; Siskin, M.; Bence, A.E.; Curry, D.J.; Solum, M.; Pugmire, R.J.; Vandenbroucke, M.; Leblond, M.; Behar, F. (ExxonMobil); (ExxonMobil); (IFP); (Utah)

2008-06-12T23:59:59.000Z

229

Direct Characterization of Kerogen By X-Ray And Solid-State **13C Nuclear Magnetic Resonance Methods  

DOE Green Energy (OSTI)

A combination of solid-state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS) and sulfur X-ray absorption near edge structure (S-XANES) techniques are used to characterize organic oxygen, nitrogen, and sulfur species and carbon chemical/structural features in kerogens. The kerogens studied represent a wide range of organic matter types and maturities. A van Krevelen plot based on elemental H/C data and XPS derived O/C data shows the well established pattern for type I, type II, and type III kerogens. The anticipated relationship between the Rock-Eval hydrogen index and H/C is independent of organic matter type. Carbon structural and lattice parameters are derived from solid-state 13C NMR analysis. As expected, the amount of aromatic carbon, measured by both {sup 13}C NMR and XPS, increases with decreasing H/C. The correlation between aromatic carbon and Rock-Eval Tmax, an indicator of maturity, is linear for types II and IIIC kerogens, but each organic matter type follows a different relationship. The average aliphatic carbon chain length (Cn') decreases with an increasing amount of aromatic carbon in a similar manner across all organic matter types. The fraction of aromatic carbons with attachments (FAA) decreases, while the average number of aromatic carbons per cluster (C) increases with an increasing amount of aromatic carbon. FAA values range from 0.2 to 0.4, and C values range from 12 to 20 indicating that kerogens possess on average 2- to 5-ring aromatic carbon units that are highly substituted. There is basic agreement between XPS and 13C NMR results for the amount and speciation of organic oxygen. XPS results show that the amount of carbon oxygen single bonded species increases and carbonyl-carboxyl species decrease with an increasing amount of aromatic carbon. Patterns for the relative abundances of nitrogen and sulfur species exist regardless of the large differences in the total amount of organic nitrogen and sulfur seen in the kerogens. XPS and S-XANES results indicate that the relative level of aromatic sulfur increases with an increasing amount of aromatic carbon for all kerogens. XPS show that the majority of nitrogen exists as pyrrolic forms in comparable relative abundances in all kerogens studied. The direct characterization results using X-ray and NMR methods for nitrogen, sulfur, oxygen, and carbon chemical structures provide a basis for developing both specific and general average chemical structural models for different organic matter type kerogens.

Keleman, S.R.; Afeworki, M.; Gorbaty, M.L.; Sansone, M.; Kwiatek, P.J.; Walters, C.C.; Freund, H.; Siskin, M.; Bence, A.E.; Curry, D.J.; Solum, M.; Pugmire, R.J.; Vandenbroucke, M.; Leblond, M.; Behar, F.

2007-07-09T23:59:59.000Z

230

Formation of an SEI on a LiMn(2)O(4) Cathode during Room Temperature Charge-Discharge Cycling Studied by Soft X-Ray Absorption Spectroscopy at the Fluorine K-edge  

DOE Green Energy (OSTI)

The solid electrolyte interface (SEI) formation on the surface of LiMn{sub 2}O{sub 4} electrodes during room temperature charge-discharge cycling was studied using soft X-ray absorption spectroscopy at the Fluorine (F) K-edge. LiMn{sub 2}O{sub 4} electrodes without any binder were prepared by electrostatic spray deposition to eliminate the signal originating from the PVDF binder in the F K-edge X-ray absorption spectra. The F K-edge absorption spectra show that the SEI layer forms at a very early stage of cycling. SEI growth takes place during discharge. In addition, LiF formation is accelerated if the discharge step follows a charge step. The F K-edge absorption spectra suggest that the major component of the SEI is LiF.

Chung, K.Y.; Yang, X.; Yoon, W.-S.; Kim, K.-B.; Cho, B.-W.

2011-11-01T23:59:59.000Z

231

Characterization of a chiral phase in an achiral bent-core liquid crystal by polarization studies of resonant x-ray forbidden reflections  

Science Conference Proceedings (OSTI)

The chiral antiferroelectric structure of an achiral bent-core liquid crystal is characterized by resonant x-ray scattering at chlorine K edge. The 'forbidden' reflections resulting from the glide or screw symmetry elements are restored by the anisotropy of the tensor structure factor, which we calculate for two possible structural models. A careful analysis of the polarization states of the restored 'forbidden' reflections enables an unambiguous identification of a chiral structure (i.e., the so-called anticlinic, antiferroelectric smectic-C or Sm-C{sub A}P{sub A}) coexisting with the achiral synclinic antiferroelectric smectic-C or Sm-C{sub S}P{sub A}. The method proves to be quite powerful as it identifies the chiral structure within coexisting phases despite an imperfect orientation of the sample. The volume fraction of the chiral phase and the distribution of alignment are extracted from the data.

Ponsinet, V.; Pindak, R.; Barois, P.; Pan, L.; Wang, S.; Huang, C.C.; Wang, S.T.; Baumeister, U. and Weissflog, W.

2011-07-15T23:59:59.000Z

232

X-Ray Topography  

Science Conference Proceedings (OSTI)

Sep 17, 2009 ... Stress Mapping Analysis by Ray Tracing (SMART): A New Technique ... technique of synchrotron X-ray topography, where a grid made out of...

233

Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU  

Science Conference Proceedings (OSTI)

We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2012-02-15T23:59:59.000Z

234

X-ray flashes and X-ray rich gamma ray bursts. Memorie della Societa Astronomica Italiana  

E-Print Network (OSTI)

Abstract. X-ray flashes are detected in the Wide Field Cameras on BeppoSAX in the energy range 2-25 keV as bright X-ray sources lasting of the order of minutes, but remaining undetected in the Gamma Ray Bursts Monitor on BeppoSAX. They have properties very similar to the x-ray counterparts of GRBs and account for some of the Fast X-ray Transient events seen in almost every x-ray satellite. We review their X-ray properties and show that x-ray flashes are in fact very soft, x-ray rich, untriggered gamma ray bursts, in which the peak energy in 2-10 keV x-rays could be up to a factor of 100 larger than the peak energy in the 50-300 keV gamma ray range. The frequency is ? 100 yr ?1. 1 Fast X-ray Transients/High-latitude X-ray Transients Fast X-ray Transients have been observed with many x-ray satellites. In particular they are seen with x-ray instruments that scan the entire sky on a regular basis. Such events are detected in one sky scan and disappeared in the next, typically limiting the duration to be longer than a minute and shorter than a few hours. For this reason they are called Fast Transients. The first transients

John Heise; Jean In t Z; Peter M. Woods

2001-01-01T23:59:59.000Z

235

Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm.sup.-1.

Hagelstein, Peter L. (Livermore, CA)

1987-01-01T23:59:59.000Z

236

Soft x-ray laser using pumping of 3p and 4p levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4 to 50 cm/sup -1/.

Hagelstein, P.L.

1985-07-05T23:59:59.000Z

237

Spectroscopic differentiation between O-atom vacancy and divacancy defects, respectively, in TiO2 and HfO2 by X-ray absorption spectroscopy  

Science Conference Proceedings (OSTI)

Defect state features have been detected in second derivative O K edge spectra for thin films of nano-crystalline TiO"2 and HfO"2. Based on soft X-ray photoelectron band edge spectra, and the occurrence of occupied band edge 4f states in Gd(Sc,Ti)O"3, ... Keywords: Bound resonance states, Divacancies, Immobile and mobile vacancies, Monovacancies, Pre-edge regime, X-ray absorption spectroscopy

G. Lucovsky; K. -B. Chung; J. -W. Kim; D. Norlund

2009-07-01T23:59:59.000Z

238

X-ray generator  

DOE Patents (OSTI)

Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

Dawson, John M. (Los Angeles, CA)

1976-01-01T23:59:59.000Z

239

HARD X-RAY AND MICROWAVE OBSERVATIONS OF MICROFLARES Jiong Qiu,1, 2  

E-Print Network (OSTI)

HARD X-RAY AND MICROWAVE OBSERVATIONS OF MICROFLARES Jiong Qiu,1, 2 Chang Liu,2 Dale E. Gary,2 Gelu, we study solar microflares using the coordinated hard X-ray and microwave observations obtained the time derivative of soft X-rays and 14­20 keV hard X-rays, i.e., the Neupert effect, in about one

240

New Directions in X-ray Scattering - SSRL  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with chemically and radioactively contaminated ground-water. Ability to probe weak scattering from single crystals as function of energy (resonance) and x-ray...

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Soft x-ray laser using pumping of 3P and 4P levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus for producing coherent radiation at, for example, energies of 40 to 189 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like rare gases or N, O, F, or C gases, with associated laser transition gains of 20 to 50 cm/sup -1/.

Hagelstein, P.

1982-03-26T23:59:59.000Z

242

Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions  

DOE Patents (OSTI)

X-ray laser method and apparatus are disclosed for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm[sup [minus]1]. 8 figs.

Hagelstein, P.L.

1987-04-21T23:59:59.000Z

243

Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands  

SciTech Connect

We report on measurements of the diffraction efficiency of 200-nm-period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh aspect-ratio silicon grating bars and thus combine the advantages of blazed x-ray reflection gratings with those of more conventional x-ray transmission gratings. Prototype gratings with maximum depths of 3.2 and 6 {mu}m were investigated at two different blaze angles. In these initial CAT gratings the grating bars are monolithically connected to a cross support mesh that only leaves less than half of the grating area unobstructed. Because of our initial fabrication approach, the support mesh bars feature a strongly trapezoidal cross section that leads to varying CAT grating depths and partial absorption of diffracted orders. While theory predicts broadband absolute diffraction efficiencies as high as 60% for ideal CAT gratings without a support mesh, experimental results show efficiencies in the range of {approx}50-100% of theoretical predictions when taking the effects of the support mesh into account. Future minimization of the support mesh therefore promises broadband CAT grating absolute diffraction efficiencies of 50% or higher.

Heilmann, Ralf K.; Ahn, Minseung; Bruccoleri, Alex; Chang, Chih-Hao; Gullikson, Eric M.; Mukherjee, Pran; Schattenburg, Mark L.

2011-04-01T23:59:59.000Z

244

Gamma Radiation & X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

245

Soft X-ray Spectroscopy of C60/Copper Phthalocyanine/MoO3 Interfaces: Role of Reduced MoO3 on Energetic Band Alignment and Improved Performance  

Science Conference Proceedings (OSTI)

The interfacial electronic structure of C{sub 60}/copper phthalocyanine (CuPc)/molybdenum trioxide (MoO{sub 3}) thin films grown in situ on indium tin oxide (ITO) substrates has been studied using synchrotron radiation-excited photoelectron spectroscopy in an attempt to understand the influence of oxide interlayers on the performance of small molecule organic photovoltaic devices. The MoO{sub 3} layer on ITO is found to significantly increase the work function of the substrate and induces large interface dipoles and band bending at the CuPc/MoO{sub 3} interface. The large band bending confirms the formation of an internal potential that assists hole extraction from the CuPc layer to the electrode. The electronic structure of the MoO{sub 3} layer on ITO was also examined using various soft X-ray spectroscopies to probe the conductive nature of the MoO{sub 3} thin film.

S Cho; L Piper; A DeMasi; A Preston; K Smith; K Chauhan; R Hatton; T Jones

2011-12-31T23:59:59.000Z

246

Compton backscattered collimated x-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

247

Compton backscattered collmated X-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

248

Resonant soft x-ray reflectivity of organic thin films Cheng Wang, Tohru Araki, and Benjamin Watts  

E-Print Network (OSTI)

were acquired at Beam- line X10B of the National Synchrotron Light Source NSLS , Brookhaven National, and 14.2 keV recorded at X10B, NSLS and fits solid line for 270, 280, and 283.4 eV. FIG. 7. Reflectance at X10B, NSLS--circle and fit solid line . The inset shows a Fourier analysis of the data. Note

Beichner, Robert J.

249

Electronic structure of multiferroic BiFeO3 by resonant soft-x-ray emission spectroscopy  

E-Print Network (OSTI)

3 thin film is low electrical resistivity, which affects thetemperature. The low electrical resistivity of BiFeO 3 thinneeds the high electrical resistivity in order to obtain

Higuchi, T.

2008-01-01T23:59:59.000Z

250

X-ray microtomography  

SciTech Connect

In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

Landis, Eric N., E-mail: landis@maine.edu [Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469 (United States); Keane, Denis T., E-mail: dtkeane@northwestern.edu [Department of Materials Science and Engineering, Northwestern University (United States); DND-CAT, Advanced Photon Source, Argonne National Laboratory, Bldg. 432/A002, 9700 S. Cass Ave, Argonne, Illinois 60439 (United States)

2010-12-15T23:59:59.000Z

251

Soft Modes, Resonances and Quantum Transport  

E-Print Network (OSTI)

Effects of the propagation of particles, which have a finite life-time and an according width in their mass spectrum, are discussed in the context of transport description. First, the importance of coherence effects (Landau-Pomeranchuk-Migdal effect) on production and absorption of field quanta in non-equilibrium dense matter is considered. It is shown that classical diffusion and Langevin results correspond to re-summation of certain field-theory diagrams formulated in terms of full non-equilibrium Green's functions. Then the general properties of broad resonances in dense and hot systems are discussed in the framework of a self-consistent and conserving Phi-derivable method of Baym at the examples of the rho-meson in hadronic matter and the pion in dilute nuclear matter. Further we address the problem of a transport description that properly accounts for the damping width of the particles. The Phi-derivable method generalized to the real-time contour provides a self-consistent and conserving kinetic scheme. We derive a generalized expression for the non-equilibrium kinetic entropy flow, which includes corrections from fluctuations and mass-width effects. In special cases an H-theorem is proved. Memory effects in collision terms give contributions to the kinetic entropy flow that in the Fermi-liquid case recover the famous bosonic type T^3 ln T correction to the specific heat of liquid Helium-3. At the example of the pion-condensate phase transition in dense nuclear matter we demonstrate important part played by the width effects within the quantum transport.

Yu. B. Ivanov; J. Knoll; H. van Hees; D. N. Voskresensky

2000-05-31T23:59:59.000Z

252

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

1995-01-01T23:59:59.000Z

253

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

1995-01-17T23:59:59.000Z

254

AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. II. AN ALL-SKY CATALOG OF DIFFUSE O VII AND O VIII EMISSION INTENSITIES  

Science Conference Proceedings (OSTI)

We present an all-sky catalog of diffuse O VII and O VIII line intensities, extracted from archival XMM-Newton observations. This catalog supersedes our previous catalog, which covered the sky between l = 120 Degree-Sign and l = 240 Degree-Sign . We attempted to reduce the contamination from near-Earth solar wind charge exchange (SWCX) emission by excluding times of high solar wind proton flux from the data. Without this filtering, we were able to extract measurements from 1868 observations. With this filtering, nearly half of the observations became unusable, and only 1003 observations yielded measurements. The O VII and O VIII intensities are typically {approx}2-11 and {approx}10 L.U. were observed. We compared our measurements with models of the heliospheric and geocoronal SWCX. The heliospheric SWCX intensity is expected to vary with ecliptic latitude and solar cycle. We found that the observed oxygen intensities generally decrease from solar maximum to solar minimum, both at high ecliptic latitudes (which is as expected) and at low ecliptic latitudes (which is not as expected). The geocoronal SWCX intensity is expected to depend on the solar wind proton flux incident on the Earth and on the sightline's path through the magnetosheath. The intensity variations seen in directions that have been observed multiple times are in poor agreement with the predictions of a geocoronal SWCX model. We found that the oxygen lines account for {approx}40%-50% of the 3/4 keV X-ray background that is not due to unresolved active galactic nuclei, in good agreement with a previous measurement. However, we found that this fraction is not easily explainable by a combination of SWCX emission and emission from hot plasma in the halo. We also examined the correlations between the oxygen intensities and Galactic longitude and latitude. We found that the intensities tend to increase with longitude toward the inner Galaxy, possibly due to an increase in the supernova rate in that direction or the presence of a halo of accreted material centered on the Galactic center. The variation of intensity with Galactic latitude differs in different octants of the sky, and cannot be explained by a single simple plane-parallel or constant-intensity halo model.

Henley, David B.; Shelton, Robin L., E-mail: dbh@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)

2012-10-15T23:59:59.000Z

255

R-MATRIX ELECTRON-IMPACT EXCITATION OF Fe{sup 13+} AND ITS APPLICATION TO THE SOFT X-RAY AND EXTREME-ULTRAVIOLET SPECTROSCOPY OF CORONA-LIKE PLASMAS  

SciTech Connect

Accurate excitation parameters are required to interpret the ultraviolet and X-ray spectra of Fe{sup 13+}. In this work, we use the AUTOSTRUCTURE code to describe the atomic structure of Fe{sup 13+}. The 197 lowest-lying fine-structure levels of the 3s{sup x} 3p{sup y} 3d{sup z} (x + y + z = 3), 3s {sup 2}4l, and 3s3p4{l_brace}s, p, and d{r_brace} configurations are included along with further correlation configurations: 3s3p4f, 3p{sup x} 3d{sup y} 4l (x + y = 2), 3l4l'4l'', and 3l3l'5l''. The resultant level energies, lifetimes of excited states, and oscillator strengths of transitions between these levels are assessed by comparison with available experimental data and previous calculations. Electron-impact excitation data among these lowest-lying levels are generated using the intermediate-coupling frame transformation R-matrix method. We assess the present results by comparisons with laboratory measurement for the excitation to the metastable level 3s {sup 2}3p {sup 2} P {sup o} {sub 3/2} and with available close-coupling calculations for other excitations. Using these data and a collisional-radiative model, we have analyzed soft X-ray and extreme-ultraviolet spectra from space satellite observations of a stellar corona and of solar flares, as well as measurements from an electron beam ion trap. We assess the contribution from Fe{sup 13+} emission lines in the solar and Procyon corona observations, and find and identify new lines in the X-ray region observed in the solar and Procyon coronae. The laboratory measurements also confirm that weak lines (218.177 A and 224.354 A) of Fe{sup 13+} contribute to the observed intensities in solar observations. The polarization effect due to the directional monoenergetic distribution of the electron energy has been taken into account in comparison with the laboratory measurements. Electron density diagnostics for the astrophysical plasma sources have been performed using the updated data so as to investigate their sensitivity to the atomic data source.

Liang, G. Y.; Badnell, N. R. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Crespo Lopez-Urrutia, J. R.; Baumann, T. M.; Tawara, H.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Del Zanna, G. [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Storey, P. J., E-mail: guiyun.liang@strath.ac.u [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

256

Fluctuation X-Ray Scattering  

SciTech Connect

The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

2013-01-25T23:59:59.000Z

257

X-ray Security Screening  

Science Conference Proceedings (OSTI)

National and International Standards for X-ray Security Screening Applications. Summary: The primary objective of this ...

2013-03-13T23:59:59.000Z

258

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

259

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

260

Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength  

SciTech Connect

Highly efficient and compact pulsed power supply system for a capillary discharge soft x-ray laser (SXRL) has been developed. The system consists of a 2.2 {mu}F two-stage LC inversion generator, a 2:54 step-up transformer, a 3 nF water capacitor, and a discharge section with a few tens of centimeter length capillary. Adoption of the pulsed transformer in combination with the LC inversion generator enables us to use only one gap switch in the circuit for charging the water capacitor up to about 0.5 MV. Furthermore, step-up ratio of a water capacitor voltage to a LC inversion generator initial charging voltage is about 40 with energy transfer efficiency of about 50%. It also leads to good reproducibility of a capillary discharge which is necessary for lasing a SXRL stably. For the study of the possibility of lasing a SXRL at shorter wavelength in a small laboratory scale, high-density and high-temperature plasma column suitable for the laser can be generated relatively easily with this system.

Sakai, Yusuke; Takahashi, Shnsuke; Komatsu, Takanori; Song, Inho; Watanabe, Masato; Hotta, Eiki [Department of Energy Sciences, Tokyo Institute of Technology, 4259-J2-35, Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

2010-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

262

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

263

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

264

Scanning x-ray microscope  

Science Conference Proceedings (OSTI)

A scanning x-ray microscope is described including: an x-ray source capable of emitting a beam of x-rays; a collimator positioned to receive the beam of x-rays and to collimate this beam, a focusing cone means to focus the beam of x-rays, directed by the collimator, onto a focal plane, a specimen mount for supporting a specimen in the focal plane to receive the focused beam of x-rays, and x-ray beam scanning means to relatively move the specimen and the focusing cone means and collimator to scan the focused x-ray beam across the specimen. A detector is disposed adjacent the specimen to detect flourescent photons emitted by the specimen upon exposure to the focused beam of x-rays to provide an electrical output representative of this detection. Means are included for displaying and/or recording the information provided by the output from the detector, as are means for providing information to the recording and/or display means representative of the scan rate and position of the focused x-ray beam relative to the specimen whereby the recording and/or display means can correlate the information received to record and/or display quantitive and distributive information as to the quantity and distribution of elements detected in the specimen. Preferably there is provided an x-ray beam modulation means upstream, relative to the direction of emission of the xray beam, of the focusing cone means.

Wang, C.

1982-02-23T23:59:59.000Z

265

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01T23:59:59.000Z

266

Synchrotron X-ray Measurements  

Science Conference Proceedings (OSTI)

... fine structure (EXAFS) spectroscopy; (3) variable kinetic energy X-ray ... advanced materials is critical to the development and optimization of products ...

2012-10-04T23:59:59.000Z

267

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

268

Angular Correlations of the X-Ray Background and Clustering of Extragalactic X-Ray Sources  

E-Print Network (OSTI)

The information content of the autocorrelation function (ACF) of intensity fluctuations of the X-ray background (XRB) is analyzed. The tight upper limits set by ROSAT deep survey data on the ACF at arcmin scales imply strong constraints on clustering properties of X-ray sources at cosmological distances and on their contribution to the soft XRB. If quasars have a clustering radius r_0=12-20 Mpc (H_0=50), and their two point correlation function, is constant in comoving coordinates as indicated by optical data, they cannot make up more 40-50% of the soft XRB (the maximum contribution may reach 80% in the case of stable clustering, epsilon=0). Active Star-forming (ASF) galaxies clustered like normal galaxies, with r_0=10-12 Mpc can yield up to 20% or up to 40% of the soft XRB for epsilon=-1.2 or epsilon=0, respectively. The ACF on degree scales essentially reflects the clustering properties of local sources and is proportional to their volume emissivity. The upper limits on scales of a few degrees imply that hard X-ray selected AGNs have r_06 deg, if real, may be due to AGNs with r_0=20 Mpc; the contribution from clusters of galaxies with r_0~50 Mpc is a factor 2 lower.

L. Danese; L. Toffolatti; A. Franceschini; J. M. Martin-Mirones; G. De Zotti

1993-02-24T23:59:59.000Z

269

Cryogenic, high-resolution x-ray detector with high count rate capability  

DOE Patents (OSTI)

A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

Frank, Matthias (Oakland, CA); Mears, Carl A. (Windsor, CA); Labov, Simon E. (Berkeley, CA); Hiller, Larry J. (Livermore, CA); Barfknecht, Andrew T. (Menlo Park, CA)

2003-03-04T23:59:59.000Z

270

Hard X-ray Variability of AGN  

E-Print Network (OSTI)

Aims: Active Galactic Nuclei are known to be variable throughout the electromagnetic spectrum. An energy domain poorly studied in this respect is the hard X-ray range above 20 keV. Methods: The first 9 months of the Swift/BAT all-sky survey are used to study the 14 - 195 keV variability of the 44 brightest AGN. The sources have been selected due to their detection significance of >10 sigma. We tested the variability using a maximum likelihood estimator and by analysing the structure function. Results: Probing different time scales, it appears that the absorbed AGN are more variable than the unabsorbed ones. The same applies for the comparison of Seyfert 2 and Seyfert 1 objects. As expected the blazars show stronger variability. 15% of the non-blazar AGN show variability of >20% compared to the average flux on time scales of 20 days, and 30% show at least 10% flux variation. All the non-blazar AGN which show strong variability are low-luminosity objects with L(14-195 keV) < 1E44 erg/sec. Conclusions: Concerning the variability pattern, there is a tendency of unabsorbed or type 1 galaxies being less variable than the absorbed or type 2 objects at hardest X-rays. A more solid anti-correlation is found between variability and luminosity, which has been previously observed in soft X-rays, in the UV, and in the optical domain.

V. Beckmann; S. D. Barthelmy; T. J. -L. Courvoisier; N. Gehrels; S. Soldi; J. Tueller; G. Wendt

2007-09-14T23:59:59.000Z

271

Formation and destruction of jets in X-ray binaries  

E-Print Network (OSTI)

Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state and history of the source. In particular, black-hole XRBs emit compact, steady radio jets when they are in the so-called hard state, the jets become eruptive as the sources move toward the soft state, disappear in the soft state, and re-appear when the sources return to the hard state. On the other hand, jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Significant phenomenology has been accumulated so far regarding the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. Our aim is to investigate whether the phenomenology regarding the X-ray emission on one hand and the jet appearance and disappearance on the other can be put...

Kylafis, N D; Kazanas, D; Christodoulou, D M

2011-01-01T23:59:59.000Z

272

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

273

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

274

X-ray Transition Energies Search Form  

Science Conference Proceedings (OSTI)

[skip navigation] X-ray Transition Energies Database Main Page Search for X-ray transition energies by element(s), transition ...

275

Vanadium-pumped titanium x-ray laser  

DOE Patents (OSTI)

A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

Nilsen, Joseph (Livermore, CA)

1992-01-01T23:59:59.000Z

276

Vanadium-pumped titanium x-ray laser  

DOE Patents (OSTI)

A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions.

Nilsen, J.

1991-02-13T23:59:59.000Z

277

X-ray Time Lags in TeV Blazars  

E-Print Network (OSTI)

We use Monte Carlo/Fokker-Planck simulations to study the X-ray time lags. Our results show that soft lags will be observed as long as the decay of the flare is dominated by radiative cooling, even when acceleration and cooling timescales are similar. Hard lags can be produced in presence of a competitive achromatic particle energy loss mechanism if the acceleration process operates on a timescale such that particles are slowly moved towards higher energy while the flare evolves. In this type of scenario, the {\\gamma} -ray/X-ray quadratic relation is also reproduced.

Chen, Xuhui; Liang, Edison; Bttcher, Markus

2011-01-01T23:59:59.000Z

278

Compact x-ray source and panel  

SciTech Connect

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

279

A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy  

E-Print Network (OSTI)

E. Berman and Z. Yin, at the NSLS as well as Dr. H. Tompkinswhich was taken at the NSLS beamline X-25 shows a cleanwith soft X-rays. At the NSLS wiggler beamline X-25, we

Bergmann, Uwe; Cramer, Stephen P.

2001-01-01T23:59:59.000Z

280

Tokamak physics studies using x-ray diagnostic methods  

SciTech Connect

X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10/sup 5/ m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments.

Hill, K.W.; Bitter, M.; von Goeler, S.; Beiersdorfer, P.; Fredrickson, E.; Hsuan, H.; McGuire, K.; Sauthoff, N.R.; Sesnic, S.; Stevens, J.E.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Correlated Optical/X-ray Long-term Variability in LMXB 4U1636-536  

E-Print Network (OSTI)

We have conducted a 3-month program of simultaneous optical, soft and hard X-ray monitoring of the LMXB 4U1636-536/V801 Ara using the SMARTS 1.3m telescope and archival RXTE/ASM and Swift/XRT data. 4U1636-536 has been exhibiting a large amplitude, quasi-periodic variability since 2002 when its X-ray flux dramatically declined by roughly an order of magnitude. We confirmed that the anti-correlation between soft (2-12 keV) and hard (> 20 keV) X-rays, first investigated by Shih et al. (2005), is not an isolated event but a fundamental characteristic of this source's variability properties. However, the variability itself is neither strictly stable nor changing on an even longer characteristic timescale. We also demonstrate that the optical counterpart varies on the same timescale, and is correlated with the soft, and not the hard, X-rays. This clearly shows that X-ray reprocessing in LMXB discs is mainly driven by soft X-rays. The X-ray spectra in different epochs of the variability revealed a change of spectral...

Shih, I C; Cornelisse, R

2010-01-01T23:59:59.000Z

282

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

283

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

284

Spectral analysis of X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

285

Cryotomography x-ray microscopy state  

Science Conference Proceedings (OSTI)

An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

2010-10-26T23:59:59.000Z

286

X-ray spectral states of microquasars  

E-Print Network (OSTI)

We discuss the origin of the dramatically different X-ray spectral shapes observed in the Low Hard State (LHS: dominated by thermal comptonisation) and the High Soft State (HSS: dominated by the accretion disc thermal emission and non-thermal comptonisation in the corona). We present numerical simulations using a new code accounting for the so-called synchrotron boiler effect. These numerical simulations when compared to the data allow us to constrain the magnetic field and temperature of the hot protons in the corona. For the hard state of Cygnus X-1 we find a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). On the other hand, our results also point toward proton temperatures that are substantially lower than typical temperatures of the ADAF models. Finally, we show that in both spectral states Comptonising plasma could be powered essentially through power-law acceleration of non-thermal electrons, which are then partly thermalised by the synchrotron and Coulomb boiler. This suggests that, contrary to current beliefs, the corona of the HSS and that of the LHS could be of very similar nature. The differences between the LHS and HSS coronal spectra would then be predominantly caused by the strong disc soft cooling emission which is present in the HSS and absent in the LHS.

Julien Malzac; Renaud Belmont

2008-10-25T23:59:59.000Z

287

Efficiency modeling and evaluation of a resonant snubber based soft- switching inverter for motor drive applications  

SciTech Connect

This paper establishes an analytical model for a resonant snubber based soft-switching inverter. The model adopts loss separation method to evaluate losses in individual components. Because of symmetry of the inverter circuit, the developed model is suitable for both single-phase and three-phase inverters. A single-phase inverter was built and tested with a single-phase induction motor driving a fan load to verify the developed model. The equivalent single-phase induction motor model was curve-fitted from experiment. Analytical results showed reasonable agreement with experiment. The same efficiency evaluation method was then applied to the conventional hard-switching inverter, and the results were compared with that of the soft-switching inverter. The resonant snubber base soft-switching inverter shows substantial efficiency improvement over the hard switching PWM (pulse-width-modulation) inverter, especially in low speed operation.

Lai, J.S.; Young, R.W.; Ott, G.W.

1995-12-31T23:59:59.000Z

288

An X-ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies  

E-Print Network (OSTI)

Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubi\\'nski, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the hard X-ray continuum above $\\sim 50$ keV in type 1 Seyfert galaxies. Forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft $\\gamma$-ray telescopes, in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

James Chiang

2002-02-12T23:59:59.000Z

289

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

290

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

291

A multi-crystal wavelength dispersive x-ray spectrometer  

Science Conference Proceedings (OSTI)

A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

2012-07-15T23:59:59.000Z

292

Calibration of X-ray absorption in our Galaxy  

E-Print Network (OSTI)

Prediction of the soft X-ray absorption along lines of sight through our Galaxy is crucial for understanding the spectra of extragalactic sources, but requires a good estimate of the foreground column density of photoelectric absorbing species. Assuming uniform elemental abundances this reduces to having a good estimate of the total hydrogen column density, N(Htot)=N(HI)+2N(H2). The atomic component, N(HI), is reliably provided using the mapped 21 cm radio emission but estimating the molecular hydrogen column density, N(H2), expected for any particular direction, is difficult. The X-ray afterglows of GRBs are ideal sources to probe X-ray absorption in our Galaxy because they are extragalactic, numerous, bright, have simple spectra and occur randomly across the entire sky. We describe an empirical method, utilizing 493 afterglows detected by the Swift XRT, to determine N(Htot) through the Milky Way which provides an improved estimate of the X-ray absorption in our Galaxy and thereby leads to more reliable meas...

Willingale, R; Beardmore, A P; Tanvir, N R; O'Brien, P T

2013-01-01T23:59:59.000Z

293

X-ray And EUV Spectroscopy Of Highly Charged Tungsten Ions  

SciTech Connect

The Berlin EBIT has been established by the Max-Planck-Institut fuer Plasmaphysik to generate atomic physics data in support of research in the field of controlled nuclear fusion, by measuring the radiation from highly charged ions in the x-ray, extreme ultraviolet and visible spectral ranges and providing valuable diagnostics for high temperature plasmas. In future fusion devices, for example ITER, currently being constructed at Cadarache, France, the plasma facing components will be armored with high-Z materials, most likely tungsten, due to the favorable properties of this element. At the same time the tremendous radiation cooling of these high-Z materials represents a threat to fusion and obliges one to monitor carefully the radiation. With EBIT a selected ensemble of ions in specific charge states can be produced, stored and excited for spectroscopic investigations. Employing this technique, we have for example resolved the wide structure observed around 5 nm at the ASDEX Upgrade tokamak as originating from E1-transitions into the open 4d shell of tungsten ions in charge states 25+ to 37+ producing a band-like emission pattern. Further, these ions emit well-separated M1 lines in the EUV range around 65 nm suitable for plasma diagnostics. Kr-like to Cr-like tungsten ions (38+ to 50+) show strong soft-x-ray lines in the range 0.5 to 2 and 5 to 15 nm. Lines of even higher charged tungsten ions, up to Ne-like W{sup 64+}, abundant in the core plasma of present and future fusion test devices, have been investigated with high resolution Bragg-crystal spectroscopy at 0.13 nm. Recently, x-ray spectroscopic measurements of the dielectronic recombination LMn resonances of W{sup 60+} to W{sup 67+} ions have been preformed and compare well with atomic structure calculations.

Biedermann, Christoph; Radtke, Rainer [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 17491 Greifswald, and Institut fuer Physik der Humboldt-Universitaet zu Berlin, Arbeitsgruppe Plasmaphysik, Newtonstr 15, 12489 Berlin (Germany)

2009-09-10T23:59:59.000Z

294

Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method  

Science Conference Proceedings (OSTI)

A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

Hurvitz, G.; Ehrlich, Y.; Shpilman, Z.; Levy, I.; Fraenkel, M. [Plasma Physics Department, Applied Physics Division, Soreq NRC, Yavne (Israel); Strum, G. [Solid State Department, Applied Physics Division, Soreq NRC, Yavne (Israel)

2012-08-15T23:59:59.000Z

295

Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy  

DOE Green Energy (OSTI)

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

2010-05-01T23:59:59.000Z

296

Using X-ray mammograms to assist in microwave breast image interpretation  

Science Conference Proceedings (OSTI)

Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential ...

Charlotte Curtis; Richard Frayne; Elise Fear

2012-01-01T23:59:59.000Z

297

Hydrogen-like recombination x-ray laser experiments using a 20 picosecond laser pulse at the Nova facility  

SciTech Connect

Hydrogen-like recombination X-ray lasers are currently under investigation as an alternative candidate to collisional pumped soft X-ray amplifiers. Efforts are being concentrated on the n = 3 to n = 2 transitions in H-like Mg and NaF. 5 refs., 1 fig.

Shephard, R.; Fields, D.; DaSilva, L.; Keane, C.; MacGowen, B.; Matthews, D.; Shimkaveg, G.; Stone, G.; Eder, D.; Osterheld, A.; Walling, R.; Young, B.K.F.; Fry, A.; Eckart, M.; Goldstein, W.; Stewart, R. (Lawrence Livermore National Lab., CA (USA)); Charatis, G.; Busch, G. (KMS Fusion, Inc., Ann Arbor, MI (USA))

1991-01-07T23:59:59.000Z

298

Photoionization-pumped, Ne II, x-ray laser studies project. Final report  

SciTech Connect

The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

1984-01-01T23:59:59.000Z

299

X-ray data booklet. Revision  

SciTech Connect

A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

Vaughan, D. (ed.)

1986-04-01T23:59:59.000Z

300

X-ray transmissive debris shield  

DOE Patents (OSTI)

A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

Spielman, Rick B. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Resonant snubber based soft-switching inverters for electric propulsion drives  

SciTech Connect

This paper summarizes recently developed soft-switching inverters and proposes two alternative options for electric propulsion drives. The newly developed soft-switching inverter employs an auxiliary switch and a resonant inductor per phase to produce a zero voltage across the main switch so that the main switch can turn on at the zero-voltage condition. Both the auxiliary switch and the resonant inductor are operating at a fractional duty, and thus are small in size as compared to the main inverter circuit components. Operation modes in a complete zero-voltage switching cycle for the single-phase soft-switching inverter are described in detail with graphical explanations. The circuit operation was first verified by a computer simulation and then tested with an 1-kW single-phase and an 100-kW three-phase inverters. Experimental results are presented to show the superior performance in efficiency improvement, EMI reduction, and dv/dt reduction of the proposed soft-switching inverters.

Lai, J.S.

1996-05-01T23:59:59.000Z

302

NIST X-Ray Transition Energies  

Science Conference Proceedings (OSTI)

... with the International System of measurement ... titled "X-ray transition energies: new approach ... and by NIST's Systems Integration for Manufacturing ...

2011-12-09T23:59:59.000Z

303

X-ray Line Profile Analysis  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source...

304

NIST: X-Ray Mass Attenuation Coefficients  

Science Conference Proceedings (OSTI)

... NIST reserves the right to charge for these data in the ... ?/? and the mass energy-absorption coefficient ... The tables cover energies of the photon (x-ray ...

2011-12-09T23:59:59.000Z

305

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray...

306

Hard X-Ray Quad Collimator  

Technology Development and Commercialization Division One of the best ways to obtain small?size x?ray beams for structural biology research is to ...

307

Background-reducing X-ray multilayer mirror  

DOE Patents (OSTI)

Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

Bloch, Jeffrey J. (Los Alamos, NM); Roussel-Dupre' , Diane (Los Alamos, NM); Smith, Barham W. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

308

Hard X-ray Phase-Contrast Tomographic Nanoimaging  

Science Conference Proceedings (OSTI)

Synchrotron-based full-field tomographic microscopy established itself as a tool for noninvasive investigations. Many beamlines worldwide routinely achieve micrometer spatial resolution while the isotropic 100-nm barrier is reached and trespassed only by few instruments, mainly in the soft x-ray regime. We present an x-ray, full-field microscope with tomographic capabilities operating at 10 keV and with a 3D isotropic resolution of 144 nm recently installed at the TOMCAT beamline of the Swiss Light Source. Custom optical components, including a beam-shaping condenser and phase-shifting dot arrays, were used to obtain an ideal, aperture-matched sample illumination and very sensitive phase-contrast imaging. The instrument has been successfully used for the nondestructive, volumetric investigation of single, unstained cells.

Stampanoni, M. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland); Marone, F.; Vila-Comamala, J.; Gorelick, S.; David, C.; Mokso, R. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Trtik, P.; Jefimovs, K. [EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Duebendorf (Switzerland)

2011-09-09T23:59:59.000Z

309

Background-reducing x-ray multilayer mirror  

DOE Patents (OSTI)

This invention is comprised of a background-reducing x-ray multilayer mirror. A multiple-layer ``wavetrap`` deposited over the surface of a layered synthetic microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 {Angstrom} wavelengths have been optimized, while that at 304 {Angstrom} has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, their number and distance for the ``wavetrap.``

Bloch, J.J.; Roussel-Dupre, D.; Smith, B.W.

1990-08-03T23:59:59.000Z

310

Electronic structure of phospho-olivines LixFePO4 (x=0,1) fromsoft-x-ray-absorption and -emission spectroscopies  

Science Conference Proceedings (OSTI)

The electronic structure of the phospho-olivine LixFePO4 wasstudied using soft-x-ray-absorption (XAS) and emission spectroscopies.Characteristic changes in the valence and conduction bands are observedupon delithation of LiFePO4 into FePO4. In LiFePO4, the Fe-3d states arelocalized with little overlap with the O-2p states. Delithiation ofLiFePO4 gives stronger hybridization between Fe-3d states and O-2p statesleading to delocalization of the O-2p states. The Fe L-edge absorptionspectra yield "fingerprints" of the different valence states of Fe inLiFePO4 and FePO4. Resonant soft-x-ray-emission spectroscopy at the Fe Ledge shows strong contributions from resonant inelastic soft x-rayscattering (RIXS), which is described using an ionic picture of the Fe-3dstates. Together the Fe L-edge XAS and RIXS study reveals a bondingcharacter of the Fe 3d-O2p orbitals in FePO4 in contrast to a nonbondingcharacter in LiFePO4.

Augustsson, A.; Zhuang, G.V.; Butorin, S.M.; Osorio-Guillen,J.M.; Dong, C.L.; Ahuja, R.; Chang, C.L.; Ross, P.N.; Nordgren, J.; Guo,J.-H.

2005-07-17T23:59:59.000Z

311

X?ray Fluorescence (XRF) Assay Using Laser Compton Scattered (LCS) X?rays  

Science Conference Proceedings (OSTI)

Laser Compton Scattered (LCS) X?rays are produced as a result of the interaction between accelerated electrons and a laser beam. The yield of LCS X?rays is dependent on the laser power

Syed F. Naeem; Khalid Chouffani; Douglas P. Wells

2009-01-01T23:59:59.000Z

312

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

313

X-Ray Multilayer Database from the LBL Center for X-Ray Optics (CXRO)  

DOE Data Explorer (OSTI)

An important activity of the Center for X-ray Optics (CXRO) is research on x-ray mirrors and their use in optical devices to focus and deflect x-ray beams. The two kinds of mirrors most widely used are glancing incidence reflectors and multilayer coatings. The X-Ray Multilayer Database is based on the results of surveys taken at the biennial Physics of X-Ray Multilayer Structures conferences. It contains measured x-ray reflectances reported for various multilayers. The database is provided as a service to the x-ray and multilayer research communities and is intended to reflect the state-of-the-art in multilayer x-ray mirrors. (Specialized Interface)

314

Reply to Comment on X-ray resonant scattering studies of orbital and charge ordering in Pr[sub 1-x]Ca[sub x]MnO[sub 3].  

SciTech Connect

The interpretation given in our recent x-ray scattering study of Pr{sub 1-x}Ca{sub x}MnO{sub 3} in terms of charge and orbital ordering is questioned in the preceding Comment by Garcia and Subias. They argue that anisotropy of the charge distribution induced by local distortions gives rise to the so-called charge order reflections. In this Reply we suggest that the two different pictures are reconcilable.

Zimmermann, M. V.; Grenier, S.; Nelson, C. S.; Hill, J. P.; Gibbs, D.; Blume, M.; Casa, D.; Keimer, B.; Murakami, Y.; Kao, C.-C.; Venkataraman, C.; Gog, T.; Tomioka, Y.; Tokura, Y.; HASYLAB, DESY; BNL; Rutgers Univ.; Max-Planck-Institut; Tohoku Univ.; NSLS; JRCAT; Univ. of Tokyo

2003-09-01T23:59:59.000Z

315

Testing LaMgAl11O19 crystal for X-ray spectroscopy  

DOE Green Energy (OSTI)

We investigated the properties of the rare earth crystal LaMgAl{sub 11}O{sub 19} and its application to soft X-ray spectroscopy. Its relative reflectivity and half width rocking curve were measured to up to the reflection order of 28. In addition, a comparative measurement of the iron L-shell soft X-ray line emission was made on the EBIT-I Livermore electron beam ion trap by fielding the LaMgAl{sub 11}O{sub 19} crystal side by side with a rubidium hydrogen phthalate crystal in a flat crystal spectrometer. From these measurements, reflectivity and spectral resolving power were determined.

Chen, H; Beiersdorfer, P; Baronova, E; Kalashnikova, I; Stepanenko, M

2004-03-31T23:59:59.000Z

316

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

317

X-ray variability and 1mHz oscillations in TT ARI  

E-Print Network (OSTI)

Using the archival ROSAT observation of TT Ari, X-ray energy spectra in different orbital phases and power spectra of the intensity time series are presented. Spectral fits show that the source gets brighter during the observation. The orbital modulation of the X-ray counting rate and bremsstrahlung temperature suggests that soft X-ray emission peaks in the orbital phase interval 0.75-0.90, when an outer disk hot spot is near the line of sight. This correlates with the orbital modulation of C IV($\\lambda$1549) absorption. Timing analysis indicates that while the source gets brighter, the frequency of the 1mHz oscillation is not correlated with X-ray intensity. This implies that in the X-rays from TT Ari, the beat frequency model is not appropriate for explaining the changes in the 1mHz oscillations. \\keywords{Accretion discs - stars: TT Ari - stars: cataclysmic variables - X-ray: binaries - X-rays

A. Bayka; A. Esendemir; U. Kiziloglu; M. A. Alpar; H. Ogelman; N. Ercan; G. Ikis

1995-03-13T23:59:59.000Z

318

Soft x-ray scanning transmission x-ray microscopy (STXM) of actinide particles  

E-Print Network (OSTI)

the Np(V,VI) solid. A plutonium elemental map was obtainedspectromicroscopy, plutonium, neptunium *Correspondingwell as for metallic plutonium. [19,20] A useful comparison

Nilsson, Hans J.; Tyliszczak, Tolek; Wilson, Richard E.; Werme, Lars; Shuh, David K.

2005-01-01T23:59:59.000Z

319

Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering  

SciTech Connect

We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

2012-09-06T23:59:59.000Z

320

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High-Resolution X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

... In support of these efforts, we also maintain laboratory x-ray sources from 1 keV to 300 keV, energy and intensity calibration facilities, and a vacuum ...

2013-02-26T23:59:59.000Z

322

X-ray image intensifier phosphor  

DOE Patents (OSTI)

Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

D' Silva, A.P.; Fassel, V.A.

1975-12-01T23:59:59.000Z

323

Kaonic Atom X?ray Spectra  

Science Conference Proceedings (OSTI)

In kaonic atoms energy displacement and broadening of states result from the strong interaction. The most simple kaonic atoms like kaonic hydrogen and deuterium open the possibility to measure this strong interaction induced shift and width by x?ray spectroscopy. In the SIDDHARTA experiment al LNF (Frascati) the DA?NE electron?positron collider delivers nearly mono?energetic negatively charged kaons from ? meson decay. This unique kaon source is used to form kaonic atoms. New high performance x?ray detectors (silicon drift detectors) arranged in an array allow x?ray spectroscopy with high energy resolution combined with timing capability. High precision x?ray measurements like SIDDHARTA at LNF will open the way to study the low energy regime of the strong force in the antikaon?nucleon interaction. The experiment and its current status is presented in this talk.

J. Marton; on behalf of the SIDDHARTA Collaboration

2009-01-01T23:59:59.000Z

324

World's First Hard X-ray Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS is the world's most powerful X-ray laser. Its highly focused beam, which arrives in staccato bursts a few quadrillionths of a second long, allows researchers to probe complex,...

325

X-ray grid-detector apparatus  

DOE Patents (OSTI)

A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

1998-01-27T23:59:59.000Z

326

X-Ray Nanoimaging: Instruments and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

327

X-Ray Emission from Compact Sources  

SciTech Connect

This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

Cominsky, L

2004-03-23T23:59:59.000Z

328

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

329

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

330

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

331

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

332

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

333

Novel x-ray imaging methods at the Nova Laser Facility  

Science Conference Proceedings (OSTI)

We are pursuing several novel x-ray imaging schemes to measure plasma parameters in inertial-confinement fusion experiments. This paper will review two quite successful approaches, the soft x-ray moire deflectometer, and the annular (ring) coded-aperture microscope. The deflectometer is the newer diagnostic, and this paper will concentrate on this topic. We will describe the operating principles of moire deflectometry, give the motivations for soft x-ray probing, describe the physical apparatus in detail, and present some sample images and results. The ring coded-aperture microscope has been described previously, so here we will only briefly review the principle of the instrument. We will concentrate on the signal-to-noise ratio calculations that motivate the use of annular coded apertures, and describe recent work to predict and measure the resolution of the instrument.

Ress, D.; DaSilva, L.B.; London, R.A.; Trebes, J.E.; Lerche, R.A. [Lawrence Livermore National Lab., CA (United States); Bradley, D.K. [Rochester Univ., NY (United States). Lab. for Laser Energetics

1994-06-06T23:59:59.000Z

334

Copper Ridges Nearly Double X-ray Sensor Performance  

Science Conference Proceedings (OSTI)

... Physics Letters,* can measure X-ray energies with an ... X-rays and measure the energy based on ... by NASA and the NIST Office of Microelectronics ...

2011-10-03T23:59:59.000Z

335

Sandia National Laboratories X-ray Tube with Magnetic Electron ...  

... for the U.S. Department of Energys National ... high average power large area X-ray tube provides increased X-ray generation efficiency through ...

336

One-Up On L1: Can X-rays Provide Longer Advanced Warning of Solar Wind Flux Enhancements Than Upstream Monitors?  

E-Print Network (OSTI)

Observations of strong solar wind proton flux correlations with ROSAT X-ray rates along with high spectral resolution Chandra observations of X-rays from the dark Moon show that soft X-ray emission mirrors the behavior of the solar wind. In this paper, based on an analysis of an X-ray event observed by XMM-Newton resulting from charge exchange of high charge state solar wind ions and contemporaneous neutral solar wind data, we argue that X-ray observations may be able to provide reliable advance warning, perhaps by as much as half a day, of dramatic increases in solar wind flux at Earth. Like neutral atom imaging, this provides the capability to monitor the solar wind remotely rather than in-situ. Key words: solar wind/magnetosphere interaction, solar wind charge exchange (SWCX), soft X-rays, space weather 1

M. R. Collier A; T. E. Moore A; S. L. Snowden B; K. D. Kuntz C

2005-01-01T23:59:59.000Z

337

Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy  

SciTech Connect

We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

2012-05-10T23:59:59.000Z

338

Transient x-ray diffraction and its application to materials science and x-ray optics  

SciTech Connect

Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

1997-12-01T23:59:59.000Z

339

Radiographic X-Ray Pulse Jitter  

Science Conference Proceedings (OSTI)

The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

2011-01-15T23:59:59.000Z

340

Image plates as x-ray detectors in plasma physics experiments  

SciTech Connect

The performance of image plates based on the photostimulable phosphor BaF(Br,l):Eu{sup 2+} has been investigated and compared with x-ray film. Evaluation of detective quantum efficiency (DQE), sensitivity, dynamic range, and linearity was carried out for several types of commercially available image plate, using the Excalibur soft x-ray calibration facility at AWE. Image plate response was found to be linear over a dynamic range of 5 orders of magnitude. One type of image plate was found to have a number of advantages for soft x-ray detection, with a measured sensitivity 1 order of magnitude greater than that of Kodak Industrex CX and DEF-5 x-ray film. The DQE of this plate was found to be superior to that of film at low [less than 10{sup 3} photons/(50 {mu}m){sup 2}] and high fluxes [greater than 10{sup 4} photons/(50 {mu}m){sup 2}]. The spatial resolution of image plates, scanned with several models of commercial image plate readers, has been evaluated using a USAF resolution test target. The highest spatial resolution measured is 35 {mu}m. Though this is significantly lower than the resolution possible with film, it is sufficient for many applications. Image plates were fielded in a refractive x-ray lens imaging diagnostic on the 1 TW Helen laser and these results are discussed.

Gales, S.G.; Bentley, C.D. [AWE Aldermaston, Reading RG7 4PR (United Kingdom)

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158-4325  

Science Conference Proceedings (OSTI)

We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by the application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A leads image B). Despite our failure to robustly measure the time delay, we successfully model the microlensing at optical and X-ray wavelengths to find a half-light radius for soft X-ray emission log (r{sub 1/2,X,soft}/cm) = 14.3{sup +0.4}{sub -0.5}, an upper limit on the half-light radius for hard X-ray emission log (r{sub 1/2,X,hard}/cm) {<=} 14.6, and a refined estimate of the inclination-corrected scale radius of the optical R-band (rest frame 3100 A) continuum emission region of log (r{sub s} /cm) = 15.6 {+-} 0.3.

Morgan, Christopher W.; Hainline, Laura J. [Department of Physics, United States Naval Academy, 572C Holloway Road, Annapolis, MD 21402 (United States); Chen Bin; Dai Xinyu [Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Tewes, Malte; Courbin, F.; Meylan, G. [Laboratoire d'Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kochanek, Christopher S.; Kozlowski, Szymon; Blackburne, Jeffrey A.; Mosquera, Ana M. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173 (United States); Chartas, G. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States)

2012-09-01T23:59:59.000Z

342

X-Ray Data from the X-Ray Data Booklet Online  

DOE Data Explorer (OSTI)

The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

343

X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution  

Science Conference Proceedings (OSTI)

We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 {+-} 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

Beye, M. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); European XFEL GmbH, 22607 Hamburg (Germany); Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reid, A. H. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Rupp, D. [Technische Universitaet Berlin, 10623 Berlin (Germany); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Lee, W.-S.; Scherz, A. O. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chuang, Y.-D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Cryan, J. P.; Glownia, J. M. [PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Foehlisch, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Durr, H. A. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

2012-03-19T23:59:59.000Z

344

Frontiers in X-Ray Science  

Science Conference Proceedings (OSTI)

The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

Linda Young

2011-02-23T23:59:59.000Z

345

14 Soft Gamma Repeaters and Anomalous X-ray  

E-Print Network (OSTI)

Baade & Zwicky (1934) were the first to envision the formation of neutron stars as the end product of a supernova explosion. Their forward thinking was not vindicated for another three decades, with the discovery of the first radio pulsars by Bell and Hewish (Hewish et al. 1968). What Baade and

Pulsars Magnetar Candidates; P. M. Woods; C. Thompson

2004-01-01T23:59:59.000Z

346

Soft-x-ray spectroscopy study of nanoscale materials  

E-Print Network (OSTI)

brightness of the third generation source combined with highThe new generation synchrotron radiation sources producingthird generation synchrotron radiation sources. In addition

Guo, J.-H.

2005-01-01T23:59:59.000Z

347

OPTICAL TO X-RAY SUPERNOVA LIGHT CURVES FOLLOWING SHOCK BREAKOUT THROUGH A THICK WIND  

Science Conference Proceedings (OSTI)

Recent supernova (SN) observations have motivated renewed interest in SN shock breakouts from stars surrounded by thick winds. In such events the interaction with the wind powers the observed luminosity, and predictions include observable hard X-rays. Wind breakouts on timescales of a day or longer are currently the most probable for detection. Here, we study the signal that follows such events. We start from the breakout of the radiation-mediated shock, finding that the breakout temperature can vary significantly from one event to another (10{sup 4} to 5 Multiplication-Sign 10{sup 6} K) due to possible deviation from thermal equilibrium. In general, events with longer breakout pulse duration, t {sub bo}, are softer. We follow the observed radiation through the evolution of the collisionless shock that forms after the breakout of the radiation-mediated shock. We restrict the study of the collisionless shock evolution to cases where the breakout itself is in thermal equilibrium, peaking in optical/UV. In these cases the post-breakout emission contains two spectral components-soft (optical/UV) and hard (X-rays and possibly soft {gamma}-rays). Right after the breakout pulse X-rays are strongly suppressed, and they carry only a small fraction of the total luminosity. The hard component becomes harder, and its luminosity rises quickly afterward, gaining dominance at {approx}10-50 t {sub bo}. The ratio of the peak optical/UV to the peak X-ray luminosity depends mostly on the breakout time. In early breakouts (t {sub bo} {approx} 80 days for typical parameters) the X-rays become dominant only after the total luminosity has dropped significantly. In terms of prospects for X-ray and soft gamma-ray detections, it is best to observe 100-500 days after explosions with breakout timescales between a week and a month.

Svirski, Gilad; Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2012-11-10T23:59:59.000Z

348

Radiobiological studies using gamma and x rays.  

Science Conference Proceedings (OSTI)

There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

2013-02-01T23:59:59.000Z

349

TW Hya: SPECTRAL VARIABILITY, X-RAYS, AND ACCRETION DIAGNOSTICS  

SciTech Connect

The nearest accreting T Tauri star, TW Hya was intensively and continuously observed over {approx}17 days with spectroscopic and photometric measurements from four continents simultaneous with a long segmented exposure using the Chandra satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day period was present during this time. The absence of a similar periodicity in the H{alpha} flux and the total X-ray flux which are dominated by accretion processes and the stellar corona, respectively, points to a different source of photometric variations. The H{alpha} emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H{alpha} and H{beta} lines is followed by He I ({lambda}5876) broadening near the photosphere. Optical veiling resulting from the heated photosphere increases with a delay of {approx}2 hr after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows {approx}2.4 hr later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates the dynamics of this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.

Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Luna, G. J. M.; Schneider, E. E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Bessell, M. S. [Australian National Observatory, Mount Stromlo Observatory, Canberra, ACT 2611 (Australia); Bonanos, A. [Institute of Astronomy and Astrophysics, National Observatory of Athens, 15236 Athens (Greece); Crause, L. A. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Lawson, W. A. [School of Physical, Environmental, and Math Sciences, University of New South Wales, Canberra, ACT 2600 (Australia); Mallik, S. V. [Indian Institute of Astrophysics, Bangalore 560034 (India); Schuler, S. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States)

2012-05-01T23:59:59.000Z

350

Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics  

SciTech Connect

Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.

Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N. [Plasma Physics Department, AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)

2008-11-15T23:59:59.000Z

351

Inverse Compton X-ray signature of AGN feedback  

E-Print Network (OSTI)

Bright AGN frequently show ultra-fast outflows (UFOs) with outflow velocities vout ! 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one temperature regime; 1T) or decouple (2T), as has been recently suggested. Here we calculate the Inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component, while the limits on the 2T emission are far weaker. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encoura...

Bourne, Martin A

2013-01-01T23:59:59.000Z

352

Sharper Focusing of Hard X-rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharper Focusing of Hard X-rays FROM: Physics News Update Number 773 #1, April 12, 2006, by Phil Schewe and Ben Stein Note: This text has been slightly modified from the original. Sharper focusing of hard x-rays has been achieved with a device developed at Argonne National Lab. Because of their high energy, x-rays are hard to focus: they can be reflected from a surface but only at a glancing angle (less than a tenth of a degree); they can be refracted but the index of refraction is very close to 1, so that making efficient lenses becomes a problem; and they can be diffracted, but the relatively thick, variable pitch grating required for focusing is tricky to achieve. The Argonne device is of the diffraction type, and it consists of a stack of alternating layers of metal and silicon, made by depositing progressively thicker layers. When the x-rays fall on such a structure, nearly edge-on, what they see is a grating (called a linear zone plate) consisting of a sort of bar-code pattern.

353

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-01-01T23:59:59.000Z

354

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-12-31T23:59:59.000Z

355

Massively parallel X-ray scattering simulations  

Science Conference Proceedings (OSTI)

Although present X-ray scattering techniques can provide tremendous information on the nano-structural properties of materials that are valuable in the design and fabrication of energy-relevant nano-devices, a primary challenge remains in the analyses ...

Abhinav Sarje; Xiaoye S. Li; Slim Chourou; Elaine R. Chan; Alexander Hexemer

2012-11-01T23:59:59.000Z

356

X-Ray and Neutron Diffraction  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Advanced X-Ray Scattering Techniques for Multi-Length Scale ... ?-Ti using the 3DXRD station 34-ID-E at the Advanced Photon Source, Argonne National Laboratory. ... Research at APS 34-ID-E, partly funded by BES/DOE.

357

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

358

Probing surface chemistry using 'Operando' and 'Ultrafast' soft...  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing surface chemistry using 'Operando' and 'Ultrafast' soft x-ray spectroscopies Wednesday, December 18, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Hirohito...

359

X-Ray Interactions with Matter  

DOE Data Explorer (OSTI)

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented. (Taken from the abstract in OSTI Record 6131765) (Specialized Interface)

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

360

Design of a triaxial residual stress measurement system using high energy x-ray diffraction  

Science Conference Proceedings (OSTI)

Previous design studies in developing concepts for residual stress measurement in engineering materials have been extended. A pre-prototype energy dispersive x-ray diffraction (EDXRD) system has been fabricated. A 300 kV radiography source is used in conjunction with an intrinsic germanium detector and a MacII/LabVIEW data acquisition system. Specimens up to 25mm equivalent steel thickness (and one meter gross dimensions) can now be evaluated. The pre-prototype system serves as the hard x-ray, bulk stress measurement component of the previously reported hybrid stress measuring system (which would include a traditional multi-angle surface measurement system using soft x-rays). In addition, a detailed study of residual stress analytical equations has been completed and applied to various metallic and ceramic materials. During the grant period, related studies were completed on stress measurement using synchrotron radiation and on a critical review of the residual stress literature. 6 refs., 3 figs.

Shackelford, J.F.; Brown, B.D.; Park, J.S.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

X-rays from T Tau: A test case for accreting T Tauri stars  

E-Print Network (OSTI)

We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (cool ``soft-excess'' plasma is orders of magnitude below that predicted for an accretion shock, assuming previously determined accretion rates of (3-6)E-8 M_sun/y. We argue that loading of magnetic field lines with infalling material suppresses the heating process in a part of the corona. We thus suggest that the X-ray production of T Tau is influenced by the accretion process although the X-rays may not form in the bulk of the accretion footpoints.

M. Guedel; S. L. Skinner; S. Yu. Mel'nikov; M. Audard; A. Telleschi; K. R. Briggs

2006-12-20T23:59:59.000Z

362

Rise time measurement for ultrafast X-ray pulses  

Science Conference Proceedings (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

2005-04-05T23:59:59.000Z

363

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

364

A recirculating linac-based facility for ultrafast X-ray science  

SciTech Connect

We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac, in particular the incorporation of EUV and soft x-ray production. The project has been named LUX - Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10 s fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short-pulse photon production in the 1-10 keV range. High-brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free-electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by four passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

Corlett, J.N; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Placidi, M.; Pirkl, W.; Parmigiani, F.

2003-05-06T23:59:59.000Z

365

High Quality Image of Biomedical Object by X-ray Refraction Based Contrast Computed Tomography  

SciTech Connect

Recently we have developed a new Computed Tomography (CT) algorithm for refraction contrast that uses the optics of diffraction-enhanced imaging. We applied this new method to visualize soft tissue which is not visualized by the current absorption based contrast. The meaning of the contrast that appears in refraction-contrast X-ray CT images must be clarified from a biologic or anatomic point of view. It has been reported that the contrast is made with the specific gravity map with a range of approximately 10 {mu}arc sec. However, the relationship between the contrast and biologic or anatomic findings has not been investigated, to our knowledge. We compared refraction-contrast X-ray CT images with microscopic X-ray images, and we evaluated refractive indexes of pathologic lesions on phase-contrast X-ray CT images. We focused our attenuation of breast cancer and lung cancer as samples. X-ray refraction based Computed Tomography was appeared to be a pathological ability to depict the boundary between cancer nest and normal tissue, and inner structure of the disease.

Hashimoto, E. [Department of Photon-Science, School of Advanced Studies, Graduate University for Advanced Studies (GUAS), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Maksimenko, A.; Hirano, K.; Hyodo, K. [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sugiyama, H. [Department of Photon-Science, School of Advanced Studies, Graduate University for Advanced Studies (GUAS), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimao, D. [Department of Health Sciences, Ibaraki prefectural University of Health Sciences, 4669-2Ami, Ami, Inashiki, Ibaraki, 300-0394 (Japan); Nishino, Y.; Ishikawa, T. [RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, 679-5148 (Japan); Yuasa, T. [Department of Bio-system Engineering, Faculty of Engineering Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Ichihara, S. [Dept. of Path., Nagoya Med. Center, Nat. Hospital Organization, Naka-ku, Nagoya 460-0001 (Japan); Arai, Y. [Matsumoto Dental University, 1980 Hirooka, Shiojiri, Nagano (Japan); Ando, M. [Department of Photon-Science, School of Advanced Studies, Graduate University for Advanced Studies (GUAS), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Inst. of Sci. and Tech., Tokyo Univ. of Science, Yamasaki 2641, Noda, Chiba 278-8510 (Japan)

2007-01-19T23:59:59.000Z

366

Rebirth of X-ray Emission from the Born-Again Planetary Nebula A 30  

E-Print Network (OSTI)

The planetary nebula (PN) A 30 is believed to have undergone a very late thermal pulse resulting in the ejection of knots of hydrogen-poor material. Using multi-epoch HST images we have detected the angular expansion of these knots and derived an age of 850+280-150 yr. To investigate the spectral and spatial properties of the soft X-ray emission detected by ROSAT, we have obtained Chandra and XMM-Newton deep observations of A 30. The X-ray emission from A 30 can be separated into two components: a point-source at the central star and diffuse X-ray emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. To help us assess the role of the current stellar wind in powering this X-ray emission, we have determined the stellar parameters and wind properties of the central star of A 30 using a non-LTE model fit to its optical and UV spectrum. The spatial distribution and spectral properties of the diffuse X-ray emission is highly suggestive that it is generated by the po...

Guerrero, M A; Hamann, W -R; Chu, Y -H; Todt, H; Schoenberner, D; Oskinova, L; Gruendl, R A; Steffen, M; Blair, W P; Toala, J A

2012-01-01T23:59:59.000Z

367

X-rays Illuminate Ancient Archimedes Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links: Related Links: May 2005 Headlines TIP Article Press Release Walters Art Museum SSRL Home Page SLAC Home Page Stanford Home Page Tuesday, 31 May 2005 X-rays Illuminate Ancient Archimedes Text (contact: Uwe Bergmann, bergmann@slac.stanford.edu) Archimedes Figure Image provided by Will Noel, The Walters Art Museum An early transcription of Archimedes' mathematical theories has been brought to light through the probing of high-intensity x-rays at SSRL's BL6-2. The text contains part of the Method of Mechanical Theorems, one of Archimedes' most important works, which was probably copied out by a scribe in the tenth century. The parchment on which it was written was later scraped down and reused as pages in a twelfth century prayer book, producing a document known as a palimpsest (which comes from the Greek,

368

HIGH BRILLIANCE X-RAY SCATTERING FOR  

NLE Websites -- All DOE Office Websites (Extended Search)

BRILLIANCE X-RAY SCATTERING FOR BRILLIANCE X-RAY SCATTERING FOR LIFE SCIENCES (LIX) Group Leader: Lin Yang Proposal Team: O. Bilsel 1 , B. Hsiao 2 , H. Huang 3 , T. Irving 4 , A. Menzel 5 , L. Pollack 6 , C. Riekel 7 , J. Rubert 8 , H. Tsuruta 9 , L. Yang 10 1 University of Massachusetts, 2 Stony Brook University, 3 Rice University, 4 IIT, 5SLS, 6 Cornell University, 7 European Synchrotron Radiation Facility, 8 NEU, 9 Stanford Synchrotron Radiation Lightsource, 10 Brookhaven National Laboratory TECHNIQUES AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Energy range 2-20keV using undulator source. Simultaneous SAXS/WAXS to cover 0.003-3Å -1 at 12keV with 1 micron spot size * Time-resolved solution scattering with resolution of (1) microseconds to milliseconds using continuous-flow mixing (5µm x 10µm spot size) and (2) milliseconds using stopped-

369

High resolution x-ray microscope  

Science Conference Proceedings (OSTI)

The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I. [Adelphi Technology, Inc. 981-B Industrial Road, San Carlos, California 94070 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Institute of Applied Physics Problems, Kurchatova 7, Minsk 220064 (Belarus)

2007-04-30T23:59:59.000Z

370

THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS  

Science Conference Proceedings (OSTI)

We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup 3} yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe. The high-energy emission arising in such wind shocks may contribute to the high excitation states of certain archetypical 'hot bubble' nebulae (e.g., NGC 2392, 3242, 6826, and 7009).

Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

2012-08-15T23:59:59.000Z

371

Sample holder for x-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with x-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, V.L.

1991-12-31T23:59:59.000Z

372

TENDER ENERGY X-RAY ABSORPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

TENDER ENERGY X-RAY ABSORPTION TENDER ENERGY X-RAY ABSORPTION SPECTROSCOPY (TES) Project Team: S. Bare 1,2 , J. Brandes 3 , T. Buonassisi 4 , J. Chen 5,2 , M. Croft 6 , E. DiMasi 7 , A. Frenkel 8,2 , D. Hesterberg 9 , S. Hulbert 7,2 , S. Khalid 7 , S. Myneni 10 , P. Northrup 7,11 , E.T. Rasbury 11 , B. Ravel 12 , R. Reeder 11 , J. Rodriguez 7,2 , D. Sparks 5,13 , V. Stojanoff 7 , G. Waychunas 14 1 UOP LLC, 2 Synchrotron Catalysis Consortium, 3 Skidaway Inst. of Oceanography, 4 MIT Laboratory for Photovoltaics Research, 5 Univ. of Delaware, 6 Rutgers Univ., 7 Brookhaven National Lab, 8 Yeshiva Univ., 9 North Carolina State Univ., 10 Princeton Univ., 11 Stony Brook Univ., 12 NIST, 13 Delaware Environmental Inst., 14 Lawrence Berkeley National Lab TECHNIQUES: High performance and in-situ X-ray absorption spectroscopy and spatially-resolved XAS of

373

Energy Determination of X-Ray Transition Energies Using the ...  

Science Conference Proceedings (OSTI)

... We chose to measure x-ray transition energies from NIST ... This resulted in the production of x-ray emission ... would yield not only an energy scale for ...

2012-10-02T23:59:59.000Z

374

SLAC National Accelerator Laboratory - SLAC's X-ray Laser Explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Laser Explores Big Data Frontier By Glenn Roberts Jr. June 12, 2013 It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn...

375

SLAC National Accelerator Laboratory - SLAC X-rays Help Discover...  

NLE Websites -- All DOE Office Websites (Extended Search)

which pulses 120 times a second. In the instant before the intense X-rays destroy a nanocrystal, detectors record a flash of X-ray diffraction information. Finally, scientists use...

376

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light...

377

Microstructural Mapping Using High-Energy X-Ray Scattering  

Science Conference Proceedings (OSTI)

Abstract Scope, Advanced characterization methods at the APS permit unique in- situ ... The combination of an undulator source, brilliance preserving optics and focusing .... Ultra-Small-Angle X-Ray ScatteringX-Ray Photon Correlation...

378

Electron and X-Ray Microscopy: Structural Characterization of ...  

Science Conference Proceedings (OSTI)

Oct 28, 2009 ... Recent Advances in Structural Characterization of Materials: Electron and X-Ray Microscopy: Structural Characterization of Nanoscale...

379

THE XMM-NEWTON X-RAY SPECTRA OF THE MOST X-RAY LUMINOUS RADIO-QUIET ROSAT BRIGHT SURVEY-QSOs: A REFERENCE SAMPLE FOR THE INTERPRETATION OF HIGH-REDSHIFT QSO SPECTRA  

SciTech Connect

We present the broadband X-ray properties of four of the most X-ray luminous (L{sub X} {>=} 10{sup 45} erg s{sup -1} in the 0.5-2 keV band) radio-quiet QSOs found in the ROSAT Bright Survey. This uniform sample class, which explores the extreme end of the QSO luminosity function, exhibits surprisingly homogenous X-ray spectral properties: a soft excess with an extremely smooth shape containing no obvious discrete features, a hard power law above 2 keV, and a weak narrow/barely resolved Fe K{alpha} fluorescence line for the three high signal-to-noise ratio (S/N) spectra. The soft excess can be well fitted with only a soft power law. No signatures of warm or cold intrinsic absorbers are found. The Fe K{alpha} centroids and the line widths indicate emission from neutral Fe (E = 6.4 keV) originating from cold material from distances of only a few light days or further out. The well-constrained equivalent widths (EW) of the neutral Fe lines are higher than expected from the X-ray Baldwin effect which has been only poorly constrained at very high luminosities. Taking into account our individual EW measurements, we show that the X-ray Baldwin effect flattens above L{sub X} {approx} 10{sup 44} erg s{sup -1} (2-10 keV band) where an almost constant (EW) of {approx}100 eV is found. We confirm the assumption of having very similar X-ray active galactic nucleus properties when interpreting stacked X-ray spectra. Our stacked spectrum serves as a superb reference for the interpretation of low S/N spectra of radio-quiet QSOs with similar luminosities at higher redshifts routinely detected by XMM-Newton and Chandra surveys.

Krumpe, M.; Markowitz, A. [University of California, San Diego, Center for Astrophysics and Space Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States); Lamer, G. [Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam (Germany); Corral, A., E-mail: mkrumpe@ucsd.ed [INAF-Osservatorio Astronomico di Brera, via Brera 28, 20121 Milan (Italy)

2010-12-20T23:59:59.000Z

380

X-ray Microscopy and Imaging: 2-BM  

NLE Websites -- All DOE Office Websites (Extended Search)

BM BM Introduction The 2-BM beamline offers measurement capabilities for x-ray microtomography, x-ray topography and x-ray microdiffraction. X-ray microtomography and x-ray diffraction instruments are installed on separate optical tables for independent operation with fast switch over time. Optically-coupled high-resolution CCD system is used for microtomography and topography with up to 1 micron spatial resolution. X-ray microdiffraction setup consists of KB microfocussing mirrors (~3 micron minimum spot), four-circle Huber diffractometer, high-precision translation sample stage, two orthogonally-mounted video cameras for viewing sample, fluorescence detector (Si-drift diode) and diffraction detector (a scintillation detector or a CCD). Three different levels of monochromaticity are available. Conventional monochromatic x-rays from a double-bounced Si (111) crystal monochromator (DCM, D E/E=1E-4), wide band-pass monochromatic x-rays from a double multilayer monochromator (DMM, D E/E=1~4E-2) and pink beam. The available x-ray range is from 5 keV to 30 keV. The lower limit is due to the x-ray windows and the upper limit is due to the critical angle of the x-ray mirror. Two different coatings (Cr and Pt) for the x-ray mirror allow either 20 keV or 30 keV energy cutoff.

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Quantitative Analysis of Mt. St. Helens Ash by X-Ray Diffraction and X-Ray Fluorescence Spectrometry  

Science Conference Proceedings (OSTI)

A quantitative study by x-ray diffraction, optical polarizing microscopy, and x-ray fluorescence spectrometry of fallout and ambient ash from three Mt. St. Helens eruptions has revealed a consistent picture of the mineralogical and elemental ...

Briant L. Davis; L. Ronald Johnson; Dana T. Griffen; William Revell Phillips; Robert K. Stevens; David Maughan

1981-08-01T23:59:59.000Z

382

HSQ double patterning process for 12 nm resolution x-ray zone plates  

DOE Green Energy (OSTI)

Soft x-ray zone plate microscopy is a powerful nano-analytic technique used for a wide variety of scientific and technological studies. Pushing its spatial resolution to 10 nm and below is highly desired and feasible due to the short wavelength of soft x-rays. Instruments using Fresnel zone plate lenses achieve a spatial resolution approximately equal to the smallest, outer most zone width. We developed a double patterning zone plate fabrication process based on a high-resolution resist, hydrogen silsesquioxane (HSQ), to bypass the limitations of conventional single exposure fabrication to pattern density, such as finite beam size, scattering in resist and modest intrinsic resist contrast. To fabricate HSQ structures with zone widths in the order of 10 nm on gold plating base, a surface conditioning process with (3-mercaptopropyl) trimethoxysilane, 3-MPT, is used, which forms a homogeneous hydroxylation surface on gold surface and provides good anchoring for the desired HSQ structures. Using the new HSQ double patterning process, coupled with an internally developed, sub-pixel alignment algorithm, we have successfully fabricated in-house gold zone plates of 12 nm outer zones. Promising results for 10 nm zone plates have also been obtained. With the 12 nm zone plates, we have achieved a resolution of 12 nm using the full-field soft x-ray microscope, XM-1.

Chao, Weilun; Kim, Jihoon; Rekawa, Senajith; Fischer, Peter; Anderson, Erik H.

2009-06-16T23:59:59.000Z

383

X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources  

DOE Patents (OSTI)

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

1999-05-01T23:59:59.000Z

384

X-RAY ABSORPTION OF HIGH-REDSHIFT QUASARS  

SciTech Connect

The soft X-ray photoelectric absorption of high-z quasars has been known for two decades, but has no unambiguous astrophysical context. We construct the largest sample to date of 58 high-redshift quasars (z > 0.45) selected from the XMM-Newton archive based on a high photon count criterion (>1800). We measure the optical depth {tau} at 0.5 keV and find that 43% of the quasars show significant absorption. We aim to find which physical parameters of the quasars, e.g., redshift, radio luminosity, radio loudness, or X-ray luminosity, drive their observed absorption. We compare the absorption behavior with redshift with the pattern expected if the diffuse intergalactic medium (IGM) is responsible for the observed absorption. We also compare the absorption with a comparison sample of gamma-ray burst (GRB) X-ray afterglows. Although the z > 2 quasar opacity is consistent with diffuse IGM absorption, many intermediate-z (0.45 < z < 2) quasars are not sufficiently absorbed for this scenario, and are appreciably less absorbed than GRBs. Only 10/37 quasars at z < 2 are absorbed, and only 5/30 radio-quiet quasars are absorbed. We find a weak correlation between {tau} and z, and an even weaker correlation between {tau} and radio luminosity. These findings lead to the conclusion that although a diffuse IGM origin for the quasar absorption is unlikely, the optical depth does seem to increase with redshift, roughly as (1 + z){sup 2.2{+-}0.6}, tending to {tau} Almost-Equal-To 0.4 at high redshifts, similar to the high-z GRBs. This result can be explained by an ionized and clumpy IGM at z < 2, and a cold, diffuse IGM at higher redshift. If, conversely, the absorption occurs at the quasar, and owing to the steep L{sub x} {proportional_to}(1 + z){sup 7.1{+-}0.5} correlation in the present sample, the host column density scales as N{sub H}{proportional_to}L{sub x}{sup 0.7{+-}0.1}.

Eitan, Assaf; Behar, Ehud, E-mail: sassafe@tx.technion.ac.il, E-mail: behar@physics.technion.ac.il [Physics Department, Technion, Haifa 32000 (Israel)

2013-09-01T23:59:59.000Z

385

Calibrating X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

Haugh, M. J.

2011-07-28T23:59:59.000Z

386

High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

2007-08-01T23:59:59.000Z

387

X-ray Bursts from the Transient Magnetar Candidate XTE J1810?197  

E-Print Network (OSTI)

We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE J1810?197. The burst morphologies consist of a short spike or multiple spikes lasting ?1 s each followed by extended tails of emission where the pulsed flux from XTE J1810?197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4?8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. During the brightest X-ray tail, we detect a narrow emission line at 12.6 keV with an equivalent width of 1.4 keV and a probability of chance occurrence less than 4 10 ?6. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1?5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810?197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet significantly different from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.

Peter M. Woods; Chryssa Kouveliotou; Fotis P. Gavriil; Victoria M. Kaspi; Mallory S. E. Roberts; Alaa Ibrahim; Craig B. Markwardt; Jean H. Swank; Mark H. Finger

2005-01-01T23:59:59.000Z

388

COMPARISON OF MILLIMETER-WAVE AND X-RAY EMISSION IN SEYFERT GALAXIES  

SciTech Connect

We compare the emission at multiple wavelengths of an extended Seyfert galaxy sample, including both types of Seyfert nuclei. We use the Caltech Submillimeter Observatory to observe the CO J = 2-1 transition line in a sample of 45 Seyfert galaxies and detect 35 of them. The galaxies are selected by their joint soft X-ray (0.1-2.4 keV) and far-infrared ({lambda} = 60-100 {mu}m) emission from the ROSAT/IRAS sample. Since the CO line widths (W{sub CO}) reflect the orbital motion in the gravitational potential of the host galaxy, we study how the kinematics are affected by the central massive black hole (BH), using the X-ray luminosity. A significant correlation is found between the CO line width and hard (0.3-8 keV from Chandra and XMM-Newton) X-ray luminosity for both types of Seyfert nuclei. Assuming an Eddington accretion to estimate the BH mass (M{sub BH}) from the X-ray luminosity, the W{sub CO}-L{sub X} relation establishes a direct connection between the kinematics of the molecular gas of the host galaxy and the nuclear activity, and corroborates the previous studies that show that the CO is a good surrogate for the bulge mass. We also find a tight correlation between the (soft and hard) X-ray and the CO luminosities for both Seyfert types. These results indicate a direct relation between the molecular gas (i.e., star formation activity) of the host galaxy and the nuclear activity. To establish a clear causal connection between molecular gas and the fueling of nuclear activity, high-resolution maps (<100 pc) of the CO emission of our sample will be required and provided in a forthcoming Atacama Large Millimeter Array observation.

Monje, R. R.; Blain, A. W.; Phillips, T. G. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125-4700 (United States)

2011-08-01T23:59:59.000Z

389

Renewed activity from the X-ray transient SAXJ 1810.8-2609 with INTEGRAL  

E-Print Network (OSTI)

We report on the results of INTEGRAL observations of the neutron star low mass X-ray binary SAX J1810.8-2609 during its latest active phase in August 2007. The current outburst is the first one since 1998 and the derived luminosity is 1.1-2.6x10^36 erg s-1 in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ~5x10^-12Msolar/yr suggest that SAXJ 1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of ~23-30 keV and an optical depth of ~1.2-1.5, independent from luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with absence of visible cutoff in the hard X-ray spectrum. INTEGRAL/JEM-X instrument observed four X-ray bursts in Fall 2007. The first one has the highest peak flux (~3.5Crab in 3--25 keV) giving an upper limit to the distance of the source of about 5.7 kpc, for a LEdd~3.8x10^38 erg s^-1. The observed recurrence time of ~1.2 days and the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (~73) allow us to conclude that the burst fuel was composed by mixed hydrogen and helium with X>0.4.

M. Fiocchi; L. Natalucci; J. Chenevez; A. Bazzano; A. Tarana; P. Ubertini; S. Brandt; V. Beckmann; M. Federici; R. Galis; R. Hudec

2008-11-07T23:59:59.000Z

390

Apparatus for monitoring x-ray beam alignment  

DOE Patents (OSTI)

A self-contained, hand-held apparatus is provided for monitoring alignment of an x-ray beam in an instrument employing an x-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of x-ray beam intensities from the x-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low x-ray beam intensity. Another portion of the audible range corresponds to high x-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of x-ray fluorescent material, and a filter layer transparent to x-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the x-ray beam is aligned to a complete alignment by adjusting the x-ray beam to produce an audible sound of the maximum frequency.

Steinmeyer, P.A.

1989-09-12T23:59:59.000Z

391

CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES  

SciTech Connect

Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

Song Qiwu; Huang Guangli [Purple Mountain Observatory, Nanjing 210008 (China); Nakajima, Hiroshi, E-mail: songqw@pmo.ac.cng, E-mail: lhuang@pmo.ac.cn, E-mail: nakaji15@dia.janis.or.jp [Nobeyama Solar Radio Observatory, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

2011-06-20T23:59:59.000Z

392

Direct detection of x-rays for protein crystallography  

DOE Patents (OSTI)

An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction o f the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce an image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

Atac, Muzaffer; McKay, Timothy

1997-12-01T23:59:59.000Z

393

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

394

Introduction to Neutron and X-Ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Studies of Thin Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad Röntgen 1845-1923 1895: Discovery of X-Rays 1901 W. C. Röntgen in Physics for the discovery of x-rays. 1914 M. von Laue in Physics for x-ray diffraction from crystals. 1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination. 1917 C. G. Barkla in Physics for characteristic radiation of elements. 1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy. 1927 A. H. Compton in Physics for scattering of x-rays by electrons. 1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.

395

Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full-compression mode, although the photon number is less than that from under-compression or over-compression mode. Since we cannot measure the x-ray pulse length at this time scale, the machine is typically optimized for generating maximum photons, not minimum pulse length. In this paper, we study the methods of producing femtosecond (or single-spike) x-ray pulses at LCLS with 20 pC charge, based on start-to-end simulations. Figure 1 shows a layout of LCLS. The compression in the second bunch compressor (BC2) determines the final e-beam bunch length. However, the laser heater, dog-leg after the main linac (DL2) and collective effects also affect the final bunch length. To adjust BC2 compression, we can either change the L2 phase or BC2 R{sub 56}. In this paper we only tune L2 phase while keep BC2 R{sub 56} fixed. For the start-to-end simulations, we used IMPACT-T and ELEGANT tracking from the photocathode to the entrance of the undulator, after that the FEL radiation was simulated with GENESIS. IMPACT-T tracks about 10{sup 6} particles in the injector part until 135 MeV, including 3D space charge force. The output particles from IMPACT-T are smoothed and increased to 12 x 10{sup 6} to reduce high-frequency numerical noise for subsequent ELEGANT simulations, which include linear and nonlinear transport effects, a 1D transient model of CSR, and longitudinal space charge effects, as well as geometric and resistive wake fields in the accelerator. In GENESIS part, the longitudinal wake field from undulator chamber and longitudinal space field are also included.

Wang, L.; Ding, Y.; Huang, Z.; /SLAC

2011-12-14T23:59:59.000Z

396

X-ray chemistry in envelopes around young stellar objects  

E-Print Network (OSTI)

We present chemical models of the envelope of a young stellar object (YSO) exposed to a central X-ray source. The models are applied to the massive star-forming region AFGL 2591 for different X-ray fluxes. The total X-ray ionization rate is dominated by the `secondary' ionization rate of H2 resulting from fast electrons. The carbon, sulphur and nitrogen chemistries are discussed. It is found that He+ and H3+ are enhanced and trigger a peculiar chemistry. Several molecular X-ray tracers are found and compared to tracers of the far ultraviolet (FUV) field. Like ultraviolet radiation fields, X-rays enhance simple hydrides, ions and radicals. In contrast to ultraviolet photons, X-rays can penetrate deep into the envelope and affect the chemistry even at large distances from the source. Whereas the FUV enhanced species cover a region of 200-300 AU, the region enhanced by X-rays is >1000 AU. Best-fit models for AFGL 2591 predict an X-ray luminosity LX > 1e+31 ergs/s with a hard X-ray spectrum TX > 3e+07 K. Furthermore, we find LX/Lbol ~ 1e-6. The chemistry of the bulk of the envelope mass is dominated by cosmic-ray induced reactions rather than by X-ray induced ionization for X-ray luminosities LX < 1e+33 ergs/s. The calculated line intensities of HCO+ and HCS+ show that high-J lines are more affected than lower J lines by the presence of X-rays due to their higher critical densities, and that such differences are detectable even with large aperture single-dish telescopes. Future instruments such as Herschel-HIFI or SOFIA will be able to observe X-ray enhanced hydrides whereas the sensitivity and spatial resolution of ALMA is well-suited to measure the size and geometry of the region affected by X-rays.

P. Staeuber; S. D. Doty; E. F. van Dishoeck; A. O. Benz

2005-06-14T23:59:59.000Z

397

X-Ray Diffraction on NIF  

SciTech Connect

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

398

X-ray imaging with grazing-incidence microscopes developed for the LIL program  

SciTech Connect

This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV--0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MegaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with different spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of {approx}80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 {mu}m over a 2-mm-diam region. The hard x-ray version microscope has a 10 {mu}m resolution over an 800-{mu}m-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 {mu}m over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.

Rosch, R.; Boutin, J. Y.; Le Breton, J. P.; Gontier, D.; Jadaud, J. P.; Reverdin, C.; Soullie, G.; Lidove, G.; Maroni, R. [CEA/DIF, BP 12, 91680 Bruyeres-Le-Chatel (France)

2007-03-15T23:59:59.000Z

399

Wolter-like high resolution x-ray imaging microscope for Rayleigh Taylor instabilities studies  

SciTech Connect

In the context of the inertial confinement fusion, experiments have been carried out on the Phebus laser facility to study the Rayleigh-Taylor instabilities (RTIs) at the ablation front. Premodulated brominated plastic targets (25 {mu}m thick) with a modulation wavelength between 12 and 50 {mu}m were accelerated with a temporally shaped soft x-ray pulse emitted from a hohlraum with a maximum radiation temperature of about 115 eV. The RTI growth was measured by face-on radiography using a microscope coupled with an x-ray streak camera, which has spatial and temporal resolutions of about 5 {mu}m and 50 ps, respectively. The acceleration was derived from side-on velocity measurements. The microscope we have developed is a Wolter-like microscope which consists of two toroiedal mirrors. We will present the experimental and theoretical potentialities of this microscope: characterization with an x-ray generator and plasma laser x-ray source (Phebus facility) for two-dimensional (2D) and 1D time-resolved imaging studies. Spatial resolution of about 4 {mu}m was achieved in the 1-5 keV range. The Wolter-like constitutes an interesting device for laser plasma diagnostics and will be very useful in the Laser Megajoules experiments conducted with more powerful lasers.

Troussel, Ph.; Meyer, B.; Reverdin, R.; Angelier, B.; Lidove, G.; Salvatore, P.; Richard, A. [Commissariat a l'Energie Atomique, DAM-Ile de France, BP 12, 91680 Bruyeres-les-Chatel (France); Commissariat a l'Energie Atomique, Saclay 91191 (France); Commissariat a l'Energie Atomique, CESTA, BP2, 33114 Le Barp (France)

2005-06-15T23:59:59.000Z

400

Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

A new set of thin-window silicon drift detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 A silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 mum). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 A thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft X-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

Chen, W.; Carini, G.A.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "resonant soft x-ray" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Applications of Diagnostic X-ray Spectrometers  

Science Conference Proceedings (OSTI)

... produced plasmas, terawatt pulsed accelerators, electron cyclotron resonance ion sources, electron-beam ion traps, intense ultrafast laser sources ...

2012-06-26T23:59:59.000Z

402

Gray scale x-ray mask  

DOE Patents (OSTI)

The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

Morales, Alfredo M. (Livermore, CA); Gonzales, Marcela (Seattle, WA)

2006-03-07T23:59:59.000Z

403

Renewed activity from the X-ray transient SAXJ 1810.8-2609 with INTEGRAL  

E-Print Network (OSTI)

We report on the results of INTEGRAL observations of the neutron star low mass X-ray binary SAX J1810.8-2609 during its latest active phase in August 2007. The current outburst is the first one since 1998 and the derived luminosity is 1.1-2.6x10^36 erg s-1 in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ~5x10^-12Msolar/yr suggest that SAXJ 1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of ~23-30 keV and an optical depth of ~1.2-1.5, independent from luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with absenc...

Fiocchi, M; Chenevez, J; Bazzano, A; Tarana, A; Ubertini, P; Brandt, S; Beckmann, V; Federici, M; Galis, R; Hudec, R

2008-01-01T23:59:59.000Z

404

Dynamics and rheology under continuous shear flow studied by X-ray photon correlation spectroscopy  

E-Print Network (OSTI)

X-ray Photon Correlation Spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics in materials on mesoscopic lengthscales. In particular, applications in soft matter physics cover a broad range of topics which include, but are not limited to, nanostructured materials such as colloidal suspensions or polymers, dynamics at liquid surfaces, membranes and interfaces, and the glass or gel transition. One of the most common problems associated with the use of bright X-ray beams with soft materials is beam induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free electron laser sources. Flowing the sample during data acquisition is one of the simplest method allowing to limit the radiation damage. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies in mixing cells. Here, we further develop an experimental technique that was recently proposed combining XPCS and continuously flowing samples. More specifically, we use a model system to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the X-ray data. The method has many potential applications, e.g. dynamics of glasses and gels under continuous shear/flow, protein aggregations processes, the interplay between dynamics and rheology in complex fluids.

Andrei Fluerasu; Pawel Kwasniewski; Chiara Caronna; Fanny Destremaut; Jean-Baptiste Salmon; Anders Madsen

2010-01-10T23:59:59.000Z

405

Definition: X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to obtain specific information about the crystalline material under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances (typically in less than 20 minutes). A pure, finely ground, and homogenized sample is required for determination of the bulk composition. Additional uses include detailed

406

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

407

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

408

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

409

APS 7-BM Beamline: X-Ray Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites Useful Websites X-Ray Interactions with Matter from CRXO at LBNL. Intuitive interface for x-ray transmission and reflectivity for a wide range of materials. X-Ray Data Booklet from LBNL. Slightly outdated in places, but many useful tables of edge energies, fluorescence lines, and crystal lattice spacings. NIST XCOM Database. Powerful database of photoelectric absorption, elastic scattering, and Compton scattering cross-sections for a wide range of materials. X-Ray Server. Maintained by Sergey Stepanov at GMCA at the APS, this website has several powerful calculators for simulating x-ray reflection and diffraction. Software X-Ray Oriented Programs (XOP). This program, written by scientists at the ESRF and APS, is widely used in the synchrotron research community.

410

Density gradient free electron collisionally excited x-ray laser  

DOE Patents (OSTI)

An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

Campbell, E.M.; Rosen, M.D.

1984-11-29T23:59:59.000Z

411

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

412

Multilayers for next generation x-ray sources  

Science Conference Proceedings (OSTI)

Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

2007-05-04T23:59:59.000Z