National Library of Energy BETA

Sample records for resolution imaging spectrometer

  1. A high-resolution imaging X-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A high-resolution imaging X-ray crystal spectrometer for high energy density (HED) plasmas Citation Details In-Document Search Title: A high-resolution imaging...

  2. A high-resolution imaging X-ray crystal spectrometer for intense laser

    Office of Scientific and Technical Information (OSTI)

    plasma interaction experiments (Conference) | SciTech Connect Conference: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction experiments Authors: Chen, H ; Bitter, M ; Hazi, A ; Hill, K ; Kerr, S ; Magee, E ; Nagel, S ; Park, J ; Schneider, M ; Stone, G ; Williams, G ; Beiersdorfer, P Publication Date:

  3. A high-resolution imaging X-ray crystal spectrometer for high energy

    Office of Scientific and Technical Information (OSTI)

    density (HED) plasmas (Journal Article) | SciTech Connect Journal Article: A high-resolution imaging X-ray crystal spectrometer for high energy density (HED) plasmas Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for high energy density (HED) plasmas Authors: Chen, H ; Bitter, M ; Hill, K W ; Kerr, S ; Magee, E ; Nagel, S R ; Park, J ; Schneider, M B ; Stone, G ; Williams, G J ; Beiersdorfer, P Publication Date: 2014-05-29 OSTI Identifier:

  4. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  5. A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas

    SciTech Connect (OSTI)

    Chen, Hui E-mail: bitter@pppl.gov; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P.; Bitter, M. E-mail: bitter@pppl.gov; Hill, K. W.; Kerr, S.

    2014-11-15

    Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 10{sup 19}10{sup 20} W/cm{sup 2}. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

  6. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for

    Office of Scientific and Technical Information (OSTI)

    Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas (Technical Report) | SciTech Connect MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement

  7. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for

    Office of Scientific and Technical Information (OSTI)

    Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas (Technical Report) | SciTech Connect MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement

  8. Characterization of spatially resolved high resolution x-ray spectrometers

    Office of Scientific and Technical Information (OSTI)

    for high energy density physics and light source experiments (Journal Article) | SciTech Connect Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments Citation Details In-Document Search Title: Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments A high resolution 1D imaging x-ray spectrometer concept comprising a spherically

  9. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and ... Subject: 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; DESIGN; ION TEMPERATURE; PERFORMANCE; ...

  10. Application of PILATUS II Detector Modules for High Resolution X-Ray Imaging Crystal Spectrometers on the Alcator C-Mod Tokamak

    SciTech Connect (OSTI)

    M.L. Bitter, Ch. Borennimann, E.F. Eikenberry, K.W. Hill, A. Ince-Chushman, S.G. Lee, J.E. Rice, and S. Scott.

    2007-07-23

    A new type of X-ray imaging crystal spectrometer for Doppler measurements of the radial profiles of the ion temperature and plasma rotation velocity in tokamak plasmas is presently being developed in a collaboration between various laboratories. The spectrometer will consist of a spherically bent crystal and a two-dimensional position sensitive detector; and it will record temporally and spatially resolved X-ray line spectra from highly-charged ions. The detector must satisfy challenging requirements with respect to count rate and spatial resolution. The paper presents the results from a recent test of a PILATUS II detector module on Alcator C-Mod, which demonstrate that the PILATUS II detector modules will satisfy these requirements.

  11. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  12. Compact reflective imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA)

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  13. Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Korte, Andrew R.; Yandeau-Nelson, Marna D.; Nikolau, Basil J.; Lee, Young Jin

    2015-01-25

    A significant limiting factor in achieving high spatial resolution for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is the size of the laser spot at the sample surface. We present modifications to the beam-delivery optics of a commercial MALDI-linear ion trap-Orbitrap instrument, incorporating an external Nd:YAG laser, beam-shaping optics, and an aspheric focusing lens, to reduce the minimum laser spot size from ~50 μm for the commercial configuration down to ~9 μm for the modified configuration. This improved system was applied for MALDI-MS imaging of cross sections of juvenile maize leaves at 5-μm spatial resolution using an oversampling method. Theremore » are a variety of different metabolites including amino acids, glycerolipids, and defense-related compounds were imaged at a spatial resolution well below the size of a single cell. Such images provide unprecedented insights into the metabolism associated with the different tissue types of the maize leaf, which is known to asymmetrically distribute the reactions of C4 photosynthesis among the mesophyll and bundle sheath cell types. The metabolite ion images correlate with the optical images that reveal the structures of the different tissues, and previously known and newly revealed asymmetric metabolic features are observed.« less

  14. Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer

    SciTech Connect (OSTI)

    Korte, Andrew R.; Yandeau-Nelson, Marna D.; Nikolau, Basil J.; Lee, Young Jin

    2015-01-25

    A significant limiting factor in achieving high spatial resolution for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is the size of the laser spot at the sample surface. We present modifications to the beam-delivery optics of a commercial MALDI-linear ion trap-Orbitrap instrument, incorporating an external Nd:YAG laser, beam-shaping optics, and an aspheric focusing lens, to reduce the minimum laser spot size from ~50 ?m for the commercial configuration down to ~9 ?m for the modified configuration. This improved system was applied for MALDI-MS imaging of cross sections of juvenile maize leaves at 5-?m spatial resolution using an oversampling method. There are a variety of different metabolites including amino acids, glycerolipids, and defense-related compounds were imaged at a spatial resolution well below the size of a single cell. Such images provide unprecedented insights into the metabolism associated with the different tissue types of the maize leaf, which is known to asymmetrically distribute the reactions of C4 photosynthesis among the mesophyll and bundle sheath cell types. The metabolite ion images correlate with the optical images that reveal the structures of the different tissues, and previously known and newly revealed asymmetric metabolic features are observed.

  15. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  16. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  17. Imaging spectrometer wide field catadioptric design

    DOE Patents [OSTI]

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  18. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  19. Optical system for high resolution spectrometer/monochromator

    DOE Patents [OSTI]

    Hettrick, M.C.; Underwood, J.H.

    1988-10-11

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane is disclosed. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver. 11 figs.

  20. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect (OSTI)

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  1. Dual waveband compact catadioptric imaging spectrometer

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  2. Compact catadioptric imaging spectrometer utilizing reflective grating

    DOE Patents [OSTI]

    Lerner, Scott A.

    2005-12-27

    An imaging spectrometer apparatus comprising an entrance slit for directing light, a light means for receiving the light and directing the light, a grating that receives the light from the light means and defracts the light back onto the light means which focuses the light, and a detector that receives the focused light. In one embodiment the light means is a rotationally symmetric ZNSE aspheric lens. In another embodiment the light means comprises two ZNSE aspheric lenses that are coaxial. In another embodiment the light means comprises an aspheric mirror and a ZNSE aspheric lens.

  3. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect (OSTI)

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  4. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  5. Objectives and layout of a high-resolution x-ray imaging crystal

    Office of Scientific and Technical Information (OSTI)

    spectrometer for the large helical device (Journal Article) | SciTech Connect Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device Citation Details In-Document Search Title: Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD).

  6. Wide swath imaging spectrometer utilizing a multi-modular design

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  7. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  8. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  9. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  10. Objectives and Layout of a High-Resolution X-ray Imaging Crystal...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search Title:...

  11. High-resolution ophthalmic imaging system

    DOE Patents [OSTI]

    Olivier, Scot S. (Livermore, CA); Carrano, Carmen J. (Livermore, CA)

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  12. Compact Catadioptric Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Lerner, Scott A. (Livermore, CA)

    2006-02-28

    An imaging spectrometer comprising an entrance slit for directing light, a lens that receives said light and reflects said light, a grating that defracts said light back onto said lens which focuses said light, and a detector array that receives said focused light. In one embodiment the grating has rulings immersed into a germanium surface.

  13. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Lerner, Scott A. (Livermore, CA); Bennett, Charles L. (Livermore, CA); Bixler, Jay V. (Oakland, CA); Kuzmenko, Paul J. (Livermore, CA); Lewis, Isabella T. (San Jose, CA)

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  14. High resolution, high rate X-ray spectrometer

    DOE Patents [OSTI]

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  15. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOE Patents [OSTI]

    Friedrich, Stephan (San Jose, CA); , Niedermayr, Thomas R. (Oakland, CA); Labov, Simon E. (Berkeley, CA)

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  16. Atomic data for the ITER Core Imaging X-ray Spectrometer (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Atomic data for the ITER Core Imaging X-ray Spectrometer Citation Details In-Document Search Title: Atomic data for the ITER Core Imaging X-ray Spectrometer The...

  17. Atomic data for the ITER Core Imaging X-ray Spectrometer (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Atomic data for the ITER Core Imaging X-ray Spectrometer Citation Details In-Document Search Title: Atomic data for the ITER Core Imaging X-ray Spectrometer You are...

  18. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR)

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  19. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments [OSTI]

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  20. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  1. Atomic resolution images of graphite in air

    SciTech Connect (OSTI)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  2. Imaging x-ray crystal spectrometers for the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Bitter, M.; Hill, K.W.; Roquemore, A.L.; Beiersdorfer, P.; Kahn, S.M.; Elliott, S.R.; Fraenkel, B.

    1999-01-01

    A new type of high-resolution x-ray imaging crystal spectrometers is described for implementation on the National Spherical Torus Experiment (NSTX) to provide spatially and temporally resolved data on the ion temperature, toroidal and poloidal plasma rotation, electron temperature, impurity ion-charge state distributions, and impurity transport. These data are derived from observations of the satellite spectra of heliumlike argon, ArthinspXVII, which is the dominant charge state for electron temperatures in the range from 0.4 to 3.0 keV and which is accessible to NSTX. Experiments at the Torus Experiment for Technology Oriented Research (TEXTOR) demonstrate that a throughput of 2{times}10{sup 5}thinspphotons/s (corresponding to the count-rate limit of the present detectors) can easily be obtained with small, nonperturbing argon gas puffs of less than 1{times}10{sup {minus}3}thinspTorrthinspscr(l)/s, so that it is possible to record spectra with a small statistical error and a good time resolution (typically 50 and 1 ms in some cases). Employing a novel design, which is based on the imaging properties of spherically bent crystals, the spectrometers will provide spectrally and spatially resolved images of the plasma for all experimental conditions, which include ohmically heated discharges as well as plasmas with rf and neutral-beam heating. The conceptual design, experimental results on the focusing properties, and relevant spectral data from TEXTOR are presented. {copyright} {ital 1999 American Institute of Physics.}

  3. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm thatmore » is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. This reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.« less

  4. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION

    Office of Scientific and Technical Information (OSTI)

    TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES (Conference) | SciTech Connect Conference: A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES Citation Details In-Document Search Title: A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES A new type of X-ray imaging crystal spectrometer has been implemented on Alcator CMod for Doppler measurements

  5. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS...

    Office of Scientific and Technical Information (OSTI)

    TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES Citation Details In-Document Search Title: A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE ...

  6. High Resolution Imaging Science Experiment | Open Energy Information

    Open Energy Info (EERE)

    Resolution Imaging Science Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: High Resolution Imaging Science Experiment Author University of...

  7. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect (OSTI)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Landi, Enrico

    2014-07-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  8. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications

    SciTech Connect (OSTI)

    Mortensen, D. R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y.-M.; Boman, G.; Bowden, M. E.

    2013-08-15

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.

  9. Focusing, in-chamber spectrometer triplet for high resolution measurements on the Sandia Z facility

    SciTech Connect (OSTI)

    Wenger, D. F.; Sinars, D. B.; Rochau, G. A.; Bailey, J. E.; Porter, J. L.; Faenov, A. Ya.; Pikuz, T. A.; Pikuz, S. A.

    2006-10-15

    An early prototype of a focusing spectrometer with one-dimensional (1D) spatial resolution (FSSR) instrument was previously developed for use in the vacuum chamber of the Sandia Z facility [Sinars et al., J. Quant. Spectrosc. Radiat. Transf. 99, 595 (2006)]. This instrument used a single, spherically bent crystal to measure time-integrated Ar spectra from 0.295-0.378 nm with {lambda}/{delta}{lambda}>2000 and a 1D axial spatial resolution of {approx}50 {mu}m. We present the design of a final version of this instrument that improves the shielding, can be aligned more accurately, and uses three crystals instead of one. The last change enables coverage of multiple spectral ranges if different crystals are used, or multiple times if identical crystals and time-gated detectors are used. We also present results from initial prototyping tests on the Z facility using two crystals in a time-integrated mode.

  10. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect (OSTI)

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris; Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette ; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris ; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio; Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05; CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  11. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    SciTech Connect (OSTI)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms. Analysis of low concentration ions, at the ppm level, required a separate analysis using ion ejection techniques. Chemical ionization due to the formation of the MH{sup +} ion or MD{sup +} increased the complexity of the spectra compared to magnetic sector mass spectra and formation of the protonated or deuterated complex was a dynamic function of the trap ion concentration. This made quantitative measurement more of a challenge. However, the resolution of the instrument was far superior to any other mass spectrometry technique that has been applied to the analysis of the hydrogen isotopes. The piezo-electric picoliter injection device offers a new way of submitting small quantities of atmospheric pressure sample gas for analysis. The new software had many improvements over the previous version but significant flaws in the beta codes remain that make the prototype units less than ideal. The instrument is a promising new technology that experience will likely improve. Unfortunately, Siemens has concluded that the technology will not be a commercial success and has decided to stop producing this product.

  12. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES

    SciTech Connect (OSTI)

    Bitter, M; Hill, K W; Scott, S; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2008-06-06

    A new type of X-ray imaging crystal spectrometer has been implemented on Alcator CMod for Doppler measurements of ion temperature and plasma rotation velocity profiles. The instrument consists of two spherically bent (102)-quartz crystals with radii of curvature of 1444 and 1385 mm and four 'PILATUS II' detector modules. It records spectra of He-like argon from the entire, 72 cm high, elongated plasma cross-section and spectra of H-like argon from a 20 cm high, central region of the plasma, with a spatial resolution of 1.3 cm and a time resolution of less than 20 ms. The new spectrometer concept is also of interest for the diagnosis of burning plasmas on future machines. This paper presents recent experimental results from Aclator C-Mod and discusses challenges in X-ray spectroscopy for the diagnosis of fusion plasmas on future machines.

  13. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  14. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOE Patents [OSTI]

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  15. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution

    SciTech Connect (OSTI)

    Bitter, M. Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N.; Lu, Jian; Beiersdorfer, P.; Chen, Hui

    2014-11-15

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging the L?{sub 1}- and L?{sub 2}-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.

  16. Prospects for Electron Imaging with Ultrafast Time Resolution...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution....

  17. OZSPEC-2: An improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited)

    SciTech Connect (OSTI)

    Heeter, R. F.; Anderson, S. G.; Booth, R.; Brown, G. V.; Emig, J.; Fulkerson, S.; McCarville, T.; Norman, D.; Schneider, M. B.; Young, B. K. F.

    2008-10-15

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 {mu}m resolution over a 1500 {mu}m field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/{delta}E>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  18. High-resolution x-ray spectrometer based on spherically bent crystals for investigations of femtosecond laser plasmas

    SciTech Connect (OSTI)

    Young, B.K.; Osterheld, A.L.; Price, D.F.; Shepherd, R.; Stewart, R.E.; Faenov, A.Y.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Y.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Letardi, T.; Grilli, A.; Palladino, L.; Reale, A.; Scafati, A.; Reale, L.

    1998-12-01

    Ultrashort-pulse, laser-produced plasmas have become very interesting laboratory sources to study spectroscopically due to their very high densities and temperatures, and the high laser-induced electromagnetic fields present. Typically, these plasmas are of very small volume and very low emissivity. Thus, studying these near point source plasmas requires advanced experimental techniques. We present a new spectrometer design called the focusing spectrometer with spatial resolution (FSSR-2D) based on a spherically bent crystal which provides simultaneous high spectral ({lambda}/{Delta}{lambda}{approx}10{sup 4}) and spatial resolution ({approx}10thinsp{mu}m) as well as high luminosity (high collection efficiency). We described in detail the FSSR-2D case in which a small, near point source plasma is investigated. An estimate for the spectral and spatial resolution for the spectrometer is outlined based on geometric considerations. Using the FSSR-2D instrument, experimental data measured from both a 100 fs and a nanosecond pulse laser-produced plasma are presented. {copyright} {ital 1998 American Institute of Physics.}

  19. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K. (Houston, TX)

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  20. Camera system resolution and its influence on digital image correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; Fleming, Darryn

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss ofmore » spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.« less

  1. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    SciTech Connect (OSTI)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu; Yamamoto, Takashi; Kawai, Jun

    2010-04-06

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Cr is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.

  2. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  3. 3-dimensional imaging at nanometer resolutions

    DOE Patents [OSTI]

    Werner, James H. (Los Alamos, NM); Goodwin, Peter M. (Los Alamos, NM); Shreve, Andrew P. (Santa Fe, NM)

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  4. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOE Patents [OSTI]

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  5. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    SciTech Connect (OSTI)

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D.; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M.; Kato, F.; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M.; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J.; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R.; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z.; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  6. Synthetic aperture radar images with composite azimuth resolution

    DOE Patents [OSTI]

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  7. HRTEM Imaging of Atoms at Sub-Angstrom Resolution

    SciTech Connect (OSTI)

    O'Keefe, Michael A.; Allard, Lawrence F.; Blom, Douglas A.

    2005-04-06

    John Cowley and his group at Arizona State University pioneered the use of transmission electron microscopy (TEM) for high-resolution imaging. Images were achieved three decades ago showing the crystal unit cell content at better than 4 Angstrom resolution. This achievement enabled researchers to pinpoint the positions of heavy atom columns within the unit cell. Lighter atoms appear as resolution is improved to sub-Angstrom levels. Currently, advanced microscopes can image the columns of the light atoms (carbon, oxygen, nitrogen) that are present in many complex structures, and even the lithium atoms present in some battery materials. Sub-Angstrom imaging, initially achieved by focal-series reconstruction of the specimen exit surface wave, will become common place for next-generation electron microscopes with CS-corrected lenses and monochromated electron beams. Resolution can be quantified in terms of peak separation and inter-peak minimum, but the limits imposed on the attainable resolution by the properties of the micro-scope specimen need to be considered. At extreme resolution the ''size'' of atoms can mean that they will not be resolved even when spaced farther apart than the resolution of the microscope.

  8. Compact and mobile high resolution PET brain imager

    DOE Patents [OSTI]

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  9. Calculation of the Johann error for spherically bent x-ray imaging crystal spectrometers

    SciTech Connect (OSTI)

    Wang, E.; Beiersdorfer, P.; Gu, M.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Reinke, M.; Rice, J. E.; Podpaly, Y.

    2010-10-15

    New x-ray imaging crystal spectrometers, currently operating on Alcator C-Mod, NSTX, EAST, and KSTAR, record spectral lines of highly charged ions, such as Ar{sup 16+}, from multiple sightlines to obtain profiles of ion temperature and of toroidal plasma rotation velocity from Doppler measurements. In the present work, we describe a new data analysis routine, which accounts for the specific geometry of the sightlines of a curved-crystal spectrometer and includes corrections for the Johann error to facilitate the tomographic inversion. Such corrections are important to distinguish velocity induced Doppler shifts from instrumental line shifts caused by the Johann error. The importance of this correction is demonstrated using data from Alcator C-Mod.

  10. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  11. Imaging Lithium Atoms at Sub-Angstrom Resolution

    SciTech Connect (OSTI)

    O'Keefe, Michael A.; Shao-Horn, Yang

    2005-01-03

    John Cowley and his group at ASU were pioneers in the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4A resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.

  12. HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS OF THE TEMPERATURE STRUCTURE OF THE QUIET CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Williams, David R. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Watanabe, Tetsuya, E-mail: dhbrooks@ssd5.nrl.navy.mi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-11-10

    We present a differential emission measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We show that the expected quiet-Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log T = 5.6-6.4 K that can be used to derive the DEM distribution reliably, including a subset of iron lines that can be used to derive the DEM distribution free of the possibility of uncertainties in the elemental abundances. The subset can be used without the need for extensive measurements, and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1'' pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet-Sun data sets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log T approx 6.2 K in all cases. This result is consistent with the view that the shape of the quiet-Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This universal DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet-Sun region to region.

  13. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect (OSTI)

    Qin Zhengbo; Wu Xia; Tang Zichao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  14. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  15. Method And Aparatus For Improving Resolution In Spectrometers Processing Output Steps From Non-Ideal Signal Sources

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Momayezi, Michael (San Francisco, CA)

    2003-07-01

    A method and apparatus for processing step-like output signals generated by non-ideal, nominally single-pole ("N-1P") devices responding to possibly time-varying, pulse-like input signals of finite duration, wherein the goal is to recover the integrated areas of the input signals. Particular applications include processing step-like signals generated by detector systems in response to absorbed radiation or particles and, more particularly, to digitally processing such step-like signals in high resolution, high rate gamma ray (.gamma.-ray) spectrometers with resistive feedback preamplifiers connected to large volume germanium detectors. Superconducting bolometers can be similarly treated. The method comprises attaching a set of one or more filters to the device's (e.g., preamplifier's) output, capturing a correlated multiple output sample from the filter set in response to a detected event, and forming a weighted sum of the sample values to accurately recover the total area (e.g., charge) of the detected event.

  16. allows researchers to capture high-resolution images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    allows researchers to capture high-resolution images - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  17. Patent: High resolution x-ray and gamma ray imaging using diffraction...

    Office of Scientific and Technical Information (OSTI)

    High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals Citation Details Title: High resolution x-ray and gamma ray imaging using...

  18. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  19. Collimator application for microchannel plate image intensifier resolution improvement

    DOE Patents [OSTI]

    Thomas, Stanley W. (Livermore, CA)

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution.

  20. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100300 spectral band

    SciTech Connect (OSTI)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 and 135 , respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 m at the 200 setting and better than 40 m for the 135- range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Li{sup +} and 65 eV for the 135 Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  1. Structure recognition from high resolution images of ceramic composites

    SciTech Connect (OSTI)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  2. Layout And Results From The Initial Opeeration Of The High-resolution X-ray

    Office of Scientific and Technical Information (OSTI)

    Imaging Crystal Spectrometer On The Large Helical Device (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Layout And Results From The Initial Opeeration Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device Citation Details In-Document Search Title: Layout And Results From The Initial Opeeration Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device First results of ion and electron

  3. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    SciTech Connect (OSTI)

    Deng, Z.; Richmond, M. C.; Mueller, R. P.; Gruensch, G. R.

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  4. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect (OSTI)

    Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune 411007 (India); Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  5. A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a ...

  6. Virtually distortion-free imaging system for large field, high resolution lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-05

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  7. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    Authors: Chen, H ; Bitter, M ; Hazi, A ; Hill, K ; Kerr, S ; Magee, E ; Nagel, S ; Park, J ; Schneider, M ; Stone, G ; Williams, G ; Beiersdorfer, P Publication Date: 2014-02-25 ...

  8. A high-resolution imaging X-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    Authors: Chen, H ; Bitter, M ; Hill, K W ; Kerr, S ; Magee, E ; Nagel, S R ; Park, J ; Schneider, M B ; Stone, G ; Williams, G J ; Beiersdorfer, P Publication Date: 2014-05-29 OSTI ...

  9. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    Conference Resource Relation: Conference: Presented at: 20th Topical Conference on High-Temperature Plasma Diagnostics Conference, Atlanta, GA, United States, Jun 01 - Jun 05, 2014...

  10. Development of a High Resolution X-Ray Imaging Crystal Spectrometer

    Office of Scientific and Technical Information (OSTI)

    for Measurement of Ion-Temperature and Rotation-Velocity ... prepared as an account of work sponsored by an agency of ... were available from small area crystals on the high ...

  11. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    for Measurement of Ion-Temperature and Rotation-Velocity ... prepared as an account of work sponsored by an agency of ... were avail- able from small area crystals on the high ...

  12. A high-resolution imaging x-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    New Jersey 08543 (United States) Department of Applied Science, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada) Publication Date: 2014-11-15 OSTI Identifier:...

  13. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    SciTech Connect (OSTI)

    Llorens, Isabelle; Lahera, Eric; Delnet, William; Proux, Olivier; Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay; Bardou, Nathalie; Ulrich, Olivier; and others

    2012-06-15

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  14. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    SciTech Connect (OSTI)

    Schwarz, Udo

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  15. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    DOE Patents [OSTI]

    Majewski, Stanislaw (Yorktown, VA); Proffitt, James (Newport News, VA)

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  16. A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma

    Office of Scientific and Technical Information (OSTI)

    Experiments on OMEGA (Journal Article) | SciTech Connect A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma Experiments on OMEGA Citation Details In-Document Search Title: A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma Experiments on OMEGA A high-resolution x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed x-ray streak camera. The resulting

  17. D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization | Department of Energy Robotic Deployment of High Resolution Laser Imaging for Characterization D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization The characterization of complex and/or hazardous facilities for the purposes of planning D&D projects can be excessively time consuming and present unacceptable hazards for personnel who enter or access the facility. PDF icon D&D Toolbox Robotic Deployment of High Resolution Laser

  18. High resolution PET breast imager with improved detection efficiency

    DOE Patents [OSTI]

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  19. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Heard, Freddie E. (Albuquerque, NM); Cordaro, J. Thomas (Albuquerque, NM)

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  20. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmorean image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.less

  1. A versatile high-resolution x-ray imager (HRXI) for laser-plasma...

    Office of Scientific and Technical Information (OSTI)

    x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed...

  2. High-Resolution Aeromagnetic Survey to Image Shallow Faults,...

    Open Energy Info (EERE)

    to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Abstract NA Author V. J. S. Grauch Published U.S. Geological Survey, 2002 Report Number 02-384 DOI Not Provided...

  3. High resolution resonance ionization imaging detector and method

    DOE Patents [OSTI]

    Winefordner, James D. (Gainesville, FL); Matveev, Oleg I. (Gainesville, FL); Smith, Benjamin W. (Gainesville, FL)

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  4. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOE Patents [OSTI]

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  5. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  6. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    SciTech Connect (OSTI)

    Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  7. Monolithic spectrometer

    DOE Patents [OSTI]

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  8. Monolithic spectrometer

    DOE Patents [OSTI]

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  9. Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holography - Energy Innovation Portal Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital Holography Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary An optical system capable of reproducing three-dimensional images was invented at ORNL. This system can detect height changes of a few nanometers or less and render clear, single shot images. These types of precise, high speed measurements are important for a variety of

  10. Layout and results from the initial operation of the high-resolution x-ray

    Office of Scientific and Technical Information (OSTI)

    imaging crystal spectrometer on the Large Helical Device (Journal Article) | SciTech Connect Layout and results from the initial operation of the high-resolution x-ray imaging crystal spectrometer on the Large Helical Device Citation Details In-Document Search Title: Layout and results from the initial operation of the high-resolution x-ray imaging crystal spectrometer on the Large Helical Device First results of ion and electron temperature profile measurements from the x-ray imaging

  11. Layout And Results From The Initial Opeeration Of The High-resolution X-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Crystal Spectrometer On The Large Helical Device (Technical Report) | SciTech Connect Layout And Results From The Initial Opeeration Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device Citation Details In-Document Search Title: Layout And Results From The Initial Opeeration Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device First results of ion and electron temperature pro le measurements from the x-ray imaging

  12. DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION

    SciTech Connect (OSTI)

    De Sanctis, M. C.; Ammannito, E.; Palomba, E.; Longobardo, A.; Capaccioni, F.; Capria, M. T.; Tosi, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Combe, J.-Ph.; McCord, T. B.; Marchi, S.; Mittlefehldt, D. W.; Pieters, C. M.; Sunshine, J.; Raymond, C. A.; Russell, C. T.; and others

    2012-10-20

    Water plays a key role in the evolution of terrestrial planets, and notably in the occurrence of Earth's oceans. However, the mechanism by which water has been incorporated into these bodies-including Earth-is still extensively debated. Here we report the detection of widespread 2.8 {mu}m OH absorption bands on the surface of the asteroid Vesta by the VIR imaging spectrometer on board Dawn. These observations are surprising as Vesta is fully differentiated with a basaltic surface. The 2.8 {mu}m OH absorption is distributed across Vesta's surface and shows areas enriched and depleted in hydrated materials. The uneven distribution of hydrated mineral phases is unexpected and indicates ancient processes that differ from those believed to be responsible for OH on other airless bodies, like the Moon. The origin of Vestan OH provides new insight into the delivery of hydrous materials in the main belt and may offer new scenarios on the delivery of hydrous minerals in the inner solar system, suggesting processes that may have played a role in the formation of terrestrial planets.

  13. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    SciTech Connect (OSTI)

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  14. Design Parameters and Objectives of a High--Resolution X--ray...

    Office of Scientific and Technical Information (OSTI)

    Design Parameters and Objectives of a High--Resolution X--ray Imaging Crystal Spectrometer for the Large Helical Device (LHD) Citation Details In-Document Search Title: Design...

  15. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect (OSTI)

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the black box view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  16. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    SciTech Connect (OSTI)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C. M.; Seely, J.; Feldman, U.; Holland, G.

    1997-05-05

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687 A, R=200 mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3-4 {mu}m. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6-7 {mu}m spatial resolution.

  17. High resolution monochromatic X-ray imaging system based on spherically bent crystals

    SciTech Connect (OSTI)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1997-05-01

    We have developed a new X-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser [1,2]. The imaging system is used for plasma diagnostics of the main target and for characterization of potential backlighters. A spherically curved quartz crystal (2d=6.687{Angstrom}, R=200mm) is used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the X-ray optical system is 3{endash}4 {mu}m. Time resolved backlit monochromatic images of CH planar targets driven by the Nike facility have been obtained with 6{endash}7 {mu}m spatial resolution. {copyright} {ital 1997 American Institute of Physics.}

  18. Correlation spectrometer

    DOE Patents [OSTI]

    Sinclair, Michael B. (Albuquerque, NM); Pfeifer, Kent B. (Los Lunas, NM); Flemming, Jeb H. (Albuquerque, NM); Jones, Gary D. (Tijeras, NM); Tigges, Chris P. (Albuquerque, NM)

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  19. FIRST HIGH-RESOLUTION IMAGES OF THE SUN IN THE 2796 Mg II k LINE

    SciTech Connect (OSTI)

    Riethmller, T. L.; Solanki, S. K.; Hirzberger, J.; Danilovic, S.; Barthol, P.; Gandorfer, A.; Gizon, L.; Berkefeld, T.; Schmidt, W.; Knlker, M.; Del Toro Iniesta, J. C.

    2013-10-10

    We present the first high-resolution solar images in the Mg II k 2796 line. The images, taken through a 4.8 broad interference filter, were obtained during the second science flight of Sunrise in 2013 June by the Sunrise Filter Imager (SuFI) instrument. The Mg II k images display structures that look qualitatively very similar to images taken in the core of Ca II H. The Mg II images exhibit reversed granulation (or shock waves) in the internetwork regions of the quiet Sun, at intensity contrasts that are similar to those found in Ca II H. Very prominent in Mg II are bright points, both in the quiet Sun and in plage regions, particularly near the disk center. These are much brighter than at other wavelengths sampled at similar resolution. Furthermore, Mg II k images also show fibril structures associated with plage regions. Again, the fibrils are similar to those seen in Ca II H images, but tend to be more pronounced, particularly in weak plage.

  20. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  1. Multidimensional spectrometer

    DOE Patents [OSTI]

    Zanni, Martin Thomas (Madison, WI); Damrauer, Niels H. (Boulder, CO)

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  2. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  3. High-resolution monochromatic x-ray imaging system based on spherically bent crystals

    SciTech Connect (OSTI)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Brown, C.M.; Seely, J.; Feldman, U.; Holland, G.

    1998-08-01

    We have developed an improved x-ray imaging system based on spherically curve crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (2d=6.687 {Angstrom}, R=200 mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 {mu}m in selected places and 2{endash}3 {mu}m over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 {mu}m in selected places and 5 {mu}m over the focal spot of the Nike laser. {copyright} 1998 Optical Society of America

  4. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect (OSTI)

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  5. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    SciTech Connect (OSTI)

    Alejo, A.; Kar, S. Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Green, J. S.; Notley, M.; Fernandez, J.; Fuchs, J.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; and others

    2014-09-15

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C{sup 6+}, O{sup 8+}, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  6. A high spatial resolution Stokes polarimeter for motional Stark effect imaging

    SciTech Connect (OSTI)

    Thorman, Alex; Michael, Clive; Howard, John [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2013-06-15

    We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high energy neutral beams injected into the magnetized plasma. We describe the optical system and compare its performance against a Mueller matrix model that takes account of non-ideal performance of the switching ferro-electric liquid crystal waveplates and other polarizing components.

  7. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    SciTech Connect (OSTI)

    Jun, Ji Hyun

    2011-11-30

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 ?m) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 ?m was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial distribution of targeted metabolites, mainly waxes and flavonoids, was systematically explored on various organs, including flowers, leaves, stems, and roots at high spatial resolution of ~ 12-50 ?m and the changes in the abundance level of these metabolites were monitored on the cer1 mutant with respect to the wild-type. This study revealed the metabolic biology of CER1 gene on each individual organ level with very detailed high spatial resolution. The separate MS images of isobaric metabolites, i.e. C29 alkane vs. C28 aldehyde could be constructed on both genotypes from MS imaging at high mass resolution. This allows tracking of abundance changes for those compounds along with the genetic mutation, which is not achievable with low mass resolution mass spectrometry. This study supported previous hypothesis of molecular function of CER1 gene as aldehyde decarbonylase, especially by displaying hyper accumulation of aldehydes and C30 fatty acid and decrease in abundance of alkanes and ketones in several plant organs of cer1 mutant. The scope of analytes was further directed toward internal cell metabolites from the surface metabolites of the plant. MS profiling and imaging of internal cell metabolites were performed on the vibratome section of Arabidopsis leaf. Vibratome sectioning of the leaf was first conducted to remove the surface cuticle layer and it was followed by enzymatic treatment of the section to induce the digestion of primary cell walls, middle lamella, and expose the internal cells underneath to the surface for detection with the laser by LDI-MS. The subsequent MS imaging onto the enzymatically treated vibratome section allowed us to map the distribution of the metabolites in the internal cell layers, linolenic acid (C18:3 FA) and linoleic acid (C18:2 FA). The development of an assay for relative quantification of analytes at the single subcellular/organelle level by LDI-MS imaging was attempted and both plausibility and significant obstacles were seen. As a test system, native plant organelle, chloroplasts isolated from the spinach leaves were used

  8. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    SciTech Connect (OSTI)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  9. D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization

    Office of Environmental Management (EM)

    Tech Stage: Demonstration D&D Toolbox: Project OR-071203, OR-071303; Deployed at SRS P Reactor Area Closure Project PBS SR-0040 The robotically deployed laser surveying system was demonstrated in the Purification room of SRS P-Reactor on September 24, 2008. Page 1 of 2 Savannah River Site South Carolina Michigan D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization Challenge The characterization of complex and/or hazardous facilities for the purposes of

  10. Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bimetallic Nanocatalysts by Fast Electrons | Stanford Synchrotron Radiation Lightsource Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of Bimetallic Nanocatalysts by Fast Electrons Thursday, October 24, 2013 - 3:30pm SLAC, Conference Room 137-322 Presented by Huolin Xin Center for Functional Nanomaterials Brookhaven National Laboratory, Upton, New York Scanning transmission electron microscopy (STEM) in combination with electron energy loss spectroscopy (EELS) has

  11. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect (OSTI)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super-wide angle one-way propagator and special full-wave reverse-time migration method. Finally, we studied the theoretical basis of true-reflection imaging and bridges imaging and inversion with the theory of diffraction tomography.

  12. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOE Patents [OSTI]

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  13. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    SciTech Connect (OSTI)

    Ramos, Jorge R.

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  14. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect (OSTI)

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  15. Spectrometer gun

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM); Umbarger, C. John (Los Alamos, NM)

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  16. Spectrometer gun

    DOE Patents [OSTI]

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  17. Objectives and Layout of a High-Resolution X-ray Imaging Crystal...

    Office of Scientific and Technical Information (OSTI)

    equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely...

  18. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging

    SciTech Connect (OSTI)

    Sugiro, Francisca R.; Li Danhong; MacDonald, C.A.

    2004-12-01

    Monochromatic imaging can provide better contrast and resolution than conventional broadband radiography. In broadband systems, low energy photons do not contribute to the image, but are merely absorbed, while high energy photons produce scattering that degrades the image. By tuning to the optimal energy, one can eliminate undesirable lower and higher energies. Monochromatization is achieved by diffraction from a single crystal. A crystal oriented to diffract at a particular energy, in this case the characteristic line energy, diffracts only those photons within a narrow range of angles. The resultant beam from a divergent source is nearly parallel, but not very intense. To increase the intensity, collimation was performed with polycapillary x-ray optics, which can collect radiation from a divergent source and redirect it into a quasi parallel beam. Contrast and resolution measurements were performed with diffracting crystals with both high and low angular acceptance. Testing was first done at 8 keV with an intense copper rotating anode x-ray source, then 17.5 keV measurements were made with a low power molybdenum source. At 8 keV, subject contrast was a factor of five higher than for the polychromatic case. At 17.5 keV, monochromatic contrast was two times greater than the conventional polychromatic contrast. The subject contrasts measured at both energies were in good agreement with theory. An additional factor of two increase in contrast, for a total gain of four, is expected at 17.5 keV from the removal of scatter. Scatter might be simply removed using an air gap, which does not degrade resolution with a parallel beam.

  19. New Strategies for 0.5 mm Resolution, High Sensitivity, Multi- Radionuclide Imaging

    SciTech Connect (OSTI)

    Levin, Craig S; Levin, Craig

    2015-02-28

    This project constitutes a 0.5-millimeter resolution radionuclide detector system built from CZT. (1) A novel dual-crystal photon detector module design with cross-strip electrode patterns was developed; (2) The module mechanical assembly was built; (3) A data acquisition (DAQ) chain for the module was produced; (4) A software tool was developed to incorporate novel time and energy measurement calibration techniques. (5) A small multi-detector prototype of the radionuclide imaging system was built from this module for system-level characterizations.

  20. High-resolution imaging and target designation through clouds or smoke

    DOE Patents [OSTI]

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  1. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    SciTech Connect (OSTI)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to Department of Energy's Hydropower Program, we identified three major research areas of interest: free swimming, the boundary layer over fish, and kinematic response of fish. We propose that the highest priority is to characterize the kinematic response of fish to different turbulent environments such as high shear/turbulence and hydrodynamic disturbances created by solid structures such as deflector and turbine runner blade; the next priority is to map the boundary layer over swimming fish; the last is to document the behavior of freely swimming fish, focusing on fish of our interest. Grid turbulence and Karman vortex street will be employed to map the boundary layers over fish and investigate the effects of environmental disturbances on the swimming performance of fish, because they are well established and documented in engineering literature and are representative of fish's swimming environments. Extreme conditions characteristic of turbine environments, such as strong shear environment and collision, will be investigated. Through controlled laboratory studies, the fish injury mechanism from different sources will be evaluated in isolation. The major goals are to: gain first-hand knowledge of the biological effects under such extreme hydraulic environments in which fish could lack the capability to overcome the perturbations and be vulnerable to injury; Better understand field results by integrating the laboratory studies with the responses of sensor fish device; More importantly, provide well-defined validation cases and boundary conditions for geometry-based computational fluid-structure interaction modeling in order to simulate the complex hydraulic environments in advanced hydropower systems and their effects on fish, greatly enhancing the potential to use CFD as a bio-hydraulic design alternative.

  2. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    DOE Patents [OSTI]

    Majewski, Stanislaw; Proffitt, James

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  3. 100 muas RESOLUTION VLBI IMAGING OF ANISOTROPIC INTERSTELLAR SCATTERING TOWARD PULSAR B0834+06

    SciTech Connect (OSTI)

    Brisken, W. F.; Deller, A. T.; Macquart, J.-P.; Tingay, S. J.; Gao, J. J.; Rickett, B. J.; Coles, W. A.; West, C. J.

    2010-01-01

    We have invented a novel technique to measure the radio image of a pulsar scattered by the interstellar plasma with 0.1 mas resolution. We extend the 'secondary spectrum' analysis of parabolic arcs by Stinebring et al. to very long baseline interferometry and, when the scattering is anisotropic, we are able to map the scattered brightness astrometrically with much higher resolution than the diffractive limit of the interferometer. We employ this technique to measure an extremely anisotropic scattered image of the pulsar B0834+06 at 327 MHz. We find that the scattering occurs in a compact region about 420 pc from the Earth. This image has two components, both essentially linear and nearly parallel. The primary feature, which is about 16 AU long and less than 0.5 AU in width, is highly inhomogeneous on spatial scales as small as 0.05 AU. The second feature is much fainter and is displaced from the axis of the primary feature by about 9 AU. We find that the velocity of the scattering plasma is 16 +- 10 km s{sup -1} approximately parallel to the axis of the linear feature. The origin of the observed anisotropy is unclear and we discuss two very different models. It could be, as has been assumed in earlier work, that the turbulence on spatial scales of (approx1000 km) is homogeneous but anisotropic. However, it may be that the turbulence on these scales is homogeneous and isotropic but the anisotropy is produced by highly elongated (filamentary) inhomogeneities of scale 0.05-16 AU.

  4. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect (OSTI)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. The report documents several features of a notional generator design incorporating the alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.

  5. Measurement of Core Plasma Temperature and Rotation on W7-X made available by the X-ray Imaging Crystal Spectrometer (XICS)

    Office of Scientific and Technical Information (OSTI)

    5049 PPPL-5049 Measurement of Core Plasma Temperature and Rotation on W7-X made available by the X-ray Imaging Crystal Spectrometer (XICS) N.A. Pablant, M. Bitter, R. Burhenn, L. Delgado-Aparicio, R. Ellis, D. Gates, M. Goto, K.W. Hill, A. Langenberg, S. Lazerson, M. Mardenfeld, S. Morita, G. H. Neilson, T. Oishi and T.S. Pedersen JUNE 2014 f>PPPL P R IN C E T O N P L A S M A PHYSIC S L A B O R A T O R Y Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466. P r in c e

  6. Compact, high-resolution, gamma ray imaging for scintimammography and other medical diagostic applications

    DOE Patents [OSTI]

    Majewski, Stanislaw (Grafton, VA); Weisenberger, Andrew G. (Grafton, VA); Wojcik, Randolph F. (Yorktown, VA); Steinbach, Daniela (Williamsburg, VA)

    1999-01-01

    A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.

  7. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    SciTech Connect (OSTI)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.

  8. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; Lu, Xi; Riedo, Elisa; Meriles, Carlos A.

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less

  9. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  10. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  11. Hubble space telescope high-resolution imaging of Kepler small and cool exoplanet host stars

    SciTech Connect (OSTI)

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Wright, Jason T.; Adams, Elisabeth R.; Ciardi, David R.

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.

  12. Simulation of High-Resolution Magnetic Resonance Images on the IBM Blue Gene/L Supercomputer Using SIMRI

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baum, K. G.; Menezes, G.; Helguera, M.

    2011-01-01

    Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

  13. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    SciTech Connect (OSTI)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  14. HELIOS Helical Orbit Spectrometer HELIOS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HELIOS - Helical Orbit Spectrometer HELIOS is a solenoid spectrometer that was designed to measure transfer reactions in inverse kinematics with improved Q-value resolution and simple charged-particle identification. It has been used in numerous in- verse transfer reaction measurements including (d ,p), (d , 3 He), (d ,t ), ( 3 He,d ) and ( 6 Li,d ) for beams with mass A=11-136 and energy ∼5-15 MeV/u. Research programs centered around understanding the sd shell using light neutron-rich

  15. Results from the NSTX X-ray Crystal Spectrometer

    SciTech Connect (OSTI)

    M. Bitter; K. Hill; L. Roquemore; P. Beiersdorfer; D. Thorn; Ming Feng Gu

    2003-01-14

    A high-resolution X-ray crystal spectrometer has recently been installed at the National Spherical Torus Experiment to record the satellite spectra of helium-like argon, ArXVII, in the wavelength range from 3.94 to 4.00 {angstrom} for measurements of ion and electron temperatures, and measurements of the ionization equilibrium of argon, which is of interest for studies of ion transport. The instrument presently consists of a spherically bent quartz crystal and a conventional one-dimensional position-sensitive multi-wire proportional counter, but it will soon be upgraded to a new type of X-ray imaging crystal spectrometer by the installation of a large size (10 cm x 30 cm) two-dimensional position-sensitive detector that will allow us to obtain temporally and spatially resolved spectra from an 80 cm high cross-section of the plasma. In its present configuration, the spectrometer has been optimized for high throughput so that it is possible to record spectra with small statistical errors with a time resolution of 10 ms by adding only small, nonperturbing amounts of argon to the plasma. The spectrometer is most valuable for measurements of the ion temperature in the absence of a neutral beam in ohmically heated and radio-frequency heated discharges, when charge exchange recombination spectroscopy does not function. Electron temperature measurements from the satellite-to-resonance line ratios have been important for a quantitative comparison with (and verification of) the Thomson scattering data. The paper will describe the instrumental details of the present and future spectrometer configurations, and present recent experimental results.

  16. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging

    SciTech Connect (OSTI)

    Kobayashi, Masakazu Komori, Jun; Shimidzu, Kaiji; Izaki, Masanobu; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio

    2015-02-23

    Newly designed scintillator of (0001)-oriented ZnO vertical nanowires (vnws) for X-ray imaging was prepared on a Ga-doped ZnO/soda-lime glass by electrodeposition, and the light emission feature was estimated in a synchrotron radiation facility. The ZnO-vnws scintillator revealed a strong light emission and improved resolution on CMOS image compared with that for the ZnO-layer scintillator, although the light emission performance was deteriorated in comparison to the Lu{sub 3}Al{sub 5}O{sub 12:}Ce{sup 3+}. The light emission property closely related to the nanostructure and the resultant photoluminescence characteristic.

  17. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    SciTech Connect (OSTI)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  18. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect (OSTI)

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  19. Concerning the Spatial Heterodyne Spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  20. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    SciTech Connect (OSTI)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; Wark, Justin S.; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Schroer, Christian G.

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  1. A resolution analysis of two geophysical imaging methods for characterizing and monitoring hydrologic conditions in the Vadose zone.

    SciTech Connect (OSTI)

    Brainard, James Robert; Hammond, Gary.; Alumbaugh, David L.; La Brecque, D.J.

    2007-06-01

    This research project analyzed the resolution of two geophysical imaging techniques, electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR), for monitoring subsurface flow and transport processes within the vadose zone. The study was based on petrophysical conversion of moisture contents and solute distributions obtained from unsaturated flow forward modeling. This modeling incorporated boundary conditions from a potable water and a salt tracer infiltration experiment performed at the Sandia-Tech Vadose Zone (STVZ) facility, and high-resolution spatial grids (6.25-cm spacing over a 1700-m domain) and incorporated hydraulic properties measured on samples collected from the STVZ. The analysis process involved petrophysical conversion of moisture content and solute concentration fields to geophysical property fields, forward geophysical modeling using the geophysical property fields to obtain synthetic geophysical data, and finally, inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  2. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    SciTech Connect (OSTI)

    Schittny, J. C.; Barre, S. F.; Haberthuer, D.; Mokso, R.; Tsuda, A.; Stampanoni, M.

    2011-09-09

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential--especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  3. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    SciTech Connect (OSTI)

    Taheri, A., E-mail: at1361@aut.ac.ir; Saramad, S.; Ghalenoei, S.; Setayeshi, S. [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)] [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

    2014-01-15

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 ?m, respectively.

  4. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; et al

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  5. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    SciTech Connect (OSTI)

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-15

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  6. Improvement of lateral resolution of spectral domain optical coherence tomography images in out-of-focus regions with holographic data processing techniques

    SciTech Connect (OSTI)

    Moiseev, A A; Gelikonov, G V; Terpelov, D A; Shilyagin, P A; Gelikonov, V M

    2014-08-31

    An analogy between spectral-domain optical coherence tomography (SD OCT) data and broadband digital holography data is considered. Based on this analogy, a method for processing SD OCT data, which makes it possible to construct images with a lateral resolution in the whole investigated volume equal to the resolution in the in-focus region, is developed. Several issues concerning practical application of the proposed method are discussed. (laser biophotonics)

  7. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOE Patents [OSTI]

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  8. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOE Patents [OSTI]

    Perez-Mendez, Victor (Berkeley, CA); Goodman, Claude A. (Kensington, CA)

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  9. High-resolution electron microscopy of advanced materials

    SciTech Connect (OSTI)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  10. HELIcal Orbit Spectrometer (HELIOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HELIOS: The Helical Orbit Spectrometer at ATLAS B.B.Back Argonne National Laboratory B.B.Back, Argonne National Laboratory PHY Colloquium May 21, 2010 2 Outline: Motivation for studying light-ion reactions in inverse kinematics The HELIOS Spectrometer concept The Argonne implementation of HELIOS Commissioning experiment Planned upgrades Helios elsewhere B.B.Back, Argonne National Laboratory PHY Colloquium May 21, 2010 3 Motivation for studying light-ion reactions in inverse kinematics B.B.Back,

  11. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  12. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    SciTech Connect (OSTI)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  13. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    SciTech Connect (OSTI)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)] [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  14. Broad band waveguide spectrometer

    DOE Patents [OSTI]

    Goldman, Don S. (Folsom, CA)

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  15. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  16. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  17. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    DOE Patents [OSTI]

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  18. Portable gas chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  19. Portable gas chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D. (Livermore, CA); Eckels, Joel D. (Livermore, CA); Kimmons, James F. (Manteca, CA); Myers, David W. (Livermore, CA)

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  20. A new spectrometer design for the x-ray spectroscopy of laser-produced

    Office of Scientific and Technical Information (OSTI)

    plasmas with high (sub-ns) time resolution (Journal Article) | SciTech Connect A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution Citation Details In-Document Search Title: A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from

  1. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  2. Resonant ultrasound spectrometer

    DOE Patents [OSTI]

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  3. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  4. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, Muzaffer (Wheaton, IL); McKay, Timothy A. (Ann Arbor, MI)

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  5. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  6. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    SciTech Connect (OSTI)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji; Dudley, Michael; Mueller, Stephan G.; Chung, Gil; Sanchez, Edward K.; Hansen, Darren; Loboda, Mark J.; Zhang, Lihua; Su, Dong; Kisslinger, Kim; Stach, Eric

    2014-09-14

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  8. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  9. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  10. Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial Buildings using High Resolution Luminance Images

    SciTech Connect (OSTI)

    Konis, Kyle; Lee, Eleanor; Clear, Robert

    2011-01-11

    The objective of this study was to explore how calibrated high dynamic range (HDR) images (luminance maps) acquired in real world daylit environments can be used to characterize, evaluate, and compare visual comfort conditions of innovative facade shading and light-redirecting systems. Detailed (1536 x 1536 pixel) luminance maps were time-lapse acquired from two view positions in an unoccupied full scale testbed facility. These maps were analyzed using existing visual comfort metrics to quantify how innovative interior and exterior shading systems compare to conventional systems under real sun and sky conditions over a solstice-to-solstice test interval. The results provide a case study in the challenges and potential of methods of visualizing, evaluating and summarizing daily and seasonal variation of visual comfort conditions computed from large sets of image data.

  11. Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images

    SciTech Connect (OSTI)

    Gonnissen, J.; De Backer, A.; Martinez, G. T.; Van Aert, S.; Dekker, A. J. den; Rosenauer, A.; Sijbers, J.

    2014-08-11

    We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.

  12. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect (OSTI)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  13. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  14. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  15. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  16. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  17. Waveguide-integrated photonic crystal spectrometer with camera readout

    SciTech Connect (OSTI)

    Meng, Fan; Shiue, Ren-Jye; Li, Luozhou; Nie, Jing; Harris, Nicholas C.; Chen, Edward H.; Schrder, Tim; Englund, Dirk; Wan, Noel; Pervez, Nadia; Kymissis, Ioannis

    2014-08-04

    We demonstrate an infrared spectrometer based on waveguide-coupled nanocavity filters in a planar photonic crystal structure. The input light is coupled into the waveguide, from which spectral components are dropped into the cavities and radiated off-chip for detection on a commercial InGaAs camera. The spectrometer has a footprint of only 60??m by 8??m. The spectral resolution is about 1?nm in the operation bandwidth of 15221545?nm. By substituting the membrane material and structure parameters, this design can be easily extended into the visible regime and developed for a variety of highly efficient, miniature photonic applications.

  18. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  19. Spectrometer employing optical fiber time delays for frequency resolution

    DOE Patents [OSTI]

    Schuss, Jack J.; Johnson, Larry C.

    1979-01-01

    This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

  20. High-resolution observations of the shock wave behavior for sunspot oscillations with the interface region imaging spectrograph

    SciTech Connect (OSTI)

    Tian, H.; DeLuca, E.; Reeves, K. K.; McKillop, S.; Golub, L.; Saar, S.; Testa, P.; Weber, M.; De Pontieu, B.; Martínez-Sykora, J.; Kleint, L.; Cheung, M.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.; Carlsson, M.; Hansteen, V.; and others

    2014-05-10

    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mg II 2796.35 Å, C II 1335.71 Å, and Si IV 1393.76 Å lines in the sunspot. The intensity change is ∼30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of ∼10 km s{sup –1} in Si IV. The Si IV oscillation lags those of C II and Mg II by ∼6 and ∼25 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si IV, whereas the intensity enhancement slightly precedes the maximum blueshift in Mg II. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.

  1. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  2. Slow Neutron Velocity Spectrometer Transmission Studies Of Pu

    DOE R&D Accomplishments [OSTI]

    Havens, W. W. Jr.; Melkonian, E.; Rainwater, L. J.; Levin, M.

    1951-05-28

    The slow neutron transmission of several samples of Pu has been investigated with the Columbia Neutron Velocity Spectrometer. Data are presented in two groups, those covering the energy region from 0 to 6 ev, and those covering the region above 6 ev. Below 6 ev the resolution was relatively good, and a detailed study of the cross section variation was made. Work above 6 ev consisted of merely locating levels and obtaining a rough idea of their strengths.

  3. Practical high resolution detection method for laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Andrew J. Effenberger Jr; Jill R. Scott

    2012-02-01

    A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5-m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous source Hg-lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to observed spitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying He atmospheric pressures. The high performance, low cost, and compact footprint makes this system highly competitive with 2-m double pass Czerny-Turner spectrometers.

  4. Development of a spatially resolving x-ray crystal spectrometer for measurement of ion-temperature (T{sub i}) and rotation-velocity (v) profiles in ITER

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Johnson, D.; Feder, R.; Beiersdorfer, P.; Dunn, J.; Morris, K.; Wang, E.; Reinke, M.; Podpaly, Y.; Rice, J. E.; Barnsley, R.; O'Mullane, M.; Lee, S. G.

    2010-10-15

    Imaging x-ray crystal spectrometer (XCS) arrays are being developed as a US-ITER activity for Doppler measurement of T{sub i} and v profiles of impurities (W, Kr, and Fe) with {approx}7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a prototype instrument on Alcator C-Mod, uses a spherically bent crystal and 2D x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure T{sub i} and both poloidal and toroidal rotation velocity profiles. The measurement of many spatial chords permits tomographic inversion for the inference of local parameters. The instrument design, predictions of performance, and results from C-Mod are presented.

  5. Enzyme-Directed Assembly of Nanoparticles in Tumors Monitored by In Vivo Whole Animal and Ex Vivo Super-Resolution Fluorescence Imaging

    SciTech Connect (OSTI)

    Chien, Miao-Ping; Carlini, Andrea S.; Hu, Dehong; Barback, Christopher V.; Rush, Anthony M.; Hall, David J.; Orr, Galya; Gianneschi, Nathan C.

    2013-12-18

    Matrix metalloproteinase enzymes, overexpressed in HT-1080 human fibrocarcinoma tumors, were used to guide the accumulation and retention of an enzyme-responsive nanoparticle in a xenograft mouse model. The nanoparticles were prepared as micelles from amphiphilic block copolymers bearing a simple hydrophobic block, and a hydrophilic peptide brush. The polymers were end-labeled with Alexa Fluor 647 dyes leading to the formation of labeled micelles upon dialysis of the polymers from DMSO to aqueous buffer. This dye-labeling strategy allowed the presence of the retained material to be visualized via whole animal imaging in vivo, and in ex vivo organ analysis following intratumoral injection into HT-1080 xenograft tumors. We propose that the material is retained by virtue of an enzyme-induced accumulation process whereby particles change morphology from 20 nm spherical micelles to micron-scale aggregates, kinetically trapping them within the tumor. This hypothesis is tested here via an unprecedented super resolution fluorescence analysis of ex vivo tissue slices confirming a particle size increase occurs concomitantly with extended retention of responsive particles compared to unresponsive controls.

  6. Time of flight mass spectrometer

    DOE Patents [OSTI]

    Ulbricht, Jr., William H. (Arvada, CO)

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  7. MICE Spectrometer Magnet System Progress

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  8. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect (OSTI)

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associao EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  9. X-ray crystal spectrometer for opacity measurements in the 8-18 A spectral

    Office of Scientific and Technical Information (OSTI)

    range at the LULI laser facility (Journal Article) | SciTech Connect X-ray crystal spectrometer for opacity measurements in the 8-18 A spectral range at the LULI laser facility Citation Details In-Document Search Title: X-ray crystal spectrometer for opacity measurements in the 8-18 A spectral range at the LULI laser facility An x-ray crystal spectrometer was built in order to measure opacities in the 8-18 A spectral range with an average spectral resolution of

  10. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in

  11. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron...

  12. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  13. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect (OSTI)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  14. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect (OSTI)

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-01-15

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  15. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M. L.; Scott, S. D.; Ince-Cushman, A.; Reinke, M.; Rice, J. E.; Beiersdorfer, P.; Gu, M.-F.; Lee, S. G.; Broennimann, Ch.; Eikenberry, E. F.

    2008-10-15

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra ({lambda}/d{lambda}>6000) of He-like and H-like Ar K{alpha} lines with good spatial ({approx}1 cm) and temporal ({approx}10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T{sub i}), and toroidal plasma rotation velocity (v{sub {phi}}) from the line Doppler widths and shifts. The data analysis techniques, T{sub i} and v{sub {phi}} profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  16. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the

  17. Final Technical Report for DE-FG02-06ER15835: Chemical Imaging with 100nm Spatial Resolution: Combining High Resolution Flurosecence Microscopy and Ion Mobility Mass Spectrometry

    SciTech Connect (OSTI)

    Buratto, Steven K.

    2013-09-03

    We have combined, in a single instrument, high spatial resolution optical microscopy with the chemical specificity and conformational selectivity of ion mobility mass spectrometry. We discuss the design and construction of this apparatus as well as our efforts in applying this technique to thin films of molecular semiconductor materials.

  18. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  19. A simple scanning spectrometer based on a stretchable elastomeric reflective grating

    SciTech Connect (OSTI)

    Ghisleri, C.; Milani, P., E-mail: paolo.milani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); WISE srl, Piazza Duse 2, 20122 Milano (Italy); Potenza, M. A. C.; Bellacicca, A. [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2014-02-10

    We report a scanning optical spectrometer based on the use of a stretchable elastomeric reflective grating. The grating is obtained by supersonic cluster beam implantation of silver nanoparticles on polydimethylsiloxane previously grooved by molding to create a replica of a commercial digital versatile disk grating. The use of a stretchable grating allows the spectrometer spanning the whole optical wavelength range by solely extending the diffraction element by more than 100% of its original dimensions. The stretchable reflective optical grating shows excellent performances and stability upon thousands of stretching cycles. The use of this elastomeric element makes the optical layout and the mechanics of the spectrometer extremely simple and advantageous for those applications where spectral resolution is not a major requirement. As a proof of principle, we present the absorption spectrum of Rhodamine B in solution obtained by our spectrometer and compared to commercial instruments.

  20. Mass Spectrometer Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Facility Mass Spectrometer Facility The PARC Mass Spectrometer Facility uses customized instrumentation to directly measure the individual polypeptide mass of different light-harvesting complexes to do assignment to specific gene products and investigate protein processing. Newly developed techniques are also applied to measure the mass of native protein complexes. Structural information of complexes is extracted by combining protein chemical modification and H/D exchange

  1. Laser desorption time-of-flight mass spectrometer DNA analyzer. Final report

    SciTech Connect (OSTI)

    Chen, C.H.W.; Martin, S.A.

    1997-02-01

    The objective of this project is the development of a laser desorption time-of-flight mass spectrometer DNA analyzer which can be broadly used for biomedical research. Tasks include: pulsed ion extraction to improve resolution; two-component matrices to enhance ionization; and solid phase DNA purification.

  2. High resolution telescope

    DOE Patents [OSTI]

    Massie, Norbert A. (San Ramon, CA); Oster, Yale (Danville, CA)

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  3. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect (OSTI)

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  4. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect (OSTI)

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  5. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    SciTech Connect (OSTI)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-15

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  6. Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tmospheric R R esearch esearch 4STAR: 4STAR: Spectrometer Spectrometer for for Sky Sky - - Scanning Scanning , , Sun Sun - - Tracking Tracking Atmospheric Research...

  7. An Engine Exhaust Particle SizerTM Spectrometer for Transient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle...

  8. Development Of a Spatially Resolving X-ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Spectrometer For Measurement Of Ion-temperature (Ti) And Rotation-velocity (v) Profiles ... Spectrometer For Measurement Of Ion-temperature (Ti) And Rotation-velocity (v) Profiles ...

  9. Gas sampling system for a mass spectrometer

    DOE Patents [OSTI]

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  10. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  11. Miniaturized Mass Spectrometer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Miniaturized Mass Spectrometer Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (781 KB) Technology Marketing SummarySandia's invention relates to a miniaturized mass spectrometer using a silicon chip field emitter array as the source of electrons for impact ionization of chemical species. DescriptionSandia has developed an improved quadrupole mass

  12. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A.; Beiersdorfer, P.; Schneider, M.; Widmann, K.; Sanchez del Rio, M.; Zhang, L.

    2012-10-15

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  13. Distributed computing strategies for processing of FT-ICR MS imaging datasets for continuous mode data visualization

    SciTech Connect (OSTI)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco; Kilic, Mehmet; Heeren, Ronald M.

    2015-03-01

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (big data) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode Mosaic Datacube approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, but requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.

  14. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    SciTech Connect (OSTI)

    Burks, M

    2008-06-13

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field.

  15. Design and operational characteristics of a cast steel mass spectrometer

    SciTech Connect (OSTI)

    Blantocas, Gene Q.; Ramos, Henry J.; Wada, Motoi

    2004-09-01

    A cast steel magnetic sector mass analyzer is developed for studies of hydrogen and helium ion beams generated by a gas discharge compact ion source. The optimum induced magnetic flux density of 3500 G made it possible to scan the whole spectrum of hydrogen and helium ion species. Analysis of beam characteristics shows that the mass spectrometer sensitivity, and resolving power are approximately inversely proportional. The resolution is enhanced at higher pressures and lower current discharges. In contrast, the instrument sensitivity increased at higher current discharges and decreased at higher pressures. Calculations of the ultimate resolving power with reference to analyzer dimensions yield a numerical value of 30. System anomaly in the form of spherical aberrations was also analyzed using the paraxial beam envelope equation. Beam divergence is most significant at high discharge conditions where angular spread reaches an upper limit of 8.6 deg.

  16. Development Of a Spatially Resolving X-ray Crystal Spectrometer For

    Office of Scientific and Technical Information (OSTI)

    Measurement Of Ion-temperature (Ti) And Rotation-velocity (v) Profiles in ITER (Technical Report) | SciTech Connect Technical Report: Development Of a Spatially Resolving X-ray Crystal Spectrometer For Measurement Of Ion-temperature (Ti) And Rotation-velocity (v) Profiles in ITER Citation Details In-Document Search Title: Development Of a Spatially Resolving X-ray Crystal Spectrometer For Measurement Of Ion-temperature (Ti) And Rotation-velocity (v) Profiles in ITER Imaging x-ray crystal

  17. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  18. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  19. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect (OSTI)

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 15004500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera arrays sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  20. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  1. High resolution scintillation detector with semiconductor readout

    DOE Patents [OSTI]

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  2. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  3. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Napersville, IL)

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  4. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  5. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  6. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators.

    SciTech Connect (OSTI)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L. G.; Bell, John D.

    2004-08-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  7. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and ... Title: A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature ...

  8. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH{sub 2}O in a piloted premixed jet flame

    SciTech Connect (OSTI)

    Li, Z.S.; Li, B.; Sun, Z.W.; Alden, M. [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Bai, X.S. [Division of Fluid Mechanics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2010-06-15

    High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH{sub 2}O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 {mu}m and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH{sub 2}O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH{sub 2}O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH{sub 2}O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH{sub 2}O from the reaction zones to the preheat zone. The CH{sub 2}O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH{sub 2}O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O{sub 2} and CO{sub 2} in the inner-layer of the reaction zones. The local PLIF intensities were evaluated using an area integrated PLIF signal. Substantial increase of the CH{sub 2}O signal and decrease of CH signal was observed as the jet velocity increases. These observations raise new challenges to the current flamelet type models. (author)

  9. A Micro-Opto-Mechanical Photoacoustic Spectrometer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 42 ENGINEERING; ACOUSTICS; DESIGN; FIBERS; GASES; NUCLEAR WEAPONS; OPTICAL FIBERS; PHOTOACOUSTIC SPECTROMETERS; ...

  10. Goodbye, Watts. Hello, Lumens. (Low-Resolution Billboard) | Department of

    Energy Savers [EERE]

    Energy Low-Resolution Billboard) Goodbye, Watts. Hello, Lumens. (Low-Resolution Billboard) Low-resolution JPG of billboard reading, 'Goodbye Watts. Hello Lumens. The new way to shop for light. Energysaver.gov Image icon DoE_Billboard_Goodbye_Watts_web.jpg More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution JPG Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution EPS

  11. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Patents [OSTI]

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  12. Spatial resolution of diffraction tomography

    SciTech Connect (OSTI)

    Dickens, T.A.; Winbow, G.A.

    1997-01-01

    Diffraction tomography is an imaging technique applicable to crosshole seismic data and aimed at achieving optimal spatial resolution away from the borehole. In principle the method can form acoustic images equivalent to extending acoustic well logs away from the wellbore and into the formation with a spatial resolution less than one wavelength of the radiation employed to gather the crosshole data. This paper reports on the capability of diffraction tomography to produce high-resolution reconstructions of simple targets from limited-view-angle data. The goal is to quantify the resolution and velocity-reconstruction capability of diffraction tomography with realistic source{endash}receiver geometries. Simple targets (disks and low-contrast sequences of layers) are used for this study. The scattering from these targets can be calculated without approximation, making them ideal test cases for the algorithm. The resolution capability of diffraction tomography is determined to be on the order of one wavelength for several experimental geometries. It is shown that the image-formation characteristics of diffraction tomography, in terms of its ability to determine object boundaries and velocities, are closely related to the experimental geometry. Reflection and vertical seismic profiling (VSP) experiments tend to reproduce boundaries well, while crosshole experiments give the best overall reconstruction of both target boundaries and velocity. The quantitative accuracy of the velocity reconstruction depends upon the match between the spatial-frequency content of the object and the spatial-frequency response of the algorithm. For some targets, the velocity cannot be correctly reproduced from limited-view-angle data. {copyright} {ital 1997 Acoustical Society of America.}

  13. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  14. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; et al

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  15. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D. (Pleasanton, CA); Fought, Eric R. (Livermore, CA)

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  16. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  17. Neutron spectrometer for improved SNM search.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  18. A RAPIDLY-TUNABLE ACOUSTO-OPTIC SPECTROMETER FOR A SPACE ENVIRONMENT

    SciTech Connect (OSTI)

    D. THOMPSON; C. HEWITT; C. WILSON

    2000-08-01

    As a complement to our work developing rapidly-tunable ({approximately}10-100 kHz) CO{sub 2} lasers for differential absorption lidar (DIAL) applications,l we have developed a rapidly-tunable spectrometer. A rapid spectral diagnostic is critical for a high speed DIAL system, since analysis of the return signals depends on knowing the spectral purity of the transmitted beam. The spectrometer developed for our lidar system is based on a double-passed large- (75 mm) aperture acousto-optic deflector, a grating, and a fast single-element room temperature mercury-cadmium-telluride detector. The spectrometer has a resolution of {approximately}0.5 cm{sup {minus}1}, a tuning range of 9.0-11.4 pm, a random-access tuning speed of greater than 80 kHz and a S/N ratio of greater than 100:1. We describe the design and performance of this device, as well as of future devices featuring improved resolution, higher speed and easier and more robust alignment. We will also briefly discuss the applications and limitations of the technique in a space environment.

  19. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  20. Time Dispersive Spectrometer Using Digital Switching Means

    DOE Patents [OSTI]

    Tarver, III, Edward E. (Livermore, CA); Siems, William F. (Spokane, WA)

    2004-09-07

    Methods and apparatus are described for time dispersive spectroscopy. In particular, a modulated flow of ionized molecules of a sample are introduced into a drift region of an ion spectrometer. The ions are subsequently detected by an ion detector to produce an ion detection signal. The ion detection signal can be modulated to obtain a signal useful in assaying the chemical constituents of the sample.

  1. Frequency-feedback cavity enhanced spectrometer

    DOE Patents [OSTI]

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  2. Expert overseer for mass spectrometer system

    DOE Patents [OSTI]

    Filby, Evan E.; Rankin, Richard A.

    1991-01-01

    An expert overseer for the operation and real-time management of a mass spectrometer and associated laboratory equipment. The overseer is a computer-based expert diagnostic system implemented on a computer separate from the dedicated computer used to control the mass spectrometer and produce the analysis results. An interface links the overseer to components of the mass spectrometer, components of the laboratory support system, and the dedicated control computer. Periodically, the overseer polls these devices and as well as itself. These data are fed into an expert portion of the system for real-time evaluation. A knowledge base used for the evaluation includes both heuristic rules and precise operation parameters. The overseer also compares current readings to a long-term database to detect any developing trends using a combination of statistical and heuristic rules to evaluate the results. The overseer has the capability to alert lab personnel whenever questionable readings or trends are observed and provide a background review of the problem and suggest root causes and potential solutions, or appropriate additional tests that could be performed. The overseer can change the sequence or frequency of the polling to respond to an observation in the current data.

  3. Method of multiplexed analysis using ion mobility spectrometer

    DOE Patents [OSTI]

    Belov, Mikhail E. (Richland, WA); Smith, Richard D. (Richland, WA)

    2009-06-02

    A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

  4. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector

    SciTech Connect (OSTI)

    Kleymenov, Evgeny; Bokhoven, Jeroen A. van; David, Christian; Janousch, Markus; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten; Glatzel, Pieter; Alonso-Mori, Roberto

    2011-06-15

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60 deg. - 88 deg. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu K{alpha}{sub 1} line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  5. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    SciTech Connect (OSTI)

    Zastrau, Ulf; Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja; Frster, Eckhart; Marschner, Heike; Wehrhan, Ortrud

    2014-09-15

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ?10{sup ?4} and wave-number resolution of ?k/k = 3 ?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/ in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  6. In-situ droplet monitoring for self-tuning spectrometers

    DOE Patents [OSTI]

    Montaser, Akbar (Potomac, MD); Jorabchi, Kaveh (Arlington, VA); Kahen, Kaveh (Kleinburg, CA)

    2010-09-28

    A laser scattering based imaging technique is utilized in order to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from an aerosol source to the site of analytical measurements. The resulting snapshots provide key information about the spatial distribution of the aerosol introduced by direct and indirect injection devices: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry (PIV) is used to study the in-situ behavior of the aerosol before interaction with, for example, plasma, while the individual surviving droplets are explored by particle tracking velocimetry (PTV). Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are important in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and for developing smart spectrometers. For example, a controller can be provided to control the output of the aerosol source by controlling the configuration of the source or the gas flow rate via feedback information concerning the aerosol.

  7. Goodbye, Watts. Hello, Lumens. (High-Resolution JPG Billboard) | Department

    Energy Savers [EERE]

    of Energy JPG Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution JPG Billboard) High-resolution JPG of billboard reading, 'Goodbye Watts. Hello Lumens. The new way to shop for light. Energysaver.gov Image icon DoE_Billboard_Goodbye_Watts.jpg More Documents & Publications Goodbye, Watts. Hello, Lumens. (High-Resolution EPS

  8. Evaluation of the LLNL Spectrometer for Possible use with the NSTec Optical Streak Camera as a Light Gas Gun Diagnostic

    SciTech Connect (OSTI)

    O'Connor, J., Cradick, J.

    2012-09-27

    In fiscal year 2012, it was desired to combine a visible spectrometer with a streak camera to form a diagnostic system for recording time-resolved spectra generated in light gas gun experiments. Acquiring a new spectrometer was an option, but it was possible to borrow an existing unit for a period of months, which would be sufficient to evaluate both “off-line” and in-gas gun shots. If it proved adequate for this application, it could be duplicated (with possible modifications); if not, such testing would help determine needed specifications for another model. This report describes the evaluation of the spectrometer (separately and combined with the NSTec LO streak camera) for this purpose. Spectral and temporal resolutions were of primary interest. The first was measured with a monochromatic laser input. The second was ascertained by the combination of the spectrometer’s spatial resolution in the time-dispersive direction and the streak camera’s intrinsic temporal resolution. System responsivity was also important, and this was investigated by measuring the response of the spectrometer/camera system to black body input—the gas gun experiments are expected to be similar to a 3000K black body—as well as measuring the throughput of the spectrometer separately over a range of visible light provided by a monochromator. The flat field (in wavelength) was also measured and the final part of the evaluation was actual fielding on two gas gun shots. No firm specifications for spectral or temporal resolution were defined precisely, but these were desired to be in the 1–2 nm and 1–2 ns ranges, respectively, if possible. As seen below, these values were met or nearly met, depending on wavelength. Other performance parameters were also not given (threshold requirements) but the evaluations performed with laser, black body, and successful gas gun shots taken in aggregate indicate that the spectrometer is adequate for this purpose. Even still, some (relatively minor) opportunities for improvement were noticed and these were documented for incorporation into any near-duplicate spectrometer that might be fabricated in the future.

  9. Lead Slowing Down Spectrometer Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R. C.; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Weltz, Adam

    2012-06-07

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  10. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  11. Micro-optical-mechanical system photoacoustic spectrometer

    DOE Patents [OSTI]

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  12. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    SciTech Connect (OSTI)

    Dubey, M; Springston, S; Koontz, A; Aiken, A

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instruments manufacturer.

  13. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  14. ASIC for SDD-Based X-ray Spectrometers

    SciTech Connect (OSTI)

    De Geronimo, G.; Fried, J.; Rehak, P.; Ackley, K.; Carini, G.; Chen, W.; Keister, J.; Li, S.; Li, Z.; Pinelli, D.A.; Siddons, D.P.; Vernon, E.; Gaskin, J.A.; Ramsey, B.D.; Tyson, T.A.

    2010-06-16

    We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm{sup 2} and dissipates with the sensor biased about 15 mW/cm{sup 2}. As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 C show a FWHM of 145 eV at the 5.9 keV peak of a {sup 55}Fe source, and less than 80 eV on a test-pulse line at 200 eV.

  15. Near-electrode imager

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  16. Making Mobile Measurement Using an EEPS Spectrometer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Mobile Measurement Using an EEPS Spectrometer Making Mobile Measurement Using an EEPS Spectrometer 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: TSI Incorporated PDF icon 2004_deer_johnson.pdf More Documents & Publications An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust Evaluation of the European PMP Methodologies

  17. The Results of Tests of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2009-10-19

    The Muon Ionization Cooling Experiment (MICE) spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The spectrometer magnets are the largest magnets in both mass and surface area within the MICE ooling channel. Like all of the other magnets in MICE, the spectrometer solenoids are kept cold using 1.5 W (at 4.2 K) pulse tube coolers. The MICE spectrometer solenoid is quite possibly the largest magnet that has been cooled using small coolers. Two pectrometer magnets have been built and tested. This report discusses the results of current and cooler tests of both magnets.

  18. A low temperature nonlinear optical rotational anisotropy spectrometer...

    Office of Scientific and Technical Information (OSTI)

    A low temperature nonlinear optical rotational anisotropy spectrometer for the ... Although this technique has been successfully used to study the lattice and magnetic ...

  19. Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron...

    Office of Scientific and Technical Information (OSTI)

    Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy Resources with Additional Information Bertram Brockhouse Courtesy of McMaster University Bertram...

  20. Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer

    SciTech Connect (OSTI)

    Steel, A. B. Dunn, J.; Emig, J.; Beiersdorfer, P.; Brown, G. V.; Shepherd, R.; Marley, E. V.; Hoarty, D. J.

    2014-11-15

    We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy bandwidth of ∼1–2 keV using two independently mounted, movable Bragg diffraction crystals. Using combinations of cesium hydrogen pthlate, ammonium dihydrogen phosphate, and pentaerythritol crystals, spectra covering the 1.4–2.5, 1.85–3.15, or 3.55–5.1 keV energy bands have been measured. Image plate is used for detection owing to its high dynamic range. Background signals caused by high energy X-rays and particles commonly produced in high energy laser experiments are reduced by a series of tantalum baffles and filters installed between the source and crystal and also between the crystals and detector.

  1. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    SciTech Connect (OSTI)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  2. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  3. Solid state NMR spectrometer. Final project report

    SciTech Connect (OSTI)

    Jensen, C.M.

    1997-11-01

    The new Varian Unity INOVA 400 is being utilized on a daily basis. The instrument is available 24 hours a day seven days a week for scheduled experiments. In addition, a limited amount of time is available on a walk-in basis for researchers on the project. The instrument has operated with no down time since the end of the Varian installation process. Minor problems have been corrected by the facility staff (spent fused, malfunctioning boards and components and interrupted data transfers). Most of the initial problems were covered under the warrantee period. Since the end of this period there have been no major operational problems. This report discusses two research projects using the new spectrometer: dynamics of dihydrogen and alkane complexes of iridium and catalytic dehydrogenation by iridium hydride complexes.

  4. Mass spectrometer vacuum housing and pumping system

    DOE Patents [OSTI]

    Coutts, Gerald W. (Livermore, CA); Bushman, John F. (Oakley, CA); Alger, Terry W. (Tracy, CA)

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  5. Mass spectrometer vacuum housing and pumping system

    DOE Patents [OSTI]

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  6. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  7. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  8. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect (OSTI)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual design for a focused-beam, hybrid time-of-flight instrument with a crystal monochromator for the SNS called HYSPEC (an acronym for hybrid spectrometer). The proposed instrument has a potential to collect data more than an order of magnitude faster than existing steady-source spectrometers over a wide range of energy transfer ({h_bar}{omega}) and momentum transfer (Q) space, and will transform the way that data in elastic and inelastic single-crystal spectroscopy are collected. HYSPEC is optimized to provide the highest neutron flux on sample in the thermal and epithermal neutron energy ranges at a good-to-moderate energy resolution. By providing a flux on sample several times higher than other inelastic instruments currently planned for the SNS, the proposed instrument will indeed allow unique ground-breaking measurements, and will ultimately make polarized beam studies at a pulsed spallation source a realistic possibility.

  9. Herschel-spire Fourier transform spectrometer observations of excited CO and [C I] in the antennae (NGC 4038/39): Warm and cold molecular gas

    SciTech Connect (OSTI)

    Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.; Kamenetzky, Julia; Glenn, Jason; Rangwala, Naseem; Spinoglio, Luigi; Pereira-Santaella, Miguel; Baes, Maarten; De Looze, Ilse; Barlow, Michael J.; Clements, Dave L.; Cooray, Asantha; Karczewski, Oskar ?.; Madden, Suzanne C.; Rmy-Ruyer, Aurlie; Wu, Ronin E-mail: wilson@physics.mcmaster.ca

    2014-02-01

    We present Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) observations of the Antennae (NGC 4038/39), a well-studied, nearby (22 Mpc), ongoing merger between two gas-rich spiral galaxies. The SPIRE-FTS is a low spatial ( FWHM ? 19''-43'') and spectral (?1.2 GHz) resolution mapping spectrometer covering a large spectral range (194-671 ?m, 450-1545 GHz). We detect five CO transitions (J = 4-3 to J = 8-7), both [C I] transitions, and the [N II] 205 ?m transition across the entire system, which we supplement with ground-based observations of the CO J = 1-0, J = 2-1, and J = 3-2 transitions and Herschel Photodetecting Array Camera and Spectrometer (PACS) observations of [C II] and [O I] 63 ?m. Using the CO and [C I] transitions, we perform both a local thermodynamic equilibrium (LTE) analysis of [C I] and a non-LTE radiative transfer analysis of CO and [C I] using the radiative transfer code RADEX along with a Bayesian likelihood analysis. We find that there are two components to the molecular gas: a cold (T {sub kin} ? 10-30 K) and a warm (T {sub kin} ? 100 K) component. By comparing the warm gas mass to previously observed values, we determine a CO abundance in the warm gas of x {sub CO} ? 5 10{sup 5}. If the CO abundance is the same in the warm and cold gas phases, this abundance corresponds to a CO J = 1-0 luminosity-to-mass conversion factor of ?{sub CO} ? 7 M {sub ?} pc{sup 2} (K km s{sup 1}){sup 1} in the cold component, similar to the value for normal spiral galaxies. We estimate the cooling from H{sub 2}, [C II], CO, and [O I] 63 ?m to be ?0.01 L {sub ?}/M {sub ?}. We compare photon-dominated region models to the ratio of the flux of various CO transitions, along with the ratio of the CO flux to the far-infrared flux in NGC 4038, NGC 4039, and the overlap region. We find that the densities recovered from our non-LTE analysis are consistent with a background far-ultraviolet field of strength G {sub 0} ? 1000. Finally, we find that a combination of turbulent heating, due to the ongoing merger, and supernova and stellar winds are sufficient to heat the molecular gas.

  10. A low temperature nonlinear optical rotational anisotropy spectrometer for

    Office of Scientific and Technical Information (OSTI)

    the determination of crystallographic and electronic symmetries (Journal Article) | SciTech Connect A low temperature nonlinear optical rotational anisotropy spectrometer for the determination of crystallographic and electronic symmetries Citation Details In-Document Search Title: A low temperature nonlinear optical rotational anisotropy spectrometer for the determination of crystallographic and electronic symmetries Nonlinear optical generation from a crystalline material can reveal the

  11. Acquisition Conflict Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conflict Resolution At the option of the Supplier, a concern may be brought to the Ombuds Office or may be taken to the Internal Conflict Resolution Process Supplier Concern Internal Resolution Primary Discussion Escalation Steps Senior Review Process Special Assistant Senior Review Group Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-

  12. Ion mobility spectrometer, spectrometer analyte detection and identification verification system, and method

    DOE Patents [OSTI]

    Atkinson, David A. (Idaho Falls, ID)

    2002-01-01

    Methods and apparatus for ion mobility spectrometry and analyte detection and identification verification system are disclosed. The apparatus is configured to be used in an ion mobility spectrometer and includes a plurality of reactant reservoirs configured to contain a plurality of reactants which can be reacted with the sample to form adducts having varying ion mobilities. A carrier fluid, such as air or nitrogen, is used to carry the sample into the spectrometer. The plurality of reactants are configured to be selectively added to the carrier stream by use inlet and outlet manifolds in communication with the reagent reservoirs, the reservoirs being selectively isolatable by valves. The invention further includes a spectrometer having the reagent system described. In the method, a first reactant is used with the sample. Following a positive result, a second reactant is used to determine whether a predicted response occurs. The occurrence of the second predicted response tends to verify the existence of a component of interest within the sample. A third reactant can also be used to provide further verification of the existence of a component of interest. A library can be established of known responses of compounds of interest with various reactants and the results of a specific multi-reactant survey of a sample can be compared against the library to determine whether a component detected in the sample is likely to be a specific component of interest.

  13. THE 2014 MARCH 29 X-FLARE: SUBARCSECOND RESOLUTION OBSERVATIONS OF Fe XXI ?1354.1

    SciTech Connect (OSTI)

    Young, Peter R.; Tian, Hui; Jaeggli, Sarah

    2015-02-01

    The Interface Region Imaging Spectrometer (IRIS) is the first solar instrument to observe ?10 MK plasma at subarcsecond spatial resolution through imaging spectroscopy of the Fe XXI ?1354.1 forbidden line. IRIS observations of the X1 class flare that occurred on 2014 March 29 at 17:48 UT reveal Fe XXI emission from both the flare ribbons and the post-flare loop arcade. Fe XXI appears at all of the chromospheric ribbon sites, although typically with a delay of one raster (75s) and sometimes offset by up to 1''. 100-200 km s{sup 1} blue-shifts are found at the brightest ribbons, suggesting hot plasma upflow into the corona. The Fe XXI ribbon emission is compact with a spatial extent of <2'', and can extend beyond the chromospheric ribbon locations. Examples are found of both decreasing and increasing blue-shift in the direction away from the ribbon locations, and blue-shifts were present for at least sixminutes after the flare peak. The post-flare loop arcade, seen in Atmospheric Imaging Assembly 131 filtergram images that are dominated by Fe XXI, exhibited bright loop-tops with an asymmetric intensity distribution. The sizes of the loop-tops are resolved by IRIS at ?1'', and line widths in the loop-tops are not broader than in the loop-legs suggesting the loop-tops are not sites of enhanced turbulence. Line-of-sight speeds in the loop arcade are typically <10 km s{sup 1}, and mean non-thermal motions fall from 43 km s{sup 1} at the flare peak to 26 km s{sup 1} six minutes later. If the average velocity in the loop arcade is assumed to be at rest, then it implies a new reference wavelength for the Fe XXI line of 1354.106 0.023 .

  14. Conflict Resolution Day

    Broader source: Energy.gov [DOE]

    Conflict Resolution Day takes a look at mediation, conciliation, negotiation, arbitration, the ombudsman, and facilitation to resolve conflict in the workplace. Employees and contractors are...

  15. Video image position determination

    DOE Patents [OSTI]

    Christensen, Wynn (Los Alamos, NM); Anderson, Forrest L. (Bernalillo, NM); Kortegaard, Birchard L. (Los Alamos, NM)

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  16. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  17. Solid-state NMR imaging system

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Dieckman, Stephen L. (Elmhurst, IL); Ellingson, William A. (Naperville, IL)

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  18. Upgraded high time-resolved x-ray imaging crystal spectroscopy system for J-TEXT ohmic plasmas

    SciTech Connect (OSTI)

    Jin, W.; Chen, Z. Y. Huang, D. W.; Li, Q. L.; Yan, W.; Luo, Y. H.; Huang, Y. H.; Tong, R. H.; Yang, Z. J.; Rao, B.; Ding, Y. H.; Zhuang, G.; Lee, S. G.; Shi, Y. J.

    2014-02-15

    This paper presents the upgraded x-ray imaging crystal spectrometer (XICS) system on Joint Texas Experimental Tokamak (J-TEXT) tokamak and the latest experimental results obtained in last campaign. With 500 Hz frame rate of the new Pilatus detector and 5 cm 10 cm spherically bent crystal, the XICS system can provide core electron temperature (T{sub e}), core ion temperature (T{sub i}), and plasma toroidal rotation (V{sub ?}) with a maximum temporal resolution of 2 ms for J-TEXT pure ohmic plasmas. These parameters with high temporal resolution are very useful in tokamak plasma research, especially for rapidly changed physical processes. The experimental results from the upgraded XICS system are presented.

  19. Spatial resolution and the geologic interpretation of Martian morphology - implications for subsurface volatiles

    SciTech Connect (OSTI)

    Zimbelman, J.R.

    1987-08-01

    Viking Orbiter images of the Acheron Fossae on Mars are presented and analyzed, with an emphasis on the impact of image resolution on the interpretation. High-resolution (less than 10 m/pixel) images reveal small mounds which can be interpreted as aeolian dunes, but these features are not evident on images with resolution of 50 m/pixel or greater. Also reported are the results of a visual inspection of 527 usable high-resolution images: it is found that all of the morphological features identified can arise in the absence of subsurface volatiles. 21 references.

  20. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    SciTech Connect (OSTI)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.; Miller, Brian W.; Morley, Shannon M.; Barinaga, Charles J.; Eiden, Gregory C.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  1. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    SciTech Connect (OSTI)

    Kayser, Y.; B?achucki, W.; Dousse, J.-Cl.; Hoszowska, J.; Neff, M.; Romano, V.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.

  2. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Alonso-Mori, R.; Bergmann, U.

    2013-05-15

    We present a multicrystal Johann-type hard x-ray spectrometer ({approx}5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88 Degree-Sign -74 Degree-Sign ) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4{pi} sr. The typical resolving power is in the order of (E/{Delta}E){approx}10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  3. High resolving power spectrometer for beam analysis

    SciTech Connect (OSTI)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs.

  4. Open-split interface for mass spectrometers

    DOE Patents [OSTI]

    Diehl, John W.

    1991-01-01

    An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.

  5. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    SciTech Connect (OSTI)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ?J = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ?J = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ?J = ? 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  6. Tunable light source for use in photoacoustic spectrometers

    DOE Patents [OSTI]

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  7. Mass spectrometer having a derivatized sample presentation apparatus

    DOE Patents [OSTI]

    Nelson, Randall W. (Phoenix, AZ)

    2000-07-25

    A mass spectrometer having a derivatized sample presentation apparatus is provided. The sample presentation apparatus has a complex bound to the surface of the sample presentation apparatus. This complex includes a molecule which may chemically modify a biomolecule.

  8. Development of a Spatially Resolving X-Ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Fusion Links Development of a spatially resolving x-ray crystal spectrometer for measurement of ion-temperature "T i ... and rotation-velocity "v... profiles in ITER a... ...

  9. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    SciTech Connect (OSTI)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common data format (imzML) and a public data repository can contribute to more reliability and transparency of MS imaging studies.

  10. ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Spectral Technology govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Abstract Goals of assist were to intercompare radiance spectra and profile retrievals

  11. A Micro-Opto-Mechanical Photoacoustic Spectrometer (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect A Micro-Opto-Mechanical Photoacoustic Spectrometer Citation Details In-Document Search Title: A Micro-Opto-Mechanical Photoacoustic Spectrometer × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  12. Performances of a bent-crystal spectrometer adapted to resonant x-ray emission measurements on gas-phase samples

    SciTech Connect (OSTI)

    Journel, Loiec; El Khoury, Lara; Marin, Thierry; Guillemin, Renaud; Carniato, Stephane; Avila, Antoine; Delaunay, Renaud; Hague, Coryn F.; Simon, Marc

    2009-09-15

    We describe a bent-crystal spectrometer adapted to measure x-ray emission resulting from core-level excitation of gas-phase molecules in the 0.8-8 keV energy range. The spectrometer is based on the Johann principle, and uses a microfocused photon beam to provide high-resolution (resolving power of {approx}7500). A gas cell was designed to hold a high-pressure (300 mbar) sample of gas while maintaining a high vacuum (10{sup -9} mbar) in the chamber. The cell was designed to optimize the counting rate (2000 cts/s at the maximum of the Cl K{alpha} emission line), while minimizing self-absorption. Example of the K{alpha} emission lines of CH{sub 3}Cl molecules is presented to illustrate the capabilities of this new instrument.

  13. Video Toroid Cavity Imager

    DOE Patents [OSTI]

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  14. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  15. Fourier plane imaging microscopy

    SciTech Connect (OSTI)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  16. design a high-resolution diagnostic system for the National Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility | Princeton Plasma Physics Lab design a high-resolution diagnostic system for the National Ignition Facility By John Greenwald November 16, 2015 Tweet Widget Google Plus One Share on Facebook Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas. (Photo by Elle Starkman/Office of Communications) Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas.

  17. PPPL to design a high-resolution diagnostic system for the National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility | Princeton Plasma Physics Lab to design a high-resolution diagnostic system for the National Ignition Facility By Johm Greenwald November 16, 2015 Tweet Widget Google Plus One Share on Facebook Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas. (Photo by Elle Starkman/Office of Communications) Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP

  18. Which Bulb Is Right for You? (High-Resolution JPG Billboard) | Department

    Energy Savers [EERE]

    of Energy JPG Billboard) Which Bulb Is Right for You? (High-Resolution JPG Billboard) HIgh-resolution JPG of billboard reading, 'Which bulb is right for you? Save energy, save money. Energysaver.gov.' Image icon DoE_Billboard_Which_Bulb.jpg More Documents & Publications Which Bulb Is Right for You? (High-Resolution EPS Billboard) Which Bulb Is Right for You? (Low-Resolution JPG Billboard) Goodbye, Watts. Hello, Lumens. (High-Resolution JPG

  19. Compact high resolution isobar separator for study of exotic decays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compact high resolution isobar separator for study of exotic decays A. Piechaczek 1 , V. Shchepunov 1 , H. K. Carter 1 J. C. Batchelder 1 , E. F. Zganjar 2 1 UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN 37830 2 Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 A compact isobar separator, based on the Multi-Pass-Time-of-Flight (MTOF) principle, is developed [1]. A mass resolving power (MRP) as spectrometer of 110,000 (FWHM) is achieved in

  20. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect (OSTI)

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  1. Radiology utilizing a gas multiwire detector with resolution enhancement

    DOE Patents [OSTI]

    Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  2. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect (OSTI)

    Cazzaniga, C., E-mail: carlo.cazzaniga@mib.infn.it; Nocente, M.; Gorini, G. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Rebai, M.; Giacomelli, L. [University of Milano Bicocca, Piazza della Scienza 3, Milano (Italy); Tardocchi, M.; Croci, G.; Grosso, G. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, via Roberto Cozzi 53, Milano (Italy); Calvani, P.; Girolami, M.; Trucchi, D. M. [CNR-ISM, Research Area Roma 1, Via Salaria km 29.300, 00015-Monterotondo Scalo (Rm) (Italy); Griesmayer, E. [Atominstitut, Vienna University of Technology, Vienna (Austria); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione ENEA C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Roma) (Italy)

    2014-11-15

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, ?){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  3. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE): Evaluation of a new method to look at high resolution spatial/temporal distributions of carbon over key sub km sites

    SciTech Connect (OSTI)

    Dobler, Jeremy; Zaccheo, T. Scott; Blume, Nathan; Braun, Michael; Perninit, Timothy; McGregor, Doug; Botos, Chris; Dobeck, Laura

    2015-01-01

    Recently a new laser based approach for measuring area with potential for producing 2D estimates of the concentration spatial distribution has been developed through a cooperative agreement with the National Energy and Technology Laboratory of the Department of Energy, Exelis Inc. and AER Inc. The new approach is based on a pair of continuous wave intensity modulated laser absorption spectrometer transceivers, combined with a series of retro reflectors located around the perimeter of the area being monitored. The main goal of this cooperative agreement is monitoring, reporting and verification for ground carbon capture and storage projects. The system was recently tested at the Zero Emission Research and Technology site in Bozeman, MT, with underground leak rates ranging from 0.1 0.3 metric ton per day (T/d), as well as a 0.8 T/d surface release. Over 200 hours of data were collected over a rectangular grid 180m x 200m between August 18th and September 9th. In addition, multiple days of in situ data were acquired for the same site, using a Licor gas analyzer systems. Initial comparisons between the laser-based system and the in situ agree very well. The system is designed to operate remotely and transmit the data via a 3G/4G connection along with weather data for the site. An all web-based system ingests the data, populates a database, performs the inversion to ppm CO2 using the Line-by-Line Radiative Transfer Model (LBLRTM), and displays plots and statistics for the retrieved data. We will present an overview of the GreenLITE measurement system, outline the retrieval and reconstruction approach, and discuss results from extensive field testing.

  4. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, Glen A. (Los Alamos, NM)

    1999-01-01

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  5. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, G.A.

    1999-01-19

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  6. Method for increasing the dynamic range of mass spectrometers

    DOE Patents [OSTI]

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  7. Further developments of capillary absorption spectrometers using small hollow-waveguide fibers

    SciTech Connect (OSTI)

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Kriesel, Jason M.

    2014-05-01

    Our objective is to enhance quantification of stable carbon and oxygen isotope ratios to better than 1 relative isotope precision for sample sizes < 1 pico-mole. A newer variant Capillary Absorption Spectrometer (CAS) is described using a proprietary linear-taper hollow waveguide in conjunction with wavelength and frequency modulation techniques of tunable laser absorption spectrometry. Previous work used circular capillaries with uniform 1 mm ID to measure 13C/12C ratios with ? 20 pico-mole samples to ? 10 ppm (1 precision against standards) [1]. While performing fairly well, it generated residual modal noise due to multipath propagation in the hollow-waveguides (HWGs). This system has been utilized with laser ablation-catalytic combustion techniques to analyze small resolution (~ 25 ?m spot diameter) laser ablation events on solids. Using smaller ID capillary waveguides could improve detection limits and spatial resolutions. Reducing an IR compatible hollow waveguides inner diameter (ID) to < 300 ?m, reduces modal noise significantly for mid-IR operation, but feedback noise with high gain semiconductor lasers can become problematic. A proprietary linear-taper small waveguide (mean ID = 0.35 mm, L = 1 m) was tested to understand whether modal noise and optical feedback effects could be simultaneously reduced. We see better mode filtering and, significant reductions of feedback noise under favorable coupling of a multi-spatial mode QC laser to the smaller ID of the linear-tapered HWG. We demonstrate that better modal coupling operation is consistent with Liouvilles theorem, where greater suppression of feedback from spurious scatter within the HWG occurs by injecting the laser into the smaller ID port. Our progress on developing lighter weight, potentially fieldable alternatives to Isotope Ratio Mass Spectrometers (IRMS) with a small volume (? 0.1 cm3) CAS system will be discussed and compared to other competitive systems.

  8. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect (OSTI)

    Thorn, D B

    2008-11-03

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the generalized Breit interaction (GBI) on electron-impact excitation cross sections was performed. This measurement found that for theoretical electron-impact excitation cross sections to fit with experimental data the GBI needs to be taken into account.

  9. Cerenkov ring imaging and spectroscopy of charged KSTAR interactions at 11 GeV/c

    SciTech Connect (OSTI)

    Bird, P.F.

    1988-11-01

    The physics and technology of this new Cerenkov detector are discussed, including materials studies, construction techniques, and resolution measurements. Sources of resolution error are individually identified and measured where possible. The results of all studied indicate that the measurement resolution is understood. This work has led to the adoption of a large scale ring imaging detector as part of a new high energy physics spectrometer, the SLD, at the Stanford Linear Accelerator Center. Results from an amplitude analysis of strange meson final states in K/sup /minus//p ..-->.. /ovr K/sub 0//..pi../sup /minus//p interactions are presented. The data derive from a 4 event/nb exposure of the LASS (large Aperture Superconducting Solenoid) spectrometer to an 11 GeV/c K/sup /minus// beam. The data sample consists of /approximately/100,000 vents distributed over the Dalitz plot of the channel. The process is observed to be dominated by the production and decay of natural spin-parity (J/sup P/ = 1/sup /minus//,2/sup +/,3/sup /minus//,/hor ellipsis/) strange meson states. The data can be understood in terms of a simple model in which the resonant /ovr K*/sup -// are produced predominantly via natural parity exchange in the t channel. The leading K*(890), K/sub 2/*(1430), and K*(1780) resonances are clearly observed and measured, and the underlying spectroscopy is also extracted. Indications of higher mass resonance production are also shown. The observed properties of these states are used to confront current models of quark spectroscopy in strange meson systems. 94 refs., 96 figs., 23 tabs.

  10. Photo-Spectrometer Realized In A Standard Cmos Ic Process

    DOE Patents [OSTI]

    Simpson, Michael L. (Knoxville, TN); Ericson, M. Nance (Knoxville, TN); Dress, William B. (Knoxville, TN); Jellison, Gerald E. (Oak Ridge, TN); Sitter, Jr., David N. (Tucson, AZ); Wintenberg, Alan L. (Knoxville, TN)

    1999-10-12

    A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals. In a corresponding method, a spectrometer is manufactured by manipulating only the standard masks, materials and fabrication steps of standard semiconductor processing, and integrating the spectrometer with a signal processing circuit.

  11. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1993-12-21

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

  12. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  13. Systems for increasing the sensitivity of gamma-ray imagers

    DOE Patents [OSTI]

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  14. Methods for increasing the sensitivity of gamma-ray imagers

    DOE Patents [OSTI]

    Mihailescu, Lucian (Pleasanton, CA); Vetter, Kai M. (Alameda, CA); Chivers, Daniel H. (Fremont, CA)

    2012-02-07

    Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  15. Development of multichannel low-energy neutron spectrometer

    SciTech Connect (OSTI)

    Arikawa, Y., E-mail: arikawa-y@ile.osaka-u.ac.jp; Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan); Murata, T. [Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  16. Bragg x-ray survey spectrometer for ITER

    SciTech Connect (OSTI)

    Varshney, S. K.; Jakhar, S. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Barnsley, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); O'Mullane, M. G. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-10-15

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  17. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, Victor (Berkeley, CA)

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  18. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  19. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  20. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  1. Lynx: A High-Resolution Synthetic Aperture Radar

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  2. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    SciTech Connect (OSTI)

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-04-15

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  3. High resolution spectroscopic study of BeΛ10

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; et al

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  4. High speed imaging television system

    DOE Patents [OSTI]

    Wilkinson, William O. (Silver Spring, MD); Rabenhorst, David W. (Silver Spring, MD)

    1984-01-01

    A television system for observing an event which provides a composite video output comprising the serially interlaced images the system is greater than the time resolution of any of the individual cameras.

  5. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    SciTech Connect (OSTI)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  6. The Los Alamos National Laboratory precision double crystal spectrometer

    SciTech Connect (OSTI)

    Morgan, D.V.; Stevens, C.J.; Liefield, R.J.

    1994-03-01

    This report discusses the following topics on the LANL precision double crystal X-ray spectrometer: Motivation for construction of the instrument; a brief history of the instrument; mechanical systems; motion control systems; computer control system; vacuum system; alignment program; scan programs; observations of the copper K{alpha} lines; and characteristics and specifications.

  7. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; Somov, Alexander S.; Somov, S.; Tolstukhin, Ivan

    2015-09-21

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  8. Mass spectrometer and methods of increasing dispersion between ion beams

    DOE Patents [OSTI]

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  9. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  10. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  11. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E.

    2014-11-15

    A high-throughput spectrometer for the 400820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm{sup ?1} grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ?0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  12. Interpretation of HRTEM images by image simulation: An introduction to theory and practice

    SciTech Connect (OSTI)

    O`Keefe, M.A.

    1994-08-01

    This tutorial describes the use of image simulation as an aid to interpretation of high-resolution transmission electron microscope images. Topics include some image processing as well as image simulation. Image processing is the manipulation of experimental images in order to extract some desired information. Image simulation is the generation of a computed or simulated image from a model structure. It requires a detailed knowledge of the process of image formation in the high-resolution transmission electron microscope. This tutorial concentrates on image simulation, with examples of image processing appearing only as required as illustrations. Because this is an introduction, the theory of image simulation is described, but not explored in depth. The practice of image simulation is covered in sufficient detail to enable the student to understand the functions of the various steps in the computations, and the parameters necessary for their evaluation.

  13. High-resolution radiography by means of a hodoscope

    DOE Patents [OSTI]

    De Volpi, Alexander (Hinsdale, IL)

    1978-01-01

    The fast neutron hodoscope, a device that produces neutron radiographs with coarse space resolution in a short time, is modified to produce neutron or gamma radiographs of relatively thick samples and with high space resolution. The modification comprises motorizing a neutron and gamma collimator to permit a controlled scanning pattern, simultaneous collection of data in a number of hodoscope channels over a period of time, and computerized image reconstruction of the data thus gathered.

  14. The NIF x-ray spectrometer calibration campaign at Omega (Journal...

    Office of Scientific and Technical Information (OSTI)

    The NIF x-ray spectrometer calibration campaign at Omega Citation Details In-Document Search Title: The NIF x-ray spectrometer calibration campaign at Omega The calibration...

  15. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega You are...

  16. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Authors: ...

  17. Solid-immersion fluorescence microscopy with increased emission and super resolution

    SciTech Connect (OSTI)

    Liau, Z. L.; Porter, J. M.; Liau, A. A.; Chen, J. J.; Salmon, W. C.; Sheu, S. S.

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15?nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  18. imageMCR

    Energy Science and Technology Software Center (OSTI)

    2011-09-27

    imageMCR is a user friendly software package that consists of a variety inputs to preprocess and analyze the hyperspectral image data using multivariate algorithms such as Multivariate Curve Resolution (MCR), Principle Component Analysis (PCA), Classical Least Squares (CLS) and Parallel Factor Analysis (PARAFAC). MCR provides a relative quantitative analysis of the hyperspectral image data without the need for standards, and it discovers all the emitting species (spectral pure components) present in an image, even thosemore » in which there is no a priori information. Once the spectral components are discovered, these spectral components can be used for future MCR analyses or used with CLS algorithms to quickly extract concentration image maps for each component within spectral image data sets.« less

  19. High-resolution ionization detector and array of such detectors

    DOE Patents [OSTI]

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  20. Final Report on ORDER No. 5312-20110620-JOHNSON-01ITER: Core Imaging X-Ray

    Office of Scientific and Technical Information (OSTI)

    Spectrometer Conceptual Design Review Support (Technical Report) | SciTech Connect Final Report on ORDER No. 5312-20110620-JOHNSON-01ITER: Core Imaging X-Ray Spectrometer Conceptual Design Review Support Citation Details In-Document Search Title: Final Report on ORDER No. 5312-20110620-JOHNSON-01ITER: Core Imaging X-Ray Spectrometer Conceptual Design Review Support Authors: Beiersdorfer, P Publication Date: 2013-09-20 OSTI Identifier: 1097747 Report Number(s): LLNL-SR-644215 DOE Contract

  1. High-Resolution Diagrams Now Available | Department of Energy

    Energy Savers [EERE]

    High-Resolution Diagrams Now Available High-Resolution Diagrams Now Available September 28, 2010 - 9:59am Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory The newest content now available on Energy Savers is high-resolution diagrams! We frequently get requests for high-res images that people can use in school reports, for example, and now you don't have to ask us. Nearly every diagram you see will include options for downloading either a JPG or EPS file in

  2. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser

    SciTech Connect (OSTI)

    Wang, Chun; Lv, Shasha; Bi, Jin; Liu, Fang; Li, Liufeng; Chen, Lisheng

    2014-08-15

    We present the development of a dye-laser-based spectrometer operating at 550600 nm. The spectrometer will be used to detect an ultra-narrow clock transition ({sup 1}S{sub 0}-{sup 3}P{sub 0}) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO{sub 4}-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 10{sup ?15} (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  3. PROJECT PROFILE: High-resolution Investigations of Transport Limiting Defects and Interfaces in Thin-Film Photovoltaic Devices

    Broader source: Energy.gov [DOE]

    This project will develop the capability of high-resolution transport imaging in photovoltaic (PV) devices, which is useful for improving polycrystalline thin-film PV materials.

  4. High-resolution spectroscopy of 2s1/2 - 2p3/2 transitions in W^65+ through

    Office of Scientific and Technical Information (OSTI)

    W^71+ (Journal Article) | SciTech Connect High-resolution spectroscopy of 2s1/2 - 2p3/2 transitions in W^65+ through W^71+ Citation Details In-Document Search Title: High-resolution spectroscopy of 2s1/2 - 2p3/2 transitions in W^65+ through W^71+ A high-resolution flat-crystal spectrometer was used on the SuperEBIT electron beam ion trap to measure the energies of the 2s{sub 1/2} - 2p{sub 3/2} transitions in lithiumlike through fluorine-like tungsten. These transitions are strongly affected

  5. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect (OSTI)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (520 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  6. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  7. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, Michel G. (Los Alamos, NM)

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  8. The Design and Construction of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Wang, Bert; Wahrer, Bob; Taylor, Clyde; Xu, L.; Chen, J. Y.; Wang, M.; Juang, Tiki; Zisman, Michael S.; Virostek, Steve P.; Green, Michael A.

    2008-08-02

    The purpose of the MICE spectrometer solenoid is to provide a uniform field for a scintillating fiber tracker. The uniform field is produced by a long center coil and two short end coils. Together, they produce 4T field with a uniformity of better than 1% over a detector region of 1000 mm long and 300 mm in diameter. Throughout most of the detector region, the field uniformity is better than 0.3%. In addition to the uniform field coils, we have two match coils. These two coils can be independently adjusted to match uniform field region to the focusing coil field. The coil package length is 2544 mm. We present the spectrometer solenoid cold mass design, the powering and quench protection circuits, and the cryogenic cooling system based on using three cryocoolers with re-condensers.

  9. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downers Grove, IL); Lamich, George J. (Orland Park, IL)

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  10. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  11. Lanczos Image Resampling Benchmark

    Energy Science and Technology Software Center (OSTI)

    2007-09-30

    This software abstracts a simple computational kernel from SWarp, an astrometric image resampling code. The input is a grayscale PGM image file (8-bit or 16-bit integer) and the output is a higher-resolution grayscale image file (8-bit or 16-bit integer, or 32-bit floating point). The user selects a scaling factor to be applied and a convolution kernel type to be used during resampling (using 1, 16, 36, 64 input pixels to generate each output pixel). Themoreresampling is performed using the OpenGL API and can run on a PC with GPU (graphics processing unit) hardware.less

  12. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  13. Environmental Conflict Resolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Conflict Resolution Environmental Conflict Resolution ENVIRONMENTAL CONFLICT RESOLUTION In September 2012, the Council on Environmental Quality (CEQ) and the Office...

  14. Environmental Conflict Resolution | Department of Energy

    Office of Environmental Management (EM)

    Environmental Conflict Resolution Environmental Conflict Resolution PDF icon Environmental Conflict Resolution More Documents & Publications Final ECR 2008 Report 2009 ECR FINAL REPORT 2010 test

  15. Imaging with Spherically Bent Crystals or Reflectors (Technical Report) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Technical Report: Imaging with Spherically Bent Crystals or Reflectors Citation Details In-Document Search Title: Imaging with Spherically Bent Crystals or Reflectors This paper consists of two parts: Part I describes the working principle of a recently developed x-ray imaging crystal spectrometer, where the astigmatism of spherically bent crystals is being used with advantage to record spatially resolved spectra of highly charged ions for Doppler measurements of the

  16. Pulsed Ionization Source for Ion Mobility Spectrometers - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffusion-limited resolution. In addition, the radioactive ion sources used in many IMSs present potential safety and hazardous waste disposal issues. Other ionization sources...

  17. Precise measurement of the resolution in light microscopy using Fourier transform

    SciTech Connect (OSTI)

    Vainrub, Arnold

    2008-04-15

    The resolution power of light microscope has been accurately measured ({+-}5%) by Fourier transform of various object images and further evaluation of the highest spatial frequency in Fourier spectrum. Any unknown shape plane object with a shape feature's size smaller than the resolution to be measured was shown to provide a reliable resolution test. This simple method gives a direct measurement of the resolution power as defined by Abbe [Archiv. F. Mikroskopische Anat. 9, 413 (1873)]. The results have been justified by comparison to a standard resolution measurement by using calibrated periodic line patterns. Notably, the approach is applicable in super-resolution light microscopy (transmission, reflection, and fluorescence), where calibrated resolution targets do not occur. It was conveniently implemented by using a compact disk as a test object and free IMAGEJ imaging software.

  18. TENTATIVE RESOLUTION OF DISPUTE AND

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESOLUTION OF DISPUTE AND CONCLUSION OF NEGOTIATIONS AGREEMENT REGARDING SINGLE-SHELL TANK WASTE RETRIEVAL AND THE ESTABLISHMENT OF ACCELERATED WASTE RETRIEVAL AND CLOSURE...

  19. Method and apparatus for improving resolution in spectrometers processing output steps from non-ideal signal sources

    DOE Patents [OSTI]

    Warburton, William K.; Momayezi, Michael

    2006-06-20

    A method and apparatus for processing step-like output signals (primary signals) generated by non-ideal, for example, nominally single-pole ("N-1P ") devices. An exemplary method includes creating a set of secondary signals by directing the primary signal along a plurality of signal paths to a signal summation point, summing the secondary signals reaching the signal summation point after propagating along the signal paths to provide a summed signal, performing a filtering or delaying operation in at least one of said signal paths so that the secondary signals reaching said summing point have a defined time correlation with respect to one another, applying a set of weighting coefficients to the secondary signals propagating along said signal paths, and performing a capturing operation after any filtering or delaying operations so as to provide a weighted signal sum value as a measure of the integrated area QgT of the input signal.

  20. Optic for an endoscope/borescope having high resolution and narrow field of view

    DOE Patents [OSTI]

    Stone, Gary F.; Trebes, James E.

    2003-10-28

    An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.

  1. Hard x-ray transmission crystal spectrometer at the OMEGA-EP laser facility

    SciTech Connect (OSTI)

    Seely, J. F.; Szabo, C. I.; Feldman, U.; Hudson, L. T.; Henins, A.; Audebert, P.; Brambrink, E.

    2010-10-15

    The transmission crystal spectrometer (TCS) is approved for taking data at the OMEGA-EP laser facility since 2009 and will be available for the OMEGA target chamber in 2010. TCS utilizes a Cauchois type cylindrically bent transmission crystal geometry with a source to crystal distance of 600 mm. Spectral images are recorded by image plates in four positions, one IP on the Rowland circle and three others at 200, 400, and 600 mm beyond the Rowland circle. An earlier version of TCS was used at LULI on experiments that determined the x-ray source size from spectral line broadening on one IP positioned behind the Rowland circle. TCS has recorded numerous backlighter spectra at EP for point projection radiography and for source size measurements. Hard x-ray source size can be determined from the source broadening of both K shell emission lines and from K absorption edges in the bremsstrahlung continuum, the latter being a new way to measure the spatial extent of the hard x-ray bremsstrahlung continuum.

  2. Evolution of spatial resolution in breast CT at UC Davis

    SciTech Connect (OSTI)

    Gazi, Peymon M.; Yang, Kai; Burkett, George W.; Aminololama-Shakeri, Shadi; Anthony Seibert, J.; Boone, John M.

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 2 to 1 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image acquisition logic resulted in a significant fourfold improvement in MTF.

  3. FTIR spectrometer with solid-state drive system

    DOE Patents [OSTI]

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  4. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOE Patents [OSTI]

    Felter, Thomas E. (Livermore, CA)

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  5. Linear electric field time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); Feldman, William C. (Los Alamos, NM)

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  6. Continuous time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  7. Positron lifetime spectrometer using a DC positron beam

    DOE Patents [OSTI]

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  8. LANL/Green Star Tests of the Green Star SBS-60 Spectrometer

    SciTech Connect (OSTI)

    T. E. Sampson; D. T. Vo; T. L. Cremers; P. A. Hypes; Y. P. Seldiakov; A. B. Dorin; M. V. Kondrashov; V. I. Timoshin

    2001-06-01

    We report on joint testing of the Russian-designed and manufactured single board spectrometer SBS-60 from Green Star Ltd. of Moscow. The SBS-60 will be used to make material control and accountability measurements on plutonium in the Russian plutonium disposition program. We compared three SBS-60 units of two different designs with three commonly used commercial US data acquisition systems by making measurements with three different HPGe detector systems. The measurements were performed to test if the gamma-ray spectral data of plutonium samples from the SBS-60 was suitable for analysis for the isotopic composition of plutonium using the Los Alamos FRAM isotopic analysis software. Each detector fed its signal to two data acquisition systems, one SBS-60 and one commercial US system. The data from the two systems were analyzed by FRAM and compared. In addition, we characterized the throughput, resolution, and stability of the SBS-60 data acquisition system in comparison with the commercial US systems. This report presents detailed results of all the tests performed.

  9. Microscopy imaging device with advanced imaging properties

    DOE Patents [OSTI]

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  10. Development of a Silicon Drift Detector Array: An X-ray Fluorescence Spectrometer for Remote Surface Mapping

    SciTech Connect (OSTI)

    Gaskin, J.A.; De Geronimo, G.; Carini, G.A.; Chen, W.; Elsner, R.F.; Kramer, G.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-09-11

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  11. Technique to quantitatively measure magnetic properties of thin structures at <10 NM spatial resolution

    DOE Patents [OSTI]

    Bajt, Sasa

    2003-07-08

    A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.

  12. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S. Y.; Zheng, S. X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-05-30

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  13. Optical apparatus for forming correlation spectrometers and optical processors

    DOE Patents [OSTI]

    Butler, Michael A. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM); Sinclair, Michael B. (Albuquerque, NM); Senturia, Stephen D. (Brookline, MA)

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  14. Optical apparatus for forming correlation spectrometers and optical processors

    DOE Patents [OSTI]

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  15. Light ion transfer reactions with the HELIOS spectrometer

    SciTech Connect (OSTI)

    Back, B. B.; Collaboration: HELIOS Collaboration

    2012-10-20

    Light-ion induced transfer and inelastic scattering reactions on stable or long-lived targets have been used extensively to study the structure of nuclei near the line of {beta}-stability, and much of the detailed information on the single-particle structure of nuclei has been derived from such studies. Recently, however, a substantial expansion of the range of isotopes, for which this nuclear structure information can be obtained, has presented itself by using radioactive beams in inverse kinematics reactions. Such beams are now available at a number of facilities around the world, including the in-flight production method and CARIBU facility at ATLAS. The HELIOS spectrometer, which has been used since August 2008 at ATLAS, circumvents many of the problems associated with inverse kinematics. In this talk I will discuss the principle of the spectrometer as well as some of main physics results that have been obtained to date in nuclei ranging from {sup 13}B to {sup 137}Xe using both stable and radioactive beams.

  16. Atomic-Resolution Spectroscopic Imaging and In Situ Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use of a cold-field-emission gun provides a factor of 100x increase in the usable current for probing inelastic scattering events, while still maintaining an Angstrom beam size. ...

  17. Prospects for Electron Imaging with Ultrafast Time Resolution...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; CHEMISTRY;...

  18. Which Bulb Is Right for You? (Low-Resolution JPG Billboard) ...

    Broader source: Energy.gov (indexed) [DOE]

    Low-resolution JPG of billboard reading, 'Which bulb is right for you? Save energy, save money. Energysaver.gov. Image icon DoEBillboardWhichBulbweb.jpg More Documents & ...

  19. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  20. Oblique reconstructions in tomosynthesis. II. Super-resolution

    SciTech Connect (OSTI)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-11-15

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., pitches) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest detectable frequency on pitch followed the same trend as the analytical model. It was demonstrated that super-resolution is not achievable if the pitch of the object approaches 90, corresponding to the case in which the test frequency is perpendicular to the breast support. Only low frequency objects are detectable at pitches close to 90.Conclusions: This work provides a platform for investigating super-resolution in oblique reconstructions for tomosynthesis. In breast imaging, this study should have applications in visualizing microcalcifications and other subtle signs of cancer.

  1. An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particle Measurements | Department of Energy An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements 2003 DEER Conference Presentation: TSI Incorporated PDF icon 2003_deer_johnson.pdf More Documents & Publications Making Mobile Measurement Using an EEPS Spectrometer Mass Correlation of Engine Emissions with Spectral Instruments Measurement of diesel solid

  2. ITER Core Imaging X-Ray Spectrometer Conceptual Design and Performance Assessment - Phase 2

    SciTech Connect (OSTI)

    Beiersdorfer, P; Wen, J; Dunn, J; Morris, K

    2011-01-02

    During Phase 2 of our study of the CIXS conceptual design we have tackled additional important issues that are unique to the ITER environment. These include the thermal control of the crystal and detector enclosures located in an environment with a 100-250 C ambient temperature, tritium containment, and the range of crystal and detector movement based on the need for spectral adjustments and the desire to make measurements of colder plasmas. In addressing these issues we have selected a ''Dewar''-type enclosure for the crystals and detectors. Applying realistic view factors for radiant heat and making allowance for conduction we have made engineering studies of this enclosure and showed that the cooling requirements can be solved and the temperature can be kept sufficiently constant without compromising the specification parameters of the CIXS. We have chosen a minimum 3 mm combined thickness of the six beryllium windows needed in a Dewar-type enclosure and showed that a single window of 0.5 mm thickness satisfies tritium containment requirements. For measuring the temperature in cooler ITER plasmas, we have chosen to use the K-shell lines of Fe24+. Iron is the preferred choice because its radiation can be analyzed with the identical CIXS settings used for analyzing the tungsten radiation, i.e., essentially no adjustments besides a simple crystal rotation need to be made. We have, however, included an xy{theta}-drive motor arrangement in our design for fine adjustments and full rotation of the crystal mounts.

  3. Highest-Resolution Ribosome Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factors. Two structures of the intact ribosome from the common bacterium Escherichia coli, determined by a Berkeley-Berlin collaboration to a resolution of 3.5 , the highest...

  4. A new spectrometer design for the x-ray spectroscopy of laser...

    Office of Scientific and Technical Information (OSTI)

    A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high ... Author Affiliations Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 ...

  5. Highest-Resolution Ribosome Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highest-Resolution Ribosome Structure Highest-Resolution Ribosome Structure Print Wednesday, 26 April 2006 00:00 The last step in converting the genetic information stored in DNA into the major functional parts of cells is protein biosynthesis. Protein synthesis occurs on the ribosome, a cellular factory found in all forms of life. In contrast to most cellular machines, the ribosome contains a functional core of RNA that is enhanced by ribosomal proteins and accessory factors. Two structures of

  6. Dynamic granularity of imaging systems (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Dynamic granularity of imaging systems This content will become publicly available on November 4, 2016 « Prev Next » Title: Dynamic granularity of imaging systems Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that

  7. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    DOE Patents [OSTI]

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  8. High resolution digital delay timer

    DOE Patents [OSTI]

    Martin, Albert D. (Los Alamos, NM)

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  9. Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and integrating imaging into modeling.

  10. Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: Identification of contributors to the background noise and shielding optimization

    SciTech Connect (OSTI)

    Thfoin, I. Reverdin, C.; Duval, A.; Leboeuf, X.; Lecherbourg, L.; Ross, B.; Hulin, S.; Batani, D.; Santos, J. J.; Vaisseau, X.; Fourment, C.; Giuffrida, L.; Szabo, C. I.; Bastiani-Ceccotti, S.; Brambrink, E.; Koenig, M.; Nakatsutsumi, M.; Morace, A.

    2014-11-15

    Transmission crystal spectrometers (TCS) are used on many laser facilities to record hard X-ray spectra. During experiments, signal recorded on imaging plates is often degraded by a background noise. Monte-Carlo simulations made with the code GEANT4 show that this background noise is mainly generated by diffusion of MeV electrons and very hard X-rays. An experiment, carried out at LULI2000, confirmed that the use of magnets in front of the diagnostic, that bent the electron trajectories, reduces significantly this background. The new spectrometer SPECTIX (Spectromtre PETAL Cristal en TransmIssion X), built for the LMJ/PETAL facility, will include this optimized shielding.

  11. High resolution collimator system for X-ray detector

    DOE Patents [OSTI]

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  12. Observation of super-resolution in digital breast tomosynthesis

    SciTech Connect (OSTI)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2012-12-15

    Purpose: Digital breast tomosynthesis (DBT) is a 3D x-ray imaging modality in which tomographic sections of the breast are generated from a limited range of tube angles. Because oblique x-ray incidence shifts the image of an object in subpixel detector element increments with each increasing projection angle, it is demonstrated that DBT is capable of super-resolution (i.e., subpixel resolution). Methods: By convention, DBT reconstructions are performed on planes parallel to the breast support at various depths of the breast volume. In order for resolution in each reconstructed slice to be comparable to the detector, the pixel size should match that of the detector elements; hence, the highest frequency that can be resolved in the plane of reconstruction is the alias frequency of the detector. This study considers reconstruction grids with much smaller pixelation to visualize higher frequencies. For analytical proof of super-resolution, a theoretical framework is developed in which the reconstruction of a high frequency sinusoidal input is calculated using both simple backprojection (SBP) and filtered backprojection. To study the frequency spectrum of the reconstruction, its Fourier transform is also determined. The experimental feasibility of super-resolution was investigated by acquiring images of a bar pattern phantom with frequencies higher than the detector alias frequency. Results: Using analytical modeling, it is shown that the central projection cannot resolve frequencies exceeding the detector alias frequency. The Fourier transform of the central projection is maximized at a lower frequency than the input as evidence of aliasing. By contrast, SBP reconstruction can resolve the input, and its Fourier transform is correctly maximized at the input frequency. Incorporating filters into the reconstruction smoothens pixelation artifacts in the spatial domain and reduces spectral leakage in the Fourier domain. It is also demonstrated that the existence of super-resolution is dependent on position in the reconstruction and on the directionality of the input frequency. Consistent with the analytical results, experimental reconstructions of bar patterns showed visibility of frequencies greater than the detector alias frequency. Super-resolution was present at positions predicted from analytical modeling. Conclusions: This work demonstrates the existence of super-resolution in DBT. Super-resolution has the potential to impact the visualization of fine structural details in the breast, such as microcalcifications and other subtle signs of cancer.

  13. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect (OSTI)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  14. Linear electronic field time-of-flight ion mass spectrometers

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM)

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  15. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Schubert, W. Kent (Albuquerque, NM)

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  16. Aerosol beam-focus laser-induced plasma spectrometer device

    DOE Patents [OSTI]

    Cheng, Meng-Dawn (Oak Ridge, TN)

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  17. Isotopic response with small scintillator based gamma-ray spectrometers

    DOE Patents [OSTI]

    Madden, Norman W. (Sparks, NV); Goulding, Frederick S. (Lafayette, CA); Asztalos, Stephen J. (Oakland, CA)

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  18. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  19. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  20. Automatic Energy Calibration of Gamma-Ray Spectrometers

    Energy Science and Technology Software Center (OSTI)

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background wouldmore » simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.« less

  1. Dynamic granularity of imaging systems

    SciTech Connect (OSTI)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the dynamic granularity Gdyn as a standardized, objective relation between a detectors spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signals photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging systems performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandias Z-Backlighter facility.

  2. Scaling studies with the dual crystal spectrometer at the OMEGA-EP laser facility

    SciTech Connect (OSTI)

    Szabo, C. I.; Feldman, U.; Workman, J.; Flippo, K.; Seely, J. F.; Hudson, L. T.; Henins, A.

    2010-10-15

    The dual crystal spectrometer (DCS) is an approved diagnostic at the OMEGA and the OMEGA-EP laser facilities for the measurement of high energy x-rays in the 11-90 keV energy range, e.g., for verification of the x-ray spectrum of backlighter targets of point projection radiography experiments. DCS has two cylindrically bent transmission crystal channels with image plate detectors at distances behind the crystals close to the size of the respective Rowland circle diameters taking advantage of the focusing effect of the cylindrically bent geometry. DCS, with a source to crystal distance of 1.2 m, provides the required energy dispersion for simultaneous detection of x-rays in a low energy channel (11-45 keV) and a high-energy channel (19-90 keV). A scaling study is described for varied pulse length with unchanged laser conditions (energy, focusing). The study shows that the K{alpha} line intensity is not strongly dependent on the length of the laser pulse.

  3. Alternative Dispute Resolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Dispute Resolution Alternative Dispute Resolution Alternative Dispute Resolution The Office of Conflict Prevention and Resolution (formerly the Office of Dispute Resolution) provides assistance throughout the Department and to its contractors on using various types of Alternative Dispute Resolution (ADR) to prevent and resolve disputes without litigation. The Director of the office offers training, provides system design support, and acts as a consultant for all types of dispute

  4. Resolute Marine Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Resolute Marine Energy Inc Jump to: navigation, search Name: Resolute Marine Energy Inc Address: 3 Post Office Square 3rd floor Place: Massachusetts Country: United States Zip:...

  5. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  6. Microbial Cell Imaging

    SciTech Connect (OSTI)

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.

  7. Turbine imaging technology assessment

    SciTech Connect (OSTI)

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  8. Rotary turret and reusable specimen holder for mass spectrometer

    DOE Patents [OSTI]

    Banar, Joseph C. (Los Alamos, NM); Perrin, Richard E. (Jemez Springs, NM); Ostrenga, Raymond A. (Los Alamos, NM)

    1988-01-01

    A sample holder for use in a mass spectrometer is provided for heating a sample to discharge ions through an electrostatic field which focuses and accelerates the ions for analysis. Individual specimen holders form a plurality of filaments for heating the sample materials for ion emission. Mounting devices hold the plurality of filaments at regular spaced apart angles in a closed configuration adjacent the electrostatic field elements. A substantially solid ceramic turret is provided with a plurality of electrical contacts which engage the individual holder means for energizing the filaments and forming a corresponding plurality of radially facing, axially extending first conductive surfaces. A substantially solid stationary turret bearing member is mounted about the rotating turret with a plurality of radially biased second electrical conductive surfaces, mounted to electrically contact facing ones of the plurality of radially facing first conductive surfaces. The assembly provides a large thermal mass for thermal stability and large electrical contact areas for repeatable, stable power input for heating the sample materials. An improved sample holder is also provided having a ceramic body portion for removably engaging conductive wires. The conductive wires are compatible with a selected filament element and the sample material to be analyzed.

  9. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    SciTech Connect (OSTI)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.

  10. In-Situ Characterization of Cloud Condensation Nuclei, Interstitial, and background Particles using Single Particle Mass Spectrometer, SPLAT II

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Imre, D.; Earle, Michael; Easter, Richard C.; Korolev, Alexei; Leaitch, W. R.; Liu, Peter; Macdonald, A. M.; Ovchinnikov, Mikhail; Strapp, Walter

    2010-10-01

    Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70 particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.

  11. State Energy Advisory Board Resolutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resolutions State Energy Advisory Board Resolutions Resolution documents from STEAB, as posted on the U.S. Department of Energy website. PDF icon Resolution 13-01 PDF icon Resolution 12-01 PDF icon Resolution 12-02 PDF icon Resolution 10-01 PDF icon Resolution 10-02 PDF icon Resolution 09-01 PDF icon Resolution 09-02 PDF icon Resolution 09-03 PDF icon Resolution 09-04 PDF icon Resolution 08-01 PDF icon Resolution 08-02 PDF icon Resolution 07-01 PDF icon Amendment to 06-01 PDF icon Resolution

  12. A single-shot transmissive spectrometer for hard x-ray free electron lasers

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: A single-shot transmissive spectrometer for hard x-ray free electron lasers Citation Details In-Document Search Title: A single-shot transmissive spectrometer for hard x-ray free electron lasers We report hard x-ray single-shot spectral measurements of the Linac Coherent Light Source. The spectrometer is based on a 10 {mu}m thick cylindrically bent Si single crystal operating in the symmetric Bragg geometry

  13. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOE Patents [OSTI]

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  14. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOE Patents [OSTI]

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  15. A Spatially Resolving X-ray Crystal Spectrometer for Measurement of

    Office of Scientific and Technical Information (OSTI)

    Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak (Technical Report) | SciTech Connect A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak Citation Details In-Document Search Title: A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak A new spatially resolving x-ray crystal spectrometer

  16. Streaked x-ray spectrometer having a discrete selection of Bragg geometries

    Office of Scientific and Technical Information (OSTI)

    for Omega (Journal Article) | SciTech Connect Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega Citation Details In-Document Search Title: Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega The streaked x-ray spectrometer (SXS) is used with streak cameras [D. H. Kalantar, P. M. Bell, R. L. Costa, B. A. Hammel, O. L. Landen, T. J. Orzechowski, J. D. Hares, and A. K. L. Dymoke-Bradshaw, in 22nd International Congress on

  17. STEAB Resolution 06-04

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STATE ENERGY ADVISORY BOARD Resolution 06-04 BACKGROUND The expansion of renewable electric supplies is being driven by consumer demand, competitive pricing, and state policies such as the Renewable Portfolio Standards (RPS) program. Political favor is being driven by heightened concerns in global climate change, escalating prices in traditional power generation and geopolitical energy security. The positions of traditional energy sector stakeholders continue to evolve to one of advocacy and

  18. STEAB Resolution 07-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    S Department of Energy State Energy Advisory Board Resolution 07-01 BACKGROUND With record high fuel prices and heavy reliance on foreign sources of oil, new alternative fuel vehicles and technologies are crucial to addressing the nation's energy security and independence. Originally called Sunrayce USA, the first solar car race was organized and sponsored by General Motors in 1990. Subsequent races were held in 1993, 1995, 1997 and 1999 under the name Sunrayce. In 2001, the race was renamed

  19. STEAB Resolution 08-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY STATE ENERGY ADVISORY BOARD Resolution 08-01 SUBJECT: Continuation of Energy Efficiency and Renewable Energy's Office of Commercialization and Deployment Initiative. The State Energy Advisory Board appreciates the efforts of the Office of Energy Efficiency and Renewable Energy (EERE) to place increased emphasis on accelerated commercialization of EERE-sponsored technologies, as well as market transformation. In particular, the Board would like to recognize the creative

  20. STEAB Resolution 08-02

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DEPARTMENT OF ENERGY STATE ENERGY ADVISORY BOARD Resolution 08-02 Topic: U.S. Department of Energy, Cooperative Extension System and State Energy Offices collaboration on reinventing the "Rebuild America Program" Background: Record energy prices and a heavy reliance on fossil fuels are resulting in increased interest in energy efficiency and the utilization of renewable energy when heating, cooling and lighting American buildings. The adoption of new technologies, energy

  1. STEAB Resolution 09-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Advisory Board (STEAB) Resolution 09-01 Topic: Support for U.S. Congress Appropriation of Funding for Public Law 110-229, Sec 601, "Advanced Energy Technology Transfer Centers" Background: Securing America's energy future is among the most important challenges in today's current events. The U.S. Department of Energy's EERE Office; the U.S. Department of Agriculture's Research, Education and Economics Division; land-grant universities; and State Energy Offices (SEOs) are

  2. STEAB Resolution 10-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Department of Energy State Energy Advisory Board (STEAB) Resolution 10-01 Topic: U.S. Department of Energy, Cooperative Extension Service, and State Energy Offices Collaboration on energy efficiency and renewable energy education for America. Background: Record energy prices and a heavy reliance on foreign oil are resulting in increased interest in energy efficiency and the utilization of renewable energy. National and world efforts to set low-carbon emission standards are also

  3. STEAB Resolution 10-02

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy State Energy Advisory Board (STEAB) Resolution 10-02 Subject: Strategic Focus on the Need for a New EERE-Wide Implementation Paradigm through Partnerships and Collaboration Background: With the passage of the Recovery Act, the Department of Energy has undertaken enormous new management challenges as it implements both new and rapidly expanding energy programs designed to enhance US economic competitiveness, job creation, and national energy security. Innovation and

  4. STEAB Resolution 12-02

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Advisory Board (STEAB) Resolution 12-02 Subject: Recommendation to establish a State and Local Energy Efficiency Action Network (SEE Action) Sub-Committee comprised of the current STEAB Board members participating in the SEE Action Network in order to bring to the STEAB for consideration any recommendations for federal action made by the SEE Action Network convened by DOE and EPA. Background: The State and Local Energy Efficiency Action Network (SEE Action) is a state and local

  5. STEAB Resolution 13-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY STATE ENERGY ADVISORY BOARD (STEAB) Resolution13-01 SUBJECT Recommendation to establish sustainable partnerships between National Laboratories and states in order to facilitate the deployment of near-commercial ready and development of new technologies. BACKGROUND The United States industrial sector continues to face challenges from foreign competition in the development, deployment, and successful commercialization of new technologies. Technology development is not cheap

  6. Highest-Resolution Ribosome Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highest-Resolution Ribosome Structure Print The last step in converting the genetic information stored in DNA into the major functional parts of cells is protein biosynthesis. Protein synthesis occurs on the ribosome, a cellular factory found in all forms of life. In contrast to most cellular machines, the ribosome contains a functional core of RNA that is enhanced by ribosomal proteins and accessory factors. Two structures of the intact ribosome from the common bacterium Escherichia coli,

  7. Highest-Resolution Ribosome Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highest-Resolution Ribosome Structure Print The last step in converting the genetic information stored in DNA into the major functional parts of cells is protein biosynthesis. Protein synthesis occurs on the ribosome, a cellular factory found in all forms of life. In contrast to most cellular machines, the ribosome contains a functional core of RNA that is enhanced by ribosomal proteins and accessory factors. Two structures of the intact ribosome from the common bacterium Escherichia coli,

  8. High resolution time interval counter

    DOE Patents [OSTI]

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  9. High resolution time interval counter

    DOE Patents [OSTI]

    Condreva, Kenneth J. (Livermore, CA)

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  10. Range gated imaging experiments using gated intensifiers

    SciTech Connect (OSTI)

    McDonald, T.E. Jr.; Yates, G.J.; Cverna, F.H.; Gallegos, R.A.; Jaramillo, S.A.; Numkena, D.M.; Payton, J.; Pena-Abeyta, C.R.

    1999-03-01

    A variety of range gated imaging experiments using high-speed gated/shuttered proximity focused microchannel plate image intensifiers (MCPII) are reported. Range gated imaging experiments were conducted in water for detection of submerged mines in controlled turbidity tank test and in sea water for the Naval Coastal Sea Command/US Marine Corps. Field experiments have been conducted consisting of kilometer range imaging of resolution targets and military vehicles in atmosphere at Eglin Air Force Base for the US Air Force, and similar imaging experiments, but in smoke environment, at Redstone Arsenal for the US Army Aviation and Missile Command (AMCOM). Wavelength of the illuminating laser was 532 nm with pulse width ranging from 6 to 12 ns and comparable gate widths. These tests have shown depth resolution in the tens of centimeters range from time phasing reflected LADAR images with MCPII shutter opening.

  11. [S IV] IN THE NGC 5253 SUPERNEBULA: IONIZED GAS KINEMATICS AT HIGH RESOLUTION

    SciTech Connect (OSTI)

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.; Kruger, Andrew; Richter, Matt; Crosthwaite, Lucian P.

    2012-08-10

    The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5 {mu}m line of S{sup +3} at 3.8 km s{sup -1} spectral and 1.''4 spatial resolution, using the high-resolution spectrometer TEXES on the IRTF. The line profile cannot be fit well by a single Gaussian. The best simple fit describes the gas with two Gaussians, one near the galactic velocity with FWHM 33.6 km s{sup -1} and another of similar strength and FWHM 94 km s{sup -1} centered {approx}20 km s{sup -1} to the blue. This suggests a model for the supernebula in which gas flows toward us out of the molecular cloud, as in a 'blister' or 'champagne flow' or in the H II regions modelled by Zhu.

  12. Nanoscopic Manipulation and Imaging of Liquid Crystals

    SciTech Connect (OSTI)

    Rosenblatt, Charles S.

    2014-02-04

    This is the final project report. The projects goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  13. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 104 achieved routinely today to well above 105. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations in matter. Thesemoreexcitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.less

  14. Development of a TIM-based, flexible, broadband two-crystal spectromet...

    Office of Scientific and Technical Information (OSTI)

    Title: Development of a TIM-based, flexible, broadband two-crystal spectrometer Authors: Steel, A B ; Dunn, J ; Emig, J ; Beiersdorfer, P ; Brown, G V ; Shepherd, R ; Marley, E V ; ...

  15. Progress on the Design and Fabircation of the MICE SpectrometerSolenoids

    SciTech Connect (OSTI)

    Virostek, S.P.; Green, M.A.; Lia, D.; Sizman, M.S.

    2007-06-20

    The Muon Ionization Cooling Experiment (MICE) willdemonstrate ionization cooling in a short section of a realistic coolingchannel using a muon beam at Rutherford Appleton Laboratory (RAL) in theUK. A five-coil, superconducting spectrometer solenoid magnet at each endof the cooling channel will provide a 4 T uniform field region for thescintillating fiber tracker within the magnet bore tubes. The trackermodules are used to measure the muon beam emittance as it enters andexits the cooling channel. The cold mass for the 400 mm warm bore magnetconsists of two sections: a three-coil spectrometer magnet and a two-coilmatching section that matches the uniform field of the solenoid into theMICE cooling channel. The spectrometer solenoid detailed designandanalysis has been completed, and the fabrication of the magnets is wellunder way. The primary features of the spectrometer solenoid magnet andmechanical designs are presented along with a summary of key fabricationissues and photos of the construction.

  16. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  17. Heterodyne photomixer spectrometer with receiver photomixer driven at different frequency than source photomixer

    DOE Patents [OSTI]

    Wanke, Michael C; Fortier, Kevin; Shaner, Eric A; Barrick, Todd A

    2013-07-09

    A heterodyne photomixer spectrometer comprises a receiver photomixer that is driven at a different frequency than the source photomixer, thereby maintaining the coherent nature of the detection, eliminating etalon effects, and providing not only the amplitude but also the phase of the received signal. The heterodyne technique can be applied where the source and receiver elements are components of a waveguide thereby forming an on-chip heterodyne spectrometer.

  18. Cavity BPM System Tests for the ILC Energy Spectrometer (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Cavity BPM System Tests for the ILC Energy Spectrometer Citation Details In-Document Search Title: Cavity BPM System Tests for the ILC Energy Spectrometer Authors: Slater, M. ; /Cambridge U. ; Adolphsen, C. ; /SLAC ; Arnold, R. ; /SLAC ; Boogert, S. ; /Royal Holloway, U. of London ; Boorman, G. ; /Royal Holloway, U. of London ; Gournaris, F. ; /University Coll. London ; Hildreth, M. ; /Notre Dame U. ; Hlaing, C. ; /UC, Berkeley /LBL, Berkeley ; Jackson, F. ; /Daresbury ;

  19. Results from a Prototype Chicane-Based Energy Spectrometer for a Linear

    Office of Scientific and Technical Information (OSTI)

    Collider (Journal Article) | SciTech Connect Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider Citation Details In-Document Search Title: Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for

  20. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect (OSTI)

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  1. STEAB Resolution 06-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STATE ENERGY ADVISORY BOARD Resolution 06-01 ISSUE Movement of the Weatherization Assistance Program from the U.S. Department of Energy to the U.S. Department of Health and Human Services. BACKGROUND The Weatherization Assistance Program (WAP) is funded and managed through the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. The WAP was created in 1976 to assist low-income families who lacked resources to invest in energy efficiency. WAP is operated in all 50 states

  2. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; et al

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  3. Mapping photovoltaic performance with nanoscale resolution

    SciTech Connect (OSTI)

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (pcAFMs) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

  4. Image display device in digital TV

    DOE Patents [OSTI]

    Choi, Seung Jong (Seoul, KR)

    2006-07-18

    Disclosed is an image display device in a digital TV that is capable of carrying out the conversion into various kinds of resolution by using single bit map data in the digital TV. The image display device includes: a data processing part for executing bit map conversion, compression, restoration and format-conversion for text data; a memory for storing the bit map data obtained according to the bit map conversion and compression in the data processing part and image data inputted from an arbitrary receiving part, the receiving part receiving one of digital image data and analog image data; an image outputting part for reading the image data from the memory; and a display processing part for mixing the image data read from the image outputting part and the bit map data converted in format from the a data processing part. Therefore, the image display device according to the present invention can convert text data in such a manner as to correspond with various resolution, carry out the compression for bit map data, thereby reducing the memory space, and support text data of an HTML format, thereby providing the image with the text data of various shapes.

  5. Imaging alpha particle detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  6. Environmental Conflict Resolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Conflict Resolution Environmental Conflict Resolution ENVIRONMENTAL CONFLICT RESOLUTION In September 2012, the Council on Environmental Quality (CEQ) and the Office of Management and Budget (OMB) , issued a joint memorandum calling for department and agency commitment to the goals identified in the Memorandum on Environmental Collaboration and Conflict Resolution (ECCR), and the goals identified in related policy guidance. This memorandum supersedes an OMB/CEQ joint memorandum

  7. Cluster Analysis-Based Approaches for Geospatiotemporal Data...

    Office of Scientific and Technical Information (OSTI)

    surface phenology data (250 m2 Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectrometer (MODIS) in this study) for the...

  8. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical

  9. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical

  10. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical

  11. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their chemical elements and measure magnetic and other properties as well. Now a new method for creating optical

  12. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  13. Dipole Excitation With A Paul Ion Trap Mass Spectrometer

    SciTech Connect (OSTI)

    MacAskill, J. A.; Madzunkov, S. M.; Chutjian, A.

    2011-06-01

    Preliminary results are presented for the use of an auxiliary radiofrequency (rf) excitation voltage in combination with a high purity, high voltage rf generator to perform dipole excitation within a high precision Paul ion trap. These results show the effects of the excitation frequency over a continuous frequency range on the resultant mass spectra from the Paul trap with particular emphasis on ion ejection times, ion signal intensity, and peak shapes. Ion ejection times are found to decrease continuously with variations in dipole frequency about several resonant values and show remarkable symmetries. Signal intensities vary in a complex fashion with numerous resonant features and are driven to zero at specific frequency values. Observed intensity variations depict dipole excitations that target ions of all masses as well as individual masses. Substantial increases in mass resolution are obtained with resolving powers for nitrogen increasing from 114 to 325.

  14. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Zhou, Zhiquing (Carl) (Fremont, CA)

    1999-01-01

    A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.

  15. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.

    1999-02-16

    A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.

  16. New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00 Analytical tools that combine spatial resolution with elemental and chemical identification at the nanometer scale along with large penetration depth are indispensable for the life and physical sciences. The XM-1 soft x-ray microscope at the ALS produces images that not only reveal structures but can identify their

  17. Career Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Images /careers/_assets/images/careers-icon.jpg Career Images Explore a dimensional career at Los Alamos Lab: Take a look at who is working here and what they are doing to have a fulfilling career and balanced work/life. Career Options» Our Workplace» Employee, Retiree Resources» Career Stories» Career Images» Career Videos» Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Advanced wireless

  18. Transmission of digital images within the NTSC analog format

    DOE Patents [OSTI]

    Nickel, George H.

    2004-06-15

    HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.

  19. Laser image recording on detonation nanodiamond films

    SciTech Connect (OSTI)

    Mikheev, G M; Mikheev, K G; Mogileva, T N; Puzyr, A P; Bondar, V S

    2014-01-31

    A focused He Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm{sup -2}. Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp{sup 2} carbon. The feasibility of image recording on DND films by a focused He Ne laser beam is demonstrated. (letters)

  20. Gated monochromatic x-ray imager

    SciTech Connect (OSTI)

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  1. Ultrahigh resolution multicolor colocalization of single fluorescent probes

    DOE Patents [OSTI]

    Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.

    2005-01-18

    A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.

  2. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  3. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA); London, Richard A. (Oakland, CA); Seppala, Lynn G. (Livermore, CA)

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  4. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA); London, Richard A. (Oakland, CA); Seppala, Lynn G. (Livermore, CA)

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  5. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  6. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  7. Quantum states of neutrons in the gravitational and centrifugal potentials in a new GRANIT spectrometer

    ScienceCinema (OSTI)

    None

    2011-10-06

    We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.

  8. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~10% accuracy, and mean neutron energy to ~50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to 15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~25-40 km/s.

  9. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  10. In vivo spectral micro-imaging of tissue

    DOE Patents [OSTI]

    Demos, Stavros G; Urayama, Shiro; Lin, Bevin; Saroufeem, Ramez; Ghobrial, Moussa

    2012-11-27

    In vivo endoscopic methods an apparatuses for implementation of fluorescence and autofluorescence microscopy, with and without the use of exogenous agents, effectively (with resolution sufficient to image nuclei) visualize and categorize various abnormal tissue forms.

  11. High spatial resolution particle detectors

    DOE Patents [OSTI]

    Boatner, Lynn A.; Mihalczo, John T.

    2012-09-04

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  12. High spatial resolution particle detectors

    DOE Patents [OSTI]

    Boatner, Lynn A.; Mihalczo, John T.

    2015-10-13

    Disclosed below are representative embodiments of methods, apparatus, and systems for detecting particles, such as radiation or charged particles. One exemplary embodiment disclosed herein is particle detector comprising an optical fiber with a first end and second end opposite the first end. The optical fiber of this embodiment further comprises a doped region at the first end and a non-doped region adjacent to the doped region. The doped region of the optical fiber is configured to scintillate upon interaction with a target particle, thereby generating one or more photons that propagate through the optical fiber and to the second end. Embodiments of the disclosed technology can be used in a variety of applications, including associated particle imaging and cold neutron scattering.

  13. Mapping photovoltaic performance with nanoscale resolution (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Mapping photovoltaic performance with nanoscale resolution This content will become publicly available on October 16, 2016 Title: Mapping photovoltaic performance with nanoscale resolution Photo-conductive AFM spectroscopy ('pcAFMs') is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit

  14. ECAT: A New Computerized Tomographic Imaging System for Position-Emitting Radiopharmaceuticals

    DOE R&D Accomplishments [OSTI]

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Kuhl, D. E.

    1977-01-01

    The ECAT was designed and developed as a complete computerized positron radionuclide imaging system capable of providing high contrast, high resolution, quantitative images in 2 dimensional and tomographic formats. Flexibility, in its various image mode options, allows it to be used for a wide variety of imaging problems.

  15. Investigations of 2? decay measured by low background HPGe spectrometer OBELIX

    SciTech Connect (OSTI)

    Rukhadze, Ekaterina [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a Collaboration: OBELIX Collaboration; SuperNEMO Collaboration

    2013-12-30

    A low background high sensitive HPGe spectrometer OBELIX was installed at the Modane Underground Laboratory (LSM, France, 4800 m w.e.). The detector was designed to measure a contamination of enriched isotopes and radio-impurities in construction materials, to investigate rare nuclear processes such as resonance neutrinoless double electron capture and two-neutrino double beta decay to excited states of daughter nuclei. Spectrometer sensitivity, contamination of NEMO-3 sources and results of 2?2?{sup ?} decay of {sup 100}Mo to the 0{sup +} (1130 keV) and 2{sup +} (540 keV) excited states as well as future plans for OBELIX detector are given.

  16. Next-Generation Germanium Spectrometer Background Reduction Techniques at 2 MeV

    SciTech Connect (OSTI)

    Brodzinski, Ronald L.

    2005-04-01

    The Majorana project, a next-generation 76Ge neutrinoless double-beta decay experiment being undertaken by a large international collaboration, has the goal of measuring the neutrinoless double-beta decay rate by observing monochromatic events at 2039 keV in 500 kg of isotopically enriched 76Ge gamma-ray spectrometers. In order to achieve the desired sensitivity limit, the background in the 2037-2041 keV region must be reduced to <1 event per year in the entire germanium array. The effects of various background reduction techniques, and the combination thereof, to produce a huge 76Ge spectrometer array with virtually zero background are discussed.

  17. Development of a TIM-based, flexible, broadband two-crystal spectrometer

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Development of a TIM-based, flexible, broadband two-crystal spectrometer Citation Details In-Document Search Title: Development of a TIM-based, flexible, broadband two-crystal spectrometer Authors: Steel, A B ; Dunn, J ; Emig, J ; Beiersdorfer, P ; Brown, G V ; Shepherd, R ; Marley, E V ; Hoarty, D J Publication Date: 2014-05-30 OSTI Identifier: 1144759 Report Number(s): LLNL-CONF-655229 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource

  18. ImageJ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ImageJ ImageJ Description and Overview ImageJ is a public domain Java image processing program inspired by NIH Image. Fiji means Fiji is Just ImageJ, and stands for a customization...

  19. Afghanistan Pakistan High Resolution Wind Resource - Datasets...

    Open Energy Info (EERE)

    Pakistan High Resolution Wind Resource This shapefile containing 50 meter height data has been validated by NREL and wind energy meteorological consultants. However, the data is...

  20. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery News & Publications ESnet News Publications and Presentations Galleries Image Gallery Video Gallery ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Image Gallery See some of the science we support and the