National Library of Energy BETA

Sample records for resolution concentrating solar

  1. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  2. Concentrating Solar Power Projects | Concentrating Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities ...

  3. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  4. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  5. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  6. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  7. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  8. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  9. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Concentrating solar power (CSP) technologies use mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. A distinguishing feature of CSP is its ability to incorporate simple, efficient, and cost-effective thermal energy storage by virtue of converting sunlight to heat as an intermediate step to generating electricity. In addition to providing dispatchable

  10. Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarReserve's Crescent Dunes CSP Project, near Tonopah, Nevada, has an electricity generating capacity of 110 megawatts. (credit: SolarReserve) Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP) technologies. These technologies capture sunlight to produce heat that drives today's conventional thermoelectric generation systems or future advanced generation systems.

  11. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant built in the United States since 1999. Located in Boulder City, Nevada, about 40 miles southeast of Las Vegas, this parabolic trough system has been operating since June 2007. The US$260

  12. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  13. Baseload Concentrating Solar Power Generation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Baseload Concentrating Solar Power Generation Baseload Concentrating Solar Power Generation Baseload Concentrating Solar Power Generation In 2010, DOE ...

  14. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  15. NREL: Concentrating Solar Power Research - Southwest Concentrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of deployment, combined with research and development to reduce technology component costs, could help reduce concentrating solar power electricity costs to 0.07kilowatt-hour. ...

  16. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  17. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  18. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  19. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    Open Energy Info (EERE)

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  20. Concentrating Solar Power Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a generator to produce electricity. However, a new generation of power plants with concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar power systems are: linear concentrator, dish/engine, and power tower systems. Linear concentrator systems collect the sun's energy

  1. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  2. Concentrated Solar Thermoelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrated Solar Thermoelectric Power Concentrated Solar Thermoelectric Power This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, ...

  3. Photovoltaic solar concentrator

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  4. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  5. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  6. Concentrating Solar Power: Concentrating Optics for Lower Levelized...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs ...

  7. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced ...

  8. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Project Name In this section, you can select a concentrating solar power (CSP) project from the alphabetical listing of project names below. You can then review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Abhijeet Solar Project ACME Solar Tower Agua Prieta II Airlight Energy Ait-Baha Pilot Plant Alba Nova 1 Andasol-1 (AS-1) Andasol-2 (AS-2) Andasol-3 (AS-3)

  9. Publications | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develops publications-including technical reports, journal articles, and conference papers-about its research and development (R&D) activities in concentrating solar power (CSP). ...

  10. Concentrating Solar Power: Power Towers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the principles, applications, and benefits of generating electricity using power towers, a concentrating solar power (CSP) technology. A brief animation explains...

  11. Research | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research and development (R&D) capabilities in concentrating solar power (CSP) at the National Renewable Energy Laboratory (NREL) span the entire electricity system-from ...

  12. Facilities | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Renewable Energy Laboratory (NREL) provides industry, government, and university staff who are researching concentrating solar power (CSP) with access to ...

  13. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  14. Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  15. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  16. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  17. Concentrating Solar Power Projects - Xina Solar One | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Xina Solar One Abengoa has been selected by the Department of Energy (DOE) of South Africa to develop Xina Solar One, a 100 MW parabolic trough plant with a five-hour thermal energy storage system using molten salts. This project will form the largest solar complex in Africa together with Abengoa's plant KaXu Solar One that is currently under construction in the country. Xina Solar One was awarded to Abengoa in the third round of renewable energy projects organized by the

  18. Arontis Solar Concentrator AB | Open Energy Information

    Open Energy Info (EERE)

    Arontis Solar Concentrator AB Jump to: navigation, search Name: Arontis Solar Concentrator AB Place: Harnosand, Sweden Zip: SE-871 31 Product: Developer of a medium-concentrating,...

  19. Concentrating Solar Power - Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    What will the project do? Combined, the projects are estimated to create nearly 1,800 jobs and enough energy to power more than 100,000 homes. Today, Secretary Chu announced conditional commitments for approximately $2 billion in loan guarantees to two California concentrating solar power plants. The projects are estimated to create nearly 1,800 jobs and will utilize advanced technologies which can help drive down the cost of solar power. The two plants, the Mojave Solar Project in San

  20. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  1. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  6. Concentrating Solar Power Projects by Country | Concentrating Solar Power |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Country In this section, you can select a country from the map or the following list of countries. You can then select a specific concentrating solar power (CSP) project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Javascript must be enabled to view Flash movie Algeria Australia Canada Chile China Egypt France Germany India Israel Italy Kuwait Mexico Morocco

  7. Concentrating Solar Power Projects by Status | Concentrating Solar Power |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Status In this section, you can select concentrating solar power (CSP) projects under one of five categories: operational, under construction, under development, request for offer or currently non-operational. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Operational-projects with working power plants that are producing

  8. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Technology In this section, you can select a concentrating solar power (CSP) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Parabolic Trough Systems-line-focus systems that use curved mirrors to focus sunlight on a receiver Linear Fresnel Reflector Systems-line-focus systems that use

  9. NREL: Concentrating Solar Power Research - Staff Biographies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more about the expertise and technical skills of NREL's concentrating solar power ... Victor primarily works with the Concentrated Solar Power group but also works with several ...

  10. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  11. Concentrating Solar Power Commercial Application Study: Reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy ...

  12. National Laboratory Concentrating Solar Power Research | Department...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratory Concentrating Solar Power Research DOE supports concentrating solar power (CSP) research and development and core capabilities at its national laboratories ...

  13. Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs (CSP: COLLECTS) | Department of Energy Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) The Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) funding program aims to further accelerate progress toward

  14. Concentrating Solar Power (CSP) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power (CSP) Overview Mark S. Mehos CSP Program Manager National Renewable Energy Laboratory Golden, CO NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Outline * Technology Overview * U.S. and International Market Overview * DOE Research and Development National Renewable Energy Laboratory Innovation for Our Energy Future CSP, aka Solar Thermal Power Linear

  15. Concentrating Solar Power - Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar power (CSP) is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation's goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with

  16. Concentrating Solar Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar » Concentrating Solar Power Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto a single

  17. Concentrating Solar Power Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Concentrating Solar Power Facilities Florida Hawaii Southwest U.S.

  18. Concentrating Solar Power Fact Sheet

    SciTech Connect (OSTI)

    2015-12-01

    This fact sheet is an overview of the Concentrating Solar Power (CSP) subprogram at the U.S. Department of Energy SunShot Initiative. CSP is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation’s goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 10 gigawatts (GW) in various stages of operation or development. In the United States alone, nearly 2 GW of CSP are in operation.

  19. Development of concentrator solar cells

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  20. Concentration Solar la Mancha | Open Energy Information

    Open Energy Info (EERE)

    Solar la Mancha Jump to: navigation, search Name: Concentration Solar la Mancha Place: Manzanares (Cuidad Real), Spain Zip: 13200 Product: Maker of CPV systems and systems...

  1. Concentrating Solar Power (Fact Sheet), Electricity, Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optical concentrators. * NREL's High-Flux Solar Furnace consists of a tracking heliostat ... to determine if the materials meet the optical requirements of CSP solar field components. ...

  2. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. Field Characterization | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Renewable Energy Laboratory (NREL) also uses its high-flux solar furnace to test and evaluate concentrating solar power (CSP) components and investigate advanced ...

  4. TOPCAT Solar Cell Alignment & Energy Concentration Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Find More Like This Return to Search TOPCAT Solar Cell Alignment & Energy Concentration Technology Sandia National Laboratories Contact SNL About This ...

  5. Concentrating Solar Power Projects - Crescent Dunes Solar Energy Project |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Crescent Dunes Solar Energy Project This page provides information on Crescent Dunes Solar Energy Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: March 9, 2016 Project Overview Project Name: Crescent Dunes Solar Energy Project (Tonopah) Country: United States Location: Tonopah, Nevada (Northern Nevada, northwest of Tonopah) Owner(s): SolarReserve's Tonopah Solar

  6. Concentrating Solar Power Projects - Rice Solar Energy Project |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Rice Solar Energy Project This page provides information on Rice Solar Energy Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: January 30, 2013 Project Overview Project Name: Rice Solar Energy Project (RSEP) Country: United States Location: Rice, California (Mojave Desert, near Blythe) Owner(s): SolarReserve's Rice Solar Energy, LLC (100%) Technology: Power tower

  7. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  8. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bend, AZ | Department of Energy 83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona

  9. Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell

    Broader source: Energy.gov [DOE]

    EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

  10. 2006 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. December 6, 2006 CSP's Promise in Colorado Colorado's San Luis Valley picked as potential spot for concentrating solar power project. July 21, 2006 NREL Solar Researcher Honored with ASES Abbot Award The American Solar Energy Society (ASES) honored Dr. Chuck Kutscher with the Charles Greeley Abbot Award during the recent ASES SOLAR 2006 conference. April 1, 2006 Economic, Energy, and Environmental Benefits

  11. Solar Tracing Sensors for Maximum Solar Concentrator Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing SummaryConcentrating Solar Power (CSP) relies on thermodynamic processes to convert concentrated light into useful forms of energy. Accurate sun tracking ...

  12. 2009 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. October 21, 2009 Solar Technology Acceleration Center is Powering Up Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, to mark a milestone in "Powering Up" one of the world's largest solar test and demonstration facilities. Since announcing the initial launch of SolarTAC one year ago, the site infrastructure development has progressed to

  13. Concentrating Solar Power Projects - Palen Solar Electric Generating System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Concentrating Solar Power | NREL Palen Solar Electric Generating System This page provides information on the Palen Solar Power Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: April 4, 2013 Project Overview Project Name: Palen Solar Electric Generating System Country: United States Location: Desert Center, California Owner(s): BrightSource Energy (100%) Technology: Power tower Turbine Capacity:

  14. Advancing Concentrating Solar Power Technology, Performance, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatchability | Department of Energy Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to

  15. 2014 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. September 16, 2014 NREL Forges Foundation for Advanced Concentrating Solar Power Receivers NREL's Thermal Systems Group is performing research and development on components for high-temperature concentrating solar power (CSP) receivers as part of DOE's SunShot effort. DOE supports R&D of CSP technologies in order to achieve SunShot Initiative cost targets with systems that can supply solar power on

  16. Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2008-05-06

    This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

  17. Concentrating Solar Power Parabolic Trough Systems

    Broader source: Energy.gov [DOE]

    In this b-roll, the parabolic solar trough is just one of the several types of concentrating solar power technologies that focus the sun's heat using reflective surfaces to generate electricity.

  18. 2008 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. November 13, 2008 NREL and Private Industry Begin Nationwide Solar Measuring Network The U.S. Department of Energy's National Renewable Energy Laboratory and IBERDROLA RENEWABLES have jointly deployed the first of several solar resource measuring stations as part of a planned instrumentation network throughout the United States. September 19, 2008 DOE to Invest $35 Million in Concentrating Solar Power

  19. Concentrating Solar Power Projects - Power Tower Projects | Concentrating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power | NREL Power Tower Projects Aerial photo of a power tower system, showing numerous large, reflective mirrors in concentric circular rows. Tracking the sun, each mirror reflects onto the top of the tower at the center of the circle of mirrors. The receiver at the top of the tower is glowing. Stretched-membrane heliostats with silvered polymer reflectors surround the Solar Two power tower in Daggett, California. Credit: Sandia National Laboratories / PIX 00036 Concentrating solar

  20. 2012 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. November 30, 2012 NREL Analysis Calculates Value of Thermal Energy Storage for Concentrating Solar Power A new report by the National Renewable Energy Laboratory provides an analysis of concentrating solar power integrated with thermal energy storage, using simulations created by recognized, commercially available software. The analysis quantifies the incremental operational value of CSP with TES in multiple

  1. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Environmental Management (EM)

    Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American ...

  2. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce...

  3. SunShot Summit: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    This video on concentrating solar power was shown during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012, in Denver, Colorado.

  4. OpenEI Community - Concentrated Solar Power

    Open Energy Info (EERE)

    groupbig-clean-data" target"blank">read more

    Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  5. Concentrated Solar Power | OpenEI Community

    Open Energy Info (EERE)

    and Energy Efficiency. Links: Big Clean Data group on linkedin Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  6. NREL: Concentrating Solar Power Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your email address: Your message: Send Message Printable Version Concentrating Solar Power Research Home Projects Research Staff Working with Us Data & Resources Publications...

  7. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  8. NREL: Concentrating Solar Power Research - Research Expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Exploration of advanced components and technologies also provide a means for expanding ... Printable Version Concentrating Solar Power Research Home Projects Research Staff Working ...

  9. Data and Tools | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Tools The following data and tools with respect to concentrating solar power (CSP) include databases, maps, and tools produced almost exclusively by the National Renewable ...

  10. Research Staff | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Learn more about the expertise and technical skills of concentrating solar power (CSP) research team and staff at the National Renewable Energy laboratory (NREL) by ...

  11. SolTrace | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolTrace is a software tool developed at the National Renewable Energy Laboratory (NREL) to model concentrating solar power (CSP) systems and analyze their optical performance. ...

  12. NREL: Concentrating Solar Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar...

  13. Non-tracking solar concentrator with a high concentration ratio

    DOE Patents [OSTI]

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  14. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - ...

  15. Light shield for solar concentrators

    DOE Patents [OSTI]

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  16. Concentrating Solar Power Dish Systems

    Broader source: Energy.gov [DOE]

    In this b-roll, each solar dish in a CSP plant focuses the sun's heat toward a Stirling engine that converts the energy to electricity.

  17. Sandia Energy Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandia's Continuously Recirculating Falling-Particle Receiver Emplaced at Top of Solar Tower http:energy.sandia.govsandias-continuously-recirculating-falling-particle-r...

  18. 2013 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. November 5, 2013 Solar Working Group Releases Standard Contracts A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs and make it easier to access low-cost financing for residential and commercial solar power projects. October 24, 2013 NREL Researcher Honored with Hispanic STEM Award A national organization devoted to getting more

  19. 2007 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. December 7, 2007 Southwestern Energy Service Providers Work Together to Get Large-Scale Solar Project Built A multi-state consortium of southwestern energy service providers is issusing a Request for Proposal (RFP) for a utility-scale concentrating solar power plant. The plant would be owned by a third party, with consortium members each signing long-term purchase power agreements. The plant, with size,

  20. 2011 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. December 20, 2011 Thermal Energy Storage Included in California Power Purchase Agreements The value of thermal energy storage in concentrating solar power plants has become obvious?so much so that BrightSource Energy, Inc. and Southern California Edison have rewritten some power purchase agreements to include thermal energy storage in plans for three solar power tower plants. December 6, 2011 Thermal Energy

  1. Concentrating Solar Power Tower Technology

    Broader source: Energy.gov [DOE]

    In this b-roll, solar power towers' are systems that use an array of mirrors to focus the sun's energy on a tower-mounted heat exchanger to generate electricity.

  2. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L.; Pitts, John Roland; King, David E.; Hale, Mary Jane; Bingham, Carl E.; Lewandowski, Allan A.

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  3. Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Concentrating Solar Power The SunShot Initiative supports research and development of concentrating solar power (CSP) technologies that reduce the cost of solar energy. CSP helps to achieve the SunShot Initiative cost targets with systems that can supply solar power on demand, even when there is no sunlight, through the use of thermal storage. Since SunShot's inception, the levelized cost of electricity for CSP has decreased about 36 percent, from $0.21 cents per kilowatt hour to $0.13

  4. Low-Cost, Lightweight Solar Concentrator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Low-Cost, Lightweight Solar Concentrator This fact sheet describes a low-cost, lightweight solar conductor project awarded under the DOE's 2012 SunShot Concentrating ...

  5. Methods and systems for concentrated solar power

    DOE Patents [OSTI]

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  6. Concentrating Solar Power Projects - Solana Generating Station |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Solana Generating Station Abengoa Solar has built a 280-megawatt parabolic trough solar plant about 70 miles southwest of Phoenix, Arizona. The plant generates enough power to supply 70,000 homes under a 30-year power supply contract with Arizona Public Service (APS). The thermal energy storage system provides up to 6 hours of generating capacity after sunset. Status Date: August 19, 2015 Project Overview Project Name: Solana Generating Station (Solana)

  7. Potential applications of concentrated solar photons

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    In 1989, the National Research Council formed a committee, upon the request of the Department of Energy (DOE), to assess potential applications of concentrated solar photons beyond the production of electricity. The committee interpreted the term applications to be those of commercial value, that is, applications in which the use of concentrated solar photons leads to a new product or process, creating a new market; cost reduction for an existing product or process; improvement in a product or process; or provision of a technical service. The goal of this study was to determine whether special advantages might result when concentrated solar photons are the source of energy for photochemical, photoelectrochemical, and thermal processes. The study undertook to assess the state of the art of potential applications, such as war and waste treatment. Other possible applications of solar photons, such as materials processing and solar pumping of lasers, also were considered. This work describes these applications.

  8. NREL: Concentrating Solar Power Research - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Albuquerque, New Mexico, through SunLab-a partnership developed by the U.S. Department of Energy to administer its concentrating solar power R&D and analysis activities. ...

  9. Concentrating Solar Power Competitive Awards | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The SunShot Initiative supports the development of novel concentrating solar power (CSP) research and development projects that will reduce the levelized cost of energy to 0.06 ...

  10. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  11. NREL: Concentrating Solar Power Research - Particle Receiver...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Receiver Integrated with a Fluidized Bed-Novel Components to Overcome Existing Barriers Advancing concentrating solar power (CSP) systems to the target cost of 0.06 per...

  12. 2010 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... First Hybrid CSP-Coal Power Plant is Fired Up in Colorado Concentrating solar power (CSP) is boosting the energy produced by a coal-fired power plant east of Grand Junction, ...

  13. Concentrating Solar Power Services CSP Services | Open Energy...

    Open Energy Info (EERE)

    providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References: Concentrating Solar Power Services (CSP...

  14. Concentrating Solar Power Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Newsletter Concentrating Solar Power Newsletter The SunShot concentrating solar power (CSP) newsletter highlights the progress made by the SunShot CSP program and its partners over the past quarter. Update your subscriptions, modify your password or e-mail address, or stop subscriptions at any time on your subscriber preferences page. You will need to use your e-mail address to log in. Stay Updated Sign up for our e-newsletter. Submit your email address below. Subscribe

  15. NREL: Concentrating Solar Power Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for ...

  16. NREL: Concentrating Solar Power Research - Advanced Optical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Today, the solar collectors used in concentrating solar power systems account for approximately 50% of the total capital cost of power plants. The solar reflector costs for these ...

  17. SunShot Concentrating Solar Power Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Research and Development Motivation The current cost of concentrating solar power (CSP) without economic support is estimated to be approximately $0.21/kWh. Signifcant improvements across all four major CSP subsystems-solar felds, power plants, receivers, and thermal storage-are necessary to achieve the SunShot cost goal of $0.06/kWh. The 2012 SunShot CSP Research and Development (R&D) program addresses the technical barriers for solar felds, receivers, and power plants.

  18. Concentrating Solar Power Facilities and Solar Potential | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP Plant Type All Plants In Operation New in 2014 In Progress Tower and Heliostat ...

  19. Concentrating Solar Power Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team Concentrating Solar Power Team Avi Shultz avi-headshot-cropped.jpg Dr. Avi Shultz is the acting program manager for SunShot's Concentrating Solar Power (CSP) team. Dr. Shultz has been with SunShot since 2013, where he started as a policy fellow and was hired as a federal technology manager focusing on thermochemical energy storage, CSP systems and cost analysis, and non-electricity applications of solar thermal process heat. He led the drafting, review, and selection of awards for the

  20. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER (Technical...

    Office of Scientific and Technical Information (OSTI)

    THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER Citation Details In-Document Search Title: THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER You are accessing a ...

  1. Mapping suitability areas for concentrated solar power plants...

    Office of Scientific and Technical Information (OSTI)

    Mapping suitability areas for concentrated solar power plants using remote sensing data Title: Mapping suitability areas for concentrated solar power plants using remote sensing data ...

  2. Category:Concentrating Solar Power | Open Energy Information

    Open Energy Info (EERE)

    Category Edit History Category:Concentrating Solar Power Jump to: navigation, search This is the Concentrating Solar Power category. This category currently contains no pages or...

  3. Concentrating Solar Deployment System (CSDS) -- A New Model for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Deployment System (CSDS) - A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential Preprint N. Blair, M. Mehos, W. Short, and D....

  4. Community Response to Concentrating Solar Power in the San Luis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 Community Response to Concentrating Solar Power in the San Luis Valley October 9, ... 2010 Community Response to Concentrating Solar Power in the San Luis Valley October 9, ...

  5. Concentrating Solar Power Tower System Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, ...

  6. MAP: Concentrating Solar Power Across the United States | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to ... Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hoursmday) ...

  7. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals ...

  8. SunShot Podcast: Concentrating Solar Power Thermal Storage Part...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Thermal Storage Part II SunShot Podcast: Concentrating Solar Power Thermal Storage Part II This SunShot Initiative podcast features Ranga Pitchumani of ...

  9. SunShot Concentrating Solar Power Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research SunShot Concentrating Solar Power Research "This fact sheet summarizes DOE's SunShot Concentrating Solar Power Research and Development program. In 2012, the program's 21 ...

  10. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  11. SunShot Concentrating Solar Power Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (253.5 KB) More Documents & Publications SunShot Concentrating Solar Power Program SunShot Concentrating Solar Power Program 2014 SunShot Initiative ...

  12. Work with Us | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us The interaction of the National Renewable Energy Laboratory (NREL) with industrial, university, and government partners is the key to moving advanced concentrating solar power (CSP) technologies into the marketplace and the U.S. economy. We provide opportunities to use our facilities, develop technology partnerships, and license our technology. On the NREL campus, South Table Mountain (upper right) provides testing with the High-Flux Solar Furnace and the Outdoor Optical Efficiency

  13. 2015 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. November 19, 2015 NREL Estimates Economically Viable U.S. Renewable Generation Analysts at the Energy Department's National Renewable Energy Laboratory (NREL) are providing, for the first time, a method for measuring the economic potential of renewable energy across the United States. May 4, 2015 Report Targets Data on Avian Issues at Solar Energy Facilities Understanding how birds are affected by

  14. Potential Applications of Concentrated Solar Energy

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    A workshop was convened to assess the current state of the field, in a number of potential applications, and to discuss technologies for which concentrated solar energy might be utilized. The workshop was held at the facilities of the Solar Energy Institute. This proceeding is the record of that workshop containing all the summary papers submitted by the speakers as well as the rapporteur reports summarizing the presentations and the discussion. Papers were submitted in the following areas: water treatment, waste treatment, materials processing and synthesis, solar pumping of lasers, photochemical synthesis, fuel processing and thermochemical/photochemical cycles, and advanced research topics.

  15. Linear Concentrator System Basics for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to heat a traditional power cycle that spins a turbine that drives a generator to produce electricity.

  16. Resonance-shifting luminescent solar concentrators

    SciTech Connect (OSTI)

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  17. Alignment method for parabolic trough solar concentrators

    DOE Patents [OSTI]

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  18. Concentrating Solar Power Commercial Application Study

    SciTech Connect (OSTI)

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  19. Microtracking and Self-Adaptive Solar Concentration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microtracking and Self-Adaptive Solar Concentration Microtracking and Self-Adaptive Solar Concentration This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042313_giebink.pdf (2.44 MB) More Documents & Publications Scattering Solar Thermal Concentrators Scattering Solar Thermal Concentrators - FY12 Q4 Final Report - Prototype Development and Evaluation of Self-Cleaning

  20. Linear Concentrator Solar Power Plant Illustration

    Broader source: Energy.gov [DOE]

    This graphic illustrates linear concentrating solar power (CSP) collectors that capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by the sunlight and then used to create superheated steam that spins a turbine that drives a generator to produce electricity. Alternatively, steam can be generated directly in the solar field, eliminating the need for costly heat exchangers. In a parabolic trough system, the receiver tube is positioned along the focal line of each parabola-shaped reflector.

  1. Concentrating Solar Power: Best Practices Handbook for the Collection...

    Open Energy Info (EERE)

    Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar Power: Best...

  2. NREL: Concentrating Solar Power Research - Modeling and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL has the following capabilities, which include software development, for modeling and analyzing a variety of concentrating solar power technologies: Solar Resource Maps Optical ...

  3. World's Largest Concentrating Solar Power Plant Opens in California...

    Broader source: Energy.gov (indexed) [DOE]

    The Ivanpah Solar Electric Generating System, the world's largest concentrating solar power (CSP) plant, officially opened on February 13. As the first commercial deployment of ...

  4. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with ...

  5. Engineering and Techno-Economic Assessment | Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering and Techno-Economic Assessment The concentrating solar power (CSP) program at the National Renewable Energy Laboratory (NREL) measures and models the solar resource, ...

  6. World's Largest Concentrating Solar Power Plant Opens in California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah, the world's largest concentrating solar plant, opened in California on February 13.Credit: BrightSource Energy The Ivanpah Solar Electric Generating System, the world's largest concentrating solar power (CSP) plant, officially opened on February 13. As the first commercial deployment of

  7. Fact Sheet: Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Fact Sheet: Concentrating Solar Power Concentrating solar power (CSP) is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation's goal of making solar energy fully cost-competitive with other energy sources

  8. $60 Million to Fund Projects Advancing Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The

  9. Energy 101: Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. Text Version Below is the text version for the Energy 101: Concentrating Solar

  10. Material for a luminescent solar concentrator

    DOE Patents [OSTI]

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  11. Materials Science | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science National Renewable Energy Laboratory (NREL) researchers develop and support others in developing materials for use in concentrating solar power (CSP). These materials include higher-reflectivity mirrors, better thermal-absorbing receivers, and more corrosion-resistant materials. Researchers also test the durability of these materials. NREL researchers are working to under-stand the fundamental corrosion mechanisms of materials when exposed to high-temperature fluids. Learn more

  12. NREL: Concentrating Solar Power Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 24, 2015 NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar ...

  13. Concentrating Solar Resource of the Southwest United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Concentrating Solar Power The SunShot Initiative supports research and development of concentrating solar power (CSP) technologies that reduce the cost of solar energy. CSP helps to achieve the SunShot Initiative cost targets with systems that can supply solar power on demand, even when there is no sunlight, through the use of thermal storage. Since SunShot's inception, the levelized cost of electricity for CSP has decreased about 36 percent, from $0.21 cents per

  14. SunLab: Concentrating Solar Power Program Overview

    SciTech Connect (OSTI)

    1998-11-24

    DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

  15. Advancing State-of-the-Art Concentrating Solar Power Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing State-of-the-Art Concentrating Solar Power Systems Advancing State-of-the-Art Concentrating Solar Power Systems April 15, 2013 - 12:00am Addthis Brayton Energy's...

  16. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  17. Simulating the Value of Concentrating Solar Power with Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a ... DE-AC36-08GO28308 Simulating the Value of Concentrating Solar Power with Thermal Energy ...

  18. Low-Cost Light Weigh Thin Film Solar Concentrators | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    313ganapathi.pdf (6.65 MB) More Documents & Publications Low-Cost, Lightweight Solar Concentrators - FY13 Q1 Low-Cost, Lightweight Solar Concentrators FY13 Q2

  19. Project Profile: Low-Cost, Lightweight Solar Concentrators |...

    Energy Savers [EERE]

    Project Profile: Low-Cost, Lightweight Solar Concentrators JPL logo The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, ...

  20. Dish/Engine System Concentrating Solar Power Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DishEngine System Concentrating Solar Power Basics DishEngine System Concentrating Solar Power Basics August 20, 2013 - 5:02pm Addthis Illustration of a dishengine power plant. ...

  1. Sacramento Utility to Launch Concentrating Solar Power-Natural...

    Office of Environmental Management (EM)

    Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am ...

  2. Project Profile: Concentrated Solar Thermoelectric Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrated Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo -- This project is inactive -- The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity.

  3. 2014 Concentrating Solar Power Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Report 2014 Concentrating Solar Power Report Concentrating solar power (CSP) is a technology that harnesses the sun's energy potential and has the capacity to provide renewable energy to hundreds of thousands of customers in the United States. This report discusses how 2014 marks a significant milestone in the history of American solar energy-with five U.S. Department of Energy-funded CSP plants expected to be fully operational by the end of the year. 2014 Concentrating

  4. 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power Subprogram Overview 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview These slides correspond to a presentation given by SunShot Initiative Concentrating Solar Power Program Manager Dr. Ranga Pitchumani at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA. This presentation is an overview of the SunShot Initiative's concentrating solar power (CSP) research portfolio.

  5. Concentrating Solar Power Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Concentrating Solar Power Research and Development Concentrating Solar Power Research and Development In 2007, DOE issued the Concentrating Solar Power (CSP) Research and Development Funding Opportunity Announcement (FOA). The following projects were selected under this competitive solicitation: 3M: Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors Abengoa: Advanced Polymeric Reflector for CSP Applications Abengoa: Next-Generation

  6. Concentrating Photovoltaics at the Solar Technology Acceleration Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph shows concentrating photovoltaic (CPV) systems that use Fresnel lenses to concentrate sunlight onto solar cells. Researchers from the National Renewable Energy Laboratory and Japan...

  7. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  8. Improved Concentrating Solar Power Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Storage Energy Storage Find More Like This Return to Search Improved Concentrating Solar Power Systems National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Concentrating Solar Power (CSP) systems utilize solar energy to drive a thermal power cycle for the generation of electricity. CSP technologies include parabolic trough, linear Fresnel, central receiver or "power tower", and dish/engine systems.

  9. Energy Secretary Moniz Dedicates World's Largest Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Project | Department of Energy Dedicates World's Largest Concentrating Solar Power Project Energy Secretary Moniz Dedicates World's Largest Concentrating Solar Power Project February 13, 2014 - 5:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 Energy Secretary Ernest Moniz will participate today in the opening of the Ivanpah Solar Energy Generating System, the world's largest concentrating solar power (CSP) plant. As President Obama highlighted in his State of the Union address, the

  10. Project Profile: Scattering Solar Thermal Concentrators | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Scattering Solar Thermal Concentrators Project Profile: Scattering Solar Thermal Concentrators Pennsylvania State University logo -- This project is inactive -- Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough

  11. Concentrating Solar Power Thermal Storage System Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to

  12. NREL: Concentrating Solar Power Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar financial models developed and integrated into the System Advisor Model (SAM) software Grid penetration and life-cycle analysis studies The Solar-augment study of...

  13. Modular off-axis solar concentrator

    DOE Patents [OSTI]

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  14. Enclosed, off-axis solar concentrator

    DOE Patents [OSTI]

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  15. EERE Success Story—Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell

    Broader source: Energy.gov [DOE]

    EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

  16. DOE Offers $60 Million for Concentrating Solar Power Research | Department

    Office of Environmental Management (EM)

    of Energy 60 Million for Concentrating Solar Power Research DOE Offers $60 Million for Concentrating Solar Power Research April 30, 2008 - 1:02pm Addthis DOE announced on April 30 that it will provide up to $60 million for concentrating solar power (CSP) projects that focus on advanced thermal energy storage or heat transfer fluids. The DOE funding will go toward both new research and development projects and demonstrations of technologies already under development. DOE anticipates that 10

  17. Concentrating Solar Power Dish/Engine System Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The dishengine system is a concentrating solar power (CSP) technology that produces relatively small amounts of electricity compared to other CSP technologies-typically in the ...

  18. NREL: Concentrating Solar Power Research - Power Block R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power block research at NREL focuses on assessing the potential of advanced power cycles to integrate with concentrating solar power (CSP) systems. This research increases the ...

  19. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

  20. NREL: Concentrating Solar Power Research - Collector R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collector research at NREL focuses on developing and testing the next generation of concentrating solar power (CSP) collectors that reduce delivered electricity costs by 50%. ...

  1. NREL: Concentrating Solar Power Research - Collector R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal energy storage (TES) research at NREL focuses on reducing the costs of thermal storage and electricity from concentrating solar power (CSP) plants. NREL's TES effort ...

  2. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 September 16, 2014 NREL Forges Foundation for Advanced Concentrating Solar Power Receivers NREL's Thermal Systems Group is performing research and development on components for ...

  3. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 November 30, 2012 NREL Analysis Calculates Value of Thermal Energy Storage for Concentrating Solar Power A new report by the National Renewable Energy Laboratory provides an ...

  4. NREL: Concentrating Solar Power Research - 10-Megawatt Supercritical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing concentrating solar power (CSP) systems ... CSP plants are typically located in hot, dry climates where water is scarce. ... CSP goal of 50% net thermal-to-electric ...

  5. Low-Cost Light Weigh Thin Film Solar Concentrators

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  6. Drivers and Barriers in the Current Concentrated Solar Power...

    Open Energy Info (EERE)

    Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drivers and Barriers in the Current...

  7. NREL: Concentrating Solar Power Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Our Technology Your company can license any available patented concentrated solar power technology. For more information, see NREL's technologies available for...

  8. Concentrating On California Solar Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Today, Secretary Chu announced conditional commitments for approximately 2 billion in loan guarantees to two California concentrating solar power plants. The projects are ...

  9. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This fact sheet describes the current concentrating solar power projects working through the National Laboratory R&D program under the SunShot Initiative. cspnatllabrdfactshee...

  10. Potential Role of Concentrating Solar Power in Enabling High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States Paul Denholm, Maureen Hand, Trieu Mai, Robert Margolis, Greg Brinkman, Easan ...

  11. SunShot Concentrating Solar Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This poster, originally presented at the Concentrating Solar Power program review, summarizes the DOE SunShot Initiative's goals as well as the strategy for CSP funding opportunity ...

  12. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The SunShot National Laboratory Concentrating Solar Power Research and Development Fact Sheet provides a synopsis of the 12 projects funded to address the technical barriers toward ...

  13. Concentrating Solar Power: Advanced Projects Offering Low LCOE...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) Building upon the successful outcomes of the 2012 SunShot Concentrating Solar Power (CSP) Research & Development ...

  14. Sacramento Utility to Launch Concentrating Solar Power-Natural...

    Broader source: Energy.gov (indexed) [DOE]

    available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). ...

  15. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 December 20, 2011 Thermal Energy Storage Included in California Power Purchase Agreements The value of thermal energy storage in concentrating solar power plants has become ...

  16. Foaming of aluminium-silicon alloy using concentrated solar energy

    SciTech Connect (OSTI)

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.; Martinez, D.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mould design. (author)

  17. National Laboratory Concentrating Solar Power Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The SunShot National Laboratory Concentrating Solar Power Research and Development Fact Sheet provides a synopsis of the 12 projects funded to address the technical barriers toward achieving the technoeconomic targets of the SunShot Initiative. Significant cost and performance improvements across all major concentrating CSP subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the cost goal of producing solar energy for $0.06/kWh.

  18. Energy Department Announces New Concentrating Solar Power Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments to American Industry, Universities | Department of Energy Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver,

  19. SunShot Concentrating Solar Power Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Program $0.21 $0.03 $0.05 $0.04 $0.09 2010 Cost Reductions $0.07 Solar Field $0.02 Power Block $0.02 Receiver/Heat Transfer $0.04 Thermal Storage $0.01 $0.02 $0.02 6¢/kWh SunShot Target (2020) $0.01 SunShot Goal The DOE SunShot Initiative is a collaborative national endeavor to make solar energy cost-competitive with other forms of energy, without subsidies, by the end of the decade. Strategy for CSP FOAs Deconstructing $0.06 per kilowatt-hour

  20. Pueblo of Jemez - Concentrating Photovoltaics Solar Project

    Office of Environmental Management (EM)

    ... Project Benefits * Environmental Benefits: - A coal-fired power plant emits 2,249 lbs. of CO2 gas per MW hour. - The Jemez 3MW solar project would generate 3MW of renewable energy ...

  1. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  2. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  3. Thermal test procedure for a paraboloid concentrator solar cooker

    SciTech Connect (OSTI)

    Mullick, S.C.; Kandpal, T.C.; Kumar, S. )

    1991-01-01

    Suitable thermal tests have been identified for performance evaluation of a concentrating solar cooker. These tests provide parameters that characterize the performance of the solar cooker, and are more or less independent of the climatic variables. The overall heat loss factor is obtained from the cooling curve and the optical efficiency factor is determined from the heating curve - both under full load conditions. The performance characteristic curve for the solar cooker is obtained and discussed. The study indicates that the no load test, which is useful in the case of a box type solar cooker, is not appropriate in the case of concentrator type cookers.

  4. Solar energy collection, concentration, and thermal conversion; A review

    SciTech Connect (OSTI)

    Haddock, C.; McKee, J.S.C. )

    1991-01-01

    The efficiency with which solar energy can be converted into more useful forms is one of the most important parameters concerning its utilization as a viable alternate source of energy. High efficiencies can be obtained by utilizing higher temperature working fluids. This in turn implies concentrating the intensity of sunlight using focusing type collector systems is discussed. Potential applications of concentrated solar intensity are presented in this article. A description of a new and potentially highly efficient solar thermal to electric converter based on a solar sustained cesium plasma is presented. Photovoltaics are not discussed in any detail in this article.

  5. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Broader source: Energy.gov (indexed) [DOE]

    May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: ...

  6. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  7. A new trough solar concentrator and its performance analysis

    SciTech Connect (OSTI)

    Tao, Tao; Hongfei, Zheng; Kaiyan, He; Mayere, Abdulkarim

    2011-01-15

    The operation principle and design method of a new trough solar concentrator is presented in this paper. Some important design parameters about the concentrator are analyzed and optimized. Their magnitude ranges are given. Some characteristic parameters about the concentrator are compared with that of the conventional parabolic trough solar concentrator. The factors having influence on the performance of the unit are discussed. It is indicated through the analysis that the new trough solar concentrator can actualize reflection focusing for the sun light using multiple curved surface compound method. It also has the advantages of improving the work performance and environment of high-temperature solar absorber and enhancing the configuration intensity of the reflection surface. (author)

  8. Linear Concentrator System Basics for Concentrating Solar Power...

    Energy Savers [EERE]

    may be integrated with existing or new combined-cycle natural-gas- and coal-fired plants. ... Illustration of a linear concentrator power plant using parabolic trough collectors. ...

  9. Effects of angular confinement and concentration to realistic solar cells

    SciTech Connect (OSTI)

    Höhn, O. Kraus, T.; Bläsi, B.; Schwarz, U. T.

    2015-01-21

    In standard solar cells, light impinges under a very small angular range, whereas the solar cell emits light into the whole half space. Due to this expansion of etendué, entropy is generated, which limits the maximal efficiency of solar cells. This limit can be overcome by either increasing the angle of incidence by concentration or by decreasing the angle of emission by an angularly confining element or by a combination of both. In an ideal solar cell with radiative recombination as the only loss mechanism, angular confinement and concentration are thermodynamically equivalent. It is shown that concentration in a device, where non-radiative losses such as Shockley-Read-Hall and Auger recombination are considered, is not equivalent to angular confinement. As soon as non-radiative losses are considered, the gain in efficiency due to angular confinement drops significantly in contrast to the gain caused by concentration. With the help of detailed balance calculations, it is furthermore shown that angular confinement can help to increase the efficiency of solar cells under concentrated sunlight even if no measurable gain is expected for the solar cell under 1-sun-illumination. Our analysis predicts a relative gain of 3.14% relative in efficiency for a realistic solar cell with a concentration factor of 500.

  10. SolarPILOT Feature Requests and Collaboration | Concentrating Solar Power |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL SolarPILOT Feature Requests and Collaboration NREL works with the DOE to identify priority areas for continued SolarPILOT(tm) and SolTrace(tm) development. This work is rigorously reviewed and competitively awarded under the SunShot National Laboratory Multiyear Partnership (SuNLaMP) proposal development process, and the development work resulting from this process reflects the assessment by NREL and DOE of the CSP community's needs. If users are interested in working with NREL to

  11. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  12. Power Tower System Concentrating Solar Power Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver. In power tower concentrating solar power ...

  13. DOE to Invest $35 Million in Concentrating Solar Power Projects...

    Broader source: Energy.gov (indexed) [DOE]

    19 that it will invest up to 35 million over the next 4 years in 15 concentrating solar power (CSP) projects which, combined with the project cost-sharing from the project ...

  14. 2014 SunShot Initiative Concentrating Solar Power Subprogram...

    Broader source: Energy.gov (indexed) [DOE]

    These slides correspond to a presentation given by SunShot Initiative Concentrating Solar Power Program Manager Dr. Ranga Pitchumani at the 2014 SunShot Grand Challenge Summit and ...

  15. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  16. Concentrating Solar Power: Efficiently Leveraging Equilibrium...

    Office of Environmental Management (EM)

    the development of thermochemical energy storage (TCES) systems that can validate a cost ... Summary: This project seeks to design a system that concentrates sunlight onto a ...

  17. National Laboratory Concentrating Solar Power Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy This fact sheet describes the current concentrating solar power projects working through the National Laboratory R&D program under the SunShot Initiative. csp_natl_lab_rd_fact_sheet.pdf (199.47 KB) More Documents & Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated with Fludized Bed High-Temperature Falling-Particle Receiver

  18. Concentrating Solar Power Program Technology Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2001-04-01

    Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

  19. Project Profile: Novel Thermal Storage Technologies for Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation | Department of Energy Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh University, under the Thermal Storage FOA, is working to establish the technical feasibility of using phase change materials (PCM) at elevated temperatures and to acquire engineering results that will lead to the demonstration of large-scale thermal storage systems. Approach A

  20. SolTrace Publications | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The following publications are related to SolTrace. Jorgensen, G. (1991). "Comparison of Predicted Optical Performance with Measured Results for Dish Concentrators." National Renewable Energy Laboratory, Golden, CO. NREL/TP-257-4245. Wendelin, T. (2003). "SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics." Proceedings of the ISEC 2003: International Solar Energy Conference, 15-18 March 2003, Kohala Coast, Hawaii. New York: American Society of

  1. Concentrated Solar Power with Thermal Energy Storage Can Help Utilities'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bottom Line, Study Shows - News Releases | NREL Concentrated Solar Power with Thermal Energy Storage Can Help Utilities' Bottom Line, Study Shows December 20, 2012 The storage capacity of concentrating solar power (CSP) can add significant value to a utility company's optimal mix of energy sources, a new report by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) suggests. The report found that CSP with a six-hour storage capacity can lower peak net loads when the

  2. Ivanpah: World's Largest Concentrating Solar Power Plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ivanpah: World's Largest Concentrating Solar Power Plant Ivanpah: World's Largest Concentrating Solar Power Plant Addthis Aerial view, Ivanpah 1 of 5 Aerial view, Ivanpah An aerial view of the Ivanpah Solar Power Facility at sunrise, with left to right Tower 1, 2 and 3. Image: Gilles Mingasson/Getty Images for Bechtel Harnessing the Power of the Sun 2 of 5 Harnessing the Power of the Sun The top of Tower 1's is "lit" and sunlight reflected by mirrors floats in the air as a

  3. Celebrating the Completion of the World's Largest Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant | Department of Energy the Completion of the World's Largest Concentrating Solar Power Plant Celebrating the Completion of the World's Largest Concentrating Solar Power Plant February 13, 2014 - 9:21am Addthis Aerial view, Ivanpah 1 of 5 Aerial view, Ivanpah An aerial view of the Ivanpah Solar Power Facility at sunrise, with left to right Tower 1, 2 and 3. Image: Gilles Mingasson/Getty Images for Bechtel Harnessing the Power of the Sun 2 of 5 Harnessing the Power of the Sun The top of

  4. Low-Cost, Lightweight Solar Concentrators - FY13 Q1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications Low-Cost, Lightweight Solar Concentrators FY13 Q2 Low-Cost, Lightweight Solar Concentrator Low-Cost Light Weigh Thin Film Solar Concentrators

  5. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data Dan Getman, Anthony Lopez, Trieu Mai, and Mark Dyson National Renewable Energy Laboratory Technical Report NREL/TP-6A20-63148 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  6. Mapping suitability areas for concentrated solar power plants using remote sensing data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  7. Mapping suitability areas for concentrated solar power plants using remote sensing data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on amore » Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.« less

  8. Mapping Suitability Areas for Concentrated Solar Power Plants Using Remote Sensing Data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Singh, Nagendra; Bhaduri, Budhendra L

    2015-01-01

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. We present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  9. Solar concentrator with restricted exit angles

    DOE Patents [OSTI]

    Rabl, Arnulf; Winston, Roland

    1978-12-19

    A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.

  10. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    SciTech Connect (OSTI)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as the sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.

  11. SolTrace Background | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolTrace Background Since the late 1980s, a number of different optical design codes have been developed at NREL for designing and modeling solar concentrating systems. Each of these codes was written to model a very specific optical geometry, and each one built upon the others in an evolutionary way. Examples of such codes include: OPTDSH, a code written to model circular aperture parabolic dish concentrators; ODMF, a code based on OPTDSH that modeled multifaceted parabolic dish concentrators;

  12. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot's five subprogram areas, as well as a description of every active project in the SunShot's project portfolio as of May 2014. This section includes a letter from Program Manager Dr. Ranga Pitchumani providing an

  13. SunShot Concentrating Solar Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program SunShot Concentrating Solar Power Program This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program," was originally presented by Ranga Pitchumani at the 2013 Thermochemical Energy Storage Workshop on Jan. 8, 2013. The presentation provides and introduction to the current state of CSP systems, an overview of the DOE's SunShot program, and outlines the goals of the workshop. tces_workshop_2013_pitchumani.pdf (2.13 MB) More Documents & Publications 2014

  14. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    SciTech Connect (OSTI)

    Getman, Dan; Lopez, Anthony; Mai, Trieu; Dyson, Mark

    2015-09-01

    In this report, we introduce a methodology to achieve multiple levels of spatial resolution reduction of solar resource data, with minimal impact on data variability, for use in energy systems modeling. The selection of an appropriate clustering algorithm, parameter selection including cluster size, methods of temporal data segmentation, and methods of cluster evaluation are explored in the context of a repeatable process. In describing this process, we illustrate the steps in creating a reduced resolution, but still viable, dataset to support energy systems modeling, e.g. capacity expansion or production cost modeling. This process is demonstrated through the use of a solar resource dataset; however, the methods are applicable to other resource data represented through spatiotemporal grids, including wind data. In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel top-down approach to assess renewable resources within many other contexts that leverage variability in resource data but require reduction in spatial resolution to accommodate modeling or computing constraints.

  15. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  16. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  17. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  18. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect (OSTI)

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  19. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledynes liquid prism panel has no bulky and heavy supporting partsinstead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  20. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January 21st, 2016 Presenter: Scott Paap - Sandia National Laboratory DOE Host: Eric Miller - DOE Fuel Cell Technologies Office Question and Answer  Please type your questions into the question box 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary

  1. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  2. Software Tools for Analysis of Concentrated Solar Power Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-8053 Unlimited Release Printed December 2008 Software and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further

  3. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  4. GaAs quantum dot solar cell under concentrated radiation

    SciTech Connect (OSTI)

    Sablon, K.; Little, J. W.; Hier, H.; Li, Y.; Mitin, V.; Vagidov, N.; Sergeev, A.

    2015-08-17

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%–19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1–1.3 found from the V{sub OC}-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40–90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at ∼40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns.

  5. The DOE Solar Thermal Electric Program Concentrator Technology Project

    SciTech Connect (OSTI)

    Mancini, T.R.

    1991-01-01

    The project comprises the development of concentrating solar collectors, heliostats and dishes, and the development of optical materials. Because the solar concentrator represents from 40 to 60% of the cost of a solar thermal electric system, the continued development of high-performance concentrators is very important to the commercial viability of these systems. The project is currently testing two large area heliostats, the SPECO 200 m{sup 2} heliostat and the ATS 150 m{sup 2} heliostat and also trying to reduce the cost of the heliostats through the development of stretched-membrane heliostats. Stretched-membrane heliostats are made by attaching thin metal membranes to the two sides of a circular, metal ring. A slight vacuum in the plenum between the two membranes is used to focus the heliostat. The optical surface is provided by a silver-acrylic film, ECP 305. A prototype 100 m{sup 2} commercial unit has been built and is currently being tested. Parabolic dish concentrators are under development for use on dish-Stirling electric systems. The state-of-the-art dish is the McDAC/SCE faceted glass concentrator. Because of the success of stretched-membrane technology for heliostats, the project applied the technology to parabolic dish development and is currently designing a near-term, faceted, stretched-membrane dish. The current thrust of the program in optical materials development is the development of a low-cost, high-performance, silver-acrylic film. 3M's ECP 305 has demonstrated substantial improvement over previous films in its resistance to corrosion, longer life. An experimental film, developed at SERI, has promise for further improving the lifetime of the ECP 305. The project is currently investigating solutions to the problem of separation between the silver and acrylic layers of the film in the presence of water.

  6. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Short, W.; Heimiller, D.

    2006-04-01

    This paper presents the Concentrating Solar Deployment System Model (CSDS). CSDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. CSDS is designed to address the principal market and policy issues related to the penetration of concentrating solar power (CSP) electric-sector technologies. This paper discusses the current structure, capabilities, and assumptions of the model. Additionally, results are presented for the impact of continued research and development (R&D) spending, an extension to the investment tax credit (ITC), and use of a production tax credit (PTC). CSDS is an extension of the Wind Deployment System (WinDS) model created at the National Renewable Energy Laboratory (NREL). While WinDS examines issues related to wind, CSDS is an extension to analyze similar issues for CSP applications. Specifically, a detailed representation of parabolic trough systems with thermal storage has been developed within the existing structure.

  7. Inflatable concentrators for solar propulsion and dynamic space power

    SciTech Connect (OSTI)

    Grossman, G.; Williams, G. )

    1990-11-01

    This paper describes the development of an inflatable concentrator for solar propulsion, providing the source of heat to a hydrogen engine aboard the Solar Rocket. The latter is a device designed to carry payloads from a low earth orbit (LEO) to a geosynchronous orbit (GEO) at significant mass savings in comparison to chemical propulsion; it involves two light-weight parabolic reflectors in an off-axis configuration focusing solar radiation into the absorbers of the engine, which causes the emission of a hot hydrogen jet. Each of the reflectors has an elliptical rim with a 40 m major axis, providing heat to the propellant sufficient to produce about 40 lbs. of thrust. The same concentrator concept is contemplated for space power application to focus solar radiation on a conversion device, e.g., a photovoltaic array or the high temperature end of a dynamic engine. Under the present project, a one-fourth scale, 9X7 m off-axis inflatable concentrator has been under development as a pilot for the full-scale flight unit. The reflector component consists of a reflective membrane made of specially designed gores and a geometrically identical transparent canopy. The two form together an inflatable lenslike structure which, upon inflation, assumes the accurate paraboloidal shape. This inflatable structure is supported along its rim by a strong, bending-resistant torus. The paper describes the development of this system including the analysis leading to determination of the gore shapes, the reflector membrane design and testing, the analysis of the supporting torus, and a discussion of the effects of the space environment.

  8. NREL: Energy Analysis - Concentrating Solar Power Results - Life...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... technologies. Solar Fraction is the percentage of electricity produced only from solar energy Direct Normal Irradiance is the amount of solar energy per unit area incident upon ...

  9. NREL: Concentrating Solar Power Research - NREL Handbook Helps...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar industry on the ...

  10. Wind loading on solar concentrators: some general considerations

    SciTech Connect (OSTI)

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  11. Final Report- Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Awardee: Boston UniversityLocation: Boston, MASubprogram: Concentrating Solar PowerFunding Program: SunShot Concentrating Solar Power R&DProject: Prototype Development and Evaluation of Self...

  12. The Year of Concentrating Solar Power: Five New Plants to Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy June ...

  13. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  14. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  15. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  16. Webinar January 21: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  17. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  18. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  19. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  20. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect (OSTI)

    White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  1. High concentration low wattage solar arrays and their applications

    SciTech Connect (OSTI)

    Hoffmann, R.; OGallagher, J.; Winston, R.

    1997-02-01

    Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

  2. Concentrating Solar Power SunShot Research and Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SunShot Research and Development Concentrating Solar Power SunShot Research and Development Concentrating Solar Power SunShot Research and Development In June 2012, DOE announced the awardees of the Concentrating Solar Power (CSP) SunShot Research and Development (Program Fact Sheet) funding opportunity as follows (Summary of the projects and funding): 3M: Next-Generation Solar Collectors for CSP Argonne National Laboratory: Chemically Reactive Working Fluids Boston University:

  3. Summary of: Simulating the Value of Concentrating Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... wind and solar System Capacity (MW) Low RE Scenario High RE Scenario Wind Capacity (MW) 3,054 6,489 Wind Energy (GWh) 9,791 20,210 Solar Capacity (MW) 395 3,630 Solar Energy ...

  4. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Working Group Releases Standard Contracts A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs ...

  5. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  6. Free-formed insulated concentrating solar collector. Final report

    SciTech Connect (OSTI)

    Goodwin, G.

    1981-01-01

    A free-formed, insulated solar concentrating-collector was designed, built, and tested. The design utilizes new concepts to achieve simplicity, low cost, high efficiency, and long service life. Three concepts were utilized to meet these goals: First, the concentrating reflector is free-formed by hand from a thin steel sheet. Second, a transparent cover is placed over the concentrator and insulation is placed on the back and ends reduce heat losses and protect the reflecting surface from attack by rain and dust. Third, a highly-reflective aluminum film, protected by bonding between two thin sheets of uv stabilized polyester, is fastened to the steel substrate by peelable adhesive. The material cost of the unit without sun seeking electronics and drive motor is about $6.75 per square foot of sun capturing area. Sun following equipment adds to the cost, however, in units of about 100 square feet sun following equipment contributes about $2.00 per square foot. Labor costs are estimated to be approximately $3.00 per square foot for a $5.00 per hour labor rate for a trained crew. On a do-it-yourself basis a 100 square foot unit would cost about $875. Tests of the prototype collector performed by a certified solar test laboratory were made and the results compared with similar tests of a commercial unit. These tests indicate that the efficiency of the prototype is higher than the commercial unit at outlet temperatures below 160/sup 0/F and comparable with the commercial unit at the boiling point of water.

  7. Advancing State-of-the-Art Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    New solar receiver for CSP system leads to higher efficiency, increased durability, and reduced cost.

  8. NREL: Concentrating Solar Power Research - Report Targets Data...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Targets Data on Avian Issues at Solar Energy Facilities May 4, 2015 Understanding how birds are affected by utility-scale solar facilities is the focus of a new NREL report ...

  9. NREL: Concentrating Solar Power Research - Parabolic Trough Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar power Help reduce the cost of solar electricity. Parabolic trough technology currently has one thermal energy storage option-a two-tank, indirect, molten-salt system. ...

  10. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  11. SunShot Concentrating Solar Power Program Review 2013 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power Program Review 2013 SunShot Concentrating Solar Power Program Review 2013 April 23-25, 2013 The SunShot Concentrating Solar Power (CSP) Program Review 2013 served as a forum for awardees to exchange ideas with others in the CSP research and development portfolio. The event fostered collaborative and synergistic opportunities for awardees while engaging external stakeholders including industry, utilities, regulatory agencies, financiers, and other federal

  12. Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 4:58pm Addthis As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate

  13. Secretary Chu Announces up to $62 Million for Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy up to $62 Million for Concentrating Solar Power Research and Development Secretary Chu Announces up to $62 Million for Concentrating Solar Power Research and Development May 7, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu today announced the selections of projects for investment of up to $62 million over five years to research, develop, and demonstrate Concentrating Solar Power (CSP) systems capable of

  14. Secretary Chu Announces up to $62 Million for Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy Secretary Chu Announces up to $62 Million for Concentrating Solar Power Research and Development Secretary Chu Announces up to $62 Million for Concentrating Solar Power Research and Development May 7, 2010 - 4:44pm Addthis Washington, D.C.-U.S. Department of Energy Secretary Steven Chu today announced the selections of projects for investment of up to $62 million over five years to research, develop, and demonstrate Concentrating Solar Power

  15. Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CSP) Plants | Department of Energy Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_ma2.pdf (742.39 KB) More Documents & Publications CX-009561: Categorical Exclusion

  16. Top 10 Things You Didn't Know About Concentrating Solar Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concentrating Solar Power Top 10 Things You Didn't Know About Concentrating Solar Power October 31, 2013 - 12:03pm Addthis Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP Plant Type All Plants In Operation New in 2014 In Progress Tower and Heliostat Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hours/m²/day) 2500 4000 6000 8000 Map by Daniel Wood. Erin R. Pierce Erin R. Pierce Former Digital

  17. Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies.

  18. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

  20. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  1. Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California

    SciTech Connect (OSTI)

    Stoddard, L.; Abiecunas, J.; O'Connell, R.

    2006-04-01

    This study provides a summary assessment of concentrating solar power and its potential economic return, energy supply impact, and environmental benefits for the State of California.

  2. Energy 101: Concentrating Solar Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Check out the above video on CSP technologies. With exciting solar energy advances on the horizon, the Department of Energy is ramping up its CSP research, development, and ...

  3. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam is coming out of the generation system building. Power Plant Systems Parabolic Trough Data and Resources Industry Partners Solar Data Power Plant Data Models and Tools System ...

  4. Methods for Analyzing the Economic Value of Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value,...

  5. NREL: Concentrating Solar Power Research - Become Part of SOLRMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Become Part of SOLRMAP The National Renewable Energy Laboratory (NREL) is inviting additional participation in SOLRMAP-the Solar Resource and Meteorological Assessment Project. In...

  6. Advancing State-of-the-Art Concentrating Solar Power Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    turbines for higher efficiency, and reduced cost compared with baseline receivers and steam Rankine turbines. The Solar Energy Technologies Office (SETO) focuses on achieving...

  7. National Laboratory Concentrating Solar Power Research and Development

    Office of Environmental Management (EM)

    (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve ... Salt Systems for Next- Generation CSP Systems Principal Investigator: Dr. ...

  8. POSTPONED: Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST.

  9. PROJECT PROFILE: Concentrating Solar Power in a SunShot Future (SuNLaMP) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PROJECT PROFILE: Concentrating Solar Power in a SunShot Future (SuNLaMP) PROJECT PROFILE: Concentrating Solar Power in a SunShot Future (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $612,500 This project will investigate concentrating solar power (CSP) and its ability to increase the overall penetration of solar energy while lessening the variability impacts of

  10. SunShot Podcast: Concentrating Solar Power Thermal Storage Part II |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power Thermal Storage Part II SunShot Podcast: Concentrating Solar Power Thermal Storage Part II This SunShot Initiative podcast features Ranga Pitchumani of the U.S. Department of Energy Solar Program. In the second segment of a three-part series focused on thermal energy storage for concentrating solar power (CSP), this episode covers the most common storage system in use today and SunShot's role in advancing thermal energy storage technologies.

  11. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (DOE) | Department of Energy Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. 52478.pdf (333.32 KB) More Documents &

  12. NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell New design for ultra-efficient III-V multijunction cell pushes the limits of solar conversion December 16, 2014 The Energy Department's National Renewable Energy Laboratory has announced the demonstration of a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types

  13. DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Technologies | Department of Energy 60 Million for Advanced Concentrating Solar Power Technologies DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies April 30, 2008 - 11:31am Addthis WASHINGTON - U.S. Under Secretary of Energy Clarence "Bud" Albright today announced the issuance of the Solar Funding Opportunity Announcement (FOA) for up to $60 million in funding over five years (Fiscal Years 2008-2012), which includes $10 million in FY

  14. Accelerated aging of GaAs concentrator solar cells

    SciTech Connect (OSTI)

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  15. DOE Offers $52.5 Million for Concentrating Solar Power Research |

    Office of Environmental Management (EM)

    Department of Energy 52.5 Million for Concentrating Solar Power Research DOE Offers $52.5 Million for Concentrating Solar Power Research July 15, 2009 - 12:30pm Addthis DOE offered $52.5 million on July 15 for research, development, and demonstration of concentrating solar power (CSP) systems that provide low-cost electrical power both day and night. CSP technologies concentrate the sun's energy and capture that energy as heat, which then drives an engine or turbine to produce electrical

  16. Community Response to Concentrating Solar Power in the San Luis...

    Open Energy Info (EERE)

    Laboratory, University of Colorado Partner B.C. Farhar, L.M. Hunter, T.M. Kirkland, and K.J. Tierney Focus Area Solar Phase Bring the Right People Together, Evaluate Options, Get...

  17. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... plant in the world to use molten-salt as a heat transfer fluid and to store ... integrate a combined-cycle gas facility and a solar thermal power plant for electricity generation. ...

  18. SunShot Podcast: Concentrating Solar Power Thermal Storage

    Broader source: Energy.gov [DOE]

    This SunShot Initiative podcast features Ranga Pitchumani of the U.S. Department of Energy Solar Program. In the first segment of a three-part series focused on thermal energy storage for...

  19. Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light

    DOE Patents [OSTI]

    Lewandowski, Allan A.; Yampolskiy, Vladislav; Alekseev, Valerie; Son, Valentin

    2001-01-01

    According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

  20. DOE Announces up to $52.5 Million for Concentrating Solar Power Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Development | Department of Energy up to $52.5 Million for Concentrating Solar Power Research and Development DOE Announces up to $52.5 Million for Concentrating Solar Power Research and Development July 15, 2009 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today announced plans to provide up to $52.5 million to research, develop, and demonstrate Concentrating Solar Power systems capable of providing low-cost electrical power both day and night. Today's announcement

  1. DOE Provides $5.2 Million for Concentrating Solar Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Provides $5.2 Million for Concentrating Solar Power DOE Provides $5.2 Million for Concentrating Solar Power November 29, 2007 - 4:19pm Addthis DOE announced on November 29th that $5.2 million will be divided between 12 projects to fund the development of concentrating solar power (CSP) technologies. The 12 CSP projects are focused on lowering the cost of components and developing energy storage technologies. CSP systems capture the sun's heat and convert it into electricity, using

  2. The effects of concentrated ultraviolet light on high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Ruby, D.S.; Schubert, W.K.

    1991-01-01

    The importance of stability in the performance of solar cells is clearly recognized as fundamental. Some of the highest efficiency silicon solar cells demonstrated to date, such as the Point Contact solar cell and the Passivated Emitter solar cell, rely upon the passivation of cell surfaces in order to minimize recombination, which reduces cell power output. Recently, it has been shown that exposure to ultraviolet (UV) light of wavelengths present in the terrestrial solar spectrum can damage a passivating silicon-oxide interface and increase recombination. In this study, we compared the performance of Point Contact and Passivated Emitter solar cells after exposure to UV light. We also examined the effect of UV exposure on oxide-passivated silicon wafers. We found that current Passivated Emitter designs are stable at both one-sun and under concentrated sunlight. The evolution of Point Contact concentrator cell performance shows a clear trend towards more stable cells. 15 refs., 18 figs.

  3. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  4. City of Knoxville, Tennessee City Council Resolution for solar PV system

    Broader source: Energy.gov [DOE]

    This document is a scan of the resolution, dated July 26, 2011, for the approval of the City of Knoxville, Tennessee to use $250,000 of EECBG funding for finding innovative financing mechanisms for a planned installation of a 90-kW solar PV system.

  5. Method and apparatus for uniformly concentrating solar flux for photovoltaic applications

    DOE Patents [OSTI]

    Jorgensen, Gary J. (Pine, CO); Carasso, Meir (Lakewood, CO); Wendelin, Timothy J. (Golden, CO); Lewandowski, Allan A. (Evergreen, CO)

    1992-01-01

    A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

  6. Method and apparatus for uniformly concentrating solar flux for photovoltaic applications

    SciTech Connect (OSTI)

    Jorgensen, G.J.; Carasso, M.; Wendelin, T.J.; Lewandowski, A.A.

    1991-01-01

    This invention is comprised of a dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

  7. Solar concentrator with integrated tracking and light delivery system with collimation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  8. Solar concentrator with integrated tracking and light delivery system with summation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  9. Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

    2012-10-01

    This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

  10. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact Statement (PEIS) with the Department of Energy to assess the environmental, social, and economic impacts associated ... impacts of biofuels and concentrating ...

  11. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

  12. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  13. Material and Chemical Processing (Concentrated Solar) (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to detoxify hazardous wastes, to drive chemical reactions, and to treat materials for increased hardness and resistance to corrosion.

  14. Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities

    Broader source: Energy.gov [DOE]

    The SunShot Initiative's Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) funding opportunity announcement (FOA) seeks transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study , enabling CSP to become fully cost-competitive with traditional forms of electric power generation. Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance.

  15. SunShot Concentrating Solar Power Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Update SunShot Concentrating Solar Power Program Update This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program Update," was originally presented by Ranga Pitchumani at the Program Review Meeting on April 23, 2013 in Phoenix, AZ. The presentation an overview of the DOE's SunShot initiative, a review of ongoing solar programs, a discussion of FY13 funding opportunities, and an update on CSP deployment. csp_review_meeting_042313_pitchumani.pdf (2.75 MB)

  16. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  17. SolTrace Background | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download Current Official Release SolTrace Version 2012.7.9 is now available. The plug-in for Trimble SketchUp requires SketchUp Version 8 to be loaded on your computer. The current version of the plug-in is SolTrace 0.6. SolTrace and the plug-in are available for both Windows (XP and Windows 7 32-bit) and Mac (OS X 10.6). All fields are required. First Name: Last Name: Email Address: Organization: Planned Use of SolarTrace: Platform: Windows (XP and Windows 7 32-bit) Mac (OS X 10.6) Do you want

  18. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Broader source: Energy.gov [DOE]

    Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to develop, design, construct, and operate, and they require a much larger minimum effective scale—typically at least 50 MW, compared with PV systems that can be as small as a few kilowatts. In recent years, PV’s greater modularity and lower LCOE have made it more attractive to many solar project developers, and some large projects that were originally planned for CSP have switched to PV. However, the ability of CSP to use thermal energy storage—and thus provide continuous power for long periods when the sun is not shining—could give CSP a vital role in evolving electricity systems. Because CSP with storage can store energy when net demand is low and release that energy when demand is high, it increases the electricity system’s ability to balance supply and demand over multiple time scales. Such flexibility becomes increasingly important as more variable-generation renewable energy is added to the system. For example, one analysis suggests that, under a 40% renewable portfolio standard in California, CSP with storage could provide more than twice as much value to the electricity system as variable-generation PV. For this reason, enhanced thermal energy storage is a critical component of the SunShot Initiative’s 2020 CSP technology-improvement roadmap.

  19. Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings

    SciTech Connect (OSTI)

    Kenendy, C. E.

    2007-10-10

    The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

  20. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  1. Design and investigation of a novel concentrator used in solar fiber lamp

    SciTech Connect (OSTI)

    He, Kaiyan; Zheng, Hongfei; Taotao, Jing; Dai; Li, Zhengliang

    2009-11-15

    A novel concentrator used in solar fiber lamp has been designed and made. The method of the design has been introduced. The lamp has been tested under the real solar condition and the experiment curves have been given. The light transmission will be influenced by the structure of the lamp and the diameter of the fiber, which has been studied in this paper. The experimental results show that the brightness of this solar fiber lamp is about the brightness of a 6-W ordinary electrical energy-saving lamp. The computer simulation for the lamp has been presented and the improvement schemes are proposed. (author)

  2. Analysis of a four lamp flash system for calibrating multi-junction solar cells under concentrated light

    SciTech Connect (OSTI)

    Schachtner, Michael Prado, Marcelo Loyo; Reichmuth, S. Kasimir; Siefer, Gerald; Bett, Andreas W.

    2015-09-28

    It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.

  3. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  4. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  5. EERE Success Story-Advancing State-of-the-Art Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Advancing State-of-the-Art Concentrating Solar Power Systems EERE Success Story-Advancing State-of-the-Art Concentrating Solar Power Systems April 15, 2013 - 12:00am Addthis Brayton Energy's conceptual design for a large scale high temperature direct sCO2 receiver includes a novel use of quartz tubes to reduce radiant and convective losses and is projected to achieve greater than 90% efficiency. Brayton Energy's conceptual design for a large scale high

  6. Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage

    Broader source: Energy.gov [DOE]

    The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program supports the development of thermochemical energy storage (TCES) systems that can validate a cost of less than or equal to $15 per kilowatt-hour-thermal (kWht) and operate at temperatures greater than or equal to 650 degrees Celsius. TCES presents opportunities for storing the sun's energy at high densities in the form of chemical bonds for use in utility-scale concentrating solar power (CSP) electricity generation. The SunShot Initiative funds six awardees for $10 million total for ELEMENTS.

  7. Cycle Evaluations of Reversible Chemical Reactions for Solar Thermochemical Energy Storage in Support of Concentrating Solar Power Generation Systems

    SciTech Connect (OSTI)

    Krishnan, Shankar; Palo, Daniel R.; Wegeng, Robert S.

    2010-07-25

    The production and storage of thermochemical energy is a possible route to increase capacity factors and reduce the Levelized Cost of Electricity from concentrated solar power generation systems. In this paper, we present the results of cycle evaluations for various thermochemical cycles, including a well-documented ammonia closed-cycle along with open- and closed-cycle versions of hydrocarbon chemical reactions. Among the available reversible hydrocarbon chemical reactions, catalytic reforming-methanation cycles are considered; specifically, various methane-steam reforming cycles are compared to the ammonia cycle. In some cases, the production of an intermediate chemical, methanol, is also included with some benefit being realized. The best case, based on overall power generation efficiency and overall plant capacity factor, was found to be an open cycle including methane-steam reforming, using concentrated solar energy to increase the chemical energy content of the reacting stream, followed by combustion to generate heat for the heat engine.

  8. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  9. Low-Cost Heliostat for Modular Systems- Presentation from SunShot Concentrating Solar Power (CSP) Program Review 2013

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  10. Chemically Reactive Working Fluids for the Capture and Transport of Concentrated Solar Thermal Energy for Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  11. Department of Energy Finalizes Partial Guarantee for $852 Million Loan to Support California Concentrating Solar Power Plant

    Broader source: Energy.gov [DOE]

    Project Will Fund Over 800 Jobs and Increase Nation’s Currently Installed Concentrating Solar Power Capacity by an Estimated 50 Percent

  12. Energy Department Announces New University-Led Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    As part of the Energy Department’s SunShot Initiative, Secretary Steven Chu announced today new investments to advance innovative concentrating solar power (CSP) system technologies.

  13. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    SciTech Connect (OSTI)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  14. Solar energy concentrator design and operation. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered. (Contains 250 citations and includes a subject term index and title list.)

  15. Solar energy concentrator design and operation. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered. (Contains 250 citations and includes a subject term index and title list.)

  16. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect (OSTI)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  17. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  18. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  19. Luminescent solar concentrator development: Final subcontract report, 1 June 1982-31 December 1984

    SciTech Connect (OSTI)

    Friedman, P.S.; Parent, C.R.

    1987-04-01

    An investigation of luminescent solar concentrators (LSCs) was begun by the US Department of Energy (DOE) at Owens-Illinois, Inc., in 1978. Experimental and theoretical results of that investigation are summarized in this report. An assessment of the LSC technology was compiled to provide a concise description to guide future research in this field. Since 1978, tremendous progress was made in the development of this device as a practical nonimaging concentrator for achieving solar concentration ratios on the order of 10X. The two most important technical achievements appear to be first, the understanding that dye self-absorption of radiated energy is not as serious a problem as originally thought; and second, the demonstration that organic dyes in polymeric hosts are capable of surviving outdoors in bright sunlight for years without serious degradation. System efficiencies approaching 4% have been achieved for photovoltaic conversion and theoretical efficiencies on the order of 9% appear feasible for large-area devices.

  20. Method and apparatus for aligning a solar concentrator using two lasers

    DOE Patents [OSTI]

    Diver Jr., Richard Boyer

    2003-07-22

    A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.

  1. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  2. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect (OSTI)

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  3. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel

  4. Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506

    SciTech Connect (OSTI)

    Turchi, C.

    2014-09-01

    The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

  5. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    SciTech Connect (OSTI)

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  6. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  7. Aqueous propylene-glycol concentrations for the freeze protection of thermosyphon solar energy water heaters

    SciTech Connect (OSTI)

    Norton, B. ); Edmonds, J.E.J. )

    1991-01-01

    Using a validated dynamic simulation model, the thermal performance of an indirect thermosyphon solar energy water heater was examined. The heat transfer fluids employed were aqueous solutions of propylene glycol. The effect of varying the glycol concentration on the hot water output and efficacy of freeze protection was determined for a specific pattern of hot water withdrawal and weather for the temperature maritime climate of London, England. The heat output is compared with that of a drain-down direct system.

  8. Solar energy concentrator design and operation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-07-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  10. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect (OSTI)

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  11. Design of the support structure, drive pedestal, and controls for a solar concentrator

    SciTech Connect (OSTI)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. )

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  12. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  13. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  14. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  15. Heat exchanger for concentrating solar collectors and method for making the heat exchanger

    SciTech Connect (OSTI)

    Stultz, R.A.

    1983-08-09

    nment of the flow passages with the A heat exchanger assembly is disclosed for use with concentrating solar collectors of the type employing an elongated conduit for transporting a heat exchange fluid, the heat exchanger being positioned within an opening in the upper surface of the conduit and operating to transfer heat to the heat exchange fluid. The heat exchanger includes a plurality of stacked heat conducting heat exchanger plates having grooves oriented to form flow passage extending in the direction of fluid flow. The heat direction of heat exchange fluid flow. The grooved heat exchange plates may be fabricated by stamp from a sheet of heat conducting material to facilitate manufacturing of the heat exchanger. In another embodiment, the plates are positioned normal to the fluid flow direction with openings in the plates serving to form flow channels. The heat exchanger is usuable with collectors employing either photovoltaic cells or a solar radiation absorbing flat plate collector.

  16. Buffer layer between a planar optical concentrator and a solar cell

    SciTech Connect (OSTI)

    Solano, Manuel E.; Barber, Greg D.; Lakhtakia, Akhlesh; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  17. Report to Congress on Assessment of Potential Impact of Concentrating Solar Power for Electriicty Generation (EPACT 2005--Section 934(c))

    SciTech Connect (OSTI)

    Wilkins, F.

    2007-02-01

    Summary of DOE's assessment of issues regarding EPAct 2005, which requires the Secretary of Energy to assess conflicting guidance on the economic potential of concentrating solar power for electricity production.

  18. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  19. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  20. Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines

    SciTech Connect (OSTI)

    Smith, M.K.; Newell, T.A. )

    1991-01-01

    An hourly simulation program has been developed for detailed modelin of an evaporation surface (ES) and an evaporation pond (EP) for reconcentration of a solar pond's (SP's) surface brine. The results are relavant to other systems in which it is desirable to concentrate a brine. The simulation results are used in three ways: first, for general comparison of brine reconcentration performance for a variety of locations; second, development of an ES design method based on long term monthly averaged weather data; and third, an economic comparison between ESs and EPs. The results show that regions with moderate to high precipitation favor ESs over EPs. Dry climates will generally favor EPs for brine reconcentration.

  1. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  2. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    DOE Patents [OSTI]

    Angel, Roger P; Olbert, Blain H

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  3. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  4. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  5. Comparison of Theoretical Efficiencies of Multi-junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Kurtz, S.; Myers, D.; McMahon, W. E.; Geisz, J.; Steiner, M.

    2008-01-01

    Champion concentrator cell efficiencies have surpassed 40% and now many are asking whether the efficiencies will surpass 50%. Theoretical efficiencies of >60% are described for many approaches, but there is often confusion about the theoretical efficiency for a specific structure. The detailed balance approach to calculating theoretical efficiency gives an upper bound that can be independent of material parameters and device design. Other models predict efficiencies that are closer to those that have been achieved. Changing reference spectra and the choice of concentration further complicate comparison of theoretical efficiencies. This paper provides a side-by-side comparison of theoretical efficiencies of multi-junction solar cells calculated with the detailed balance approach and a common one-dimensional-transport model for different spectral and irradiance conditions. Also, historical experimental champion efficiencies are compared with the theoretical efficiencies.

  6. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect (OSTI)

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  7. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  8. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect (OSTI)

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  9. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    /no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  10. Synthesis and characterization of ferrite materials for thermochemical CO2 splitting using concentrated solar energy.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas; Rodriguez, Mark Andrew; Miller, James Edward; Evans, Lindsey R.; Livers, Stephanie

    2010-07-01

    The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

  11. Synthesis and characterization of metal oxide materials for thermochemical CO2 splitting using concentrated solar energy.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas; Rodriguez, Mark Andrew; Miller, James Edward; Evans, Lindsey R.; Livers, Stephanie

    2010-07-01

    The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

  12. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  13. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  14. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    SciTech Connect (OSTI)

    Garcia-Linares, Pablo Dominguez, César Voarino, Philippe Besson, Pierre Baudrit, Mathieu

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  15. DOE to Invest More than $5 Million for Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    This type of solar energy can be used immediately for generating power through a steam turbine or heat engine or it can be saved as thermal energy for later use. Storage of solar ...

  16. Energy Department Announces $1.2 Billion Loan Guarantee to Support California Concentrating Solar Power Plant

    Broader source: Energy.gov [DOE]

    Project Will Fund More Than 900 Jobs and Deploy Innovative Technologies Expected to Drive Down Cost of Solar

  17. Current flow and efficiencies of concentrator InGaP/GaAs/Ge solar cells at temperatures below 300K

    SciTech Connect (OSTI)

    Kalinovsky, Vitaly S. Kontrosh, Evgeny V. Dmitriev, Pavel A. Pokrovsky, Pavel V. Chekalin, Alexander V. Andreev, Viacheslav M.

    2014-09-26

    The forward dark current density voltage (J-V) characteristic is one of the most important characteristics of multi-junction solar cells. It indicates that the mechanisms of current flow in the space charge region of photoactive p-n junctions. If one is to idealize the optical and electrical (coupling) elements of the solar cells, it is the J-V characteristic that determines the theoretically possible efficiency of the solar cell. In this paper, using the connection between the dark J-V and photovoltaic (?-J{sub g}) efficiency generated current density characteristics, the effect of current transport mechanisms in the space charge on the efficiency of multi-junction solar cells was investigated in the temperature range of 300 80 K. In the experimental J-V and ?-J{sub g} curves of the multi-junction solar cells, segments corresponding to the dominant current transport mechanisms were identified. The developed method, based on the analysis of forward dark J-V characteristics, makes it possible to identify the parameters affecting the efficiency of the multi-junction solar cells in a wide range of temperatures and solar radiation concentration.

  18. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    SciTech Connect (OSTI)

    Murcray, F.; Stephen, T.; Kosters, J.

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  19. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect (OSTI)

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  20. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect (OSTI)

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  1. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect (OSTI)

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  2. HIGH-RESOLUTION LABORATORY SPECTRA ON THE λ131 CHANNEL OF THE AIA INSTRUMENT ON BOARD THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Träbert, Elmar; Beiersdorfer, Peter; Brickhouse, Nancy S.; Golub, Leon

    2014-03-01

    Extreme ultraviolet spectra of C, O, F, Ne, Si, S, Ar, Ca, Fe, and Ni have been excited in an electron beam ion trap and studied with much higher resolution than available on Solar Dynamics Observatory (SDO) in order to ascertain the spectral composition of the SDO observations. We presently show our findings in the wavelength range 124-134 Å, which encompasses the λ131 observation channel of the Atmospheric Imaging Assembly (AIA). While the general interpretation of the spectral composition of the λ131 Fe channel is being corroborated, a number of new lines have been observed that might help to improve the diagnostic value of the SDO/AIA data.

  3. The Year of Concentrating Solar Power: Five New Plants to Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Gilles Mingasson, Getty Images for Bechtel. The Ivanpah Solar Electric Generating System in Ivanpah Dry Lake, California. | Photo by Gilles Mingasson, Getty Images for Bechtel. ...

  4. EERE Success Story-Advancing State-of-the-Art Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New solar receiver for CSP system leads to higher efficiency, increased durability, and reduced cost. Locations New Hampshire Partners Brayton Energy EERE Investment 1.57 million ...

  5. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect (OSTI)

    Bhat, Sathyanarayana Rao, Asha; Krishnan, Sheeja; Sanjeev, Ganesh; Suresh, E. P.

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  6. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect (OSTI)

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  7. Midtemperature Solar Systems Test Facility Program for predicting thermal performance of line-focusing, concentrating solar collectors

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01

    The program at Sandia National Laboratories, Albuquerque, for predicting the performance of line-focusing solar collectors in industrial process heat applications is described. The qualifications of the laboratories selected to do the testing and the procedure for selecting commercial collectors for testing are given. The testing program is outlined. The computer program for performance predictions is described. An error estimate for the predictions and a sample of outputs from the program are included.

  8. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  9. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  10. Estimating the Performance and Economic Value of Multiple Concentrating Solar Power Technologies in a Production Cost Model

    SciTech Connect (OSTI)

    Jorgenson, Jennie; Denholm, Paul; Mehos, Mark; Turchi, Craig

    2013-12-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that the solar thermal energy can be dispatched similarly to conventional thermal generation. However, CSP-TES plants are energy-limited, meaning that their response might be restricted by solar availability. Therefore, the use of this limited solar energy must be optimally scheduled toprovide the greatest value to the system. The timing of CSP-TES dispatch depends on a variety of factors, including electricity demand patterns, the penetration of variable generation sources, and the configuration of the CSP-TES plant itself. We use an established CSP-TES modeling framework in a commercially available production cost model to compare the dispatch and value of two CSP-TEStechnologies (molten salt towers and parabolic troughs) in a Colorado test system. In addition, we consider a range of configuration parameters, such as the solar multiple and thermal energy storage limit, to evaluate how the operational and capacity value varies with plant configuration.

  11. SunShot Podcast: Concentrating Solar Power Thermal Storage Part III

    Broader source: Energy.gov [DOE]

    This SunShot Initiative podcast features Ranga Pitchumani of the U.S. Department of Energy Solar Program. In the final segment of a three-part series focused on thermal energy storage for...

  12. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  13. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  14. Concentration solar power optimization system and method of using the same

    DOE Patents [OSTI]

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  15. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; Garca, Ivn

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  16. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 20,000 megawatts (MW) in various stages of development in 20 countries. 1 In the United States alone, more than 500 MW of CSP are currently in operation, with another 1,300 MW under construction and approximately 7,500 MW

  17. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  18. Final Report-- A Novel Storage Method for Concentrating Solar Power Plants Allowing Storage at High Temperature

    SciTech Connect (OSTI)

    Morris, Jeffrey F.

    2014-09-29

    The main objective of the proposed work was the development and testing of a storage method that has the potential to fundamentally change the solar thermal industry. The development of a mathematical model that describes the phenomena involved in the heat storage and recovery was also a main objective of this work. Therefore, the goal was to prepare a design package allowing reliable scale-up and optimization of design.

  19. Improved Ga grading of sequentially produced Cu(In,Ga)Se{sub 2} solar cells studied by high resolution X-ray fluorescence

    SciTech Connect (OSTI)

    Schöppe, Philipp; Schnohr, Claudia S.; Oertel, Michael; Kusch, Alexander; Johannes, Andreas; Eckner, Stefanie; Reislöhner, Udo; Ronning, Carsten; Burghammer, Manfred; Martínez-Criado, Gema

    2015-01-05

    There is particular interest to investigate compositional inhomogeneity of Cu(In,Ga)Se{sub 2} solar cell absorbers. We introduce an approach in which focused ion beam prepared thin lamellas of complete solar cell devices are scanned with a highly focused synchrotron X-ray beam. Analyzing the resulting fluorescence radiation ensures high resolution compositional analysis combined with high spatial resolution. Thus, we are able to detect subtle variations of the Ga/(Ga + In) ratio down to 0.01 on a submicrometer scale. We observed that for sequentially processed solar cells a higher selenization temperature leads to absorbers with almost homogenous Ga/(Ga + In) ratio, which significantly improved the conversion efficiency.

  20. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to

  1. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with

  2. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  3. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect (OSTI)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  4. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  5. Performance and cost benefits associated with nonimaging secondary concentrators used in point-focus dish solar thermal applications

    SciTech Connect (OSTI)

    O'Gallagher, J.; Winston, R.

    1987-09-01

    Using nonimaging secondary concentrators in point-focus applications may permit the development of more cost-effective concentrator systems by either improving performance or reducing costs. Secondaries may also increase design flexibility. The major objective of this study was to develop as complete an understanding as possible of the quantitative performance and cost effects associated with deploying nonimaging secondary concentrators at the focal zone of point-focus solar thermal concentrators. A performance model was developed that uses a Monte Carlo ray-trace procedure to determine the focal plane distribution of a paraboloidal primary as a function of optical parameters. It then calculates the corresponding optimized concentration and thermal efficiency as a function of temperature with and without the secondary. To examine the potential cost benefits associated with secondaries, a preliminary model for the rational optimization of performance versus cost trade-offs was developed. This model suggests a possible 10% to 20% reduction in the cost of delivered energy when secondaries are used. This is a lower limit, and the benefits may even be greater if using a secondary permits the development of inexpensive primary technologies for which the performance would not otherwise be viable. 20 refs., 15 figs., 3 tabs.

  6. CIRCE2/DEKGEN2: A software package for facilitated optical analysis of 3-D distributed solar energy concentrators

    SciTech Connect (OSTI)

    Romero, V.J.

    1991-01-01

    CIRCE2 is a cone-optics computer code for determining the flux distribution and total incident power upon a receiver, given concentrator and receiver geometries, sunshape (angular distribution of incident rays from the sun-disk), and concentrator imperfections such as surface roughness and random deviation in slope. Statistical methods are used to evaluate the directional distribution of reflected rays from any given point on the concentrator, whence the contribution to any point on the target can be obtained. DEKGEN2 is an interactive preprocessor which facilitates specification of geometry, sun models, and error distributions. The CIRCE2/DEKGEN2 package equips solar energy engineers with a quick, user-friendly design and analysis tool for study/optimization of dish-type distributed receiver systems. The package exhibits convenient features for analysis of conventional'' concentrators, and has the generality required to investigate features are the ability to model dish or faceted concentrators and stretched-membrane reflectors, and to analyze 3-D flux distributions on internal or external receivers with 3-D geometries. Facets of rectangular, triangular, or circular projected shape, with profiles of parabolic, spherical, flat, or custom curvature can be handled. Provisions for shading, blocking, and aperture specification are also included. This paper outlines the features and capabilities of the new package, as well as the theory and numerical models employed in CIRCE2. 20 refs.

  7. High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle

    SciTech Connect (OSTI)

    Collares-Pereira, M. ); Gordon, J.M. ); Rabl, A. ); Winston, R. )

    1991-01-01

    A new two-stage optical design is proposed for parabolic trough solar collectors with tubular absorbers. It can boost the concentration ratio by a factor of 2.5 relative to the conventional design, while maintaining the large rim angles (i.e., low nominal f-numbers) that are desirable for practical and economical reasons. The second state involves asymmetric nonimaging concentrators of the CPC type, facing segments of the parabolic first stage. The second stage can be accommodated inside an evacuated receiver, allowing the use of first-surface silvered reflectors. The low heat loss of this design opens the possibility of producing steam at temperatures and pressures of conventional power plants, using only one-axis tracking. The improvement in conversion efficiency would be substantial.

  8. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  9. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  10. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  11. Mohave Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Plant Jump to: navigation, search Name Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under...

  12. Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Logo: Solar Systems Name: Solar Systems Address: 45 Grosvenor Street Place: Abbotsford, Australia Sector: Solar Product: Solar concentrators Phone Number: +61 3 9413 8000 Website:...

  13. Genesis Solar | Open Energy Information

    Open Energy Info (EERE)

    Genesis Solar Facility Genesis Solar Sector Solar Facility Type Concentrating solar power Facility Status Under Construction Owner NextEra Developer NextEra Location Blythe,...

  14. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  15. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  16. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  17. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  18. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  19. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect (OSTI)

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  20. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was

  1. Solar interior and atmosphere

    SciTech Connect (OSTI)

    Cox, A.N.; Livingston, W.C.; Matthews, M.S. National Solar Observatory, Tucson, AZ )

    1991-01-01

    The present work discusses nuclear energy generation in the solar interior, solar neutrino experiments, solar premain-sequence evolution, the computation of standard solar models, radiative-zone mixing, solar element separation by atomic diffusion, the observation and theory of solar oscillations, the solar internal rotation and magnetism implications of oscillations, solar gravity modes, and solar oscillation-mode excitation. Also discussed are the solar spectrum, the role of the solar photosphere and a radiative boundary, high spatial-resolution techniques for solar study, high-resolution observations of the solar granulation, large-scale velocity fields, the solar activity cycle, the magnetic fields of active regions and sunspots, the physics of flux tubes and filigrees, the heating of the solar chromosphere, the fine structure of the solar transition region, coronal activity, the coronal origins of the solar winds, and postmain sequence solar evolution.

  2. High 400?C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect (OSTI)

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?C. Even at 400?C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  3. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells using AFM-Based Electrical Techniques with Nanometer Resolution

    SciTech Connect (OSTI)

    Jiang, C. S.; Heath, J. T.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.

    2011-01-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  4. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  5. Thermal-mechanical stability of single crystal oxide refractive concentrators for high-temperature solar thermal propulsion

    SciTech Connect (OSTI)

    Zhu, D.; Jacobson, S.; Miller, R.A.

    1999-07-01

    Single crystal oxides such as yttria-stabilized zirconia (Y{sub 2}O{sub 3}-ZrO{sub 2}), yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG), magnesium oxide (MgO) and sapphire (Al{sub 2}O{sub 3}) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO{sub 2} laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  6. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  7. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  8. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Penn State project, funded by SunShot, for the second quarter of fiscal year 2013.

  9. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this MIT project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  10. concentrating solar power plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  11. HIGH-RESOLUTION LABORATORY SPECTRA OF THE λ193 CHANNEL OF THE ATMOSPHERIC IMAGING ASSEMBLY INSTRUMENT ON BOARD SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Träbert, Elmar; Beiersdorfer, Peter; Brickhouse, Nancy S.; Golub, Leon

    2014-11-01

    Extreme ultraviolet spectra of C, O, F, Ne, S, Ar, Fe, and Ni have been excited in an electron beam ion trap and studied with much higher resolution than available on the Solar Dynamics Observatory (SDO) in order to ascertain the spectral composition of the SDO/Atmospheric Imaging Assembly (AIA) observations. We present our findings in the wavelength range 182-200 Å, which, overall, corroborate the working models of how to interpret the SDO/AIA data. We find, however, that the inclusion of a number of additional lines might improve the data interpretation.

  12. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  13. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  14. Tonopah Airport Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar...

  15. RawSolar | Open Energy Information

    Open Energy Info (EERE)

    RawSolar Jump to: navigation, search Name: RawSolar Place: Berkeley, California Sector: Solar Product: California-based startup aiming to commercialise concentrating solar thermal...

  16. Acro Solar Lasers | Open Energy Information

    Open Energy Info (EERE)

    Acro Solar Lasers Place: El Paso, Texas Zip: 79936 Sector: Solar Product: Makes solar water heating devices based on parabolic dish concentrators. References: Acro Solar...

  17. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    SciTech Connect (OSTI)

    Huenemoerder, David P.; Phillips, Kenneth J. H.; Sylwester, Janusz; Sylwester, Barbara E-mail: kennethjhphillips@yahoo.com E-mail: bs@cbk.pan.wroc.pl

    2013-05-10

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first ionization

  18. Amargosa Farm Road Solar Energy Project Solar Power Plant | Open...

    Open Energy Info (EERE)

    Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC, MAN Ferrostaal Inc Location Nye County, Nevada Coordinates 38.5807111, -116.0413889...

  19. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the

  20. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  1. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  2. Line-Focus Solar Collector

    Broader source: Energy.gov [DOE]

    Solar thermal electric technologies, such as this concentrating solar power parabolic trough, use highly reflective materials to capture the sun's energy and produce electricity. Shown is solar...

  3. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  4. Energy Secretary Moniz Dedicates World's Largest Concentrating...

    Energy Savers [EERE]

    Ivanpah Solar Energy Generating System, the world's largest concentrating solar power (CSP) plant. ... to finance the first solar thermal storage project and the first power tower ...

  5. Solar Power Basics

    Broader source: Energy.gov [DOE]

    This video summarizes the process of generating solar electricity from photovoltaic and concentrating solar power technologies. Research, manufacturing, and usage across the United States is also...

  6. Solar Two Tower System

    Broader source: Energy.gov [DOE]

    In this photograph of a concentrating solar power (CSP) technology, stretched membrane heliostats with silvered polymer reflectors will be used as demonstration units at the Solar Two central...

  7. Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

    2000-01-01

    Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

  8. Copper Mountain Solar Farm

    Broader source: Energy.gov [DOE]

    This b-roll shows a large-scale solar farm in Nevada that generates renewable solar energy using parabolic troughs, a form of concentrating solar power (CSP) technology, and photovoltaic technology.

  9. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  10. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    SciTech Connect (OSTI)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the cost and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.

  11. SJ Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SJ Solar Place: San Jose, California Zip: 95131 Sector: Solar Product: Cell design firm for concentrated solar References: SJ Solar1 This article is a stub. You...

  12. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-10-11

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J{sub P}) and valley current (J{sub V}) densities should be greater than the short-circuit current density (J{sub sc}) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J{sub P}) and valley current density (J{sub V}) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios.

  13. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka; Mulder, Peter; Schermer, John

    2014-09-15

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  14. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  15. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  16. Category:Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search This is the Solar category. Subcategories This category has the following 2 subcategories, out of 2 total. C Concentrating Solar Power P...

  17. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar Potential Strategies for Integrating Solar Hydrogen Production and ...

  18. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  19. Rolling Thunder -- Integration of the Solo 161 Stirling engine with the CPG-460 solar concentrator at Ft. Huachuca

    SciTech Connect (OSTI)

    Diver, R.B.; Moss, T.A.; Goldberg, V.; Thomas, G.; Beaudet, A.

    1998-09-01

    Project Rolling Thunder is a dish/Stirling demonstration project at Ft. Huachuca, a US Army fort in southeastern Arizona (Huachuca means rolling thunder in Apache). It has been supported by the Strategic Environmental Research and Development Program (SERDP), a cooperative program between the Department of Defense (DoD) and the Department of Energy (DOE). As part of a 1992 SERDP project, Cummins Power Generation, Inc. (CPG) installed a CPG 7 kW(c) dish/Stirling system at the Joint Interoperability Test Command (JITC) in Ft. Huachuca, Arizona. The primary objective of the SERDP Dish/Stirling for DoD Applications project was to demonstrate a CPG 7-kW(c) dish/Stirling system at a military facility. Unfortunately, Cummins Engine Company decided to divest its solar operations. As a direct result of Ft. Huachuca`s interest in the Cummins dish/Stirling technology, Sandia explored the possibility of installing a SOLO 161 Stirling power conversion unit (PCU) on the Ft. Huachuca CPG-460. In January 1997, a decision was made to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Project Rolling Thunder. The SOLO 161 Demonstration at Ft. Huachuca has been a challenge. Although, the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 has required significant attention. In this paper, the integration issues and technical approaches of project Rolling Thunder are presented. Lessons of the project are also discussed.

  20. Millennium Electric TOU Ltd aka Millennium Solar EIG Solar |...

    Open Energy Info (EERE)

    Sector: Efficiency, Solar Product: Israeli manufacturer of PV modules, incorporating solar concentrators to increase cell efficiency. References: Millennium Electric TOU Ltd...

  1. Solar Multimedia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multimedia Solar Multimedia <a target="_self" href="/node/1758401">Solar Dish Sets World-Record Efficiency</a><br /> Solar Dish - Albuquerque, New Mexico<br /> Credit: Sandia National Laboratories/Randy Montoya Solar Dish Sets World-Record Efficiency Solar Dish - Albuquerque, New Mexico Credit: Sandia National Laboratories/Randy Montoya Solar Technologies Photovoltaics Concentrating Solar Power Solar Applications Residential Commercial City and County

  2. Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010

    SciTech Connect (OSTI)

    Wojtczuk , S.

    2011-06-01

    Spire Semiconductor made concentrator photovoltaic (CPV) cells using a new bi-facial growth process and met both main program goals: a) 42.5% efficiency 500X (AM1.5D, 25C, 100mW/cm2); and b) Ready to supply at least 3MW/year of such cells at end of program. We explored a unique simple fabrication process to make a N/P 3-junction InGaP/GaAs/InGaAs tandem cells . First, the InGaAs bottom cell is grown on the back of a GaAs wafer. The wafers are then loaded into a cassette, spin-rinsed to remove particles, dipped in dilute NH4OH and spin-dried. The wafers are then removed from the cassette loaded the reactor for GaAs middle and InGaP top cell growth on the opposite wafer face (bi-facial growth). By making the epitaxial growth process a bit more complex, we are able to avoid more complex processing (such as large area wafer bonding or epitaxial liftoff) used in the inverted metamorphic (IMM) approach to make similar tandem stacks. We believe the yield is improved compared to an IMM process. After bi-facial epigrowth, standard III-V cell steps (back metal, photolithography for front grid, cap etch, AR coat, dice) are used in the remainder of the process.

  3. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  4. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  5. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment K. Moriarty National Renewable Energy Laboratory M. Kass and T. Theiss Oak Ridge National Laboratory Technical Report NREL/TP-5400-61684 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National

  6. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    Concentrating Solar Power Systems Final Report Citation Details In-Document Search Title: Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems ...

  7. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh ...

  8. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

  9. Concentrating Solar Power Mirror Coating

    Broader source: Energy.gov [DOE]

    This photograph features Cheryl Kennedy, a senior scientist at the National Renewable Energy Laboratory. She holds a sample of an experimental mirror coating to increase the efficiency of...

  10. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Kodysh, Jeffrey B; Bhaduri, Budhendra L

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  11. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  12. India Solar Resource Data: Enhanced Data for Accelerated Deployment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires ...

  13. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG EnergyeSolar Location Dona Ana County, New Mexico Coordinates 32.485767,...

  14. High Efficiency Solar Fuels Reactor Concept | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Fuels Reactor Concept High Efficiency Solar Fuels Reactor Concept This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held ...

  15. Emcore/SunPeak Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Plant Facility EmcoreSunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909,...

  16. Flexible Assembly Solar Technology

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  17. STUDY OF RAPID FORMATION OF A {delta} SUNSPOT ASSOCIATED WITH THE 2012 JULY 2 C7.4 FLARE USING HIGH-RESOLUTION OBSERVATIONS OF THE NEW SOLAR TELESCOPE

    SciTech Connect (OSTI)

    Wang Haimin; Liu Chang; Wang Shuo; Deng Na; Xu Yan; Jing Ju; Cao Wenda

    2013-09-10

    Rapid, irreversible changes of magnetic topology and sunspot structure associated with flares have been systematically observed in recent years. The most striking features include the increase of the horizontal field at the polarity inversion line (PIL) and the co-spatial penumbral darkening. A likely explanation of the above phenomenon is the back reaction to the coronal restructuring after eruptions: a coronal mass ejection carries the upward momentum while the downward momentum compresses the field lines near the PIL. Previous studies could only use low-resolution (above 1'') magnetograms and white-light images. Therefore, the changes are mostly observed for X-class flares. Taking advantage of the 0.''1 spatial resolution and 15 s temporal cadence of the New Solar Telescope at the Big Bear Solar Observatory, we report in detail the rapid formation of sunspot penumbra at the PIL associated with the C7.4 flare on 2012 July 2. It is unambiguously shown that the solar granulation pattern evolves to an alternating dark and bright fibril structure, the typical pattern of penumbra. Interestingly, the appearance of such a penumbra creates a new {delta} sunspot. The penumbral formation is also accompanied by the enhancement of the horizontal field observed using vector magnetograms from the Helioseismic and Magnetic Imager. We explain our observations as being due to the eruption of a flux rope following magnetic cancellation at the PIL. Subsequently, the re-closed arcade fields are pushed down toward the surface to form the new penumbra. NLFFF extrapolation clearly shows both the flux rope close to the surface and the overlying fields.

  18. Funding Opportunity Announcement: CSP: Concentrating Optics for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) Funding Opportunity ... transformative projects for the concentrating solar collectors in the CSP plant. ...

  19. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility Home/Tag:National Solar Thermal Test Facility Illuminated receiver on top of tower Permalink Gallery High-Temperature Falling Particle Receiver Reaches New Limits Concentrating Solar Power, Energy, National Solar Thermal Test Facility, News, Renewable Energy, Solar, SunShot High-Temperature Falling Particle Receiver Reaches New Limits At its National Solar Thermal Test Facility, Sandia National Laboratories

  20. NREL: Solar Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Research A collage of solar photographs. The first photo shows a parabolic solar trough at the Eldorado Valley site. The second is of a gird-tied high-concentration solar cell MicroDish. And the third photo shows the photovoltaic panels at Oberlin College's Adam Joseph Lewis Center for Environmental studies. Learn About Solar Energy Solar technologies use the sun's energy to provide electricity, heat, light, hot water, and even cooling for homes, businesses, and industry. Learn more about

  1. Photovoltaic solar cell

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  2. SolarZentrum Erfurt | Open Energy Information

    Open Energy Info (EERE)

    SolarZentrum Erfurt Place: Erfurt, Germany Zip: 99099 Sector: Solar Product: German business unit of CiS Institute for Microsensors that concentrates on process and equipment...

  3. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January ...

  4. Whitfield Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: RG6 6AU Sector: Renewable Energy, Solar Product: Developing solar photovoltaic concentrators aimed at generating clean renewable energy for the world market....

  5. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-04-01

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  7. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic ...

  8. Optimized III-V Multijunction Concentrator Solar Cells on Patterned Si and Ge Substrates: Final Technical Report, 15 September 2004--30 September 2006

    SciTech Connect (OSTI)

    Ringel, S. A.

    2008-11-01

    Goal is to demo realistic path to III-V multijunction concentrator efficiencies > 40% by substrate-engineering combining compositional grading with patterned epitaxy for small-area cells for high concentration.

  9. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  10. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  11. Solar neutrinos: Theoretical status

    SciTech Connect (OSTI)

    Haxton, W.C.

    1991-01-01

    I review the standard solar model, the disparities between its predictions an the solar neutrino flux measurements of the Homestake and Kamioka 2 collaborations, and possible particle physics resolutions of this puzzle. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained by building analogies with more familiar atomic physics phenomena. These and other mechanisms are considered as possible explanations for time variations in the solar neutrino flux. Finally, I consider possible outcomes and implications of the SAGE/GALLEX gallium experiments.

  12. Solar neutrinos: theory vs experiment

    SciTech Connect (OSTI)

    Haxton, W.C.

    1991-01-01

    I review the standard solar model, the disparities between its predictions and the solar neutrino flux measurements of the Homestake and Kamioka II collaborations, and possible particle physics resolutions of this puzzle. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are reviewed, including possibilities for generating time variations in the solar neutrino flux. Finally, I consider possible outcomes and implications of the SAGE/GALLEX gallium experiments.

  13. Using Solid Particles as Heat Transfer Fluid for use in Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) ...

  14. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns

    SciTech Connect (OSTI)

    Gill, Robert; Bush, Evan; Loutzenhiser, Peter; Haueter, Philipp

    2015-12-15

    A systematic methodology for characterizing a novel and newly fabricated high-flux solar simulator is presented. The high-flux solar simulator consists of seven xenon short-arc lamps mounted in truncated ellipsoidal reflectors. Characterization of spatial radiative heat flux distribution was performed using calorimetric measurements of heat flow coupled with CCD camera imaging of a Lambertian target mounted in the focal plane. The calorimetric measurements and images of the Lambertian target were obtained in two separate runs under identical conditions. Detailed modeling in the high-flux solar simulator was accomplished using Monte Carlo ray tracing to capture radiative heat transport. A least-squares regression model was used on the Monte Carlo radiative heat transfer analysis with the experimental data to account for manufacturing defects. The Monte Carlo ray tracing was calibrated by regressing modeled radiative heat flux as a function of specular error and electric power to radiation conversion onto measured radiative heat flux from experimental results. Specular error and electric power to radiation conversion efficiency were 5.92 ± 0.05 mrad and 0.537 ± 0.004, respectively. An average radiative heat flux with 95% errors bounds of 4880 ± 223 kW ⋅ m{sup −2} was measured over a 40 mm diameter with a cavity-type calorimeter with an apparent absorptivity of 0.994. The Monte Carlo ray-tracing resulted in an average radiative heat flux of 893.3 kW ⋅ m{sup −2} for a single lamp, comparable to the measured radiative heat fluxes with 95% error bounds of 892.5 ± 105.3 kW ⋅ m{sup −2} from calorimetry.

  15. Austin Energy- Value of Solar Residential Rate

    Broader source: Energy.gov [DOE]

    Note: In August 2014, the City Council of Austin, Texas, enacted Resolution No. 20140828, which directed program changes to the Value of Solar Tariff as follows:

  16. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    SciTech Connect (OSTI)

    Hotta, H.; Rempel, M.; Yokoyama, T.

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ?} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ?}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the ?v{sub r}{sup ?}v{sub ?}{sup ?}? correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation ?v{sub r}{sup ?}v{sub ?}{sup ?}? is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation ?v{sub r}{sup ?}v{sub ?}{sup ?}? results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  17. Sandia Energy - Cool Earth Solar and Sandia Team Up in First...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campus Home Renewable Energy Energy Partnership News News & Events Concentrating Solar Power Livermore Valley Open Campus (LVOC) Photovoltaic Solar Solar Newsletter Cool Earth...

  18. Gaskell Sun Tower and 2 others Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Developer NRG EnergyeSolar Location Kern County, California Coordinates 35.4937274, -118.8596804...

  19. Assessment of errors and biases in retrievals of XCO2, XCH4, XCO, and XN2O from a 0.5 cm–1 resolution solar-viewing spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hedelius, Jacob K.; Viatte, Camille; Wunch, Debra; Roehl, Coleen M.; Toon, Geoffrey C.; Chen, Jia; Jones, Taylor; Wofsy, Steven C.; Franklin, Jonathan E.; Parker, Harrison; et al

    2016-08-03

    Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON). However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are wellmore » captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.« less

  20. Saguargo Solar Power Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795, -111.292887 Show Map Loading map......