National Library of Energy BETA

Sample records for resolution 3d laser

  1. Characterization and Modeling via 3D Reconstructions of Laser...

    Office of Scientific and Technical Information (OSTI)

    Characterization and Modeling via 3D Reconstructions of Laser Welds in Stainless Steel. Citation Details In-Document Search Title: Characterization and Modeling via 3D...

  2. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOE Patents [OSTI]

    Malba, Vincent; Bernhardt, Anthony F.

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  3. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  4. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    SciTech Connect (OSTI)

    Zelenogorskii, V V; Andrianov, A V; Gacheva, E I; Gelikonov, G V; Mironov, S Yu; Potemkin, A K; Khazanov, E A; Krasilnikov, M; Stephan, F; Mart'yanov, M A; Syresin, E M

    2014-01-31

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s{sup -1} and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 ?s in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained. The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector. (laser applications and other topics in quantum electronics)

  5. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of catalytic activity on an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more efficient by facilitating chemical reactions. Each catalyst being studied is only about 200 nanometers in

  6. RELAP5-3D Resolution of Known Restart/Backup Issues

    SciTech Connect (OSTI)

    Mesina, George L.; Anderson, Nolan A.

    2014-12-01

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequential verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.

  7. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    SciTech Connect (OSTI)

    Juang, Titania; Grant, Ryan; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2014-07-15

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2. Four unirradiated PRESAGE dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.59.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field cross arrangement of 4 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE formulations for remote dosimetry. Results: The best agreements between the Pinnacle plan and dosimeter readout were observed in PRESAGE formulation SS2. Under 3%/3 mm 3D gamma passing criteria, passing rates were 91.5% 3.6% (SS1) and 97.4% 2.2% (SS2) for immediate on-site dosimetry, 96.7% 2.4% (SS1) and 97.6% 0.6% (SS2) for remote dosimetry. These passing rates are well within TG119 recommendations (88%90% passing). Under the more stringent criteria of 3%/2 mm, there is a pronounced difference [8.0 percentage points (pp)] between SS1 formulation passing rates for immediate and remote dosimetry while the SS2 formulation maintains both higher passing rates and consistency between immediate and remote results (differences ? 1.2 pp) at all metrics. Both PRESAGE formulations under study maintained high linearity of dose response (R{sup 2} > 0.996) for 18 Gy over 14 days with response slope consistency within 4.9% (SS1) and 6.6% (SS2), and a relative dose distribution that remained stable over time was demonstrated in the SS2 dosimeters. Conclusions: Remote 3D dosimetry was shown to be feasible with a PRESAGE dosimeter formulation (SS2) that exhibited relative temporal stability and high accuracy when read off-site 3 days postirradiation. Characterization of the SS2 dose response demonstrated linearity (R{sup 2} > 0.998) over 14 days and suggests accurate readout over longer periods of time would be possible. This result provides a foundation for future investigations using remote dosimetry to study the accuracy of advanced radiation treatments. Further work is planned to characterize dosimeter reproducibility and dose response over longer periods of time.

  8. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    SciTech Connect (OSTI)

    Rohe, Daniel Peter

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  9. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    SciTech Connect (OSTI)

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L; Maryanski, M

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.

  10. Atomic-resolution 3D structure of amyloid β fibrils: The Osaka mutation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schutz, Anne K.; Wall, Joseph; Vagt, Toni; Huber, Matthias; Ovchinnikova, Oxana Y.; Cadalbert, Riccardo; Guntert, Peter; Bockmann, Anja; Glockshuber, Rudi; Meier, Beat H.

    2014-11-13

    Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid β-peptide (Aβ) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the Aβ 1-40 peptide with the Osaka mutation (E22Δ), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints

  11. Atomic-resolution 3D structure of amyloid ? fibrils: The Osaka mutation

    SciTech Connect (OSTI)

    Schutz, Anne K.; Wall, Joseph; Vagt, Toni; Huber, Matthias; Ovchinnikova, Oxana Y.; Cadalbert, Riccardo; Guntert, Peter; Bockmann, Anja; Glockshuber, Rudi; Meier, Beat H.

    2014-11-13

    Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid ?-peptide (A?) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the A? 1-40 peptide with the Osaka mutation (E22?), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints

  12. Laser scanner data processing and 3D modeling using a free and open source software

    SciTech Connect (OSTI)

    Gabriele, Fatuzzo; Michele, Mangiameli Giuseppe, Mussumeci; Salvatore, Zito

    2015-03-10

    The laser scanning is a technology that allows in a short time to run the relief geometric objects with a high level of detail and completeness, based on the signal emitted by the laser and the corresponding return signal. When the incident laser radiation hits the object to detect, then the radiation is reflected. The purpose is to build a three-dimensional digital model that allows to reconstruct the reality of the object and to conduct studies regarding the design, restoration and/or conservation. When the laser scanner is equipped with a digital camera, the result of the measurement process is a set of points in XYZ coordinates showing a high density and accuracy with radiometric and RGB tones. In this case, the set of measured points is called point cloud and allows the reconstruction of the Digital Surface Model. Even the post-processing is usually performed by closed source software, which is characterized by Copyright restricting the free use, free and open source software can increase the performance by far. Indeed, this latter can be freely used providing the possibility to display and even custom the source code. The experience started at the Faculty of Engineering in Catania is aimed at finding a valuable free and open source tool, MeshLab (Italian Software for data processing), to be compared with a reference closed source software for data processing, i.e. RapidForm. In this work, we compare the results obtained with MeshLab and Rapidform through the planning of the survey and the acquisition of the point cloud of a morphologically complex statue.

  13. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect (OSTI)

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: Custom built X-ray tomography system for microstructural characterization Detector design for maximizing polychromatic X-ray detection efficiency X-ray design offered for maximizing X-ray flux with respect to imaging resolution Novel lab-scale XCT data acquisition and data processing methods 3D characterization of glass-bead mock plastic-bonded-explosive stimulant.

  14. Lasers, Electron Beams and New Years Resolutions | Department of Energy

    Energy Savers [EERE]

    Lasers, Electron Beams and New Years Resolutions Lasers, Electron Beams and New Years Resolutions March 2, 2011 - 3:43pm Addthis Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What are the key facts? The electron beam that powers Jefferson Lab's Free-Electron Laser pumped out a record power input of 500 kilvolts using an innovative energy-recovery system that amplifies energy with far less power. A sufficiently powerful laser could make an effective defensive

  15. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect (OSTI)

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

  16. Analysis of the rotational structure in the high-resolution infrared spectra of trans-hexatriene-2-d1 and -3-d1

    SciTech Connect (OSTI)

    Craig, Norman C.; Chen, Yihui; van Besien, Herman; Blake, Thomas A.

    2014-09-01

    The 2-d1 and 3-d1 isotopologues of trans-hexatriene have been synthesized, and their high-resolution (0.0015 cm-1) IR spectra have been recorded. For each of the isotopologues the rotational structure in four C-type bands for out-of-plane vibrational modes has been analyzed, and the ground state combination differences (GSCDs) have been pooled. Ground state rotational constants have been fitted to the GSCDs. For the 2-d species, A0, B0, and C0 values of 0.7837254(5), 0.0442806(3), and 0.0419299(2) cm-1 were fitted to 2450 GSCDs. For the 3-d species, A0, B0, and C0 values of 0.7952226(8), 0.0446149(7), and 0.0422661(4) cm-1 were fitted to 2234 GSCDs. For the eleven out-of-plane modes of the two isotopologues, predictions of anharmonic wavenumbers and harmonic intensities have been computed and compared with experiment where possible.

  17. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect (OSTI)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  18. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    SciTech Connect (OSTI)

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  19. D&D Toolbox Robotic Deployment of High Resolution Laser Imaging...

    Office of Environmental Management (EM)

    PBS SR-0040 The robotically deployed laser surveying system was demonstrated in the ... Robotic Deployment of High Resolution Laser Imaging for Characterization Challenge The ...

  20. LLNL researchers outline what happens during metal 3D printing...

    National Nuclear Security Administration (NNSA)

    - examine a 3D-printed part manufactured using the selective laser melting process. ... The powder bed fusion process, also known as selective laser melting (SLM), requires thin ...

  1. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems https://vision.lbl.gov/Software/3DMorphometry/

  2. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms http://camera.lbl.gov/software

  3. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Graphene's 3D Counterpart Print Monday, 21 July 2014 08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form

  4. Laser spectroscopy of the 4s4p {sup 3}P{sub 2} - 4s3d {sup 1}D{sub 2} transition on magnetically trapped calcium atoms

    SciTech Connect (OSTI)

    Dammalapati, U.; Norris, I.; Burrows, C.; Riis, E.

    2011-06-15

    Laser excitation of the 4s4p {sup 3}P{sub 2} - 4s3d {sup 1}D{sub 2} transition in atomic calcium has been observed and the wavelength determined to 1530.5298(6) nm. The metastable 4s4p {sup 3}P{sub 2} atoms were magnetically trapped in the quadrupole magnetic field of a magneto-optical trap. This state represents the only ''loss'' channel for the calcium atoms when laser cooled on the 4s{sup 2} {sup 1}S{sub 0} - 4s4p {sup 1}P{sub 1} transition. A rate equation model shows that an order of magnitude more atoms are trapped in this state compared with those taking part in the main cooling cycle. Excitation of the {sup 3}P{sub 2} atoms back up to the 4s3d {sup 1}D{sub 2} state provides a means of accessing these atoms. Efficient repumping is achieved if the 1530-nm laser is used in conjunction with a 672-nm laser driving the 4s3d {sup 1}D{sub 2} - 4s5p {sup 1}P{sub 1} transition. In the present experiment, we detected about 4.5x10{sup 4} trapped {sup 3}P{sub 2} atoms, a relatively low atom density, and measured a lifetime of approximately 1 s, which is limited by background collisions.

  5. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can exist as a form of quantum matter called a three--dimensional topological Dirac semi--metal (3DTDS). This is the first experimental confirmation of 3D Dirac fermions...

  6. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  7. Laser Roadshow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outreach Laser Roadshow The NIF Laser Roadshow includes a number of interactive laser demonstrations (Laser Light Fountain, Laser DJ, and NIF "3D ride") that have traveled across ...

  8. A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Versatile High-Resolution X-Ray Imager (HRXI) for Laser-Plasma Experiments on OMEGA Citation Details In-Document Search Title: A Versatile High-Resolution X-Ray ...

  9. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  10. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  11. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  12. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  13. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  14. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  15. DYNA3D

    SciTech Connect (OSTI)

    Kennedy, T. )

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack 'Tuesday' high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  16. A versatile high-resolution x-ray imager (HRXI) for laser-plasma...

    Office of Scientific and Technical Information (OSTI)

    x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed...

  17. A high-resolution imaging X-ray crystal spectrometer for intense laser

    Office of Scientific and Technical Information (OSTI)

    plasma interaction experiments (Conference) | SciTech Connect Conference: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction experiments Authors: Chen, H ; Bitter, M ; Hazi, A ; Hill, K ; Kerr, S ; Magee, E ; Nagel, S ; Park, J ; Schneider, M ; Stone, G ; Williams, G ; Beiersdorfer, P Publication Date:

  18. Collaborative Project. 3D Radiative Transfer Parameterization Over

    Office of Scientific and Technical Information (OSTI)

    Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications (Technical Report) | SciTech Connect Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications Citation Details In-Document Search Title: Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications Under the support of the aforementioned

  19. Laser hazard analysis for LASIRIS Model MAG-501L-670M-1000-45[degree]-K diode laser associated with high resolution pulsed scanner.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2004-11-01

    A laser hazard analysis and safety assessment was performed for the LASIRISTM Model MAG-501L-670M-1000-45o-K diode laser associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for the Safe Use of Lasers Outdoors. The laser was evaluated for both indoor and outdoor use.

  20. Design of 3D eye-safe middle range vibrometer

    SciTech Connect (OSTI)

    Polulyakh, Valeriy; Poutivski, Iouri

    2014-05-27

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

  1. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  2. LLNL-Earth3D

    Energy Science and Technology Software Center (OSTI)

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  3. Experimental techniques for subnanosecond resolution of laser-launched plates and impact studies

    SciTech Connect (OSTI)

    Paisley, D.L.; Warnes, R.H.; Stahl, D.B.

    1994-09-01

    Miniature laser-launched plates have applications in shock wave physics, studying dynamic properties of materials and can be used to generate experimental data in a manner similar to a laboratory gas gun for one-dimensional impact experiments. Laser-launched plates have the advantage of small size, low kinetic energy, and can be launched with ubiquitous laboratory lasers. Because of the small size and high accelerations (10{sup 7}--10{sup 10} g`s), improved temporal resolution and optical non-contact methods to collect data are required. Traditional mechanical in-situ gauges would significantly impair the data quality and do not have the required time response.

  4. DYNA3D96. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Lin, J.

    1993-11-01

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  5. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  6. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    SciTech Connect (OSTI)

    Taniuchi, Toshiyuki Kotani, Yoshinori; Shin, Shik

    2015-02-15

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials.

  7. High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy

    SciTech Connect (OSTI)

    Xiao, Qingmei; Li, Cong; Hai, Ran; Zhang, Lei; Feng, Chunlei; Ding, Hongbin, E-mail: hding@dlut.edu.cn [School of Physics and Optical Electronic Technology, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhou, Yan; Yan, Longwen; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, No. 3 South Section 3, Circle Road 2, Chengdu 610041, Sichuan (China)

    2014-05-15

    A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ?20 nm in depth and ?500 ?m or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

  8. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  9. Process for 3D chip stacking

    DOE Patents [OSTI]

    Malba, V.

    1998-11-10

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  10. SNL3dFace

    Energy Science and Technology Software Center (OSTI)

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  11. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Chu, R.; Amakai, M.; Lung, H.C.; Ishigai, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  12. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Kennedy, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  13. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect (OSTI)

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  14. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  15. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  16. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  17. DYNA3D; Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  18. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  19. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  20. GPU-Accelerated Denoising in 3D (GD3D)

    Energy Science and Technology Software Center (OSTI)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  1. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect (OSTI)

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-01-15

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  2. SciTech Connect: "3d printing"

    Office of Scientific and Technical Information (OSTI)

    3d printing" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "3d printing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  3. 3D RoboMET Characterization

    SciTech Connect (OSTI)

    Madison, Jonathan D.; Susan, Donald F.; Kilgo, Alice C.

    2015-10-01

    The goal of this project is to generate 3D microstructural data by destructive and non-destructive means and provide accompanying characterization and quantitative analysis of such data. This work is a continuing part of a larger effort to relate material performance variability to microstructural variability. That larger effort is called “Predicting Performance Margins” or PPM. In conjunction with that overarching initiative, the RoboMET.3D™ is a specific asset of Center 1800 and is an automated serialsectioning system for destructive analysis of microstructure, which is called upon to provide direct customer support to 1800 and non-1800 customers. To that end, data collection, 3d reconstruction and analysis of typical and atypical microstructures have been pursued for the purposes of qualitative and quantitative characterization with a goal toward linking microstructural defects and/or microstructural features with mechanical response. Material systems examined in FY15 include precipitation hardened 17-4 steel, laser-welds of 304L stainless steel, thermal spray coatings of 304L and geological samples of sandstone.

  4. ShowMe3D

    Energy Science and Technology Software Center (OSTI)

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  5. 3-D Metals | Open Energy Information

    Open Energy Info (EERE)

    Metals Jump to: navigation, search Name 3-D Metals Facility 3-D Metals Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Valley City OH...

  6. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (OSTI)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  7. Metrology of 3D nanostructures.

    SciTech Connect (OSTI)

    Barsic, Anthony; Piestun, Rafael; Boye, Robert R.

    2012-10-01

    We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

  8. Practical high resolution detection method for laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Andrew J. Effenberger Jr; Jill R. Scott

    2012-02-01

    A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5-m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous source Hg-lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to observed spitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying He atmospheric pressures. The high performance, low cost, and compact footprint makes this system highly competitive with 2-m double pass Czerny-Turner spectrometers.

  9. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect (OSTI)

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.

  10. 3D circuit integration for Vertex and other detectors

    SciTech Connect (OSTI)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  11. Supercomputer Helps Model 3D Map of Adolescent Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputer Helps Model 3D Map of Adolescent Universe Supercomputer Helps Model 3D Map of Adolescent Universe Researchers Demonstrate Novel Technique for High-Resolution Universe Maps October 17, 2014 Contact: Kate Greene, kgreene@lbl.gov, 510-486-4404 Using extremely faint light from galaxies 10.8 billion light years away, scientists have created one of the most complete, three-dimensional maps of a slice of the adolescent universe-just 3 billion years after the Big Bang. The map shows a web

  12. RT3D tutorials for GMS users

    SciTech Connect (OSTI)

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  13. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Single-Molecule Catalysis on Modular Multilayer Nanocatalysts Author(s): R. Han, J-W. Ha, C. Xiao, Y. Pei, Z. Qi, B. Dong, N. L. Bormann, W. Huang, and N. Fang Article Link:...

  14. TAURUS. 3-d Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1991-05-01

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  15. TAURUS. 3-d Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  16. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1984-05-01

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  17. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1993-11-30

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  18. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  19. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Kennedy, T.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  20. 3D Site Response using NLSSI

    Broader source: Energy.gov [DOE]

    3D Site Response using NLSSI Justin Coleman, P.E. Bob Spears Nuclear Science and Technology Idaho National Laboratory October 22, 2014

  1. Laser radar VI; Proceedings of the Meeting, Los Angeles, CA, Jan. 23-25, 1991

    SciTech Connect (OSTI)

    Becherer, R.J.

    1991-01-01

    Topics presented include lidar wind shear detection for commercial aircraft, centroid tracking of range-Doppler images, an analytic approach to centroid performance analysis, simultaneous active/passive IR vehicle detection, and resolution limits for high-resolution imaging lidar. Also presented are laser velocimetry applications, the application of laser radar to autonomous spacecraft landing, 3D laser radar simulation for autonomous spacecraft landing, and ground based CW atmospheric Doppler lidar performamce modeling.

  2. Heavy resid asphaltene characterization using high resolution and laser desorption mass spectrometry

    SciTech Connect (OSTI)

    Hunt, J.E.; Kim, Y.; Winans, R.E.

    1995-12-31

    Resid is the nondistillable portion of crude oil, generally thought to consist largely of unsaturated molecules of considerable size and ring number. Such molecules must be upgraded to more saturated compounds if they are to be used as fuel sources. Current processing of resid is performed though coking, thermal and catalytic cracking, deasphalting and hydroprocessing. Thermal treatments, however, produce large quantities of low-value coke and hydroprocessing is expensive. Asphaltenes comprise the most process resistant portion of the resid. They contain high concentrations of heteroatoms and a high degree of unsaturation. Because these undesirable characteristics are concentrated in asphaltenes, finding an improved method of upgrading asphaltenes is a prerequisite to improving the upgrading of whole resid to viable fuel. Asphaltenes have, at present, only an operational definition. They are insoluble in straight chain saturated hydrocarbons. Very little is known about the structure of compounds in asphaltenes. They are a highly diverse group of compounds that are resistant to analysis by conventional methods. Conclusions about the structures of asphaltenes tends to be speculative. In this study desorption electron impact (HREIMS), chemical ionization high resolution mass spectrometry (HRCIMS), and laser desorption mass spectrometry (LD) have been applied to deasphalted oils (DAO) and asphaltenes derived from heavy Maya resid. LD data should yield information on the high molecular weight aromatic compounds, while HRMS can provide molecular characterization.

  3. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  4. A 3D Geostatistical Mapping Tool

    Energy Science and Technology Software Center (OSTI)

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  5. Static & Dynamic Response of 3D Solids

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  6. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  7. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  8. How We 3D-Print Aerogel

    SciTech Connect (OSTI)

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  9. Explicit 3-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (OSTI)

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less

  10. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  11. Climate Change Capacity Development (C3D+) | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development (C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) AgencyCompany...

  12. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

  13. High-resolution x-ray spectrometer based on spherically bent crystals for investigations of femtosecond laser plasmas

    SciTech Connect (OSTI)

    Young, B.K.; Osterheld, A.L.; Price, D.F.; Shepherd, R.; Stewart, R.E.; Faenov, A.Y.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Y.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Letardi, T.; Grilli, A.; Palladino, L.; Reale, A.; Scafati, A.; Reale, L.

    1998-12-01

    Ultrashort-pulse, laser-produced plasmas have become very interesting laboratory sources to study spectroscopically due to their very high densities and temperatures, and the high laser-induced electromagnetic fields present. Typically, these plasmas are of very small volume and very low emissivity. Thus, studying these near point source plasmas requires advanced experimental techniques. We present a new spectrometer design called the focusing spectrometer with spatial resolution (FSSR-2D) based on a spherically bent crystal which provides simultaneous high spectral ({lambda}/{Delta}{lambda}{approx}10{sup 4}) and spatial resolution ({approx}10thinsp{mu}m) as well as high luminosity (high collection efficiency). We described in detail the FSSR-2D case in which a small, near point source plasma is investigated. An estimate for the spectral and spatial resolution for the spectrometer is outlined based on geometric considerations. Using the FSSR-2D instrument, experimental data measured from both a 100 fs and a nanosecond pulse laser-produced plasma are presented. {copyright} {ital 1998 American Institute of Physics.}

  14. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0 http://www.openfabrics.org/git?p=sashak/management.git;a=sum

  15. DYNA3D example problem manual

    SciTech Connect (OSTI)

    Lovejoy, S.C.; Whirley, R.G.

    1990-10-10

    This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.

  16. Collaborative Project. 3D Radiative Transfer Parameterization...

    Office of Scientific and Technical Information (OSTI)

    for High-Resolution Climate Models. Fast physics and Applications Citation Details ... for High-Resolution Climate Models. Fast physics and Applications Under the support of the ...

  17. RAG-3D: A search tool for RNA 3D substructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  18. RAG-3D: A search tool for RNA 3D substructures

    SciTech Connect (OSTI)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.

  19. Shim3d Helmholtz Solution Package

    Energy Science and Technology Software Center (OSTI)

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  20. DYNA3D Code Practices and Developments

    SciTech Connect (OSTI)

    Lin, L.; Zywicz, E.; Raboin, P.

    2000-04-21

    DYNA3D is an explicit, finite element code developed to solve high rate dynamic simulations for problems of interest to the engineering mechanics community. The DYNA3D code has been under continuous development since 1976[1] by the Methods Development Group in the Mechanical Engineering Department of Lawrence Livermore National Laboratory. The pace of code development activities has substantially increased in the past five years, growing from one to between four and six code developers. This has necessitated the use of software tools such as CVS (Concurrent Versions System) to help manage multiple version updates. While on-line documentation with an Adobe PDF manual helps to communicate software developments, periodically a summary document describing recent changes and improvements in DYNA3D software is needed. The first part of this report describes issues surrounding software versions and source control. The remainder of this report details the major capability improvements since the last publicly released version of DYNA3D in 1996. Not included here are the many hundreds of bug corrections and minor enhancements, nor the development in DYNA3D between the manual release in 1993[2] and the public code release in 1996.

  1. RELAP5-3D Developer Guidelines and Programming Practices

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2014-03-01

    Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It establishes documentation guidance on internal comments. The guidelines apply to both existing and new subprograms. They are written for both FORTRAN 77 and FORTRAN 95. The guidelines are not so rigorous as to inhibit a programmer’s unique style, but do restrict the variations in acceptable coding to create sufficient commonality that new readers will find the coding in each new subroutine familiar. It is recognized that this is a “living” document and must be updated as languages, compilers, and computer hardware and software evolve.

  2. Some remarks on shell element analysis with DYNA3D and NIKE3D

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.; Maker, B.N.; Spelce, T.E.

    1992-03-24

    There has been some confusion in the user community recently regarding the various shell element formulations now available in DYNA3D (Whirley and Hadlquist, 1991) and NIKE3D (Maker, Ferencz, and Hallquist, 1991). In particular, questions have been raised about the behavior of these elements under large strain, and the display of meaningful results from such problems using TAURUS (Spelce and Hallquist, 1991). This brief report is intended to aid the DYNA/NIKE user community by elaborating on the formulation of the DYNA3D/NIKE3D shell elements and on the display of shell data using TAURUS. In the following discussion no attempt is made to give a complete description of the theoretical development or implementation of any of the elements. Readers interested in a more complete discussion of the shell elements in DYNA3D and NIKE3D are directed to the published papers cited in the code User Manuals.

  3. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  4. 3-D Finite Element Heat Transfer

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  5. INGRID; 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Stillman, D.W.; Rainsberger, R.

    1985-07-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  6. INGRID. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Christon, M.A.; Dovey, D.; Stillman, D.W.; Hallquist, J.O.; Rainsberger, R.B.

    1992-09-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  7. INGRID. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Stillman, D.W.; Rainsberger, R.

    1985-07-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D (ESTSC. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  8. INGRID. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Stillman, D.W.; Rainsberger, R.

    1985-07-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  9. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  10. Ames Lab 101: 3D Metals Printer

    ScienceCinema (OSTI)

    Ott, Ryan

    2014-06-04

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  11. 3D target array for pulsed multi-sourced radiography

    DOE Patents [OSTI]

    Le Galloudec, Nathalie Joelle

    2016-02-23

    The various technologies presented herein relate to the generation of x-rays and other charged particles. A plurality of disparate source materials can be combined on an array to facilitate fabrication of co-located mixed tips (point sources) which can be utilized to form a polychromatic cloud, e.g., a plurality of x-rays having a range of energies and or wavelengths, etc. The tips can be formed such that the x-rays are emitted in a direction different to other charged particles to facilitate clean x-ray sourcing. Particles, such as protons, can be directionally emitted to facilitate generation of neutrons at a secondary target. The various particles can be generated by interaction of a laser irradiating the array of tips. The tips can be incorporated into a plurality of 3D conical targets, the conical target sidewall(s) can be utilized to microfocus a portion of a laser beam onto the tip material.

  12. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  13. SAND contact in DYNA3D

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1992-08-25

    This paper describes some recent developments in adaptive contact algorithms for the transient analysis of penetration and material failure in DYNA3D. A failure criterion is defined for volumes of potentially failing material on each side of a contact surface. As material within an element fails, the element is deleted from the calculation and the contact surface is adaptively redefined to include the newly exposed outer material boundary. This algorithm admits arbitrary combinations of shell and solid elements to allow modeling of composite or honeycomb structures. The algorithms and their efficiency are illustrated with several DYNA3D simulations and results are compared with experimental data.

  14. Theoretical manual for DYNA3D

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1983-03-01

    This report provides a theoretical manual for DYNA3D, a vectorized explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm that permits gaps and sliding along material interfaces is described. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. DYNA3D is operational on the CRAY-1 and CDC7600 computers.

  15. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  16. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect (OSTI)

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  17. 3D Technology for intelligent trackers

    SciTech Connect (OSTI)

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  18. Crashworthiness simulations with DYNA3D

    SciTech Connect (OSTI)

    Schauer, D.A.; Hoover, C.G.; Kay, G.J.; Lee, A.S.; De Groot, A.J.

    1996-04-01

    Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soil has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.

  19. Azimuthally Anisotropic 3D Velocity Continuation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  20. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas

    SciTech Connect (OSTI)

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

    2008-05-21

    A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  1. Sandia Modifies Delft3D Turbine Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifies Delft3D Turbine Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  2. 3-D Mesh Generation Nonlinear Systems

    Energy Science and Technology Software Center (OSTI)

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less

  3. GEN3D Ver. 1.37

    Energy Science and Technology Software Center (OSTI)

    2012-01-04

    GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh is generated by mapping a two-dimensional mesh into threedimensions according to one of four types of transformations: translating, rotating, mapping onto a spherical surface, and mapping onto a cylindrical surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, and revolving about an axis. GEN3D can be used to mesh geometries that are axisymmetric or planar, but, due to three-dimensionalmore » loading or boundary conditions, require a three-dimensional finite element mesh and analysis. More importantly, it can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GEN3D reads and writes twodimensional and threedimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes used by the Engineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.« less

  4. Visualization and Analysis of 3D Gene Expression Data (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data Recent...

  5. PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic...

    Office of Scientific and Technical Information (OSTI)

    PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media Citation Details In-Document Search Title: PSTD Simulations of Multiple Light Scattering in 3-D ...

  6. Numerical integration of structural elements in NIKE3D and DYNA3D

    SciTech Connect (OSTI)

    Maker, B.N.; Whirley, R.G.; Engelmann, B.E.

    1992-08-05

    The beam and shell elements found in many linear elastic finite element codes accept integrated cross sectional properties as input, and produce solutions using classical beam and shell theory. These theories are built upon the equation of resultant forces and moments with integrals of assumed stress distributions over the cross section. In contrast, the structural elements in NIKE3D and DYNA3D are formulated to represent nonlinear geometric and material behavior. Thus stress distributions may not necessarily be representable by simple functions of cross section variables. In NIKE3D and DYNA3D, the Hughes-Liu beam element and all shell elements accommodate these more general stress distributions by computing stresses at various points in the cross section. The integration of stresses within each element is then performed numerically, using a variety of methods. This report describes these numerical integration procedures in detail, and highlights their application to engineering problems. Several other features of the structural elements are also described, including force and moment resultants, user-defined reference surfaces, and user-defined integration rules. Finally, the shear correction factor is described in a section which relates results from NIKE3D and DYNA3D to those obtained from classical beam theory.

  7. 3D reconstruction of tensors and vectors

    SciTech Connect (OSTI)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  8. 3-d-interactive-scouring-methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology Sixty percent of bridge failures are the result of riverbed erosion (scour) at bridge support structures, and about 1 in 20 bridges are classified as scour critical, meaning that they are in danger of failure during a major flood event. Working to improve scour analysis, researchers at TRACC have developed and tested a 3-D method of predicting the shape and depth of a scour hole that forms under a flooded bridge deck. The 2 figures below represent the surface of a stream bed with a

  9. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOE Patents [OSTI]

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  10. Elastoplastic shell analysis in DYNA3D

    SciTech Connect (OSTI)

    Whirley, R.G. )

    1991-01-01

    Computer simulation of the elastoplastic behavior of thin shell structures under transient dynamic loads play an important role in many programs at Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. Often the loads are severe and the structure undergoes plastic (or permanent) deformation. These simulations are effectively performed using DYNA3D, an explicit nonlinear finite element code developed at LLNL for simulating and analyzing the large-deformation dynamic response of solids and structures. It is generally applicable to problems where the loading and response are of short duration and contain significant high-frequency components. Typical problems of this type include the contact of two impacting bodies and the resulting elastoplastic structural behavior. The objective of this investigation was to examine and improve upon the elastoplastic shell modeling capability in DYNA3D. This article summarizes the development of a new four-node quadrilateral finite element shell formulation, the YASE shell, and compares two basic methods (the stress-resultant and the thickness-resultant methods) employed in elastoplastic constitutive algorithms for shell structure modeling.

  11. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect (OSTI)

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  12. fdm3d_sndV1.0

    Energy Science and Technology Software Center (OSTI)

    2001-06-06

    FORTRAN90 software computes synthetic induction log responses in fully 3D anistropic geoelectric media.

  13. High-resolution electron-ion coincidence spectroscopy of ethanol in intense laser fields

    SciTech Connect (OSTI)

    Hatamoto, T.; Pruemper, G.; Okunishi, M.; Ueda, K.; Mathur, D.

    2007-06-15

    High-resolution electron-ion coincidence spectroscopy is used to (i) map correlations between electrons and ions from atomlike ionization of ethanol by intense 400 and 800 nm light pulses and (ii) disentangle the effects of dissociative multiphoton (MPI) and tunneling (TI) ionization. Electron spectra correlated with C{sup n+} (n=1,2,3) exhibit a continuum structure with a high-energy tail due to inelastic collisions involving rescattered electrons following TI, while those correlated with C{sub 2}H{sub n}O{sup +} have structure characteristic of MPI and above-threshold ionization.

  14. 3D Diagnostic Of Complex Plasma

    SciTech Connect (OSTI)

    Hall, Edward; Samsonov, Dmitry

    2011-11-29

    This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

  15. 3D Multigroup Sn Neutron Transport Code

    Energy Science and Technology Software Center (OSTI)

    2001-02-14

    ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less

  16. MOSSFRAC: An anisotropic 3D fracture model

    SciTech Connect (OSTI)

    Moss, W C; Levatin, J L

    2006-08-14

    Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

  17. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect (OSTI)

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  18. Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... currently being devel- oped and tested which will employ a three-wave far-infrared laser. ... Laser polarimetry has been used previously to investi- gate magnetic fluctuations ...

  19. RELAP5-3D Compressor Model

    SciTech Connect (OSTI)

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  20. JAS3D v. 2.4

    Energy Science and Technology Software Center (OSTI)

    2009-06-29

    JAS3D is a three-dimensional finite element program originally designed to solve Lagrangian quasistatic non-linear mechanics problems, and subsequently extended to include both implicit and explicit dynamics. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. Innovative multilevel nonlinear iterative methods are used to solve the equations. A wide variety of material constitutive models are available, and contact interface logic is implemented. Two Lagrangian uniform-strain elements are available: an eighth-node hexahedronmore » for solids and a four-node quadrilateral for shells. Both use hourglass stiffness to control zero-energy modes. In addition, a version of the hexahedron is available with uniform pressure and a deviatoric response scalable from the mean response of the original element up to a fully-integrated response. Bodies under analysis may be loaded by surface pressures and concentrated forces, specified displacements, or body forces from gravity, steady-state transport, or thermal expansion.« less

  1. 3-D simulations of multiple beam klystrons

    SciTech Connect (OSTI)

    Smithe, David N.; Bettenhausen, Mike; Ludeking, Larry; Caryotakis, G.; Sprehn, Daryl; Scheitrum, Glenn [Mission Research Corporation, 8560 Cinderbed Rd., Suite 700, Newington, Virginia 22122 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States)

    1999-05-07

    The MAGIC3D simulation code is being used to assess the multi-dimensional physics issues relating to the design and operation of multiple beam klystrons. Investigations, to date, include a detailed study of the mode structure of the cavities in the 19-beam hexagonally packed geometry and a study of the velocity spread caused by the cavity mode's field profile. Some attempts to minimize this effect are investigated. Additional simulations have provided quantification of the beam loading Q in a dual input cavity, and optimization of a dual output cavity. An important goal of the simulations is an accurate picture of beam transport along the length of the MBK. We have quantified the magnitude and spatial variation of the beam-line space charge interactions within a cavity gap. Present simulations have demonstrated the transport of the beam through three cavities (the present limits of our simulation size) without difficulty; additional length simulations are expected. We have also examined unbalanced beam-line scenarios, e.g., one beam-line suppressed, and find little disturbance to the transport in individual cavity tests, with results for multiple cavity transport expected.

  2. Visualization and Analysis of 3D Gene Expression Data (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data You are...

  3. FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

    Open Energy Info (EERE)

    FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D...

  4. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April...

  5. Validation and Application of the 3D Neutron Transport MPACT...

    Office of Scientific and Technical Information (OSTI)

    Validation and Application of the 3D Neutron Transport MPACT within CASL VERA-CS Citation Details In-Document Search Title: Validation and Application of the 3D Neutron Transport ...

  6. 3D Visualization of Water Transport in Ferns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

  7. World's First 3-D Printed Car | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World's First 3-D Printed Car World's First 3-D Printed Car Addthis Description The video is about a partnership between Local Motors and Oak Ridge National Laboratory to print the world's first 3-D printed car-the Strati-at the 2014 International Manufacturing Technology Show

  8. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  9. 3D Printing Medical Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Printed and Semiconductor Technology 'Mash-up' 3D Printed and Semiconductor Technology 'Mash-up' May 7, 2015 - 4:11pm Addthis 3D Printed and Semiconductor Technology 'Mash-up' What will you get if you put a 3D-printed inverter package with wide bandgap materials, together with the 3D-printed EV version of the Shelby Cobra "plug and play" laboratory-on-wheels? You'll get innovation - innovation that will define even lighter, more powerful, and more efficient vehicles. Oak Ridge

  10. laser | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    laser

  11. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  12. 3-D Model for Deactivation & Decommissioning | Department of Energy

    Energy Savers [EERE]

    -D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. PDF icon 3-D Model for

  13. 3D Printed Car at the International Manufacturing Technology Show |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3D Printed Car at the International Manufacturing Technology Show 3D Printed Car at the International Manufacturing Technology Show Addthis WORLD'S FIRST 1 of 6 WORLD'S FIRST The world's first 3D-printed car on display at the International Manufacturing Technology Show in Chicago last week. Arizona-based Local Motors, and Cincinnati Incorporated teamed with Oak Ridge National Laboratory's Manufacturing Demonstration Facility-with funding support from the Energy

  14. 3D Printing a Classic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Printing a Classic 3D Printing a Classic January 15, 2015 - 4:02pm Addthis The team from the Oak Ridge Manufacturing Demonstration Facility is at the Detroit Auto Show this week to display their latest accomplishment: a 3D-printed, electric-motor driven, Shelby Cobra. In just six weeks, the team went from designing the car in digital models, to 3D printing the frame and other parts with fiber-reinforced composite material, to assembling, finishing, and painting the final product. President

  15. How 3D Printers Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Printers Work How 3D Printers Work June 19, 2014 - 9:28am Addthis How does 3D printing work? Watch a 3D printing timelapse video and read on below to learn everything you need to know about this game-changing innovation that is capturing the imagination of major manufacturers and hobbyists alike. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene Former Videographer What are

  16. RELAP5-3D V. 4.X.X

    Energy Science and Technology Software Center (OSTI)

    000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL

  17. 3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD...

    Open Energy Info (EERE)

    3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Abstract Knowledge of the subsurface electrical resistivityconductivity can contribute to a better...

  18. DOE AVESTAR Center Deploys 3-D Virtual Training System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... AVESTAR's new immersive training system and existing IGCC dynamic simulator were developed using Invensys Operations Management's EYESIM 3-D virtual reality technology and DYNSIM ...

  19. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect (OSTI)

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  20. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

  1. 3D Wavelet-Based Filter and Method

    DOE Patents [OSTI]

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  2. 3D Printed and Semiconductor Technology 'Mash-up'

    Broader source: Energy.gov [DOE]

    What will you get if you put a 3D-printed inverter package with wide bandgap materials, together with the 3D-printed EV version of the Shelby Cobra “plug and play” laboratory-on-wheels? You’ll get...

  3. Site-specific electronic configurations of Fe 3d states by energy loss by channeled electrons

    SciTech Connect (OSTI)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Nishida, Ikuo; Rusz, Jan

    2010-05-17

    Site-specific configurations of Fe 3d electrons in a spinel ferrite were investigated by electron energy loss spectroscopy under electron channeling conditions. Site-specific spectra were extracted by applying a multivariate curve resolution (MCR) technique to the data set. An electronic difference in the Fe sites caused by ligand field splitting of trivalent Fe was probed. This demonstrated the promise of site-specific valence and spin state analysis in spintronics applications of spinel ferrites.

  4. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  5. SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System

    SciTech Connect (OSTI)

    Jiang, S; Zhao, S; Chen, Y; Li, Z; Li, P; Huang, Z; Yang, Z; Zhang, X

    2014-06-01

    Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method while the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.

  6. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect (OSTI)

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  7. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect (OSTI)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  8. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations

    SciTech Connect (OSTI)

    Hnatovsky, C.; Taylor, R.S.; Simova, E.; Bhardwaj, V.R.; Rayner, D.M.; Corkum, P.B.

    2005-07-01

    An ultrahigh-resolution (20 nm) technique of selective chemical etching and atomic force microscopy has been used to study the photoinduced modification in fused silica produced at various depths by tightly focused femtosecond laser radiation affected by spherical aberration. We demonstrate that shapes of the irradiated zones near the threshold for modification can be predicted by taking proper account of spherical aberration caused by the refractive index mismatched air-silica interface. We establish a depth dependence of the pulse energy required to initiate modification and characterize the relationship between numerical aperture of the writing lens and practically achievable writing depth. We also show that spatial characteristics of the laser-modified zones can be controlled by a specially designed focusing system which allows correction for a variable amount of spherical aberration.

  9. F3D Image Processing and Analysis for Many - and Multi-core Platforms

    SciTech Connect (OSTI)

    2014-10-01

    F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expedites any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.

  10. 3D Printing a Classic Shelby Cobra | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Printing a Classic Shelby Cobra 3D Printing a Classic Shelby Cobra Addthis Zero to 60 in under five seconds. Concept to reality in just six weeks. 1 of 22 Zero to 60 in under five seconds. Concept to reality in just six weeks. The classic Shelby Cobra roadster turns 50 in 2015. To celebrate, a team of engineers at the Department of Energy's Oak Ridge National Laboratory set out to create a replica of this iconic car using a massive 3D printer, advanced composite materials, and exciting new

  11. 3D Printed Shelby Cobra | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Printed Shelby Cobra 3D Printed Shelby Cobra Description ORNL's newly printed 3D car will be showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy's Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a

  12. Comparison of 2D and 3D gamma analyses

    SciTech Connect (OSTI)

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; ODaniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (evaluated dose distributions) and Monte Carlo-recalculated (reference dose distributions) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differencesfor example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

  13. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect (OSTI)

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  14. A Novel Approach for Introducing 3D Cloud Spatial Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Approach for Introducing 3D Cloud Spatial Structure Into 1D Radiative Transfer For original submission and image(s), see ARM Research Highlights http:www.arm.govscience...

  15. The Development and Application of SCDAP-3D

    SciTech Connect (OSTI)

    Coryell, E.W.; Harvego, E.A.; Siefken, L.J.

    2002-03-05

    The SCDAP-3D computer code (Coryell 2001) has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the analysis of severe reactor accidents. A prominent feature of SCDAP-3D relative to other versions of the code is its linkage to the state-of-the-art thermal/hydraulic analysis capabilities of RELAP5-3D. Enhancements to the severe accident models include the ability to simulate high burnup and alternative fuel, as well as modifications to support advanced reactor analyses, such as those described by the Department of Energy's Generation IV (GenIV) initiative. Initial development of SCDAP-3D is complete and two widely varying but successful applications of the code are summarized. The first application is to large break loss of coolant accident analysis performed for a reactor with alternative fuel, and the second is a calculation of International Standard Problem 45 (ISP-45) or the QUENCH 6 experiment.

  16. Development and Application of RELAP5-3D

    SciTech Connect (OSTI)

    Coryell, Eric Wesley; Harvego, Edwin Allan; Siefken, Larry James

    2002-04-01

    The SCDAP-3D computer code (Coryell 2001) has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the analysis of severe reactor accidents. A prominent feature of SCDAP-3D relative to other versions of the code is its linkage to the state-of-the-art thermal/hydraulic analysis capabilities of RELAP5-3D. Enhancements to the severe accident models include the ability to simulate high burnup and alternative fuel, as well as modifications to support advanced reactor analyses, such as those described by the Department of Energy's Generation IV (GenIV) initiative. Initial development of SCDAP-3D is complete and two widely varying but successful applications of the code are summarized. The first application is to large break loss of coolant accident analysis performed for a reactor with alternative fuel, and the second is a calculation of International Standard Problem 45 (ISP-45) or the QUENCH 6 experiment.

  17. 3D Printed Microscope for Mobile Devices that Cost Pennies

    ScienceCinema (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2015-06-23

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  18. Future of 3D Printing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 2016, GE will enter a new jet engine into service called the CFM LEAP-the first in GE's line to incorporate 3D-printed parts. Specifically, it will be a combustion component ...

  19. Printing 3D Catalytic Devices | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printing 3D Catalytic Devices An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. Ames Laboratory scientist Igor...

  20. 3D Printed Microscope for Mobile Devices that Cost Pennies

    SciTech Connect (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2014-09-15

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  1. Metasurface skin invisibility cloak makes 3D objects disappear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metasurface skin invisibility cloak makes 3D objects disappear Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on ...

  2. Microseismicity and 3-D Mapping of an Active Geothermal Field...

    Open Energy Info (EERE)

    suggests an intersecting network of fractures with both NE and approximately NW trends. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the VpVs ratio are...

  3. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  4. Interferometrically Defined 3D Pyrolyzed-Carbon Sensors. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Interferometrically Defined 3D Pyrolyzed-Carbon Sensors. Citation Details In-Document Search Title: Interferometrically Defined 3D Pyrolyzed-Carbon Sensors. Abstract not provided. Authors: Polsky, Ronen ; Beechem Iii, Thomas Edwin ; Wheeler, David Roger ; Xiao, Xiaoyin ; Burckel, David Bruce ; Xiao, Xiaoyin Publication Date: 2012-01-01 OSTI Identifier: 1118308 Report Number(s): SAND2012-0150C 481454 DOE Contract Number: AC04-94AL85000 Resource Type: Conference

  5. Texture splats for 3D vector and scalar field visualization

    SciTech Connect (OSTI)

    Crawfis, R.A.; Max, N.

    1993-04-06

    Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.

  6. Performance Modeling for 3D Visualization in a Heterogeneous Computing

    Office of Scientific and Technical Information (OSTI)

    Environment (Technical Report) | SciTech Connect Performance Modeling for 3D Visualization in a Heterogeneous Computing Environment Citation Details In-Document Search Title: Performance Modeling for 3D Visualization in a Heterogeneous Computing Environment The visualization of large, remotely located data sets necessitates the development of a distributed computing pipeline in order to reduce the data, in stages, to a manageable size. The required baseline infrastructure for launching such

  7. Hanford Site - 100-HR-3-D | Department of Energy

    Office of Environmental Management (EM)

    D Hanford Site - 100-HR-3-D July 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Hanford Site, WA Responsible DOE Office: Office of Environmental Management Plume Name: 100-HR-3-D Remediation Contractor: CHPRC PBS Number: 30 Report Last Updated: July 2014 with CY2013 data Contaminants Halogenated VOCs/SVOCs Present?: No Fuel Present? No Metals Present? Yes Isotopes Present? Yes Explosives Present? No Other Contaminants? No

  8. Metasurface skin invisibility cloak makes 3D objects disappear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metasurface skin invisibility cloak makes 3D objects disappear Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) Invisibility skin cloaks on the microscopic scale might prove valuable for hiding the detailed layout of microelectronic components or for security encryption purposes. This image is a A 3-D illustration of a metasurface skin cloak made from

  9. DNA origami with Complex Curvatures in 3D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Complex Curvatures in 3D 15 Apr 2011 Center researchers have developed a new DNA origami design strategy for engineering complex, arbitrarily shaped 3D DNA nanostructures that have substantial intrinsic curvatures. This strategy has been presented in a paper by Professors Hao Yan, Yan Liu and coworkers that was featured on the cover of Science for April 15, 2011. Use of DNA as a structural material is in the basis of the DNA nanotechnology searching for ways to assemble nanoscale structures

  10. 2D?3D polycatenated and 3D?3D interpenetrated metalorganic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    SciTech Connect (OSTI)

    Erer, Hakan; Ye?ilel, Okan Zafer; Ar?c?, Mrsel; Keskin, Seda; Bykgngr, Orhan

    2014-02-15

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metalorganic frameworks, namely, [Zn(-tdc)(H{sub 2}O)(-dib)]{sub n} (1), [Cd(-tdc)(H{sub 2}O)(-dib)]{sub n} (2), and ([Cd{sub 2}({sub 3}-tdc){sub 2}(-dimb){sub 2}](H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metalorganic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: Complexes 1 and 2 display polycatenated 2D+2D?3D framework. Complex 3 exhibits a new 4-fold interpenetrating 3D framework. Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and 298 K. Complexes display blue fluorescent emission bands.

  11. Lasers

    SciTech Connect (OSTI)

    1995-01-01

    The scope of our research in laser and related technologies has grown over the years and has attracted a broad user base for applications within DOE, DOD, and private industry. Within the next few years, we expect to begin constructing the National Ignition Facility, to make substantial progress in deploying AVLIS technology for uranium and gadolinium enrichment, and to develop new radar sensing techniques to detect underwater objects. Further, we expect to translate LLNL patent ideas in microlithography into useful industrial products and to successfully apply high-power, diode-based laser technology to industrial and government applications.

  12. Extra Dimensions: 3D and Time in PDF Documentation

    SciTech Connect (OSTI)

    Graf, N.A.; /SLAC

    2012-04-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

  13. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    SciTech Connect (OSTI)

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  14. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    SciTech Connect (OSTI)

    Feister, S. Orban, C.; Nees, J. A.; Morrison, J. T.; Frische, K. D.; Chowdhury, E. A.; Roquemore, W. M.

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser noise (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120 phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements with instantaneous plasma profiles and for enabling realistic Particle-in-Cell simulations of the ultra-intense laser-matter interaction.

  15. The 3D-Printed Shelby Cobra: Defining Rapid Innovation

    Broader source: Energy.gov [DOE]

    The 3D-Printed Shelby Cobra: Defining Rapid Innovation It’s been hard to miss in the media and on its almost non-stop road tour, but AMO wanted you to know that our 3D-printed EV version of the 50th anniversary Shelby Cobra just left the Forrestal building lobby after visiting for two weeks. Secretary Moniz dropped in for a quick tour around the car with Mark Johnson, AMO’s Director and David Danielson, EERE’s Assistant Secretary on Tuesday April 7th.

  16. Characterization of 3D Cirrus Cloud and Radiation Fields Using

    Office of Scientific and Technical Information (OSTI)

    ARS/AIRS/MODIS data and its Application to Climate Model (Technical Report) | SciTech Connect Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model Citation Details In-Document Search Title: Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model During the report period, we have made the following research accomplishments. First, we performed analysis for a

  17. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  18. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    SciTech Connect (OSTI)

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States); McDonough, J; Yin, L; Teo, B [University of Pennsylvania, Philadelphia, PA (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 34 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.

  19. The 3D-Printed Shelby Cobra: Defining Rapid Innovation

    Broader source: Energy.gov [DOE]

    It’s been hard to miss in the media and on its almost non-stop road tour, but AMO wanted you to know that our 3D-printed EV version of the 50th anniversary Shelby Cobra just left the Forrestal...

  20. Extra Dimensions: 3D and Time in PDF Documentation

    SciTech Connect (OSTI)

    Graf, Norman A.; /SLAC

    2011-11-10

    High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.

  1. Application of DYNA3D in large scale crashworthiness calculations

    SciTech Connect (OSTI)

    Benson, D.J.; Hallquist, J.O.; Igarashi, M.; Shimomaki, K.; Mizuno, M.

    1986-01-01

    This paper presents an example of an automobile crashworthiness calculation. Based on our experiences with the example calculation, we make recommendations to those interested in performing crashworthiness calculations. The example presented in this paper was supplied by Suzuki Motor Co., Ltd., and provided a significant shakedown for the new large deformation shell capability of the DYNA3D code. 15 refs., 3 figs.

  2. Q3dComms Version 0.9

    Energy Science and Technology Software Center (OSTI)

    2012-01-05

    Q3dComms provides an interface to the commercial package Quest30 . Quest30 connectors called "channels" can be directly mapped to Umbra connectors using this tool. Furthermore, virtual 30 worlds created in Quest30 can be connected to Umbra with this tool.

  3. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal

    SciTech Connect (OSTI)

    Zheng, J.; Birktoft, J; Yi, C; Tong, W; Ruojie, S; Constantinou, P; Ginell, S; Chenge, M; Seeman, N

    2009-01-01

    We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter1. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends2. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so3; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4?Angstroms resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle4. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control.

  4. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect (OSTI)

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  5. F3D Image Processing and Analysis for Many - and Multi-core Platforms

    Energy Science and Technology Software Center (OSTI)

    2014-10-01

    F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizingmore » for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expedites any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less

  6. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  7. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect (OSTI)

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.

  8. Laser device

    DOE Patents [OSTI]

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  9. Laser device

    DOE Patents [OSTI]

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  10. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W.; Sizer, J.P.

    1995-11-01

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  11. Nano-Composite Material Development for 3-D Printers

    SciTech Connect (OSTI)

    Satches, Michael Randolph

    2015-12-01

    Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.

  12. DYNA3D Non-reflecting Boundary Conditions - Test Problems

    SciTech Connect (OSTI)

    Zywicz, E

    2006-09-28

    Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.

  13. A new automatic contact formulation in DYNA3D

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1993-08-01

    This paper presents a new approach for the automatic definition and treatment of mechanical contact in DYNA3D. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but must maintain high reliability and acceptable computational costs. The major features of the proposed new method include automatic identification of potentially contacting surfaces during the initialization phase, a new high-performance contact search procedure, and the use of a well-defined surface normal which allows a consistent treatment of shell intersection and corner contact conditions without ad-hoc rules. Three examples are presented which illustrate the performance of newly proposed algorithm in the public DYNA3D code.

  14. Homogeneous and Interfacial Catalysis in 3D Controlled Environment | The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Homogeneous and Interfacial Catalysis in 3D Controlled Environment FWP/Project Description: Project Leader(s): Marek Pruski Principal Investigators: Marek Pruski, Aaron Sadow, Igor Slowing Key Scientific Personnel: Takeshi Kobayashi This collaborative research effort is geared toward bringing together the best features of homogeneous and heterogeneous catalysis for developing new catalytic principles. Novel silica-based, single-site mesoporous catalysts with controlled,

  15. DREAM3D simulations of inner-belt dynamics

    SciTech Connect (OSTI)

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, ?, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and ?-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of ? and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  16. A material model driver for DYNA3D

    SciTech Connect (OSTI)

    Hallquist, J.O.; Whirley, R.G.

    1990-02-22

    This report describes a material model driver which has recently been implemented in the DYNA3D code. The material model driver allows plotting of the constitutive response predicted by a material model under a given load path. This capability is particularly useful when fitting complex material models to experimental data. The plotting capability of the material model driver facilitates comparison of the simulated material stress-strain behavior with actual material test results. 1 ref., 6 figs., 4 tabs.

  17. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect (OSTI)

    Parker, Sherwood I.

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  18. Beam and Truss Finite Element Verification for DYNA3D

    SciTech Connect (OSTI)

    Rathbun, H J

    2007-07-16

    The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.

  19. Parallel 3-D method of characteristics in MPACT

    SciTech Connect (OSTI)

    Kochunas, B.; Dovvnar, T. J.; Liu, Z.

    2013-07-01

    A new parallel 3-D MOC kernel has been developed and implemented in MPACT which makes use of the modular ray tracing technique to reduce computational requirements and to facilitate parallel decomposition. The parallel model makes use of both distributed and shared memory parallelism which are implemented with the MPI and OpenMP standards, respectively. The kernel is capable of parallel decomposition of problems in space, angle, and by characteristic rays up to 0(104) processors. Initial verification of the parallel 3-D MOC kernel was performed using the Takeda 3-D transport benchmark problems. The eigenvalues computed by MPACT are within the statistical uncertainty of the benchmark reference and agree well with the averages of other participants. The MPACT k{sub eff} differs from the benchmark results for rodded and un-rodded cases by 11 and -40 pcm, respectively. The calculations were performed for various numbers of processors and parallel decompositions up to 15625 processors; all producing the same result at convergence. The parallel efficiency of the worst case was 60%, while very good efficiency (>95%) was observed for cases using 500 processors. The overall run time for the 500 processor case was 231 seconds and 19 seconds for the case with 15625 processors. Ongoing work is focused on developing theoretical performance models and the implementation of acceleration techniques to minimize the number of iterations to converge. (authors)

  20. Final Report - Study of Shortwave Spectra in Fully 3D Environment...

    Office of Scientific and Technical Information (OSTI)

    3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements Citation Details In-Document Search Title: Final Report - Study of Shortwave Spectra in Fully 3D ...

  1. Photo 3D-Printer, Image Credit, Ames Lab | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Photo 3D-Printer, Image Credit, Ames Lab Critical Materials Institute speed metals research with 3D printer. Default Caption and Credits Read More: Critical Materials Institute ...

  2. Streamlining of the RELAP5-3D Code

    SciTech Connect (OSTI)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a programs execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

  3. 3D J-Integral Capability in Grizzly

    SciTech Connect (OSTI)

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  4. Uncertainty Analysis of RELAP5-3D

    SciTech Connect (OSTI)

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  5. A non-conforming 3D spherical harmonic transport solver

    SciTech Connect (OSTI)

    Van Criekingen, S.

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  6. 3D Tracking at the Nanoscale | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Tracking at the Nanoscale A new theory shows that reactivity at catalytic sites inside narrow pores is controlled by how molecules move at the pore openings. Like cars approaching a single lane tunnel from which other cars are emerging, the movement of molecules depends on their distance into the pore; near the ends of the pores, exchange is rapid compared to further into the pores. Dynamics at the openings of these pores controls the penetration of reactants and thus overall conversion to

  7. DYNA3D: a finite element program for supercomputers

    SciTech Connect (OSTI)

    Benson, D.J.; Hallquist, J.O.

    1986-01-01

    DYNA3D is an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. 8 refs., 15 figs.

  8. A new elastoplastic shell element formulation for DYNA3D

    SciTech Connect (OSTI)

    Engelmann, B.E.; Whirley, R.G.

    1990-08-01

    The analysis of shell structures undergoing dynamic elastoplastic deformation is an important capability of DYNA3D. This paper presents an improved formulation for a 4-node quadrilateral shell element for explicit dynamic analysis. The proposed element is derived from a three-field weak form, and incorporates recently developed assumed strain methods for improved accuracy. In addition, the element is formulated in a large-displacement small-strain setting for minimum cost. Complex nonlinear constitutive models are easily incorporated into this formulation. Numerical examples illustrating the accuracy, robustness, and speed of the new element are shown. 13 refs., 3 tabs.

  9. System and method for 3D printing of aerogels

    DOE Patents [OSTI]

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  10. Correlated electron pseudopotentials for 3d-transition metals

    SciTech Connect (OSTI)

    Trail, J. R. Needs, R. J.

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc ? Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  11. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  12. THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D

    SciTech Connect (OSTI)

    Howard, T. A.; DeForest, C. E.; Tappin, S. J.; Odstrcil, D.

    2013-03-01

    In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features.

  13. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect (OSTI)

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  14. DYNA3D Material Model 71 - Solid Element Test Problem

    SciTech Connect (OSTI)

    Zywicz, E

    2008-01-24

    A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.

  15. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect (OSTI)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  16. A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution

    SciTech Connect (OSTI)

    Bitter, M. Hill, K. W.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N.; Lu, Jian; Beiersdorfer, P.; Chen, Hui

    2014-11-15

    This paper describes a new type of x-ray crystal spectrometer, which can be used in combination with gated x-ray detectors to obtain spectra from laser-produced plasmas with a high (sub-ns) time resolution. The spectrometer consists of a convex, spherically bent crystal, which images individual spectral lines as perfectly straight lines across multiple, sequentially gated, strip detectors. Since the Bragg-reflected rays are divergent, the distance between detector and crystal is arbitrary, so that this distance can be appropriately chosen to optimize the experimental arrangement with respect to the detector parameters. The spectrometer concept was verified in proof-of-principle experiments by imaging the L?{sub 1}- and L?{sub 2}-lines of tungsten, at 9.6735 and 9.96150 keV, from a micro-focus x-ray tube with a tungsten target onto a two-dimensional pixilated Pilatus detector, using a convex, spherically bent Si-422 crystal with a radius of curvature of 500 mm.

  17. Design of a Subnanometer Resolution Beam Position Monitor for...

    Office of Scientific and Technical Information (OSTI)

    for Dielectric Laser Accelerators Citation Details In-Document Search Title: Design of a Subnanometer Resolution Beam Position Monitor for Dielectric Laser Accelerators You ...

  18. SU-E-T-376: 3-D Commissioning for An Image-Guided Small Animal Micro- Irradiation Platform

    SciTech Connect (OSTI)

    Qian, X; Wuu, C; Admovics, J

    2014-06-01

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360 with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated using star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360 to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 0.1 mm and mouse stage rotation isocentricity is about 0.91 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  19. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  20. DOE Science Showcase - 3D Printing | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information 3D Printing The Critical Materials Institute speeds metals research with 3D printer. Image Credit: Ames Laboratory (Ames Lab). 3D printing is an additive manufacturing process that creates 3D objects directly from a computer model, depositing material layer by layer only where required. This technique, while still evolving, is projected to profoundly impact manufacturing. 3D printing can give industry new design flexibility, reduce energy use, and shorten

  1. RELAP5-3D Restart and Backup Verification Testing

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2013-09-01

    Existing testing methodology for RELAP5-3D employs a set of test cases collected over two decades to test a variety of code features and run on a Linux or Windows platform. However, this set has numerous deficiencies in terms of code coverage, detail of comparison, running time, and testing fidelity of RELAP5-3D restart and backup capabilities. The test suite covers less than three quarters of the lines of code in the relap directory and just over half those in the environmental library. Even in terms of code features, many are not covered. Moreover, the test set runs many problems long past the point necessary to test the relevant features. It requires standard problems to run to completion. This is unnecessary for features can be tested in a short-running problem. For example, many trips and controls can be tested in the first few time steps, as can a number of fluid flow options. The testing system is also inaccurate. For the past decade, the diffem script has been the primary tool for checking that printouts from two different RELAP5-3D executables agree. This tool compares two output files to verify that all characters are the same except for those relating to date, time and a few other excluded items. The variable values printed on the output file are accurate to no more than eight decimal places. Therefore, calculations with errors in decimal places beyond those printed remain undetected. Finally, fidelity of restart is not tested except in the PVM sub-suite and backup is not specifically tested at all. When a restart is made from any midway point of the base-case transient, the restart must produce the same values. When a backup condition occurs, the code repeats advancements with the same time step. A perfect backup can be tested by forcing RELAP5 to perform a backup by falsely setting a backup condition flag at a user-specified-time. Comparison of the calculations of that run and those produced by the same input w/o the spurious condition should be identical. Backup testing is more difficult the other kinds of testing described above because it requires additional coding to implement. The testing system constructed and described in this document resolves all of these issues. A matrix of test features and short-running cases that exercise them is presented. A small information file that contains sufficient data to verify calculations to the last decimal place and bit is produced. This testing system is used to test base cases (called null testing) as well as restart and backup cases. The programming that implements these new capabilities is presented.

  2. Interactive initialization of 2D/3D rigid registration

    SciTech Connect (OSTI)

    Gong, Ren Hui; Gler, zgr; Krkloglu, Mustafa; Lovejoy, John; Yaniv, Ziv

    2013-12-15

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 5.0 mm with an average interaction time of 146.3 73.0 s, and the AR-based method had mTREs of 7.2 3.2 mm with interaction times of 44 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 5.0 mm with an average interaction time of 132.1 66.4 s, and the AR-based method had mTREs of 8.3 5.0 mm with interaction times of 58 52 s. Conclusions: Based on the authors' evaluation, the authors conclude that the registration approaches are sufficiently accurate for initializing 2D/3D registration in the OR setting, both when a tracking system is not in use (gesture based approach), and when a tracking system is already in use (AR based approach)

  3. Detecting Distance between Injected Microspheres and Target Tumor via 3D Reconstruction of Tissue Sections

    SciTech Connect (OSTI)

    Carson, James P.; Kuprat, Andrew P.; Colby, Sean M.; Davis, Cassi A.; Basciano, Christopher; Greene, Kevin; Feo, John T.; Kennedy, Andrew

    2012-08-28

    One treatment increasing in use for solid tumors in the liver is radioembolization via the delivery of 90Y microspheres to the vascular bed within or near the location of the tumor. It is desirable as part of the treatment for the microspheres to embed preferentially in or near the tumor. This work details an approach for analyzing the deposition of microspheres with respect to the location of the tumor. The approach used is based upon thin-slice serial sectioning of the tissue sample, followed by high resolution imaging, microsphere detection, and 3-D reconstruction of the tumor surface. Distance from the microspheres to the tumor was calculated using a fast deterministic point inclusion method.

  4. Automating the determination of 3D protein structure

    SciTech Connect (OSTI)

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  5. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  6. Visualizing 3D velocity fields near contour surfaces. Revision 1

    SciTech Connect (OSTI)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  7. 3D Model of the Neal Hot Springs Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  8. TRACE3D. Interactive Beam-Dynamics Program

    SciTech Connect (OSTI)

    Singleton, L.; Yao, C.Y.

    1993-12-01

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

  9. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30 eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  10. Modeling the GFR with RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis; Theron D. Marshall; K. D. Weaver

    2005-09-01

    Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

  11. 3D deformation field throughout the interior of materials.

    SciTech Connect (OSTI)

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  12. Automatic contact in DYNA3D for vehicle crashworthiness

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1993-07-15

    This paper presents a new formulation for the automatic definition and treatment of mechanical contact in explicit nonlinear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. This paper discusses in detail a new four-step automatic contact algorithm. Key aspects of the proposed method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a smoothly varying surface normal which allows a consistent treatment of shell intersection and corner contact conditions without ad-hoc rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public DYNA3D code.

  13. Shell Element Verification & Regression Problems for DYNA3D

    SciTech Connect (OSTI)

    Zywicz, E

    2008-02-01

    A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.

  14. DYNA3D: A computer code for crashworthiness engineering

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1986-09-01

    A finite element program with crashworthiness applications has been developed at LLNL. DYNA3D, an explicit, fully vectorized, finite deformation structural dynamics program, has four capabilities that are critical for the efficient and realistic modeling crash phenomena: (1) fully optimized nonlinear solid, shell, and beam elements for representing a structure; (2) a broad range of constitutive models for simulating material behavior; (3) sophisticated contact algorithms for impact interactions; (4) a rigid body capability to represent the bodies away from the impact region at a greatly reduced cost without sacrificing accuracy in the momentum calculations. Basic methodologies of the program are briefly presented along with several crashworthiness calculations. Efficiencies of the Hughes-Liu and Belytschko-Tsay shell formulations are considered.

  15. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30 eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  16. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect (OSTI)

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  17. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  18. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  19. Implementing inverted master-slave 3D semiconductor stack

    DOE Patents [OSTI]

    Coteus, Paul W.; Hall, Shawn A.; Takken, Todd E.

    2016-03-08

    A method and apparatus are provided for implementing an enhanced three dimensional (3D) semiconductor stack. A chip carrier has an aperture of a first length and first width. A first chip has at least one of a second length greater than the first length or a second width greater than the first width; a second chip attached to the first chip, the second chip having at least one of a third length less than the first length or a third width less than the first width; the first chip attached to the chip carrier by connections in an overlap region defined by at least one of the first and second lengths or the first and second widths; the second chip extending into the aperture; and a heat spreader attached to the chip carrier and in thermal contact with the first chip for dissipating heat from both the first chip and second chip.

  20. 3D model generation using an airborne swarm

    SciTech Connect (OSTI)

    Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithms computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  1. Simulation of underwater explosion benchmark experiments with ALE3D

    SciTech Connect (OSTI)

    Couch, R.; Faux, D.

    1997-05-19

    Some code improvements have been made during the course of this study. One immediately obvious need was for more flexibility in the constitutive representation for materials in shell elements. To remedy this situation, a model with a tabular representation of stress versus strain and rate dependent effects was implemented. This was required in order to obtain reasonable results in the IED cylinder simulation. Another deficiency was in the ability to extract and plot variables associated with shell elements. The pipe whip analysis required the development of a scheme to tally and plot time dependent shell quantities such as stresses and strains. This capability had previously existed only for solid elements. Work was initiated to provide the same range of plotting capability for structural elements that exist with the DYNA3D/TAURUS tools. One of the characteristics of these problems is the disparity in zoning required in the vicinity of the charge and bubble compared to that needed in the far field. This disparity can cause the equipotential relaxation logic to provide a less than optimal solution. Various approaches were utilized to bias the relaxation to obtain more optimal meshing during relaxation. Extensions of these techniques have been developed to provide more powerful options, but more work still needs to be done. The results presented here are representative of what can be produced with an ALE code structured like ALE3D. They are not necessarily the best results that could have been obtained. More experience in assessing sensitivities to meshing and boundary conditions would be very useful. A number of code deficiencies discovered in the course of this work have been corrected and are available for any future investigations.

  2. A prototype fan-beam optical CT scanner for 3D dosimetry

    SciTech Connect (OSTI)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The flask registration technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. Conclusions: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.

  3. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect (OSTI)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.

  4. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  5. 3D Model of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

  6. 2D/3D registration algorithm for lung brachytherapy

    SciTech Connect (OSTI)

    Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.

    2013-02-15

    Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

  7. Airport Viz - a 3D Tool to Enhance Security Operations

    SciTech Connect (OSTI)

    Koch, Daniel B

    2006-01-01

    In the summer of 2000, the National Safe Skies Alliance (NSSA) awarded a project to the Applied Visualization Center (AVC) at the University of Tennessee, Knoxville (UTK) to develop a 3D computer tool to assist the Federal Aviation Administration security group, now the Transportation Security Administration (TSA), in evaluating new equipment and procedures to improve airport checkpoint security. A preliminary tool was demonstrated at the 2001 International Aviation Security Technology Symposium. Since then, the AVC went on to construct numerous detection equipment models as well as models of several airports. Airport Viz has been distributed by the NSSA to a number of airports around the country which are able to incorporate their own CAD models into the software due to its unique open architecture. It provides a checkpoint design and passenger flow simulation function, a layout design and simulation tool for checked baggage and cargo screening, and a means to assist in the vulnerability assessment of airport access points for pedestrians and vehicles.

  8. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect (OSTI)

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  9. Crashworthiness analysis using advanced material models in DYNA3D

    SciTech Connect (OSTI)

    Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.

    1993-10-22

    As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.

  10. DYNA3D/ParaDyn Regression Test Suite Inventory

    SciTech Connect (OSTI)

    Lin, J I

    2011-01-25

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of production release 10.1 in September 2010. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark in the corresponding column. The definition of ''feature'' has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds, compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

  11. DYNA3D analysis of the DT-20 shipping container

    SciTech Connect (OSTI)

    Logan, R.W.; Lovejoy, S.C.

    1991-08-22

    A DYNA3D model of the DT-20 shipping container was constructed. Impact onto a rigid steel surface at a velocity of 44 ft/sec (30 foot gravity drop) was studied. The orientation of most interest was a side-drop, but end and corner drops were also studied briefly. The assembly for the baseline side impact contained a 150 lb. payload. During this drop, the outer drum sustains plastic strains of up to 0.15, with most the deformation near the rim. The plywood/Celotex packing is crushed about 3 inches. The inner sealed can sees significant stresses, but barely reaches the onset of yielding in some local areas. Based on hand calculations, the bolts joining the can halves could see stresses near 50 ksi. It is felt that overall, the container should survive this drop. However, detailed modeling of the rim closure and the center bolted joint was not possible due to time constraints. Furthermore, better material models and properties are needed for the Celotex, plywood, and honeycomb in particular. 39 figs., 1 tab.

  12. Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases

    SciTech Connect (OSTI)

    Najjar, F M; Solberg, J; White, D

    2008-04-17

    A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

  13. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  14. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect (OSTI)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  15. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  16. Application Of 3D Inversion To Magnetotelluric Data In The Ogiri...

    Open Energy Info (EERE)

    3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Application Of 3D...

  17. Programmers Manual for the PVM Coupling Interface in RELAP5-3D

    SciTech Connect (OSTI)

    Walter L Weaver III

    2005-03-01

    This report describes the implementation of the PVM API in the RELAP5-3D computer code. The information in the report is intended for programmers wanting to correct or extend RELAP5-3D.

  18. In Operando Soft X-ray Spectroscopy of 3D Graphene Supercapacitor...

    Office of Scientific and Technical Information (OSTI)

    In Operando Soft X-ray Spectroscopy of 3D Graphene Supercapacitor Electrodes Citation Details In-Document Search Title: In Operando Soft X-ray Spectroscopy of 3D Graphene ...

  19. 3D Model of the San Emidio Geothermal Area (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    3D Model of the San Emidio Geothermal Area Title: 3D Model of the San Emidio Geothermal Area The San Emidio geothermal system is characterized by a left-step in a west-dipping ...

  20. EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and ...

  1. SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) | Open Energy...

    Open Energy Info (EERE)

    SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: SWTC v. Arizona Corp. Comn, 142 P3d 1240...

  2. A 3D-3C Reflection Seismic Survey and Data Integration to Identify...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of ... A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of ...

  3. Picture of the Week: An explosion of 3D printing technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An explosion of 3D printing technology Scientists in Los Alamos National Laboratory's Chemistry and Explosive Science and Shock Physics divisions are exploring new methods for 3D printing that allow for the function of materials to be controlled by their internal structure. May 24, 2015 An explosion of 3D printing technology x View image on Flickr » Additive Manufacturing, known also as 3D printing, allows for the rapid production of parts with complex shapes that would be impossible to

  4. Seeing A Factory As Never Before With 3D Laser Technology | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration for Radioactive Sources: Fact Sheet March 23, 2012 Radioactive materials are a critical and beneficial component of global medical, industrial, and academic efforts. The possibility that these materials could be used by terrorists is a national security concern. The National Nuclear Security Administration (NNSA), along with international and domestic partners, addresses radiological material security as part of its nuclear nonproliferation mission. US Radioactive Material

  5. 3D electromagnetic inversion for environmental site characterization

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1997-04-01

    A 3-D non-linear electromagnetic inversion scheme has been developed to produce images of subsurface conductivity structure from electromagnetic geophysical data. The solution is obtained by successive linearized model updates where full forward modeling is employed at each iteration to compute model sensitivities and predicted data. Regularization is applied to the problem to provide stability. Because the inverse part of the problem requires the solution of 10`s to 100`s of thousands of unknowns, and because each inverse iteration requires many forward models to be computed, the code has been implemented on massively parallel computer platforms. The use of the inversion code to image environmental sites is demonstrated on a data set collected with the Apex Parametrics {open_quote}MaxMin I-8S{close_quote} over a section of stacked barrels and metal filled boxes at the Idaho National Laboratory`s {open_quote}Cold Test Pit{close_quote}. The MaxMin is a loop-loop frequency domain system which operates from 440 Hz up to 56 kHz using various coil separations; for this survey coil separations of 15, 30 and 60 feet were employed. The out-of phase data are shown to be of very good quality while the in-phase are rather noisy due to slight mispositioning errors, which cause improper cancellation of the primary free space field in the receiver. Weighting the data appropriately by the estimated noise and applying the inversion scheme is demonstrated to better define the structure of the pit. In addition, comparisons are given for single coil separations and multiple separations to show the benefits of using multiple offset data.

  6. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect (OSTI)

    Rinehart, Alex; Petrusak, Robin (Advanced Resources International, Inc., Arlington, VA); Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  7. Hard x-ray photoelectron spectroscopy study of Ge{sub 2}Sb{sub 2}Te{sub 5}; as-deposited amorphous, crystalline, and laser-reamorphized

    SciTech Connect (OSTI)

    Richter, Jan H. Tominaga, Junji; Fons, Paul; Kolobov, Alex V.; Ueda, Shigenori; Yoshikawa, Hideki; Yamashita, Yoshiyuki; Ishimaru, Satoshi; Kobayashi, Keisuke

    2014-02-10

    We have investigated the electronic structure of as-deposited, crystalline, and laser-reamorphized Ge{sub 2}Sb{sub 2}Te{sub 5} using high resolution, hard x-ray photoemission spectroscopy. A shift in the Fermi level as well as a broadening of the spectral features in the valence band and the Ge 3d level between the amorphous and crystalline state is observed. Upon amorphization, Ge 3d and Sb 4d spectra show a surprisingly small breaking of resonant bonds and changes in the bonding character as evidenced by the very similar density of states in all cases.

  8. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect (OSTI)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup } Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2, respectively. Phantoms were also scanned using a ?CT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 ?m and 2 mm, respectively. Reconstructions using the EM stylet were compared to ?CT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the ?CT, the mean EM tip identification error was 0.69 0.29 mm while the CT error was 1.08 0.67 mm. The mean 3D distance error was found to be 0.66 0.33 mm and 1.08 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  9. EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles Can

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve EV Power and Efficiency | Department of Energy Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April 28, 2015 - 2:02pm Addthis 3-D Printed Inverter 3-D Printed Inverter Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and

  10. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect (OSTI)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldn, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  11. Measurement of 3D plasma response to external magnetic perturbations in the presence of a rotating external kink

    SciTech Connect (OSTI)

    Shiraki, Daisuke; Angelini, Sarah M.; Byrne, Patrick J.; DeBono, Bryan A.; Hughes, Paul E.; Levesque, Jeffrey P.; Mauel, Michael E.; Navratil, Gerald A.; Peng, Qian; Rhodes, Dov J.; Stoafer, Christopher C.; Maurer, David A.; Rath, Nikolaus

    2013-10-15

    The detailed measurements of the 3D plasma response to applied external magnetic perturbations in the presence of a rotating external kink are presented, and compared with the predictions of a single-helicity linear model of kink mode dynamics. The modular control coils of the High Beta Tokamak-Extended Pulse (HBT-EP) device are used to apply resonant m/n = 3/1 magnetic perturbations to wall-stabilized tokamak plasmas with a pre-existing rotating 3/1 kink mode. The plasma response is measured in high-resolution with the extensive magnetic diagnostic set of the HBT-EP device. The spatial structures of both the naturally rotating kink mode and the externally driven response are independently measured and observed to be identical, while the temporal dynamics are consistent with the independent evolution and superposition of the two modes. This leads to the observation of a characteristic change in 3D field dynamics as a function of the applied field amplitude. This amplitude dependence is found to be different for poloidal and radial fields. The measured 3D response is compared to and shown to be consistent with the predictions of the linear single-helicity model in the “high-dissipation” regime, as reported previously [M. E. Mauel et al., Nucl. Fusion 45, 285 (2005)].

  12. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect (OSTI)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models donâ??t consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called â??stepwise krigingâ?) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.

  13. Fully 3D-Integrated Pixel Detectors for X-Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; et al

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-?m-thick silicon sensor, a two-tier 34-?m-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-?m-diameter throughsilicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-?m-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using SnPb balls placed on a 320-?m pitch,moreyielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 ?W. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 ?V/e- with 2.6 e- rms and 2.7 ?V/e- rms pixel-to-pixel variations, respectively, were measured.less

  14. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    SciTech Connect (OSTI)

    Cornforth, Michael N.

    2013-05-03

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'.

  15. 3D reconstruction of nuclear reactions using GEM TPC with planar readout

    SciTech Connect (OSTI)

    Bihałowicz, Jan Stefan

    2015-02-24

    The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays of strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.

  16. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect (OSTI)

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; ,

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  17. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    SciTech Connect (OSTI)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Strauss, H.R.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data.

  18. Laser-driven flat plate impacts to 100 GPA with sub-nanosecond pulse duration and resolution for material property studies

    SciTech Connect (OSTI)

    Paisley, D.L.; Warnes, R.H.; Kopp, R.A.

    1991-01-01

    Miniature laser-driven flat plates (<1-mm diam {times} 0.5--10{mu}m thick, typical) of aluminum, cooper, tungsten, and other materials are accelerated to {le}5 km/s. These miniature plates are used to generate one-dimensional shock waves in solids, liquids, and crystals. Dynamic measurements of spall strength at strain rates {le}10{sup 7} s{sup {minus}1}, elastic-plastic shock wave profiles in 10-{mu}m-thick targets, shocked free-surface acceleration of 10{sup 12} m/s{sup 2}, and laser-driven plate launch accelerations of 10{sup 10} m/s{sup 2} are routinely obtained. The small size of the sample of and projectile mass permits recovery of targets without additional unintended damage or energy deposited into the test specimen. These miniature plates can be launched with conventional 1-J laboratory lasers. 10 refs., 5 figs.

  19. Why 3D Printers Might Create the Next Robotic Champion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Why 3D Printers Might Create the Next Robotic Champion Why 3D Printers Might Create the Next Robotic Champion December 11, 2013 - 4:18pm Addthis As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries, with tools like 3D printers. Dot Harris Dot Harris Director, Office of Economic

  20. Next Generation Lunch: Revealing the World's First 3D Printed Car (text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    version) | Department of Energy Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Next Generation Lunch: Revealing the World's First 3D Printed Car (text version) Below is the text version for the Next Generation Lunch: Revealing the World's First 3D Printed Car Video. FILE NAME: AEMC_09172014_luncheonaddress_nextgeneration SPEAKER: Ladies and gentleman, welcome and good afternoon. Please give a warm welcome to Dr. Mark Johnson, U.S. Department of Energy.

  1. 3D-Printed Foam Outperforms Standard Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D-Printed Foam Outperforms Standard Materials 3D-Printed Foam Outperforms Standard Materials April 27, 2016 - 5:58pm Addthis News release from Lawrence Livermore Laboratory, April 27, 2016. Lawrence Livermore National Laboratory (LLNL) material scientists have found that 3D-printed foam works better than standard cellular materials in terms of durability and long-term mechanical performance. Foams, also known as cellular solids, are an important class of materials with applications ranging from

  2. Energy Department Unveils 3D-Printed Building; New Initiatives During

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Day | Department of Energy Unveils 3D-Printed Building; New Initiatives During Industry Day Energy Department Unveils 3D-Printed Building; New Initiatives During Industry Day October 1, 2015 - 12:25pm Addthis The Energy Department announced several new and exciting innovations and programs during Industry Day held at Oak Ridge National Laboratory (ORNL) in Tennessee Sept. 23-24. This included unveiling a 3-D printed building with integrated energy storage via bidirectional wireless

  3. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  4. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  5. 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can

  6. Team develops 3-D sensor array for detection of neural responses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-D sensor array for detection of neural responses Team develops 3-D sensor array for detection of neural responses Los Alamos researchers and collaborators have demonstrated a prototype neural interface device of a novel 3-D device architecture. December 2, 2014 Scanning electron micrograph (SEM) images of the 60-electrode device with three-dimensional pillar electrodes (Inset A & B) connected by platinum metal traces terminating at bond pads on the outside edge of the device (Inset C).

  7. Synthesis and structure of a 2D → 3D framework with coexistence...

    Office of Scientific and Technical Information (OSTI)

    of hydrogen bonds and polythreading character Citation Details In-Document Search Title: Synthesis and structure of a 2D 3D framework with coexistence of hydrogen bonds ...

  8. 3D Geological Modelling In Bavaria - State-Of-The-Art At A State...

    Open Energy Info (EERE)

    variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs...

  9. ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efforts of the the lab's Additive Manufacturing Integrated Energy (AMIE) demonstration. ... by natural gas, were both printed using additive manufacturing via a large-scale 3D ...

  10. Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fan at Berkeley Lab have invented a method for growing highly regular, single-crystalline nanopillar arrays of optically active semiconductors to produce efficient, 3D solar...

  11. Anodization control for barrier-oxide thinning and 3D interconnected...

    Office of Scientific and Technical Information (OSTI)

    Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates Citation Details...

  12. Determination of 3-D Cloud Ice Water Contents by Combining Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo,...

  13. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured...

    Office of Scientific and Technical Information (OSTI)

    3D Unstructured Grids in Computational Biomechanics Citation Details In-Document Search ... DOE Contract Number: AC05-76RL01830 Resource Type: Journal Article Resource Relation: ...

  14. EERE Success Story-3D Printing Enables New Generation of Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... University of Maryland, College Park Oak Ridge National Laboratory 3D Systems Burr Oak Tool Luvata International Copper Association Wieland Heat Transfer Technologies Applications ...

  15. 3D-Printed Car by Local Motors - The Strati | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D-Printed Car by Local Motors - The Strati 3D-Printed Car by Local Motors - The Strati Local Motors 3D-Printed Car Timelapse Text Version The video starts with an image of the completed Strati and the Local Motors logo flashing on the screen. The process to create the 3D-printed car is shown high speed, with fast music. Again, the Local Motors logo flashes on the screen, along with the words "#3DPrintedCar." The video continues to show the 3D printing process high speed, interspersed

  16. EERE Success Story—Just Plain Cool, the 3D Printed Shelby Cobra

    Broader source: Energy.gov [DOE]

    Indistinguishable from conventional production vehicles on display, the 3D printed Shelby Cobra celebrated its 50th anniversary at the Detroit Auto Show in early January.

  17. Secretary Moniz Tours the 3D-Printed Shelby Cobra | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Also, engineers used BAAM to make the vehicle safer by developing lightweight, ultra-strong 3D-mesh structures for multidirectional crash zones. Combined, these advanced composite ...

  18. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma ...

  19. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction ...

  20. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    SciTech Connect (OSTI)

    Myllys, M.; Hkknen, H.; Korppi-Tommola, J.; Backfolk, K.; Sirvi, P.; Timonen, J.

    2015-04-14

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1??m spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70?nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can be concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.

  1. Electric-dipole allowed and intercombination transitions among the 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV

    SciTech Connect (OSTI)

    Deb, Narayan C.; Hibbert, Alan

    2010-07-15

    Oscillator strengths and transition rates for the electric-dipole (E1) allowed and intercombination transitions among 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV are calculated using the CIV3 code of Hibbert and coworkers. Using the Hartree-Fock functions up to 3d orbitals we have also optimized 4s, 4p, 4d, 4f, 5s, 5p and 5d orbitals of which 4s and 4p are taken to be spectroscopic and the remaining orbitals represent corrections to the spectroscopic orbitals or the correlation effects. The J-dependent levels of 108 LS states are included in the calculation and the relativistic effects are accounted for via the Breit-Pauli operator. Configurations are chosen in two steps: (a) two promotions were allowed from the 3p, 3d, 4s and 4p subshells, using all the orbitals; and (b) selective promotions from the 3s subshell are included, but only to the 3s and 4s orbitals. The ab initio fine-structure levels are then fine tuned to reproduce observed energy levels as closely as possible, and the resulting wavefunctions are used to calculate oscillator strengths and transition rates for all possible E1 transitions. For many of these transitions, the present results show good agreement between the length and velocity forms while for some transitions, some large disagreements are found with other available results. The complete list of weighted oscillator strengths, transition rates, and line strengths for transitions among the fine structure levels of the three lowest configurations are presented in ascending order of wavelength.

  2. A compact single-camera system for high-speed, simultaneous 3-D velocity and temperature measurements.

    SciTech Connect (OSTI)

    Lu, Louise; Sick, Volker; Frank, Jonathan H.

    2013-09-01

    The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan.

  3. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect (OSTI)

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  4. Bulge growth and quenching since z = 2.5 in CANDELS/3D-HST

    SciTech Connect (OSTI)

    Lang, Philipp; Wuyts, Stijn; Schreiber, Natascha M. Förster; Genzel, Reinhard; Lutz, Dieter; Rosario, David J.; Somerville, Rachel S.; Bell, Eric F.; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M.; Momcheva, Ivelina; Kocevski, Dale D.; McGrath, Elizabeth J.; Nelson, Erica J.; Primack, Joel R.; Skelton, Rosalind E.; and others

    2014-06-10

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 10{sup 10} M {sub ☉}, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 10{sup 11} M {sub ☉}. Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.

  5. 4-D stratigraphic architecture and 3-D reservoir zonation of the Mirado Formation, Cusiana Field, Colombia

    SciTech Connect (OSTI)

    Fajardo, A.A. ); Cross, T.A. )

    1996-01-01

    A high-resolution sequence stratigraphic study using 2300 feet of core calibrated with geophysical logs from 14 wells and 1800 measurements of porosity and permeability established the 4-D stratigraphy and 3-D reservoir zonation of the Mirador. Virtually all reservoir-quality facies are through cross-stratified sandstones which occur in channel facies successions in the lower Mirador, but in bay-head delta and estuarine channel facies successions in the upper Mirador. Petrophysical properties and the geometry, continuity and volume of reservoir-quality sandstones change regularly as function of their stratigraphic position. These vertical facies successions reflect increasing accommodation-to-sediment supply (A/S) ratio through each intermediate-term cycle. The upper long-term cycle comprises four intermediate-term, landward-stepping, symmetrical base-level cycles. These cycles consist of estuarine channel, bay-head to bay-fill facies successions. The transition from channel to bay-head to bay-fill facies successions represents an increase in A/S ratio, and the reverse transition indicates a decrease in A/S ratio. Sixteen reservoir zones were defined within the Cusiana field. Reservoirs within the upper and lower long-term cycles are separated by a continuous middle Mirador mudstone which creates two large reservoir divisions. At the second level of zonation, the reservoir compartments and fluid-flow retardants coincide with the intermediate-term stratigraphic cycles. A third level of reservoir compartmentalization follows the distribution of facies successions within the intermediate-term cycles. A strong stratigraphic control on reservoir properties occurs at the three scales of stratigraphic cyclicity. In all cases as A/S ratio increases, porosity and permeability decrease.

  6. 4-D stratigraphic architecture and 3-D reservoir zonation of the Mirado Formation, Cusiana Field, Colombia

    SciTech Connect (OSTI)

    Fajardo, A.A.; Cross, T.A.

    1996-12-31

    A high-resolution sequence stratigraphic study using 2300 feet of core calibrated with geophysical logs from 14 wells and 1800 measurements of porosity and permeability established the 4-D stratigraphy and 3-D reservoir zonation of the Mirador. Virtually all reservoir-quality facies are through cross-stratified sandstones which occur in channel facies successions in the lower Mirador, but in bay-head delta and estuarine channel facies successions in the upper Mirador. Petrophysical properties and the geometry, continuity and volume of reservoir-quality sandstones change regularly as function of their stratigraphic position. These vertical facies successions reflect increasing accommodation-to-sediment supply (A/S) ratio through each intermediate-term cycle. The upper long-term cycle comprises four intermediate-term, landward-stepping, symmetrical base-level cycles. These cycles consist of estuarine channel, bay-head to bay-fill facies successions. The transition from channel to bay-head to bay-fill facies successions represents an increase in A/S ratio, and the reverse transition indicates a decrease in A/S ratio. Sixteen reservoir zones were defined within the Cusiana field. Reservoirs within the upper and lower long-term cycles are separated by a continuous middle Mirador mudstone which creates two large reservoir divisions. At the second level of zonation, the reservoir compartments and fluid-flow retardants coincide with the intermediate-term stratigraphic cycles. A third level of reservoir compartmentalization follows the distribution of facies successions within the intermediate-term cycles. A strong stratigraphic control on reservoir properties occurs at the three scales of stratigraphic cyclicity. In all cases as A/S ratio increases, porosity and permeability decrease.

  7. SciSat AM: Stereo 01: 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

    SciTech Connect (OSTI)

    Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.

    2014-08-15

    Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered in air and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.

  8. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  9. EERE Success Story-3D Printing Enables New Generation of Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 3D Printing Enables New Generation of Heat Exchangers EERE Success Story-3D Printing Enables New Generation of Heat Exchangers March 17, 2016 - 10:32am Addthis The University of Maryland used direct metal printing—a 3D printing technology—to manufacture a unique miniaturized air-to-refrigerant heat exchanger as a single, continuous piece. Image: University of Maryland, Center for Environmental Energy Engineering. The University of Maryland used direct metal

  10. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  11. EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unique Ability to Power One Another | Department of Energy ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another November 17, 2015 - 10:42am Addthis EERE Success Story—ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another In September, the Department of Energy's Oak Ridge National Laboratory (ORNL) announced successful

  12. Parallel 3D Fast Fourier Transform Functions () | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Software: Parallel 3D Fast Fourier Transform Functions Citation Details Software Request Title: Parallel 3D Fast Fourier Transform Functions BigFFT is a scalable implementation of a three dimensional Fast Fourier Transform operation. Functions are included for forward and backward real-to-complex 3D transforms. Authors: Draeger, E. W. Publication Date: 2008-12-19 OSTI Identifier: 1253287 Report Number(s): BIGFFT; 002516WKSTN00 LLNL-CODE-432558 DOE Contract Number: DE-AC52-07NA27344 Software

  13. The Future of Manufacturing Takes Shape: 3D Printed Car on Display at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Summit | Department of Energy The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit September 17, 2014 - 9:50am Addthis WORLD&#039;S FIRST 1 of 6 WORLD'S FIRST The world's first 3D-printed car on display at the International Manufacturing Technology Show in Chicago last week. Arizona-based Local Motors, and Cincinnati Incorporated teamed with Oak

  14. Intense X-rays expose tiny flaws in 3-D printed titanium that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to breakage over time By Katie Elyce Jones * March 4, 2016 Tweet EmailPrint Titanium is strong but light - a ...

  15. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  16. Guide for 3D WARP simulations of hollow electron beam lenses...

    Office of Scientific and Technical Information (OSTI)

    test stand Citation Details In-Document Search Title: Guide for 3D WARP simulations of hollow electron beam lenses. Practical explanation on basis of Tevatron electron lens test ...

  17. Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and novel semiconductors.

  18. Why 3D Printers Might Create the Next Robotic Champion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a free Cube 3D printer, an innovative additive manufacturing tool that can aid them in ... I saw the innovation power of Oak Ridge's use of additive manufacturing when I toured its ...

  19. 3-D Inversion Of Borehole-To-Surface Electrical Data Using A...

    Open Energy Info (EERE)

    Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D...

  20. Beyond 3-D X-ray Imaging: Methodology Development and Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a...

  1. Using 3D Printing to Redesign Santa's Sleigh | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the past, we've utilized GE technology to redesign Santa's Sleigh and have asked our additive manufacturing researchers to design and print 3D printed Christmas tree...

  2. Researchers find 3-D printed parts to provide low-cost, custom...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on...

  3. 3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open...

    Open Energy Info (EERE)

    Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern...

  4. Pore-Controlled Formation of 0D Metal Complexes in Anionic 3D...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pore-Controlled Formation of 0D Metal Complexes in Anionic 3D Metal-Organic Frameworks Previous Next List Muwei Zhang, Mathieu Boscha and Hong-Cai Zhou, Cryst. Eng. Comm, 17,...

  5. EIA Energy Efficiency-Table 3d. Value Added by Selected Industries...

    Gasoline and Diesel Fuel Update (EIA)

    d Page Last Modified: May 2010 Table 3d. Value Added1 by Selected Industries, 1998, 2002, and 2006 (Current Brillion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  6. Low Temperature Assembly of Functional 3D DNA-PNA-Protein Complexes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Temperature Assembly of Functional 3D DNA-PNA-Protein Complexes Authors: Flory, J. D., Simmons, C. R., Lin, S., Johnson, T., Andreoni, A., Zook, J., Ghirlanda, G., Liu, Y.,...

  7. EERE Success Story-Just Plain Cool, the 3D Printed Shelby Cobra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This innovative 3D printing process took just six weeks, and the final result was a glistening roadster fitted with a 100-kilowatt electric motor that can still go zero to 60 mph ...

  8. Local Motors Begins Their Six Day Quest to 3D Print the 'Strati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Local Motors Begins Their Six Day Quest to 3D Print the 'Strati' Car Live at IMTS More Documents & Publications Printing a Car: A Team Effort in Innovation Printing a Car: ...

  9. Fabrication and applications of sub-micron 2D and 3D periodic...

    Office of Scientific and Technical Information (OSTI)

    In-Document Search Title: Fabrication and applications of sub-micron 2D and 3D periodic carbon structures. Abstract not provided. Authors: Burckel, David Bruce ; Polsky, Ronen ;...

  10. Status of ParaDyn: DYNA3D for parallel computing

    SciTech Connect (OSTI)

    Goudreau, G.L.; Hoover, C.G.; DeGrout, A.J.; Raboin, P.J.

    1996-04-17

    The evolution of DYNA3D from a vector supercomputer code into a parallel code is reviewed. Current status and target applications, especially those of interest to the Department of Defense.

  11. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    Energy Science and Technology Software Center (OSTI)

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  12. Real-time Process Monitoring and Temperature Mapping of the 3D...

    Office of Scientific and Technical Information (OSTI)

    Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process Citation Details In-Document Search Title: Real-time Process Monitoring and Temperature Mapping ...

  13. The 3D-Printed Shelby Cobra: Defining Rapid Innovation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It's been hard to miss in the media and on its almost non-stop road tour, but AMO wanted you to know that our 3D-printed EV version of the 50th anniversary Shelby Cobra just left ...

  14. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Now 3D is beginning to drift down into real-world metal products." Ellis created a CAD-CAM model of the shoebox-size mirror system and delivered it to Imperial Machine & Tool...

  15. California Trout, Inc. v. FERC, 313 F.3d 1131,1134, 1136 (9th...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal CaseHearing: California Trout, Inc. v. FERC, 313 F.3d 1131,1134, 1136 (9th Cir. 2002)Legal Abstract Ninth Circuit case that...

  16. California Trout, Inc. v. FERC, 313 F.3d 1131,1134,1136 (9th...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal CaseHearing: California Trout, Inc. v. FERC, 313 F.3d 1131,1134,1136 (9th Cir. 2002)Legal Hearing California Trout, Inc. v....

  17. Poly 3D fault modeling scripts/data for permeability potential of Washington State geothermal prospects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Swyer

    2015-02-05

    Matlab scripts/functions and data used to build Poly3D models and create permeability potential GIS layers for 1) Mount St Helen's, 2) Wind River Valley, and 3) Mount Baker geothermal prospect areas located in Washington state.

  18. A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes...

    Open Energy Info (EERE)

    data show that the volcanic edifice of Izu-Oshima Volcano has a mean magnetization intensity ranging from 10.4 to 12.1 Am. The derived 3D magnetic structure shows low...

  19. Secretary Moniz Test Drives the 3D-Printed Shelby Cobra | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Secretary Moniz Test Drives the 3D-Printed Shelby Cobra Secretary Moniz Test Drives the 3D-Printed Shelby Cobra Addthis Topic Manufacturing Alternative Fuel Vehicles The 50th anniversary Shelby Cobra was printed at the Department of Energy's Manufacturing Demonstration Facility at Oak Ridge National Laboratory using the BAAM (Big Area Additive Manufacturing) machine and is intended as a "plug-and-play" laboratory on wheels. The vehicle will allow research and development of

  20. Evaluating quantitative 3-D image analysis as a design tool for low

    Office of Scientific and Technical Information (OSTI)

    enriched uranium fuel compacts for the transient reactor test facility: A preliminary study (Journal Article) | SciTech Connect Journal Article: Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium fuel compacts for the transient reactor test facility: A preliminary study Citation Details In-Document Search This content will become publicly available on February 5, 2017 Title: Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium

  1. Final Report - Study of Shortwave Spectra in Fully 3D Environment.

    Office of Scientific and Technical Information (OSTI)

    Synergy Between Scanning Radars and Spectral Radiation Measurements (Technical Report) | SciTech Connect Report - Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements Citation Details In-Document Search Title: Final Report - Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements ARM set out 20 years ago to "close" the radiation problem, that is, to

  2. Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene

    Office of Scientific and Technical Information (OSTI)

    Expression Data (Conference) | SciTech Connect Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila

  3. ORISE: Wounded veteran finds new way to serve by training for career in 3D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printing Wounded veteran finds new way to serve by training for career in 3D printing New training program prepares veterans, others to enter advanced manufacturing workforce FOR IMMEDIATE RELEASE Aug. 4, 2014 FY14-56 Joseph Grabianowski OAK RIDGE, Tenn.-While 26-year-old wounded veteran Joseph Grabianowski has inspired Americans with his harrowing war story, someday he may be nationally known for building highly efficient exhaust systems for cars and trucks using 3D printing technology.

  4. 3D Covalent Organic Framework Materials database (Dataset) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Dataset: 3D Covalent Organic Framework Materials database Citation Details In-Document Search Title: 3D Covalent Organic Framework Materials database Authors: Haranczyk, Maciej [1] + Show Author Affiliations Lawrence Berkeley National Laboratory Publication Date: 2014-09-11 OSTI Identifier: 1155071 Report Number(s): 1 DOE Contract Number: AC02-05CH11231 Resource Type: Dataset Data Type: Numeric Data Resource Relation: Related Information: R.L. Martin et al Journal of Physical

  5. 3D Equilibrium Effects Due to RMP Application on DIII-D (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Technical Report: 3D Equilibrium Effects Due to RMP Application on DIII-D Citation Details In-Document Search Title: 3D Equilibrium Effects Due to RMP Application on DIII-D The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric

  6. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in

    Office of Scientific and Technical Information (OSTI)

    Computational Biomechanics (Journal Article) | SciTech Connect An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics Citation Details In-Document Search Title: An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous

  7. Numerical Study of Velocity Shear Stabilization of 3D and Theoretical

    Office of Scientific and Technical Information (OSTI)

    Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited Fusion Concepts (Technical Report) | SciTech Connect Numerical Study of Velocity Shear Stabilization of 3D and Theoretical Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited Fusion Concepts Citation Details In-Document Search Title: Numerical Study of Velocity Shear Stabilization of 3D and Theoretical Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited

  8. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer

    Office of Scientific and Technical Information (OSTI)

    Printing Process (Conference) | SciTech Connect Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process Citation Details In-Document Search Title: Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as

  9. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  10. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect (OSTI)

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  11. High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and

    Office of Scientific and Technical Information (OSTI)

    Delaunay Tessellation (Conference) | SciTech Connect SciTech Connect Search Results Conference: High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation Citation Details In-Document Search Title: High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations,

  12. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has developed a method to calculate accurate band structures and bandgap energies for 3d transition metal oxides using an augmented GW formalism. Significance and Impact This approach provides a computationally viable route for high-throughput prediction of band structures and optical properties in transition metal compounds. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides S. Lany, Phys. Rev. B 87, 085112 (2013). Density of states (DOS) and absorption spectrum, shown for

  13. New local potential useful for genome annotation and 3D modeling (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: New local potential useful for genome annotation and 3D modeling Citation Details In-Document Search Title: New local potential useful for genome annotation and 3D modeling A new potential energy function representing the conformational preferences of sequentially local regions of a protein backbone is presented. This potential is derived from secondary structure probabilities such as those produced by neural network-based prediction methods. The

  14. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. The primary objective of this project is to conduct a 3C 3D (converted shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA.The intent of the proposed program is to use a 3D seismic survey with converted shear waves combined with other available data to site and drill production wells at Wister, a blind geothermal resource.

  15. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  16. High-resolution measurements of the spatial and temporal evolution...

    Office of Scientific and Technical Information (OSTI)

    temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions Citation Details In-Document Search Title: High-resolution measurements...

  17. Design of a Subnanometer Resolution Beam Position Monitor for...

    Office of Scientific and Technical Information (OSTI)

    Title: Design of a Subnanometer Resolution Beam Position Monitor for Dielectric Laser Accelerators Authors: Soong, Ken ; Byer, Robert L. ; Stanford U., Appl. Phys. Dept. SLAC ...

  18. Twisted 3D N=4 supersymmetric YM on deformed A{sub 3}{sup *} lattice

    SciTech Connect (OSTI)

    Saidi, El Hassan

    2014-01-15

    We study a class of twisted 3D N=4 supersymmetric Yang-Mills (SYM) theory on particular 3-dimensional lattice L{sub 3D} formally denoted as L{sub 3D}{sup su{sub 3}×u{sub 1}} and given by non-trivial fibration L{sub 1D}{sup u{sub 1}}×L{sub 2D}{sup su{sub 3}} with base L{sub 2D}{sup su{sub 3}}=A{sub 2}{sup *}, the weight lattice of SU(3). We first, develop the twisted 3D N=4 SYM in continuum by using superspace method where the scalar supercharge Q is manifestly exhibited. Then, we show how to engineer the 3D lattice L{sub 3D}{sup su{sub 3}×u{sub 1}} that host this theory. After that we build the lattice action S{sub latt} invariant under the following three points: (i) U(N) gauge invariance, (ii) BRST symmetry, (iii) the S{sub 3} point group symmetry of L{sub 3D}{sup su{sub 3}×u{sub 1}}. Other features such as reduction to twisted 2D supersymmetry with 8 supercharges living on L{sub 2D}≡L{sub 2D}{sup su{sub 2}×u{sub 1}}, the extension to twisted maximal 5D SYM with 16 supercharges on lattice L{sub 5D}≡L{sub 5D}{sup su{sub 4}×u{sub 1}} as well as the relation with known results are also given.

  19. Two-color X-rays Give Scientists 3-D View of the Unknown | U...

    Office of Science (SC) Website

    with a pair of precisely tuned X-ray laser pulses of different colors, or photon energies. ... photocathode with a train of two laser pulses separated in time by a few picoseconds. ...

  20. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect (OSTI)

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  1. Implementation of DOWTHERM A Properties into RELAP5-3D/ATHENA

    SciTech Connect (OSTI)

    Richard L. Moore

    2010-04-01

    DOWTHERM A oil is being considered for use as a heat transfer fluid in experiments to help in the design of heat transfer components for the Next Generation Nuclear Plant (NGNP). In conjection with the experiments RELAP5-3D/ATHENA will be used to help design and analyzed the data generated by the experiments. Inorder to use RELAP5-3D the thermophysical properties of DOWTHERM A were implemented into the fluids package of the RELAP5-3D/ATHENA computer propgram. DOWTHERM A properties were implemented in RELAP5-3D/ATHENA using thermophysical property data obtain from a Dow Chemical Company brochure. The data were curve fit and the polynomial equations developed for each required property were input into a fluid property generator. The generated data was then compared to the orginal DOWTHERM A data to verify that the fluid property data generated by the RELAP5-3D/ATHENA code was representitive of the original input data to the generator.

  2. Tailorable 3D microfabrication for photonic applications: two-polymer microtransfer molding (proceedings paper)

    SciTech Connect (OSTI)

    Lee, Jae-Hwang; kim, Chang-Hwan; Constant, Kristen; Ho, Kai-Ming

    2006-02-28

    For photonic devices, extending beyond the planar regime to the third dimension can allow a higher degree of integration and novel functionalities for applications such as photonic crystals and integrated optical circuits. Although conventional photolithography can achieve both high quality and structural control, it is still costly and slow for three-dimensional (3D) fabrication. Moreover, as diverse functional polymers emerge, there is potential to develop new techniques for quick and economical fabrication of 3D structures. We present a 3D microfabrication technique based on the soft lithographic technique, called two-polymer microtransfer molding (2P-{micro}TM) to accomplish low cost, high structural fidelity and tailorable 3D microfabrication for polymers. Using 2P-{micro}TM, highly layered polymeric microstructures are achievable by stacking planar structures layer by layer. For increased processing control, the surface chemistry of the polymers is characterized as a function of changing ultraviolet dosage to optimize yield in layer transfer. We discuss the application of the 2P-{micro}TM to build polymer templates for woodpile photonic crystals, and demonstrate methods for converting the polymer templates to dielectric and metallic photonic crystal structures. Finally, we will show that 2P-{micro}TM is promising for fabricating 3D polymeric optical waveguides.

  3. LayTracks3D: A new approach for meshing general solids using medial axis transform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less

  4. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect (OSTI)

    Chen, Chih-Hao; Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC; Department of Biomedical Engineering, I-Shou University, Taiwan, ROC ; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  5. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect (OSTI)

    Qian Chen

    2008-08-18

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  6. RELAP5-3D Code Includes Athena Features and Models

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  7. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  8. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  9. Local Motors Begins Their Six Day Quest to 3D Print the ‘Strati’ Car Live at IMTS

    Broader source: Energy.gov [DOE]

    An article detailing Local Motors' preparation to 3D print a car at the September 2014 International Manufacturing Technology Show.

  10. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season. Because 60-90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources vulnerability to climate change and air pollution.

  11. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lasers Pave Way for Tabletop Accelerators 'Erratic' Lasers Pave Way for Tabletop Accelerators Simulations at NERSC help researchers simplify design of mini particle accelerators June 9, 2014 Kate Green, KGreene@lbl.gov, 510-486-4404 laserplasmaaccelerator 3D map of the longitudinal wakefield generated by the incoherent combination of 208 low-energy laser beamlets. In the region behind the driver, the wakefield is regular. Image: Carlo Benedetti, Berkeley Lab Making a tabletop particle

  12. Equation-of-State Test Suite for the DYNA3D Code

    SciTech Connect (OSTI)

    Benjamin, Russell D.

    2015-11-05

    This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.

  13. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  14. 3D calculation of Tucson-Melbourne 3NF effect in triton binding energy

    SciTech Connect (OSTI)

    Hadizadeh, M. R.; Tomio, L.; Bayegan, S.

    2010-08-04

    As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.

  15. Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1

    SciTech Connect (OSTI)

    1994-07-01

    3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment.

  16. Models the Electromagnetic Response of a 3D Distribution using MP COMPUTERS

    Energy Science and Technology Software Center (OSTI)

    1999-05-01

    EM3D models the electromagnetic response of a 3D distribution of conductivity, dielectric permittivity and magnetic permeability within the earth for geophysical applications using massively parallel computers. The simulations are carried out in the frequency domain for either electric or magnetic sources for either scattered or total filed formulations of Maxwell''s equations. The solution is based on the method of finite differences and includes absorbing boundary conditions so that responses can be modeled up into themore » radar range where wave propagation is dominant. Recent upgrades in the software include the incorporation of finite size sources, that in addition to dipolar source fields, and a low induction number preconditioner that can significantly reduce computational run times. A graphical user interface (GUI) is bundled with the software so that complicated 3D models can be easily constructed and simulated with the software. The GUI also allows for plotting of the output.« less

  17. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    SciTech Connect (OSTI)

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-08

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

  18. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  19. 3D Cobra, Renewable Energy, and Green Button at the National Maker Faire |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3D Cobra, Renewable Energy, and Green Button at the National Maker Faire 3D Cobra, Renewable Energy, and Green Button at the National Maker Faire June 12, 2015 - 9:15am Addthis The National Maker Faire aims to celebrate all things science, technology, engineering, art, and math through do-it-yourself and do-it-with-others projects and fun. The National Maker Faire aims to celebrate all things science, technology, engineering, art, and math through do-it-yourself and

  20. PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Authors: Flory, J.D., Shinde, S., Lin, S., Liu, Y., Yan, H., Ghirlanda, G., and Fromme, P. Title: PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Source: J. Am. Chem. Soc. Year: 2013 Volume: 135 (18) Pages: 6985-6993 ABSTRACT: Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA

  1. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D

    Office of Scientific and Technical Information (OSTI)

    and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark (Conference) | SciTech Connect Conference: New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark Citation Details In-Document Search Title: New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark PHISICS is a neutronics code system currently under

  2. Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3D Printing Brings Classic Shelby Cobra to Life Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life April 15, 2015 - 4:02pm Addthis Zero to 60 in under five seconds. Concept to reality in just six weeks. 1 of 22 Zero to 60 in under five seconds. Concept to reality in just six weeks. The classic Shelby Cobra roadster turns 50 in 2015. To celebrate, a team of engineers at the Department of Energy's Oak Ridge National Laboratory set out to create a replica of this iconic

  3. DYNA3D user's manual (nonlinear dynamic analysis of solids in three-dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1982-11-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite-element code for analyzing the large-deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. DYNA3D contains fifteen material models and nine equations of state to cover a wide range of material behavior.

  4. DYNA3D user's manual (nonlinear dynamic analysis of solids in three dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1984-04-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. DYNA3D contains fifteen material models and nine equations of state to cover a wide range of material behavior.

  5. KIVA: a comprehensive model for 2D and 3D engine simulations

    SciTech Connect (OSTI)

    Amsden, A.A.; Butler, T.D.; O'Rourke, P.J.; Ramshaw, J.D.

    1985-01-01

    This paper summarizes a comprehensive numerical model that represents the spray dynamics, fluid flow, species transport, mixing, chemical reactions, and accompanying heat release that occur inside the cylinder of an internal combustion engine. The model is embodied in the KIVA computer code. The code calculates both two-dimensional (2D) and three-dimensional (3D) situations. It is an outgrowth of the earlier 2D CONCHAS-SPRAY computer program. Sample numerical calculations are presented to indicate the level of detail that is available from these simulations. These calculations are for a direct injection stratified charge engine with swirl. Both a 2D and a 3D example are shown.

  6. GE Uses 3D Printers to Make Jet Parts | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uses 3D Printers to Make Jet Parts Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Uses 3D Printers to Make Jet Parts GE Global Research 2013.12.05 Christine Furstoss, Technology Director for Manufacturing and Materials Technologies, was interviewed on Bloomberg Television's "Bloomberg West" by Emily Chang.

  7. The Benefits of 3D vs. 2D Analysis | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits of 3D vs. 2D Analysis Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Benefits of 3D vs. 2D Analysis Vin Smentkowski 2015.05.20 I am a research chemist and my field of research is surface characterization using a technique called Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). About a decade ago,

  8. Synthesis and structure of a 2D → 3D framework with coexistence of

    Office of Scientific and Technical Information (OSTI)

    hydrogen bonds and polythreading character (Journal Article) | SciTech Connect Synthesis and structure of a 2D → 3D framework with coexistence of hydrogen bonds and polythreading character Citation Details In-Document Search Title: Synthesis and structure of a 2D → 3D framework with coexistence of hydrogen bonds and polythreading character The title complex, ([Co(BPPA)(5-OH-bdc)] * (H{sub 2}O)){sub n} was prepared under hydrothermal conditions based on two ligands, namely,

  9. Validation and Application of the 3D Neutron Transport MPACT within CASL

    Office of Scientific and Technical Information (OSTI)

    VERA-CS (Conference) | SciTech Connect Validation and Application of the 3D Neutron Transport MPACT within CASL VERA-CS Citation Details In-Document Search Title: Validation and Application of the 3D Neutron Transport MPACT within CASL VERA-CS This paper is Included in the session on multiscale multiphysics applications in thermal hydraulics. Authors: Kouchunas, Brendan [1] ; Jabaay, Dan [1] ; Downar, Thomas [1] ; Collins, Benjamin S [2] ; Stimpson, Shane G [2] ; Godfrey, Andrew T [2] ; Kim,

  10. Local-global alignment for finding 3D similarities in protein structures

    DOE Patents [OSTI]

    Zemla, Adam T.

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  11. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    SciTech Connect (OSTI)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  12. Opacity of iron, nickel, and copper plasmas in the x-ray wavelength range: Theoretical interpretation of 2p-3d absorption spectra

    SciTech Connect (OSTI)

    Blenski, T.; Loisel, G.; Poirier, M.; Thais, F.; Arnault, P.; Caillaud, T.; Fariaut, J.; Gilleron, F.; Pain, J.-C.; Porcherot, Q.; Reverdin, C.; Silvert, V.; Villette, B.; Bastiani-Ceccotti, S.; Turck-Chieze, S.; Foelsner, W.; Gaufridy de Dortan, F. de

    2011-09-15

    This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm{sup 3}. The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code sco and with the fine-structure atomic physics codes hullac and fac. A new mixed version of the sco code allowing one to treat part of the configurations by detailed calculation based on the Cowan's code rcg has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by sco. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code scric. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the {Delta}n=0 absorption in medium-Z plasmas for astrophysical applications.

  13. Comparing GPU Implementations of Bilateral and Anisotropic Diffusion Filters for 3D Biomedical Datasets

    SciTech Connect (OSTI)

    Howison, Mark

    2010-05-06

    We compare the performance of hand-tuned CUDA implementations of bilateral and anisotropic diffusion filters for denoising 3D MRI datasets. Our tests sweep comparable parameters for the two filters and measure total runtime, memory bandwidth, computational throughput, and mean squared errors relative to a noiseless reference dataset.

  14. Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).

    Energy Science and Technology Software Center (OSTI)

    1992-03-24

    HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.

  15. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics

    Energy Science and Technology Software Center (OSTI)

    1998-01-13

    Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.

  16. Recent Hydrodynamics Improvements to the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard.R. Schultz

    2009-07-01

    The hydrodynamics section of the RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) improved turbine model, (2) spray model for the pressurizer model, (3) feedwater heater model, (4) radiological transport model, (5) improved pump model, and (6) compressor model.

  17. Development and Optimization of Viable Human Platforms through 3D Printing

    SciTech Connect (OSTI)

    Parker, Paul R.; Moya, Monica L.; Wheeler, Elizabeth K.

    2015-08-21

    3D printing technology offers a unique method for creating cell cultures in a manner far more conducive to accurate representation of human tissues and systems. Here we print cellular structures capable of forming vascular networks and exhibiting qualities of natural tissues and human systems. This allows for cheaper and readily available sources for further study of biological and pharmaceutical agents.

  18. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the development of 3D cloud products from all new SACRs that the program will deploy at all fixed and mobile sites by the end of 2010.

  19. Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma

    SciTech Connect (OSTI)

    Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D.

    2014-01-15

    Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.

  20. Translation, Enhancement, Filtering, and Visualization of Large 3D Triangle Mesh

    Energy Science and Technology Software Center (OSTI)

    1997-04-21

    The runthru system consists of five programs: workcell filter, just do it, transl8g, decim8, and runthru. The workcell filter program is useful if the source of your 3D triangle mesh model is IGRIP. It will traverse a directory structure of Deneb IGRIP files and filter out any IGRIP part files that are not referenced by an accompanying IGRIP work cell file. The just do it program automates translating and/or filtering of large numbers of partsmore » that are organized in hierarchical directory structures. The transl8g program facilitates the interchange, topology generation, error checking, and enhancement of large 3D triangle meshes. Such data is frequently used to represent conceptual designs, scientific visualization volume modeling, or discrete sample data. Interchange is provided between several popular commercial and defacto standard geometry formats. Error checking is included to identify duplicate and zero area triangles. Model engancement features include common vertex joining, consistent triangle vertex ordering, vertex noemal vector averaging, and triangle strip generation. Many of the traditional O(n2) algorithms required to provide the above features have been recast and are o(nlog(n)) which support large mesh sizes. The decim8 program is based on a data filter algorithm that significantly reduces the number of triangles required to represent 3D models of geometry, scientific visualization results, and discretely sampled data. It eliminates local patches of triangles whose geometries are not appreciably different and replaces them with fewer, larger triangles. The algorithm has been used to reduce triangles in large conceptual design models to facilitate virtual walk throughs and to enable interactive viewing of large 3D iso-surface volume visualizations. The runthru program provides high performance interactive display and manipulation of 3D triangle mesh models.« less

  1. Invited Article: High resolution angle resolved photoemission with tabletop

    Office of Scientific and Technical Information (OSTI)

    11 eV laser (Journal Article) | SciTech Connect Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser Citation Details In-Document Search Title: Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This

  2. 3D Scanner to Help Boost Worker Safety in Hanford Tank Farms

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A laser scanner is being tested in the Hanford tank farms as a mapping tool to help conduct virtual walk-downs.

  3. High resolution telescope

    DOE Patents [OSTI]

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  4. Design of a Subnanometer Resolution Beam Position Monitor for Dielectric

    Office of Scientific and Technical Information (OSTI)

    Laser Accelerators (Journal Article) | SciTech Connect Design of a Subnanometer Resolution Beam Position Monitor for Dielectric Laser Accelerators Citation Details In-Document Search Title: Design of a Subnanometer Resolution Beam Position Monitor for Dielectric Laser Accelerators Authors: Soong, Ken ; Byer, Robert L. ; /Stanford U., Appl. Phys. Dept. /SLAC Publication Date: 2013-03-01 OSTI Identifier: 1074185 Report Number(s): SLAC-PUB-15383 DOE Contract Number: AC02-76SF00515 Resource

  5. 3D Torus Routing Engine Module for OFA OpenSM v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-11-12

    This OpenFabrics Alliance (OFA) OpenSM routing engine module provides credit-loop-free routing while supporting two quality of service (QoS) levels for an InfiniBand fabric with a 3D torus topology. In addition it is able to route around multiple failed fabric links or a single failed fabric switch without introducing credit loops, and without changing path Service Level (SL) values granted before the failure.This OFA OpenSM routing engine module improves the operational characteristics of a parallel computermore » built using an InfiniBand fabric with a 3D torus topology. By providing two QoS levels, it allows system administrators to prevent application interprocess communication and file system communication from impacting each other. By providing the capability to route traffic around failed fabric components, it enables repair of failed components without impacting jobs running on the computer system.« less

  6. Identifying High Potential Well Targets with 3D Seismic and Mineralogy

    SciTech Connect (OSTI)

    Mellors, R. J.

    2015-10-30

    Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in identifying the highly-permeable zones essential for economic hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, identifying permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to identify and map permeable zones in a hydrothermal area.

  7. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  8. DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimensions) user's manual

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1988-04-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-eight material models and eleven equations of state to cover a wide range of material behavior. 56 refs., 46 figs.

  9. User's manuals for DYNA3D and DYNAP: nonlinear dynamic analysis of solids in three dimensions

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1981-07-01

    This report provides a user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. Post-processors for DYNA3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories. A user's manual for DYNAP is also provided in this report.

  10. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1987-07-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-five material models and eleven equations of state to cover a wide range of material behavior.

  11. DYNA3D user's manual: (Nonlinear dynamic analysis of structures in three dimensions): Revision 5

    SciTech Connect (OSTI)

    Hallquist, J.O.; Whirley, R.G.

    1989-05-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. Using a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. The 1989 version of DYNA3D contains thirty material models and ten equations of state to cover a wide range of material behavior.

  12. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions). Revision 2

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1986-03-01

    The user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures is updated. A contact-impact algorithm permit gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains sixteen material models and nine equations of state to cover a wide range of material behavior. 40 refs., 43 figs.

  13. In the OSTI Collections: 3-D Printing and Other Additive Manufacturing

    Office of Scientific and Technical Information (OSTI)

    Technologies | OSTI, US Dept of Energy, Office of Scientific and Technical Information 3-D Printing and Other Additive Manufacturing Technologies Dr. Watson computer sleuthing scientist. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Understanding Electron Beam Melting Is Additive Manufacturing Suitable? Two Projects Other Materials Additive Manufacturing Technologies References Reports Available Through OSTI's SciTech Connect

  14. Conservation of Fluid Mass and Energy by RELAP5-3D during a SBLOCA

    SciTech Connect (OSTI)

    Cliff B. Davis

    2009-08-01

    Mass and energy balances were performed to check the accuracy of RELAP5-3D’s solution during a loss-of-coolant accident initiated by a small break in a typical pressurized water reactor. Mass and energy balances were performed for the combined liquid and gas phases and the gas phase by itself. The analysis showed that RELAP5-3D adequately conserved mass and energy for the combined fluid and the gas phase.

  15. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parts | Princeton Plasma Physics Lab engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a mechanical

  16. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parts | Princeton Plasma Physics Lab PPPL engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a

  17. 3D Equilibrium Effects Due to RMP Application on DIII-D

    Office of Scientific and Technical Information (OSTI)

    72 PPPL- 4772 3D Equilibrium Effects Due to RMP Application on DIII-D June, 2012 S. Lazerson, E. Lazarus, S. Hudson, N. Pablant and D. Gates Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty,

  18. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  19. IMPROVEMENTS TO THE TIME STEPPING ALGORITHM OF RELAP5-3D

    SciTech Connect (OSTI)

    Cumberland, R.; Mesina, G.

    2009-01-01

    The RELAP5-3D time step method is used to perform thermo-hydraulic and neutronic simulations of nuclear reactors and other devices. It discretizes time and space by numerically solving several differential equations. Previously, time step size was controlled by halving or doubling the size of a previous time step. This process caused the code to run slower than it potentially could. In this research project, the RELAP5-3D time step method was modifi ed to allow a new method of changing time steps to improve execution speed and to control error. The new RELAP5-3D time step method being studied involves making the time step proportional to the material courant limit (MCL), while insuring that the time step does not increase by more than a factor of two between advancements. As before, if a step fails or mass error is excessive, the time step is cut in half. To examine performance of the new method, a measure of run time and a measure of error were plotted against a changing MCL proportionality constant (m) in seven test cases. The removal of the upper time step limit produced a small increase in error, but a large decrease in execution time. The best value of m was found to be 0.9. The new algorithm is capable of producing a signifi cant increase in execution speed, with a relatively small increase in mass error. The improvements made are now under consideration for inclusion as a special option in the RELAP5-3D production code.

  20. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect (OSTI)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  1. HIGH-PERFORMANCE COMPUTATION OF DISTRIBUTED-MEMORY PARALLEL 3D VORONOI

    Office of Scientific and Technical Information (OSTI)

    PERFORMANCE COMPUTATION OF DISTRIBUTED-MEMORY PARALLEL 3D VORONOI AND DELAUNAY TESSELLATION TOM PETERKA Argonne National Laboratory 9700 S. Cass Ave. Argonne IL 60439 USA DMITRIY MOROZOV Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley CA 94720 USA CAROLYN PHILLIPS Argonne National Laboratory 9700 S. Cass Ave. Argonne, IL 60439 USA A b s t r a c t . Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured

  2. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices March 2, 2010 at 3pm/36-428 René Janssen Molecular Materials and Nanosystems, Eindhoven University of Technology ReneJanssen2-small_000 abstract: Polymer solar cells offer an opportunity for low-cost, large area renewable energy production. These devices use a phase separated blend of two organic semiconductors with energy levels that lead to intermolecular charge transfer after

  3. training=course-in-3d-advanced-hydraulic-and-aerodynamic-analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free 2 Day Training Course in 3D Advanced Hydraulic and Aerodynamic Analysis Using CFD March 25-26, 2014 (Tuesday - Wednesday) Learn and practice using STAR-CCM+ CFD software Tutorial based with a variety of hydraulic and aerodynamic problems Instructors guide the class through problem setup, analysis, and visualization of results Participants can come to Argonne or take the course remotely over the internet Both remote and on site participants will have access to STAR-CCM+ to do the problems

  4. Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breakage over time | Argonne National Laboratory Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to breakage over time By Katie Elyce Jones * March 4, 2016 Tweet EmailPrint Titanium is strong but light - a desirable property among metals. In the twentieth century, titanium was used in military aircraft and equipment and commercial jets. Today, we find this tough and flexible metal all around us - in sports gear, tools, surgical and dental implants, prosthetics,

  5. DYNA3D, INGRID, and TAURUS: an integrated, interactive software system for crashworthiness engineering

    SciTech Connect (OSTI)

    Benson, D.J.; Hallquist, J.O.; Stillman, D.W.

    1985-04-01

    Crashworthiness engineering has always been a high priority at Lawrence Livermore National Laboratory because of its role in the safe transport of radioactive material for the nuclear power industry and military. As a result, the authors have developed an integrated, interactive set of finite element programs for crashworthiness analysis. The heart of the system is DYNA3D, an explicit, fully vectorized, large deformation structural dynamics code. DYNA3D has the following four capabilities that are critical for the efficient and accurate analysis of crashes: (1) fully nonlinear solid, shell, and beam elements for representing a structure, (2) a broad range of constitutive models for representing the materials, (3) sophisticated contact algorithms for the impact interactions, and (4) a rigid body capability to represent the bodies away from the impact zones at a greatly reduced cost without sacrificing any accuracy in the momentum calculations. To generate the large and complex data files for DYNA3D, INGRID, a general purpose mesh generator, is used. It runs on everything from IBM PCs to CRAYS, and can generate 1000 nodes/minute on a PC. With its efficient hidden line algorithms and many options for specifying geometry, INGRID also doubles as a geometric modeller. TAURUS, an interactive post processor, is used to display DYNA3D output. In addition to the standard monochrome hidden line display, time history plotting, and contouring, TAURUS generates interactive color displays on 8 color video screens by plotting color bands superimposed on the mesh which indicate the value of the state variables. For higher quality color output, graphic output files may be sent to the DICOMED film recorders. We have found that color is every bit as important as hidden line removal in aiding the analyst in understanding his results. In this paper the basic methodologies of the programs are presented along with several crashworthiness calculations.

  6. Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect

    Energy Science and Technology Software Center (OSTI)

    2001-10-24

    NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.

  7. LLNL researchers outline what happens during metal 3D printing, enhancing

    National Nuclear Security Administration (NNSA)

    confidence | National Nuclear Security Administration researchers outline what happens during metal 3D printing, enhancing confidence Friday, February 19, 2016 - 12:00am NNSA Blog From left, Lawrence Livermore National Laboratory researchers Ibo Matthews, a principal investigator leading the lab's effort on the joint open source software project; Wayne King, director of the Accelerated Certification of Additively Manufactured Metals Initiative; and Gabe Guss, engineering associate - examine

  8. What Makes AMIE, the 3D printed home and vehicle, unique?

    Broader source: Energy.gov [DOE]

    AMIE, or the Additive Manufacturing Integrated Energy project, is one of the world’s first 3D printed houses. But it’s not just a house. It’s also a vehicle. It’s also solar panels, and energy storage, and intelligent controls. It’s an entire integrated energy system, and it’s changing how we think about generating, storing, and using energy.

  9. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    SciTech Connect (OSTI)

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T; Haga, A; Saotome, N; Arai, N

    2014-06-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  10. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect (OSTI)

    Deca, J.; Lapenta, G. [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium)] [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium); Marchand, R. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)] [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Markidis, S. [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  11. Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.

    2012-05-09

    The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which aremore » a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.« less

  12. Simion 3D Version 6.0 User`s Manual

    SciTech Connect (OSTI)

    Dahl, D.A.

    1995-11-01

    The original SIMION was an electrostatic lens analysis and design program developed by D.C. McGilvery at Latrobe University, Bundoora Victoria, Australia, 1977. SIMION for the PC, developed at the Idaho National Engineering Laboratory, shares little more than its name with the original McGilvery version. INEL`s fifth major SIMION release, version 6.0, represents a quantum improvement over previous versions. This C based program can model complex problems using an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 10,000,000 points. SIMION 3D`s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs have been greatly extended in versatility and power. A new geometry file option supports the definition of highly complex array geometry. Extensive algorithm modifications have dramatically improved this version`s computational speed and accuracy.

  13. Detectability limitations with 3-D point reconstruction algorithms using digital radiography

    SciTech Connect (OSTI)

    Lindgren, Erik

    2015-03-31

    The estimated impact of pores in clusters on component fatigue will be highly conservative when based on 2-D rather than 3-D pore positions. To 3-D position and size defects using digital radiography and 3-D point reconstruction algorithms in general require a lower inspection time and in some cases work better with planar geometries than X-ray computed tomography. However, the increase in prior assumptions about the object and the defects will increase the intrinsic uncertainty in the resulting nondestructive evaluation output. In this paper this uncertainty arising when detecting pore defect clusters with point reconstruction algorithms is quantified using simulations. The simulation model is compared to and mapped to experimental data. The main issue with the uncertainty is the possible masking (detectability zero) of smaller defects around some other slightly larger defect. In addition, the uncertainty is explored in connection to the expected effects on the component fatigue life and for different amount of prior object-defect assumptions made.

  14. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect (OSTI)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-08-21

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  15. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    SciTech Connect (OSTI)

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  16. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect (OSTI)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-05-29

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  17. Advanced Detector Research - Fabrication and Testing of 3D Active-Edge Silicon Sensors: High Speed, High Yield

    SciTech Connect (OSTI)

    Parker, Sherwood I

    2008-09-01

    Development of 3D silicon radiation sensors employing electrodes fabricated perpendicular to the sensor surfaces to improve fabrication yields and increasing pulse speeds.

  18. Contact Interface Verification for DYNA3D Scenario 1: Basic Contact

    SciTech Connect (OSTI)

    McMichael, L D

    2006-05-10

    A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems address the basic functionality of the contact algorithms, including the behavior of various kinematic, penalty, and Lagrangian enforcement formulations. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions for each contact algorithm being verified. Most of the contact algorithms currently available in DYNA3D are examined; the exceptions are the Type 4--Single Surface Contact and Type 11--SAND algorithms. It is likely that these algorithms will be removed since their functionality is embodied in other, more robust, contact algorithms. The automatic contact algorithm is evaluated using the Type 12 interface. Two other variations of automatic contact, Type 13 and Type 14, offer additional means to adapt the interface domain, but share the same search and restoration algorithms as Type 12. The contact algorithms are summarized in Table 1. This report and associated test problems examine the scenario where one contact surface exists between two disjoint bodies. These test problems focus on whether a particular contact algorithm properly represents the interactions along the interface. A companion report (McMichael, 2006) and test problems address the multi-contact scenario in which multiple bodies interact with each other via multiple interfaces. The multi-contact test problems examine whether any ordering issues exist in the contact logic. The test problems are analyzed using version 5.2 (compiled on 12/22/2005) of DYNA3D. The analytical results are used to form baseline solutions for subsequent regression testing.

  19. In-situ 3D characterization of He bubble and displacement damage in dense and nanoporous thin films.

    SciTech Connect (OSTI)

    Hattar, Khalid Mikhiel; Robinson, David

    2015-10-01

    This initial work attempted to determine the feasibility of using advanced in-situ, electron tomography, and precession electron diffraction techniques to determine the structural evolution that occurs during advanced aging of Pd films with nanometer resolution. To date, significant progress has been made in studying the cavity structures in sputtered, evaporated, and pulsed-laser deposited Pd films that result from both the deposition parameters, as well as from He ion implantation. In addition, preliminary work has been done to determine the feasibility of performing precession electron diffraction (PED) and electron tomography in these type of systems. Significant future work is needed to determine the proper conditions such that relevant advanced aging protocols can be developed.

  20. MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model

    SciTech Connect (OSTI)

    Wang, Y; Bahng, J; Kotov, N

    2014-06-15

    Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF grant ECS-0601345; EFRI-BSBA 0938019; CBET 0933384; CBET 0932823; CBET 1036672, AFOSR MURI 444286-P061716 and NIH 1R21CA121841-01A2.

  1. Resonator design for a visible wavelength free-electron laser (*)

    SciTech Connect (OSTI)

    Bhowmik, A.; Lordi, N. . Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. )

    1990-01-01

    Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

  2. User Guide for the R5EXEC Coupling Interface in the RELAP5-3D Code

    SciTech Connect (OSTI)

    Forsmann, J. Hope; Weaver, Walter L.

    2015-04-01

    This report describes the R5EXEC coupling interface in the RELAP5-3D computer code from the users perspective. The information in the report is intended for users who want to couple RELAP5-3D to other thermal-hydraulic, neutron kinetics, or control system simulation codes.

  3. Design of voice coil motor dynamic focusing unit for a laser scanner

    SciTech Connect (OSTI)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  4. Modeling The Shock Initiation of PBX-9501 in ALE3D

    SciTech Connect (OSTI)

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-01

    The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrive at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.

  5. Pore-Controlled Formation of 0D Metal Complexes in Anionic 3D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Pore-Controlled Formation of 0D Metal Complexes in Anionic 3D Metal-Organic Frameworks Previous Next List Muwei Zhang, Mathieu Boscha and Hong-Cai Zhou, Cryst. Eng. Comm, 17, 996-1000 (2015) DOI: 10.1039/C4CE02261K GA Abstract: The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains

  6. 3-D Seismic Exploration Project, Ute Indian Tribe, Uintah and Ouray Reservation, Uintah County, Utah

    SciTech Connect (OSTI)

    Eckels, Marc T.

    2002-09-09

    The objectives of this North Hill Creek 3-D seismic survey were to: (1) cover as large an area as possible with available budget; (2) obtain high quality data throughout the depth range of the prospective geologic formations of 2,000' to 12,000' to image both gross structures and more subtle structural and stratigraphic elements; (3) overcome the challenges posed by a hard, reflective sandstone that cropped out or was buried just a few feet below the surface under most of the survey area; and (4) run a safe survey.

  7. Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  8. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    SciTech Connect (OSTI)

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  9. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect (OSTI)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.

  10. A fast new method for measuring hard-to-diagnose 3D plasmas in fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities | Princeton Plasma Physics Lab A fast new method for measuring hard-to-diagnose 3D plasmas in fusion facilities By John Greenwald March 12, 2013 Tweet Widget Google Plus One Share on Facebook A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Photo by Graphic by Sam Lazerson) A simulated plasma in the Large Helical Device showing the thin blue saddle coils that

  11. Beyond 3-D X-ray Imaging: Methodology Development and Applications in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Science | Stanford Synchrotron Radiation Lightsource Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a revolutionary development of X-ray imaging over the past few decades. The most substantial advancements in this field are closely related to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics

  12. THERM3D -- A boundary element computer program for transient heat conduction problems

    SciTech Connect (OSTI)

    Ingber, M.S.

    1994-02-01

    The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.

  13. Effects of a weakly 3-D equilibrium on ideal magnetohydrodynamic instabilities

    SciTech Connect (OSTI)

    Hegna, C. C.

    2014-07-15

    The effect of a small three-dimensional equilibrium distortion on an otherwise axisymmetric configuration is shown to be destabilizing to ideal magnetohydrodynamic modes. The calculations assume that the 3-D fields are weak and that shielding physics is present so that no islands appear in the resulting equilibrium. An eigenfunction that has coupled harmonics of different toroidal mode number is constructed using a perturbation approach. The theory is applied to the case of tokamak H-modes with shielded resonant magnetic perturbations (RMPs) present indicating RMPs can be destabilizing to intermediate-n peeling-ballooning modes.

  14. Contact Interface Verification for DYNA3D Scenario 2: Multi-Surface Contact

    SciTech Connect (OSTI)

    McMichael, L D

    2006-05-10

    A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems use multiple interfaces and a combination of enforcement methods to assess the basic functionality of the contact algorithms. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions during contact. This report and associated test problems examine the scenario where multiple bodies interact with each other via multiple interfaces. The test problems focus on whether any ordering issues exist in the contact logic by using a combination of interface types, contact enforcement options (i.e., penalty, Lagrange, and kinematic), and element interactions within each problem. The influence of rigid materials on interface behavior is also examined. The companion report (McMichael, 2006) and associated test problems address the basic contact scenario where one contact surface exists between two disjoint bodies. The test problems are analyzed using version 5.2 (compiled on 12/22/2005) of DYNA3D. The analytical results are used to form baseline solutions for subsequent regression testing. In section 2, the test problems are presented, and the static solution is developed for two idealized systems. Section 3 describes the finite element representation of the generic problem, including the interface combinations considered. The verification criteria and expected results are presented next in section 4. Section 5 discusses the numerical results obtained from each test problem. Finally, section 6 summarizes the observed interface behavior.

  15. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems

    SciTech Connect (OSTI)

    Warren, T.L.; Tabbara, M.R.

    1997-05-01

    In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.

  16. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    SciTech Connect (OSTI)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-03-15

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

  17. 3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods

    SciTech Connect (OSTI)

    B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

    2012-09-01

    The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the local defect to be coupled with the global fuel rod model. This approach for modeling fuel with MPS defects is demonstrated and compared with alternative techniques. The effects of varying parameters of the MPS defect are studied using this technique and presented here.

  18. High-performance computational and geostatistical experiments for testing the capabilities of 3-d electrical tomography

    SciTech Connect (OSTI)

    Carle, S. F.; Daily, W. D.; Newmark, R. L.; Ramirez, A.; Tompson, A.

    1999-01-19

    This project explores the feasibility of combining geologic insight, geostatistics, and high-performance computing to analyze the capabilities of 3-D electrical resistance tomography (ERT). Geostatistical methods are used to characterize the spatial variability of geologic facies that control sub-surface variability of permeability and electrical resistivity Synthetic ERT data sets are generated from geostatistical realizations of alluvial facies architecture. The synthetic data sets enable comparison of the "truth" to inversion results, quantification of the ability to detect particular facies at particular locations, and sensitivity studies on inversion parameters

  19. Science on Saturday: Music and 3D Audio | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 13, 2016, 9:30am Science On Saturday MBG Auditorium, PPPL Science on Saturday: Music and 3D Audio Professor Edgar Choueiri Princeton University Abstract: PDF icon 06 Choueiri.pdf Science_on_Saturday13Feb2016_EChoueiri Contact Information Coordinator(s): Ms. Deedee Ortiz-Arias dortiz@pppl.gov Host(s): Dr. Andrew Zwicker azwicker@pppl.gov PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating

  20. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    SciTech Connect (OSTI)

    Perfetti, Christopher M; Rearden, Bradley T

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  1. Monte Carlo generators for studies of the 3D structure of the nucleon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Avakian, Harut; D'Alesio, U.; Murgia, F.

    2015-01-23

    In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.

  2. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect (OSTI)

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  3. An overview of 3-D graphical analysis using DOE-2 hourly simulation data

    SciTech Connect (OSTI)

    Haberl, J.S.; MacDonald, M.; Eden, A.

    1988-01-01

    This paper presents an overview of a 3-D graphical approach for improving the potential of building energy analyses using the DOE-2 computer program. The approach produces 3-D annual profiles from hourly data generated by DOE-2 simulations using a statistical plotting package for specific quantities of interest. The annual profiles of hourly data provide a useful graphical check of voluminous data in a condensed form, allowing several different types of data to be plotted over a year. These profiles provide the user with the opportunity to check simulation results, check for potential problems with user input, provide graphs to customers who may want a simpler presentation, visualize interactions in simulations, and understand where inappropriate modeling conditions may exist in simulations. Future analysis, using such profiles, may allow methods to be developed to check consistency between simulations, check for potential hidden errors in modeling buildings, and better understand how simulations compare with data from real buildings. 22 refs., 23 figs., 1 tab.

  4. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  5. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    SciTech Connect (OSTI)

    Shao, Yan-Lin Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  6. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  7. ANALYSIS OF 3-D URBAN DATABASES WITH RESPECT TO POLLUTION DISPERSION FOR A NUMBER OF EUROPEAN AND AMERICAN CITIES

    SciTech Connect (OSTI)

    C. RATTI; ET AL

    2001-03-01

    Models to estimate pollution dispersion and wind flow in cities (both at the city-scale and above) require a parametrical description of the urban canopy. For instance, two key parameters are the aerodynamic roughness length z{sub 0} and the zero-plane displacement height z{sub d}, which are related, amongst others, to the surface drag coefficient, the scale and intensity of turbulence, the depth of the roughness sub-layer and the wind speed profile. The calculation of z{sub 0} and z{sub d}, however, is not straightforward. The classical way to estimate them in open terrain is based on the measurement of wind profile data from a tall mast or, less accurately, on the inference from published roughness values for similar terrain elsewhere (Davenport, 1960; Davenport et al., 2000). Both methods, however, are very difficult to apply to cities, due to the considerable height where wind measurements should be taken (well above the urban canopy) and to the irregularities of urban texture. A promising alternative that has become available in recent years, due to increasing computing resources and the availability of high-resolution 3-D databases in urban areas, is based on the calculation of z{sub 0} and z{sub d} from the analysis and measure of the city geometry (urban morphometry). This method is reviewed for instance in Grimmond and Oke (1999), where values are calculated using different formulas and then compared with the results of field measurements. Urban morphometry opens up a new range of parameters that can easily be calculated in urban areas and used as input for meso-scale and urban dispersion models. This paper reviews a number of them and shows how they could be calculated from urban Digital Elevation Models (DEM) using image-processing techniques. It builds up on the recent work by Ratti et al. 2000, extending the number of case studies cities: London, Toulouse, Berlin, Salt Lake City and Los Angeles.

  8. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect (OSTI)

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  9. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect (OSTI)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to production-induced formation pressure drawdown). The Piceance Basin (Colorado) was chosen for this study because of the extensive set of data provided to us by federal agencies and industry partners, its remaining reserves, and its similarities with other Rocky Mountain basins. We focused on the Rulison Field to test our ability to capture details in a well-characterized area. In this study, we developed a number of general principles including (1) the importance of even subtle flexure in creating fractures; (2) the tendency to preserve fractures due to the compressibility of gases; (3) the importance of oscillatory fracture/flow cycles in the expulsion of natural gas from source rock; and (4) that predicting fractures requires a basin model that is comprehensive, all processes are coupled, and is fully 3-D. A major difficulty in using Basin RTM or other basin simulator has been overcome in this project; we have set forth an information theory technology for automatically integrating basin modeling with classical database analysis; this technology also provides an assessment of risk. We have created a relational database for the Piceance Basin. We have developed a formulation of devolatilization shrinkage that integrates organic geochemical kinetics into incremental stress theory, allowing for the prediction of coal cleating and associated enhancement of natural gas expulsion from coal. An estimation of the potential economic benefits of the technologies developed or recommended here is set forth. All of the above findings are documented in this report.

  10. WE-F-16A-06: Using 3D Printers to Create Complex Phantoms for Dose Verification, Quality Assurance, and Treatment Planning System Commissioning in Radiotherapy

    SciTech Connect (OSTI)

    Kassaee, A; Ding, X; McDonough, J; Reiche, M; Witztum, A; Teo, B

    2014-06-15

    Purpose: To use 3D printers to design and construct complex geometrical phantoms for commissioning treatment planning systems, dose calculation algorithms, quality assurance (QA), dose delivery, and patient dose verifications. Methods: In radiotherapy, complex geometrical phantoms are often required for dose verification, dose delivery and calculation algorithm validation. Presently, fabrication of customized phantoms is limited due to time, expense and challenges in machining of complex shapes. In this work, we designed and utilized 3D printers to fabricate two phantoms for QA purposes. One phantom includes hills and valleys (HV) for verification of intensity modulated radiotherapy for photons, and protons (IMRT and IMPT). The other phantom includes cylindrical cavities (CC) of various sizes for dose verification of inhomogeneities. We evaluated the HV phantoms for an IMPT beam, and the CC phantom to study various inhomogeneity configurations using photon, electron, and proton beams. Gafcromic films were used to quantify the dose distributions delivered to the phantoms. Results: The HV phantom has dimensions of 12 cm 12 cm and consists of one row and one column of five peaks with heights ranging from 2 to 5 cm. The CC phantom has a size 10 cm 14 cm and includes 6 cylindrical cavities with length of 7.2 cm and diameters ranging from 0.6 to 1.2 cm. The IMPT evaluation using the HV phantom shows good agreement as compared to the dose distribution calculated with treatment planning system. The CC phantom also shows reasonable agreements for using different algorithms for each beam modalities. Conclusion: 3D printers with submillimiter resolutions are capable of printing complex phantoms for dose verification and QA in radiotherapy. As printing costs decrease and the technology becomes widely available, phantom design and construction will be readily available to any clinic for testing geometries that were not previously feasible.

  11. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    SciTech Connect (OSTI)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous while the lower crust and upper mantle are parameterized by a smoothly varying velocity profile. In order to mitigate spurious reflections, the lower crust and upper mantle are treated as velocity gradients as a function of depth.

  12. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect (OSTI)

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  13. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics

    SciTech Connect (OSTI)

    Whirley, R.G.

    1991-05-01

    This report is the User Manual for the 1991 version of DYNA3D, and also serves as an interim User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems. 73 refs., 49 figs.

  14. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect (OSTI)

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.

  15. Terascale direct numerical simulations of turbulent combustion using S3D

    SciTech Connect (OSTI)

    Chen, Jackie; Klasky, Scott A; Hawkes, Evatt R; Sankaran, Ramanan; Choudhary, Alok; Yoo, Chun S; Liao, Wei-keng; Podhorszki, Norbert

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.

  16. Test of 3D CT reconstructions by EM + TV algorithm from undersampled data

    SciTech Connect (OSTI)

    Evseev, Ivan; Ahmann, Francielle; Silva, Hamilton P. da

    2013-05-06

    Computerized tomography (CT) plays an important role in medical imaging for diagnosis and therapy. However, CT imaging is connected with ionization radiation exposure of patients. Therefore, the dose reduction is an essential issue in CT. In 2011, the Expectation Maximization and Total Variation Based Model for CT Reconstruction (EM+TV) was proposed. This method can reconstruct a better image using less CT projections in comparison with the usual filtered back projection (FBP) technique. Thus, it could significantly reduce the overall dose of radiation in CT. This work reports the results of an independent numerical simulation for cone beam CT geometry with alternative virtual phantoms. As in the original report, the 3D CT images of 128 Multiplication-Sign 128 Multiplication-Sign 128 virtual phantoms were reconstructed. It was not possible to implement phantoms with lager dimensions because of the slowness of code execution even by the CORE i7 CPU.

  17. Barrier-free subsurface incorporation of 3d metal atoms into Bi(111) films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klein, C.; Vollmers, N. J.; Gerstmann, U.; Zahl, P.; Lukermann, D.; Jnawali, G.; Pfnur, H.; Sutter, P.; Tegenkamp, C.; Schmidt, W. G.; et al

    2015-05-27

    By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observed formore » topological insulators formed by substrate-stabilized Bi bilayers.« less

  18. A 3D Vector/Scalar Visualization and Particle Tracking Package

    Energy Science and Technology Software Center (OSTI)

    1999-08-19

    BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively placemore » injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.« less

  19. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect (OSTI)

    Shen, Wei; Sheng, Zheng-Mao [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Fu, G. Y.; Breslau, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Wang, Feng [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  20. Status of the phenomena representation, 3D modeling, and cloud-based software architecture development

    SciTech Connect (OSTI)

    Smith, Curtis L.; Prescott, Steven; Kvarfordt, Kellie; Sampath, Ram; Larson, Katie

    2015-09-01

    Early in 2013, researchers at the Idaho National Laboratory outlined a technical framework to support the implementation of state-of-the-art probabilistic risk assessment to predict the safety performance of advanced small modular reactors. From that vision of the advanced framework for risk analysis, specific tasks have been underway in order to implement the framework. This report discusses the current development of a several tasks related to the framework implementation, including a discussion of a 3D physics engine that represents the motion of objects (including collision and debris modeling), cloud-based analysis tools such as a Bayesian-inference engine, and scenario simulations. These tasks were performed during 2015 as part of the technical work associated with the Advanced Reactor Technologies Program.