Sample records for resistivity survey geothermal

  1. Geothermal resistivity resource evaluation survey Waunita Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey of Workproject, Gunnison

  2. DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDC ResistivityOpen

  3. Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...

    Open Energy Info (EERE)

    Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa...

  4. Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Exploration...

  5. Use Of Electrical Surveys For Geothermal Reservoir Characterization...

    Open Energy Info (EERE)

    Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

  6. Idaho Geological Survey and University of Idaho Explore for Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

  7. Survey of Geothermal Solid Toxic Waste

    SciTech Connect (OSTI)

    Darnell, A.J.; Gay, R.L.; Klenck, M.M.; Nealy, C.L.

    1982-09-30T23:59:59.000Z

    This is an early survey and analysis of the types and quantities of solid toxic wastes to be expected from geothermal power systems, particularly at the Salton Sea, California. It includes a literature search (48 references/citations), descriptions of methods for handling wastes, and useful quantitative values. It also includes consideration of reclaiming metals and mineral byproducts from geothermal power systems. (DJE 2005)

  8. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

  9. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles, Et Al., 1979) Exploration...

  10. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mt Princeton Hot Springs Geothermal Area (Case, Et Al., 1984) Exploration...

  11. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Geothermal Area...

  12. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

  13. State Geological Survey Contributions to the National Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Publications AASG State Geological Survey National Geothermal Data Systems Data Acquisition and Access National Geothermal Data System Architecture Design, Testing and Maintenance...

  14. Ground Gravity Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

  15. Electrical Resistivity At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Kilauea East Rift Geothermal Area (KELLER, Et Al., 1977) Exploration...

  16. Progress report on electrical resistivity studies, COSO Geothermal...

    Open Energy Info (EERE)

    on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical...

  17. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross, Et Al., 1999) Exploration Activity Details Location...

  18. Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal Area (Kauahikaua & Klein, 1978) Exploration Activity Details Location Kilauea East Rift Geothermal Area...

  19. Electrical resistivity investigations at the Olkaria geothermal field, Kenya

    SciTech Connect (OSTI)

    Bhogal, P.S.

    1980-09-01T23:59:59.000Z

    The bipole-dipole, Schlumberger and in line dipole-dipole electrical resistivity configurations were used to delineate the Olkaria geothermal reservoir with the view to site boreholes for the production of electric power using the geopressurized hot water. The dipole-dipole resistivity data provided the least ambiguous and most usable data for assessing the resource. Deep drilling into two of the anomalies outlined by this survey has proved the existence of high-temperature reservoirs and a 15MW power station is under construction.

  20. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1999 - 2000 Usefulness not indicated DOE-funding Unknown...

  1. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    Details Location Kilauea East Rift Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1998 - 1998 Usefulness useful DOE-funding Unknown Exploration...

  2. Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    Details Location Kilauea East Rift Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1974 - 1974 Usefulness useful DOE-funding Unknown Exploration...

  3. Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1985 - 1985 Usefulness useful DOE-funding Unknown Exploration...

  4. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not...

  5. Hydrogeological And Isotopic Survey Of Geothermal Fields In The...

    Open Energy Info (EERE)

    Hydrogeological And Isotopic Survey Of Geothermal Fields In The Buyuk Menderes Graben, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  6. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    the caldera in response to volcanic activity, large earthquakes, andor geothermal production. These U.S. Geological Survey temperature measurements, in addition to past...

  7. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and...

  8. Refraction Survey At North Brawley Geothermal Area (Fruis & Kohler...

    Open Energy Info (EERE)

    (Fruis & Kohler, 1984) Exploration Activity Details Location North Brawley Geothermal Area Exploration Technique Refraction Survey Activity Date 1979 - 1979 Usefulness useful...

  9. Progress Report on Electrical Resistivity Studies Coso Geothermal...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Report: Progress Report on Electrical Resistivity Studies Coso Geothermal Area Inyo County California Abstract The first...

  10. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference LibraryAdd...

  11. Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....

    Open Energy Info (EERE)

    Ground Gravity Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique...

  12. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique...

  13. Misinterpretation of Electrical Resistivity Data in Geothermal...

    Open Energy Info (EERE)

    Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

  14. Dipole-dipole resistivity survey of a portion of the Coso Hot...

    Open Energy Info (EERE)

    KGRA in September 1977. This survey has defined a bedrock resistivity low at least 4 sq mi (10 sq km) in extent associated with the geothermal system at Coso. The boundaries of...

  15. Two-Meter Temperature Surveys for Geothermal Exploration Project...

    Open Energy Info (EERE)

    Two-Meter Temperature Surveys for Geothermal Exploration Project at NAS Fallon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Two-Meter...

  16. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    SciTech Connect (OSTI)

    DiPippo, R.

    1980-01-01T23:59:59.000Z

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  17. Report on dipole-dipole resistivity and technology transfer at the Ahuachapan Geothermal field Ahuachapan, El Salvador

    SciTech Connect (OSTI)

    Fink, J.B. (Geophynque International, Tucson, AZ (United States))

    1988-08-01T23:59:59.000Z

    The Ahuachapan Geothermal Field (AGF) is a 90 megawatt geothermal-sourced powerplant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the period November 1987 through May 1988 a deep resistivity survey and technology transfer was performed at the AGF at the request of Los Alamos National Laboratory (LANL) as part of a United States Agency for International Development (USAID) project. The resistivity surveying is ongoing at the time of this report under the supervision of CEL personnel. LANL and contract personnel were present at the site during performance of the initial surveying for the purpose of technology transfer. This report presents the results and interpretation of the two initial resistivity survey lines performed on site during and shortly after the technology transfer period.

  18. Schlumberger Resistivity Soundings At Chena Geothermal Area ...

    Open Energy Info (EERE)

    Schlumberger Resistivity Soundings Activity Date 1979 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis Geophysical studies through the University of Alaska...

  19. E-Print Network 3.0 - aapg geothermal survey Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    noted, research into Summary: surveys resources in Texas, Cutright sees potential for geothermal energy production around an entirely... 52 Jackson School of Geosciences As two...

  20. Results of Electric Survey in the Area of Hawaii Geothermal Test...

    Open Energy Info (EERE)

    of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey...

  1. Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

  2. Geothermal Research Program of the US Geological Survey

    SciTech Connect (OSTI)

    Duffield, W.A.; Guffanti, M.

    1981-01-01T23:59:59.000Z

    The beginning of the Geothermal Research Program, its organization, objectives, fiscal history, accomplishments, and present emphasis. The projects of the Geothermal Research Program are presented along with a list of references.

  3. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

  4. Reflection Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  5. Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  6. 3-D Magnetotelluric Investigations for geothermal exploration in Martinique (Lesser Antilles). Characteristic Deep Resistivity Structures, and Shallow Resistivity Distribution Matching Heliborne TEM Results

    E-Print Network [OSTI]

    Coppo, Nicolas; Girard, Jean-François; Wawrzyniak, Pierre; Hautot, Sophie; Tarits, Pascal; Jacob, Thomas; Martelet, Guillaume; Mathieu, Francis; Gadalia, Alain; Bouchot, Vincent; Traineau, Hervé

    2015-01-01T23:59:59.000Z

    Within the framework of a global French program oriented towards the development of renewable energies, Martinique Island (Lesser Antilles, France) has been extensively investigated (from 2012 to 2013) through an integrated multi-methods approach, with the aim to define precisely the potential geothermal ressources, previously highlighted (Sanjuan et al., 2003). Amongst the common investigation methods deployed, we carried out three magnetotelluric (MT) surveys located above three of the most promising geothermal fields of Martinique, namely the Anses d'Arlet, the Montagne Pel{\\'e}e and the Pitons du Carbet prospects. A total of about 100 MT stations were acquired showing single or multi-dimensional behaviors and static shift effects. After processing data with remote reference, 3-D MT inversions of the four complex elements of MT impedance tensor without pre-static-shift correction, have been performed for each sector, providing three 3-D resistivity models down to about 12 to 30 km depth. The sea coast effe...

  7. Lost circulation in geothermal wells: survey and evaluation of industry experience

    SciTech Connect (OSTI)

    Goodman, M.A.

    1981-07-01T23:59:59.000Z

    Lost circulation during drilling and completion of geothermal wells can be a severe problem, particularly in naturally fractured and/or vugular formations. Geothermal and petroleum operators, drilling service companies, and independent consultants were interviewed to assess the lost circulation problem in geothermal wells and to determine general practices for preventing lost circulation. This report documents the results and conclusions from the interviews and presents recommendations for needed research. In addition, a survey was also made of the lost circulation literature, of currently available lost circulation materials, and of existing lost circulation test equipment.

  8. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    be due to a geothermal system at depth. One of the anomalies was interpreted to be from fluids up to 200 degrees Celsius. References Fairbank Engineering Ltd (2003) Phase I...

  9. Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Technique Ground Gravity Survey Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity surveys were conducted to gain a better...

  10. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01T23:59:59.000Z

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  11. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Two seismic surveys were done, the first was a low frequency survey...

  12. Use Of Electrical Surveys For Geothermal Reservoir Characterization-

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnitedBeowawe Geothermal Field | Open Energy

  13. Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde IncStarAreas- Cove

  14. Progress Report on Electrical Resistivity Studies Coso Geothermal Area Inyo

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformationInformationOpenProeCounty

  15. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Area (Fairbank Engineering Ltd, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date...

  16. Upgrading Amerada-type survey clocks for high-temperature geothermal service

    SciTech Connect (OSTI)

    Major, B.H.; Witten, C.L.

    1980-09-01T23:59:59.000Z

    The Amerada type subsurface recording gauges have been used by the oil and gas industry for many years. These mechanical logging instruments are currently used by the growing goethermal industry. As the gauges were designed for service in low-temperature oil and gas wells, a significant number of failures are occurring at elevated geothermal temperatures. The spring driven mechanical survey clocks appear to be the primary cause of the failures. The clock mechanisms tend to stop or lock-up when exposed to temperatures as high as 300/sup 0/C. This paper summarizes a project that was undertaken to upgrade the survey clocks to 300/sup 0/C capability. The major problems causing clock failure were indentified and corrected by straightforward design modifications together with special lubrication of the moving parts. Several clocks so modified performed reliably, both during laboratory oven tests and during field tests that were performed in actual geothermal wells at temperatures up to 330/sup 0/C.

  17. MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL...

    Open Energy Info (EERE)

    changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. To these ends, we are acquiring a dense grid of magnetotelluric...

  18. Ground Gravity Survey At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Survey Activity Date - 1986 Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting...

  19. Finding Hidden Geothermal Resources in the Basin and Range Using Electrical Survey Techniques: A Computational Feasibility Study

    SciTech Connect (OSTI)

    J. W. Pritchett; not used on publication

    2004-12-01T23:59:59.000Z

    For many years, there has been speculation about "hidden" or "blind" geothermal systems—reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose primary purpose is to locate high-probability targets for subsequent deep confirmation drilling. The purpose of this study was to appraise the feasibility of finding "hidden" geothermal reservoirs in the Basin and Range using electrical survey techniques, and of adequately locating promising targets for deep exploratory drilling based on the survey results. The approach was purely theoretical. A geothermal reservoir simulator was used to carry out a lengthy calculation of the evolution of a synthetic but generic Great Basin-type geothermal reservoir to a quasi-steady "natural state". Postprocessors were used to try to estimate what a suite of geophysical surveys of the prospect would see. Based on these results, the different survey techniques were compared and evaluated in terms of their ability to identify suitable drilling targets. This process was completed for eight different "reservoir models". Of the eight cases considered, four were "hidden" systems, so that the survey techniques could be appraised in terms of their ability to detect and characterize such resources and to distinguish them from more conventionally situated geothermal reservoirs. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then to combine the results of both surveys with other pertinent information using mathematical "inversion" techniques to characterize the subsurface quantitatively. Many such surveys and accompanying analyses can be carried out for the cost of a single unsuccessful deep "discovery well".

  20. NEPA COMPLIANCE SURVEY Project Information Project TitJe: Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    0 18 0 Hazardous Air Pollutants? Is the project subject to emissions limitations in an Air Quality 0 18 0 Control Region? 2 Revised on: 11122008 NEPA COMPLIANCE SURVEY Impacts...

  1. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01T23:59:59.000Z

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  2. Imperial County baseline health survey potential impact of geothermal energy

    SciTech Connect (OSTI)

    Deane, M.

    1981-06-01T23:59:59.000Z

    The survey purpose, methods, and statistical methods are presented. Results are discussed according to: area differences in background variables, area differences in health variables, area differences in annoyance reactions, and comparison of symptom frequencies with age, smoking, and drinking. Included in appendices are tables of data, enumeration forms, the questionnaire, interviewer cards, and interviewer instructions. (MHR)

  3. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    conductive regions here may be caused by hydrothermal alteration or a fluid filled fracture system." References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter,...

  4. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to: navigation, search

  5. Direct-Current Resistivity Survey At Valles Caldera - Redondo Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO,Open Energy2006)Area

  6. Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.ElectricSitingAl., 1977)

  7. Progress report on electrical resistivity studies, COSO Geothermal Area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy Information on electrical resistivity

  8. Ground Gravity Survey At North Brawley Geothermal Area (Biehler, 1964) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | OpenGround Gravity Survey

  9. Ground Gravity Survey At North Brawley Geothermal Area (Department, 1979) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | OpenGround Gravity SurveyOpen

  10. Refraction Survey At Coso Geothermal Area (1989) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|Reflection Survey

  11. Hydrocarbons in Soil Gas as Pathfinders in Geothermal Resource Surveys in Indonesia

    SciTech Connect (OSTI)

    Pudjianto, R.; Suroto, M.; Higashihara, M.; Fukuda, M.; Ong, Akhadiana and Jan

    1995-01-01T23:59:59.000Z

    A surface geochemical technique utilizing normal paraffin (C{sub 7+}) and aromatic (C{sub 8}) hydrocarbons in soil gas has been successfully used as pathfinders in surveys for geothermal resources in Indonesia. The Dieng field was used to test the technique. The result shows the paraffin anomalies to be near and over productive wells. Because productive wells usually lie over upflow zones it reinforces our hypothesis that paraffins define the upflow of geothermal systems. The aromatic hydrocarbon alkylbenzene C{sub 8} was found near and around productive wells in the southeast quadrant of the Dieng field (Sikidang-Merdada area) but they are more spread out and more diffuse than the paraffins. The shape of their anomaly seems to suggest a tendency of spreading into the direction of lower elevations. It is thought that the aromatics, which are much more soluble than their corresponding paraffins, express at the surface as anomalies not only of locations of the upflow but also of the outflow of the geothermal system as well. Therefore the combined paraffin and aromatic anomalies, and topography, may be used as an indicator for the direction of the outflow or the flow of the under ground waters. The scarcity of the aromatics in the northwest quadrant of the Dieng field (Sileri area) is unique. A hypothesis has been proposed which could explain this unique feature.

  12. Resistivity, induced polarization, and self-potential methods in geothermal exploration

    SciTech Connect (OSTI)

    Ward, S.H.; Sill, W.R.

    1982-01-01T23:59:59.000Z

    An overview of the literature is presented. This is followed by a statement of some elementary electromagnetic theory necessary to establish the MKS system of units and the fundamental physics governing electrical methods of exploration. Next there is presented a reasonably detailed discussion of the electrical properties of earth materials including normal mode of conduction, surface conduction, electrode polarization, membrane polarization, semiconduction, melt conduction, real and complex resistivity, and the origin of self-potentials in geothermal systems. To illustrate how electrical methods are used within the framework of integrated geological, geochemical, and geophysical exploration, the case history of the Monroe-Red Hill hot springs system is presented.

  13. Experience survey of chloride resistant alloys in process plants

    SciTech Connect (OSTI)

    Sakai, J. [Kokan Keisoku, Kawasaki (Japan); Matsumoto, Keiichi [Toyo Engineering Corp., Narashino, Chiba (Japan)

    1999-11-01T23:59:59.000Z

    The Society of Chemical Engineers, Japan (SCEJ), and The Japan Petroleum Institute (JPI) have jointly surveyed the experience of so called Chloride-SCC resistant stainless steels in petrochemical plants and refinery plants. The survey covered more than one hundred cases of applications of duplex stainless steels, 400 series stainless steels, high nickel alloys and austenitic stainless steels. The survey included the following: (1) countermeasures taken in advance of or after the occurrence of the damage; (2) environmental conditions of the equipment considered; and (3) performance of the adopted countermeasure materials. As a conclusion, detailed analysis has clarified safe limits of SCC resistant alloys, some unexpected weak points, and remarkable performances.

  14. Un Seminar On The Utilization Of Geothermal Energy For Electric...

    Open Energy Info (EERE)

    Geothermics. () . Related Geothermal Exploration Activities Activities (3) Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey...

  15. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

  16. Survey of Potential Geothermal Exploration Sites at Newberry Volcano Deschutes County, Oregon.

    SciTech Connect (OSTI)

    Priest, George R.; Vogt, Beverly F.; Black, Gerald L.

    1983-01-01T23:59:59.000Z

    The study summarizes the current data, generates some new data, and recommends further steps which should be taken to investigate the electrical power production potential of Newberry volcano. The objective was to concentrate on data from the developable flanks of the volcano. All previous data on the geology, hydrology, and geophysics were summarized. A soil-mercury survey focused on the flanks of the volcano was conducted. Samples from 1000 km/sup 2/ of the volcano were analyzed for mercury content. All this information was utilized to evaluate (1) the likelihood of future discovery of electrical-quality geothermal fluids on the flanks, and (2) the most cost-effective means of improving the quality of available power generation estimates for the volcano. 37 figures.

  17. Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis

    Broader source: Energy.gov [DOE]

    Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  18. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition...

  19. Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...

    Open Energy Info (EERE)

    Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition...

  20. Electrical Resistivity and Self-Potential Surveys Blue Mountain...

    Open Energy Info (EERE)

    been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the...

  1. Direct-Current Resistivity Survey At Lightning Dock Area (Cunniff...

    Open Energy Info (EERE)

    traverse, but was offset northward more than 500 feet to avoid the producing geothermal wells and other manmade cultural effects in the area. The locations for these two...

  2. DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDC Resistivity Survey

  3. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Energy Savers [EERE]

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

  4. Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir

    E-Print Network [OSTI]

    Feighner, Mark A.

    2010-01-01T23:59:59.000Z

    at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

  5. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  6. Tectonic & Structural Controls of Great Basin Geothermal Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV...

  7. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity profiles, each approximately 1.3 km in length. Equilibrium...

  8. Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource

    SciTech Connect (OSTI)

    Cunniff, Roy A.; Bowers, Roger L.

    2005-08-01T23:59:59.000Z

    This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

  9. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Energy Savers [EERE]

    - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

  10. Survey of environmental regulations applying to geothermal exploration, development, and use.

    SciTech Connect (OSTI)

    Beeland, G.V.

    1984-03-01T23:59:59.000Z

    Federal, State, and local environmental laws and regulations that apply to geothermal energy development are summarized. Most attention is given to those regulations which deal with air pollution, water pollution, solid wastes and impact assessments. Analyses are made of the regulations with respect to resource definition, pollutants currently not controlled, duplicity and overlap in permit and impact assessment requirements, the lack of uniformity of regulations between states, and the probable future approaches to the regulatory problems. This project updates a similar document (EPA/600/7-78-014) dated February 1978.

  11. DC Resistivity Survey (Schlumberger Array) At Roosevelt Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to: navigation, searchGeothermal

  12. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Energy Savers [EERE]

    Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

  13. Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski...

    Open Energy Info (EERE)

    Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has...

  14. Direct-Current Resistivity Survey At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    Survey Activity Date 2010 Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson,...

  15. Direct-Current Resistivity Survey At Valles Caldera - Redondo...

    Open Energy Info (EERE)

    structure in the reservoir region. Some of the data were reinterpreted using K508 computer models, and interpretations from the various surveys were compared for consistency of...

  16. Direct-Current Resistivity Survey At Mauna Loa Southwest Rift...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the...

  17. A survey of anthracnose resistant sorghum germplasm lines to identify additional resistance genes

    E-Print Network [OSTI]

    Wiltse, Curtis Craig

    2012-06-07T23:59:59.000Z

    and their inheritance characterized. The objectives of this study were (1) to determine if different sources of genetic resistance exist among a selected set of 13 resistant sorghum germplasm lines, and (2) to determine the inheritance of the different resistance genes...

  18. Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2005-02-08T23:59:59.000Z

    A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

  19. Snake River Geothermal Project - Innovative Approaches to Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

  20. Geothermal Resources of New Mexico - A Survey of Work to Date | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey of Work to Date Jump to:

  1. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  2. DC Resistivity Survey (Mise-A-La-Masse) At Roosevelt Hot Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy

  3. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to: navigation,Area (Richards, Et

  4. Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County,|OpenOpenAl.,

  5. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) | Open Energy

  6. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) | Open

  7. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) |

  8. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO, 1976) |2005) |

  9. Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO,Open Energy

  10. DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal Area (1977)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings Analysis AtCycloceanCropsDBDBD|

  11. Direct-Current Resistivity Survey At Coso Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type TermOpen EnergyEnergy

  12. Direct-Current Resistivity Survey At Raft River Geothermal Area (1975) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type TermOpen EnergyEnergy2002)Open Energy

  13. Ground Gravity Survey At Blue Mountain Geothermal Area (U.S. Geological

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma.Groom EnergyNannini,Survey, 2012)

  14. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Magnetics Activity...

  15. Core Analysis At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2009) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Analysis Activity Date...

  16. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  17. DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDC Resistivity

  18. Geothermal Energy Association Recognizes the National Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  19. Geothermal Orientation Handbook

    SciTech Connect (OSTI)

    None

    1984-07-01T23:59:59.000Z

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  20. DC Resistivity Survey (Wenner Array) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDC ResistivityOpen Jump

  1. Geothermal: Sponsored by OSTI -- FORTRAN algorithm for correcting...

    Office of Scientific and Technical Information (OSTI)

    FORTRAN algorithm for correcting normal resistivity logs for borehold diameter and mud resistivity Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us Home...

  2. Imaging Multi-Dimensional Electrical Resistivity Structure as a Tool in Developing Enhanced Geothermal Systems (EGS)

    SciTech Connect (OSTI)

    Philip E. Wannamaker

    2007-12-31T23:59:59.000Z

    The overall goal of this project has been to develop desktop capability for 3-D EM inversion as a complement or alternative to existing massively parallel platforms. We have been fortunate in having a uniquely productive cooperative relationship with Kyushu University (Y. Sasaki, P.I.) who supplied a base-level 3-D inversion source code for MT data over a half-space based on staggered grid finite differences. Storage efficiency was greatly increased in this algorithm by implementing a symmetric L-U parameter step solver, and by loading the parameter step matrix one frequency at a time. Rules were established for achieving sufficient jacobian accuracy versus mesh discretization, and regularization was much improved by scaling the damping terms according to influence of parameters upon the measured response. The modified program was applied to 101 five-channel MT stations taken over the Coso East Flank area supported by the DOE and the Navy. Inversion of these data on a 2 Gb desktop PC using a half-space starting model recovered the main features of the subsurface resistivity structure seen in a massively parallel inversion which used a series of stitched 2-D inversions as a starting model. In particular, a steeply west-dipping, N-S trending conductor was resolved under the central-west portion of the East Flank. It may correspond to a highly saline magamtic fluid component, residual fluid from boiling, or less likely cryptic acid sulphate alteration, all in a steep fracture mesh. This work gained student Virginia Maris the Best Student Presentation at the 2006 GRC annual meeting.

  3. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    SciTech Connect (OSTI)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)] [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01T23:59:59.000Z

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  4. Surveys on the distribution and abundance of the Hawaiian hoary bat (Lasiurus cinereus semotus) in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    SciTech Connect (OSTI)

    Reynolds, M.; Ritchotte, G.; Dwyer, J.; Viggiano, A.; Nielsen, B.; Jacobi, J.D. [Fish and Wildlife Service, Hawaii National Park, HI (United States). Hawaii Research Station

    1994-08-01T23:59:59.000Z

    In 1993 the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct wildlife surveys relative to identifying potential impacts of geothermal resource development on the native biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the endangered Hawaiian hoary bat (Hawaiian bat), or opeapea (Lasiurus cinereus semotus), within the proposed Hawaii geothermal subzones. Potential effects of geothermal development on Hawaiian bat populations are also discussed. Surveys were conducted to determine the distribution and abundance of bats throughout the District of Puna. Baseline information was collected to evaluate the status of bats within the study area and to identify important foraging habitats. Little specific data exists in the published literature on the population status and potential limiting factors affecting the Hawaiian bat. A USFWS recovery plan does not exist for this endangered species.

  5. GEOTHERMAL GRADIENT DATA FOR UTAH Robert E. Blackett

    E-Print Network [OSTI]

    Laughlin, Robert B.

    GEOTHERMAL GRADIENT DATA FOR UTAH by Robert E. Blackett February 2004 UTAH GEOLOGICAL SURVEY ­ 1:750,000 scale map, showing geology; thermal wells, springs, and geothermal areas; and locations available sources including the Southern Methodist University Geothermal Laboratory, U.S. Geological Survey

  6. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect (OSTI)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01T23:59:59.000Z

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  7. Ground Magnetics At Neal Hot Springs Geothermal Area (U.S. Geothermal...

    Open Energy Info (EERE)

    Date 2007 - 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity and Magnetic surveys were done as part of U.S. Geothermal's geophysical program for...

  8. Imperial County geothermal development annual meeting: summary

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  9. Geothermal materials development activities

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1993-06-01T23:59:59.000Z

    This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

  10. Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    of the geothermal area. Ultimately for potential development of EGS. Notes A CO2 soil gas flux survey was conducted in areas recognized as geothermal upflow zones within the...

  11. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    geothermal activity which could be linked to faults that serve as pathways for geothermal fluids. Notes This survey was conducted on the western flank of Blue Mountain. SP Profile...

  12. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01T23:59:59.000Z

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  13. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  14. New River Geothermal Exploration (Ram Power Inc.)

    SciTech Connect (OSTI)

    Miller, Clay

    2013-11-15T23:59:59.000Z

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  15. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

    1996-02-01T23:59:59.000Z

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  16. Geothermal Case Studies

    SciTech Connect (OSTI)

    Young, Katherine

    2014-09-30T23:59:59.000Z

    The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  17. Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17

    SciTech Connect (OSTI)

    McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

  18. Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892

    SciTech Connect (OSTI)

    Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-12-15T23:59:59.000Z

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  19. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect (OSTI)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01T23:59:59.000Z

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  20. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  1. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Office of Environmental Management (EM)

    work among project partners Ormat, GeothermEx, Lawrence Berkeley National Laboratory (LBNL), U.S. Geological Survey, and Sandia National Laboratories (SNL), among others. "There...

  2. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Survey DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with...

  3. Geothermal Discovery Offers Hope for More Potential Across the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Data System project, managed by the Arizona Geological Survey. Based on drilling results, researchers conservatively estimate a basin-wide power density of about 5 to...

  4. Reconnaissance geophysical studies of the geothermal system in...

    Open Energy Info (EERE)

    studies of the geothermal system in southern Raft River Valley, Idaho Abstract Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used...

  5. Blind Geothermal System Exploration in Active Volcanic Environments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui Blind...

  6. Blind Geothermal System Exploration in Active Volcanic Environments...

    Open Energy Info (EERE)

    and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  7. Airborne electromagnetic surveys as a reconnaissance technique...

    Open Energy Info (EERE)

    Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Abstract INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five...

  8. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01T23:59:59.000Z

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  9. A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua...

    Open Energy Info (EERE)

    Article: A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal Field Abstract Delineation and monitoring of surface thermal activity at geothermal development...

  10. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2003-05-01T23:59:59.000Z

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  11. California Geothermal Energy Collaborative

    E-Print Network [OSTI]

    California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

  12. Survey and evaluation of modern electrostatic concepts applied to high-resistivity fly ash

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The ineffectiveness of conventional electrostatic precipitators on high resistivity fly ash has different, though interrelated, causes. Voltages high enough to generate corona at the discharge electrode also generate back corona on the deposited dust layer. Removal of the layer results in reentrainment losses. Reduction of voltage to suppress back corona reduces precipitation effectiveness. All of the surveyed concepts attempt to deal with one or more of these problems; most but none will address all of the deficiencies. A versatile multiple-concept pilot precipitator would allow GFETC to develop the optimum combination of novel concepts. Acurex is recommending a precipitator with component interchangeability in three sections: (1) the main precipitator section (one or more cells) should be designed to accept either conventional electrodes or a few tri-electrode configurations. Versatile pulse-charged power supplies will be needed to accommodate the various electrode configurations. The best method of suppressing back-corona in the precipitator itself can thus be developed; (2) a precharger section should be installed ahead of the main precipitator to optimize precharger design; and (3) a downstream collector section would test the effectiveness of concepts which lend themselves to effective collection of low-load, high-resistivity, small particles. These include wet precipitators, fabric filters, and bed filters. The separation of functions will allow more effective particle charging in the first section, collection of most of the particulate without reverse ionization in the main section, and polishing of the remaining fine and reentrained particulate in a suitable downstream collector.

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

  14. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

  15. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Basalt K Eburru Geothermal Area Eburru Geothermal Area East African Rift System Kenya Rift Basalt Fukushima Geothermal Area Fukushima Geothermal Area Northeast Honshu Arc...

  16. Geothermal Energy Resources (Louisiana)

    Broader source: Energy.gov [DOE]

    Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

  17. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  18. Materials for geothermal production

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1992-01-01T23:59:59.000Z

    Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

  19. Geothermal: Sponsored by OSTI -- State geothermal commercialization...

    Office of Scientific and Technical Information (OSTI)

    State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980 Geothermal Technologies Legacy Collection HelpFAQ | Site...

  20. Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

  1. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

  2. Microearthquake surveys of Snake River plain and Northwest Basin...

    Open Energy Info (EERE)

    Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County...

  3. Geothermal Technologies Program Overview Presentation at Stanford...

    Energy Savers [EERE]

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  4. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  5. Geothermal: About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal

  6. Julian, B.R. and G.R. Foulger, Improved Methods for Mapping Permeability and Heat sources in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University,

    E-Print Network [OSTI]

    Foulger, G. R.

    Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we in Geothermal Areas using Microearthquake Data, Thirty-Fifth Workshop on Geothermal Reservoir Engineering and Heat sources in Geothermal Areas using Microearthquake Data Bruce R. Julian§ U. S. Geological Survey

  7. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect (OSTI)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14T23:59:59.000Z

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  8. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    SciTech Connect (OSTI)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31T23:59:59.000Z

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  9. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01T23:59:59.000Z

    their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

  10. DC Resistivity Survey (Dipole-Dipole Array) At Waunita Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy InformationCuyamungue,Czero,Geothermal

  11. DC Resistivity Survey (Mise-A-La-Masse) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to: navigation, search GEOTHERMAL

  12. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01T23:59:59.000Z

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  13. Geology, resistivity, and hydrochemistry of the Ojo Caliente hot springs area, northern New Mexico

    SciTech Connect (OSTI)

    Stix, J.; Pearson, C.; Vuataz, F.; Goff, F.; East, J.; Hoffers, B.

    1982-01-01T23:59:59.000Z

    Geothermal fluids of the Ojo Caliente area discharge from a northeast trending normal fault that juxtaposes Precambrian metarhyolite and Tertiary sediments. An electrical resistivity survey shows that the fluids emerge from the fault and flow as a plume of thermal water into cold aquifers east of the fault. Geochemistry of fluids indicates a maximum reservoir temperature at depth of 80/sup 0/C with no suggestion of high temperature isotopic exchange between water and reservoir rocks. From this data, it is believed that the Ojo Caliente system is suitable only for small-scale direct use geothermal applications.

  14. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  15. Geothermal Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

  16. 1992--1993 low-temperature geothermal assessment program, Colorada

    SciTech Connect (OSTI)

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01T23:59:59.000Z

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  17. DC Resistivity Survey (Dipole-Dipole Array) At Waunita Hot Springs...

    Open Energy Info (EERE)

    Notes Heinrichs Geoexploration Company conducted two phases of eletrical resistivity tomography around the Waunita Hot Springs and Tomichi Dome area. The first phase consisted of...

  18. Geothermal: Sponsored by OSTI -- A study of geothermal drilling...

    Office of Scientific and Technical Information (OSTI)

    A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  19. Geothermal: Sponsored by OSTI -- GEOTHERMAL / SOLAR HYBRID DESIGNS...

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

  20. Geothermal: Sponsored by OSTI -- Development of a geothermal...

    Office of Scientific and Technical Information (OSTI)

    Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan Geothermal Technologies Legacy Collection HelpFAQ | Site...

  1. Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...

    Office of Scientific and Technical Information (OSTI)

    Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

  2. Geothermal: Sponsored by OSTI -- Calpine geothermal visitor center...

    Office of Scientific and Technical Information (OSTI)

    Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers Geothermal Technologies Legacy Collection HelpFAQ |...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

  5. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

  6. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  7. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

  8. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

  9. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  10. Geothermal Energy--Clean Power From the Earth's Heat

    E-Print Network [OSTI]

    Geothermal Energy--Clean Power From the Earth's Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey #12;Geothermal Energy--Clean Power From the Earth's Heat By Wendell A Foreword One of the greatest challenges of the 21st century is the production of sufficient energy to power

  11. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Integration of new thermochronometric, structural and geological analyses, reflection and refraction seismic surveys and existing geophysical data into a 3-D Earth Model to elucidate the tectonic and 4-D thermal evolution of southern Clayton Valley and the Weepah Hills (Pearl Hot Spring geothermal play).

  12. Geothermal News

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phonegeothermal/900546 Geothermal News en

  13. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  14. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  15. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  16. E-Print Network 3.0 - anthelmic resistance survey Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JafarGandomi* and Andrew Curtis, School of GeoSciences, The University of Edinburgh, Kings Summary: , a resistive layer anywhere closer to the reservoir than 1 km decreases...

  17. Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...

    Office of Scientific and Technical Information (OSTI)

    Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

  18. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim [Arizona Geological Survey

    2013-05-01T23:59:59.000Z

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, a

  19. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  20. National Geothermal Resource Assessment and Classification |...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

  1. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component...

  2. GEOPHYSICAL RESEARCH LETTERS, VOL. 24, NO. 14, PAGES 1839-1842, JULY 15, 1997 Subsidence at The Geysers geothermal field, N.

    E-Print Network [OSTI]

    Segall, Paul

    of the stresses and strains in- duced by geothermal power production in that region. Each survey spanned in the coast ranges of northern California. It is the largest producer of geothermal power in the world. At its at The Geysers geothermal field, N. California from a comparison of GPS and leveling surveys Antony Mossop

  3. Sandia National Laboratories: Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

  4. Geothermal Energy Association Annual Industry Briefing: 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

  5. Micro-earthquake monitoring and tri-axial drill-bit VSP in NEDO {open_quotes}Deep-seated geothermal reservoir survey{close_quotes} in Kakkonda, Japan

    SciTech Connect (OSTI)

    Takahashi, M.; Kondo, T.; Suzuki, I. [Japan Metals and Chemicals Co., Ltd., Iwate (Japan)] [and others

    1995-12-31T23:59:59.000Z

    New Energy and Industrial Technology Development Organization has been drilling well WD-1 and employing micro-earthquake monitoring and tri-axial drill-bit VSP as the exploration techniques for the deep geothermal reservoir in the Kakkonda geothermal field, Japan. The results of them are as follows: (1) More than 1000 micro-earthquakes were observed from December 23, 1994 to July 1, 1995 in the Kakkonda geothermal field. Epicenters are distributed NW-SE from a macroscopic viewpoint; they distribute almost in the same areas as the fractured zone in the Kakkonda shallow reservoir as pointed out by Doi et al. (1988). They include three groups trending NE-SW. Depths of hypocenters range from the ground surface to about -2.5 km Sea level; they seem to be deeper in the western part. (2) Well WD-1 drilled into a swarm of micro-earthquakes at depths 1200 to 2200 m and encountered many lost circulations in those depths. However, these earthquakes occurred before well WD-1 reached those depths. (3) The bottom boundary of micro-earthquake distribution has a very similar shape to that of the top of the Kakkonda granite, though all of the micro-earthquakes are plotted 300 m shallower than the top of the granite. (4) The TAD VSP shows a possibility of existence of seismic reflectors at sea levels around -2.0, -2.2 and -2.6 km. These reflectors seem to correspond to the top of the Pre-Tertiary formation, the top of the Kakkonda granite and reflectors within the Kakkonda granite.

  6. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01T23:59:59.000Z

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  7. Results of investigation at the Ahuachapan Geothermal Field, El Salvador

    SciTech Connect (OSTI)

    Fink, J.B. (HydroGeophysics, Tucson, AZ (United States))

    1990-04-01T23:59:59.000Z

    The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

  8. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    in Geysers geothermal cooling towers.   Geothermal in  Geysers  Geothermal  Cooling  Towers.   Aminzadeh, processes  –  Geothermal  resources  near  cooling 

  9. Gravity and magnetic features and their relationship to the geothermal system in southwestern South Dakota

    SciTech Connect (OSTI)

    Hildenbrand, T.G.; Kucks, R.P.

    1981-01-01T23:59:59.000Z

    An attempt is made to determine the sources that are responsible for producing geothermal anomalies observed within the southern Black Hills region. Lithologic and structural boundaries residing in the upper crust and their relationship to the geothermal system are discussed. A regional gravity survey was supplemented by a regional aeromagnetic survey.

  10. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  11. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  12. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  13. STANFORD GEOTHERMAL QUARTERLY REPORT

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

  14. STANFORD GEOTHERMAL QUARTERLY REPORT

    E-Print Network [OSTI]

    Stanford University

    1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

  15. Geothermal Technologies Newsletter Archives

    Broader source: Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  16. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  17. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  18. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  19. Geothermal Government Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

  20. Geothermal energy in Nevada

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  1. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  2. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    Coast geopressured-geothermal wells: Two studies, Pleasantinduced by geopressured-geothermal well development. In:

  3. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01T23:59:59.000Z

    measurements in geothermal wells," Proceedings, Secondin Larderello Region geothermal wells for reconstruction of

  4. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  5. CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES

    E-Print Network [OSTI]

    Stanford University

    geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

  6. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01T23:59:59.000Z

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  7. Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski...

    Open Energy Info (EERE)

    Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et...

  8. Application Of Electrical Resistivity And Gravimetry In Deep...

    Open Energy Info (EERE)

    Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Electrical...

  9. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    gains  with  geothermal  power.  Geothermal Resources gains  with  geothermal  power.  Geothermal Resources of Tables:  Table 1:  Geothermal Power Plants Operating at 

  10. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Range Geothermal Region Big Windy Hot Springs Geothermal Area Alaska Geothermal Region Bingham Caribou Geothermal Area Yellowstone Caldera Geothermal Region Birdsville...

  11. Geodetic Survey At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nevada Test And...

  12. Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity...

  13. Geodetic Survey At Walker-Lane Transitional Zone Region (Blewitt...

    Open Energy Info (EERE)

    Zone Region (Blewitt Et Al, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date...

  14. Merging High Resolution Geophysical and Geochemical Surveys to...

    Open Energy Info (EERE)

    Buttes, Oregon Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Merging High Resolution Geophysical and Geochemical Surveys to Reduce...

  15. Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...

    Open Energy Info (EERE)

    Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski,...

  16. Reflection Survey At Under Steamboat Springs Area (Warpinski...

    Open Energy Info (EERE)

    Under Steamboat Springs Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Under Steamboat...

  17. Refraction Survey At Northern Basin & Range Region (Heimgartner...

    Open Energy Info (EERE)

    Northern Basin & Range Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Northern Basin &...

  18. Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful...

  19. Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Central...

  20. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot...

  1. Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

  3. Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...

    Office of Scientific and Technical Information (OSTI)

    Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

  4. Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...

    Office of Scientific and Technical Information (OSTI)

    Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

  5. Process applications for geothermal energy resources. Final report

    SciTech Connect (OSTI)

    Mikic, B.B.; Meal, H.C.; Packer, M.B.; Guillamon-Duch, H.

    1981-08-01T23:59:59.000Z

    The principal goal of the program was to demonstrate economical and technical suitability of geothermal energy as a source of industrial process heat through a cooperative program with industrial firms. To accomplish that: a critical literature survey in the field was performed; a workshop with the paper and pulp industry representatives was organized; and four parallel methods dealing with technical and economical details of geothermal energy use as a source of industrial process heat were developed.

  6. Abstract, AGU Fall meeting, San Francisco, 10-14 December, 2007 Seismic characterisation of hydraulic stimulation tests at the Coso geothermal

    E-Print Network [OSTI]

    Foulger, G. R.

    of hydraulic stimulation tests at the Coso geothermal area, California Bruce R. Julian U. S. Geological Survey, Durham DH1 3LE, U.K., g.r.foulger@durham.ac.uk Francis C. Monastero Geothermal Program Office, U. S. Navy and after fluid injection tests at the Coso geothermal area, California, to map the fractures formed

  7. Geothermal drilling technology update

    SciTech Connect (OSTI)

    Glowka, D.A.

    1997-04-01T23:59:59.000Z

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  8. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

  9. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  10. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  11. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov (indexed) [DOE]

    injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

  12. Geothermal Technologies Office: Projects

    Broader source: Energy.gov (indexed) [DOE]

    Exploration Technologies (6) Geopressured Resources (1) Geothermal Analysis (14) Heat Pumps (8) High-Temperature Cements (2) High-Temperature Downhole MWD Tools for...

  13. Engineered Geothermal Systems.

    E-Print Network [OSTI]

    Drange, Lars Anders

    2011-01-01T23:59:59.000Z

    ?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian… (more)

  14. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  15. Potential of geothermal energy in China .

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01T23:59:59.000Z

    ??This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in… (more)

  16. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

  17. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01T23:59:59.000Z

    Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

  18. International Partnership for Geothermal Technology - 2012 Peer...

    Broader source: Energy.gov (indexed) [DOE]

    River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

  19. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01T23:59:59.000Z

    an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

  20. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01T23:59:59.000Z

    the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

  1. GETEM -Geothermal Electricity Technology Evaluation Model | Department...

    Energy Savers [EERE]

    GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

  2. Enhanced Geothermal Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

  3. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01T23:59:59.000Z

    the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

  4. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

  5. Geothermal Technologies Office Releases 2012 Annual Report |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

  6. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01T23:59:59.000Z

    Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

  7. Geothermal Technologies Office Director Doug Hollett Keynotes...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

  8. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

  9. NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

  10. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01T23:59:59.000Z

    that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  11. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

  12. Geothermal Exploration Case Studies on OpenEI (Presentation)

    SciTech Connect (OSTI)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01T23:59:59.000Z

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  13. Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach

    Broader source: Energy.gov [DOE]

    This project entails finding and assessing geothermal systems to: Increase geothermal development through research and outreach; Reduce risk in drill target selection, thus reducing project development costs; and Recent research includes development of shallow temperature surveys, seismic methods, aerial photography, field structural geology.

  14. Geothermics, Vol. 21, No. 4, pp. 425-446, 1992. Printed in Great Britain.

    E-Print Network [OSTI]

    as a promising indication of developable geothermal energy in the Tecuamburro area (OLADE, 1982; Giggenbach, 1988.00 Pergamon Press Ltd CNR. GEOLOGY AND GEOTHERMAL POTENTIAL OF THE TECUAMBURRO VOLCANO AREA, GUATEMALA W. A Estudios Geologicos de America Central, Apartado 468, Guatemala City, Guatemala; § U.S. Geological Survey

  15. Hydrogen and Primary Productivity: Inference of Biogeochemistry from Phylogeny in a Geothermal Ecosystem

    E-Print Network [OSTI]

    113 Hydrogen and Primary Productivity: Inference of Biogeochemistry from Phylogeny in a Geothermal, unexpectedly, that hydrogen-metabolizing organisms, both known and novel, dominate these communities. Hydrogen geothermal area by gas chromatography to survey the potential distribution of hydrogen concentrations in high

  16. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

  17. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

  18. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

  19. Geothermal energy: a brief assessment

    SciTech Connect (OSTI)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01T23:59:59.000Z

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  20. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01T23:59:59.000Z

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  1. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  2. Cerro Prieto geothermal field: exploration during exploitation

    SciTech Connect (OSTI)

    Not Available

    1982-07-01T23:59:59.000Z

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  3. Geothermal/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey ofJump to:< Geothermal

  4. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01T23:59:59.000Z

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  5. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

  6. Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978

    SciTech Connect (OSTI)

    Callender, J.F.

    1985-04-01T23:59:59.000Z

    A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

  7. 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...

    Open Energy Info (EERE)

    At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  8. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  9. Updating the Classification of Geothermal Resources- Presentation

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  10. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  11. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  12. Funding Opportunity: Geothermal Technologies Program Seeks Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

  13. Updating the Classification of Geothermal Resources

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  14. Cuttings Analysis At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Cuttings Analysis At International Geothermal Area, Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique...

  15. Rural Cooperative Geothermal Development Electric & Agriculture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects lowsilveriaruralelectriccoop.pdf More Documents & Publications Southwest Alaska Regional Geothermal...

  16. Readily Available Data Help to Overcome Geothermal Deployment...

    Broader source: Energy.gov (indexed) [DOE]

    Articles Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development The National Geothermal Data System deploys free,...

  17. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

  18. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

  19. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

  20. State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report

    SciTech Connect (OSTI)

    Icerman, L.; Starkey, A.; Trentman, N. (eds.) [eds.

    1980-10-01T23:59:59.000Z

    The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

  1. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    into  sustainable  geothermal  energy:  The  S.E.   Geysers seismicity and geothermal  energy.  Geothermal Resources into  sustainable  geothermal  energy:  The  S.E.   Geysers 

  2. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    induced seismicity and geothermal  energy.  Geothermal into  sustainable  geothermal  energy:  The  S.E.   Geysers into  sustainable  geothermal  energy:  The  S.E.   Geysers 

  3. NANA Geothermal Assessment Program Final Report

    SciTech Connect (OSTI)

    Jay Hermanson

    2010-06-22T23:59:59.000Z

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  4. Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980

    SciTech Connect (OSTI)

    Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

    1980-01-01T23:59:59.000Z

    Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

  5. Beowawe Geothermal Area evaluation program. Final report

    SciTech Connect (OSTI)

    Iovenitti, J. L

    1981-03-01T23:59:59.000Z

    Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

  6. Wear-Resistant NanoCompositeStainless Steel Coatings and Bits

    Broader source: Energy.gov (indexed) [DOE]

    wear resistant steels developed in this project will optimize hardness versus fracture toughness for geothermal drilling * Potential savings in tool costs (up to 12 cost...

  7. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01T23:59:59.000Z

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  8. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  9. Geothermal: Sponsored by OSTI -- Use of a Geothermal-Solar Hybrid...

    Office of Scientific and Technical Information (OSTI)

    Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

  10. Geothermal Resources Act (Texas)

    Broader source: Energy.gov [DOE]

    The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide...

  11. Residential Geothermal Systems Credit

    Broader source: Energy.gov [DOE]

    A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

  12. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C. (ed.)

    1988-02-01T23:59:59.000Z

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  13. Geothermal: Sponsored by OSTI -- User manual for geothermal energy...

    Office of Scientific and Technical Information (OSTI)

    User manual for geothermal energy assisted dairy complex computer programs: PREBLD, MODEL0, MODEL1, MODEL2, FRMAT2, PREPI2, NET2, DAIRY and DAIRY1 Geothermal Technologies Legacy...

  14. Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) is holding a State of the Geothermal Industry Briefing on Tuesday, February 24th at the Hyatt Regency Capitol Hill in Washington, DC. This program will...

  15. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal...

  16. Geothermal: Sponsored by OSTI -- Development of a Geothermal...

    Office of Scientific and Technical Information (OSTI)

    Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada...

  17. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  18. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  19. Geothermal energy: 1992 program overview

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  20. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  1. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  2. South Dakota Geothermal Energy Handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  3. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

  4. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    and its heat source. INTRODUCTION The Kizildere geothermal field, which is situated within the MTPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 ELECTRICAL RESISTIVITY IMAGE OF THE KIZILDERE

  5. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  6. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office No. DE-AT03-80SF11459 Department of Energy Division of Geothermal Energy #12;#12;1 , .... TABLE n t e r e s t t o the geothermal energy community. The topic f o r panel analysis f o r the Sixth

  7. Stanford Geothermal Program Tnterdisciplinary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

  8. GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger

    E-Print Network [OSTI]

    Stanford University

    SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

  9. Postgraduate Certificate in Geothermal Energy

    E-Print Network [OSTI]

    Auckland, University of

    Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

  10. Stanford Geothermal Program Stanford University

    E-Print Network [OSTI]

    Stanford University

    s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

  11. DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

  12. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  13. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

  14. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    city, capital of the province (Fig.1). The field has been proved to be one of the geothermal prospects in Indonesia (Hochstein and Sudarman, 2008). PT. Pertamina Geothermal Energy (PT.PGE) conducted reconnaissance not been developed yet. Thus, we have carried out geochemical survey in this area and tried to develop

  15. Alligator Geothermal Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandria BiomassRuralAlligator Geothermal

  16. Application of a New Structural Model & Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid Drilling for Geothermal Exploration: McCoy, Churchill County, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. Relevance of research: Improve exploration technologies for range-hosted geothermal systems:Employ new concept models and apply existing methods in new ways; Breaking geothermal exploration tasks into new steps, segmenting the problem differently; Testing new models for dilatent structures; Utilizing shallow thermal aquifer model to focus exploration; Refining electrical interpretation methods to map shallow conductive featuresIdentifying key faults as fluid conduits; and Employ soil gas surveys to detect volatile elements and gases common to geothermal systems.

  17. State Geothermal Resource Assessment and Data Collection Efforts

    Broader source: Energy.gov [DOE]

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  18. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

  19. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified

    E-Print Network [OSTI]

    .......................... 18 Figure 2. Utilization efficiency as a function of temperature for existing geothermal power plants Geothermal Resources By Colin F. Williams, Marshall J. Reed, and Robert H. Mariner Open-File Report 2008 applied by the U.S. Geological Survey in the assessment of identified geothermal resources: U

  20. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

  1. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

  2. Geothermal Energy Growth Continues, Industry Survey Reports ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economic benefits, according to GEA. "These new projects will result in the infusion of roughly 15 billion in capital investment in the western states, and create 7,000...

  3. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Cross, J.; Freeman, J.

    2009-07-01T23:59:59.000Z

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  4. Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis

    E-Print Network [OSTI]

    Sumintadireja, Prihadi; Irawan, Dasapta E; Irawan, Diky; Fadillah, Ahmad

    2015-01-01T23:59:59.000Z

    The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at prospect zones, which identified by the previous method, to have a more exact and in depth local scale structural interpretation. Both methods are directed to pin point appropriate locations for geothermal pilot hole drilling and testing. We used four scenes of Landsat Enhanced Thematic Mapper or ETM+ data to estimate the surface manifestation of a geothermal system. Temporal analysis of Land Surface Temperature or LST was applied and coupled with field temperature measurement at seven locations. By combining the TTM with ...

  5. Geothermal steam quality testing

    SciTech Connect (OSTI)

    Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

    1995-12-31T23:59:59.000Z

    Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

  6. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  7. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  8. Geothermal hydrogen sulfide removal

    SciTech Connect (OSTI)

    Urban, P.

    1981-04-01T23:59:59.000Z

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  9. Geothermal well stimulation

    SciTech Connect (OSTI)

    Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

    1980-01-01T23:59:59.000Z

    All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

  10. Geothermal Technologies Legacy Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat

  11. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced Search

  12. Geothermal: Basic Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced

  13. Geothermal: Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvancedHome

  14. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  15. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

  16. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Broader source: Energy.gov [DOE]

    This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

  17. Geothermal Reservoir Evaluation Considering Fluid Adsorption

    E-Print Network [OSTI]

    Stanford University

    SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

  18. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

  19. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

  20. Potential of geothermal energy in China

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01T23:59:59.000Z

    This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

  1. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01T23:59:59.000Z

    compaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (Applications o f Geothermal Energy and t h e i r Place i n t

  2. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

  3. Geothermal Technologies Office Hosts Collegiate Competition

    Broader source: Energy.gov [DOE]

    To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

  4. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01T23:59:59.000Z

    P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

  5. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

  6. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01T23:59:59.000Z

    Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

  7. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01T23:59:59.000Z

    Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

  8. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

  9. 3D Magnetotelluric characterization of the COSO GeothermalField

    SciTech Connect (OSTI)

    Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

    2005-01-01T23:59:59.000Z

    Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

  10. Simulation of geothermal subsidence

    SciTech Connect (OSTI)

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01T23:59:59.000Z

    The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

  11. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  12. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01T23:59:59.000Z

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  13. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  14. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  15. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

  16. Performance of Deep Geothermal Energy Systems .

    E-Print Network [OSTI]

    Manikonda, Nikhil

    2012-01-01T23:59:59.000Z

    ??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation… (more)

  17. Uncertainty analysis of geothermal energy economics.

    E-Print Network [OSTI]

    Sener, Adil Caner

    2009-01-01T23:59:59.000Z

    ?? This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy… (more)

  18. Comprehensive Evaluation of the Geothermal Resource Potential...

    Broader source: Energy.gov (indexed) [DOE]

    data for the National Geothermal Database * Validate state-of-the-art reservoir simulation techniques to reduce model uncertainty and project risk 4 | US DOE Geothermal...

  19. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

  20. Funding Mechanisms for Federal Geothermal Permitting (Presentation)

    SciTech Connect (OSTI)

    Witherbee, K.

    2014-03-01T23:59:59.000Z

    This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

  1. GEOTHERMAL POWER GENERATION PLANT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

  2. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD February 1 9 8 5 Financial support was provided through the Stanford Geothermal Program under Department

  3. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD staff who have helped me finish this project. Financial support was provided by the Geothermal

  4. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract

  5. Geothermal: Sponsored by OSTI -- Technologies for Extracting...

    Office of Scientific and Technical Information (OSTI)

    Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  6. International Partnership for Geothermal Technology Launches...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

  7. President Obama visits Geothermal Technologies Program Partner...

    Energy Savers [EERE]

    President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

  8. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  9. ORISE: DOE EERE National Geothermal Student Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Science Education U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition 2013 National Geothermal Student...

  10. Geothermal: Sponsored by OSTI -- Fracture Characterization in...

    Office of Scientific and Technical Information (OSTI)

    Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

  11. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Oregon Johnson Controls, Inc. Recovery Act: Geothermal Technologies Program Klamath Falls, OR...

  12. Virginia Geothermal Resources Conservation Act (Virginia)

    Broader source: Energy.gov [DOE]

    It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to...

  13. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal...

  14. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

  15. Residential Tax Credits Boost Maryland Geothermal Business |...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business June 18, 2010 - 12:09pm Addthis Paul Lester Communications...

  16. Geothermal: Sponsored by OSTI -- ADVANCES IN HYDROGEOCHEMICAL...

    Office of Scientific and Technical Information (OSTI)

    ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

  17. Stanford Geothermal Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and managers...

  18. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  19. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  20. Geothermal Energy at Oslo Airport Gardermoen.

    E-Print Network [OSTI]

    Huuse, Karine Valle

    2012-01-01T23:59:59.000Z

    ?? Rock Energy is a Norwegian company with a patented solution for drilling deep geothermal wells, for exploitation of deep geothermal energy from Hot Dry… (more)

  1. Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

  2. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using...

  3. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Technique Geothermal Literature Review Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Evidence for Large-Scale Laramide Tectonic Inversion and a Mid-Tertiary Caldera Ring Fracture Zone at the Lightning Dock Geothermal System, New Mexico Additional References...

  5. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...

    Open Energy Info (EERE)

    osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has been applied to Raft River geothermal well RRG-9,...

  6. Geothermal: Sponsored by OSTI -- Geothermal Energy: Current abstracts

    Office of Scientific and Technical Information (OSTI)

    Energy: Current abstracts Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

  7. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  8. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01T23:59:59.000Z

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  9. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  10. 3D Magnetotelluic characterization of the Coso GeothermalField

    SciTech Connect (OSTI)

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2007-04-23T23:59:59.000Z

    Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.

  11. National Geothermal Academy Underway at University of Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Academy is an eight-week intensive summer course in all aspects of geothermal energy development and utilization. Modules include Geothermal Geology and...

  12. GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS

    E-Print Network [OSTI]

    Til, C. J. Van

    2012-01-01T23:59:59.000Z

    and Otte, C. (eds. ), Geothermal Energy: Stanford Universityfor the Development of Geothermal Energy Resources , JetPotential Use of Geothermal Energy f o r Power Generation

  13. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the...

  14. VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA

    E-Print Network [OSTI]

    Churchman, C.W.

    2011-01-01T23:59:59.000Z

    electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

  15. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

  16. Energy Department Announces National Geothermal Data System to...

    Office of Environmental Management (EM)

    Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development Energy Department Announces National Geothermal Data System to Accelerate...

  17. VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA

    E-Print Network [OSTI]

    Churchman, C.W.

    2011-01-01T23:59:59.000Z

    Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

  18. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    2 Mission of Division of Geothermal Energy . . . . .of Energy, Division of Geothermal Energy effort is theMission of Division of Geothermal Energy The mission of the

  19. Chemical Energy Carriers (CEC) for the Utilization of Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy DOE Geothermal Peer Review 2010 -...

  20. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  1. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01T23:59:59.000Z

    130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

  2. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    2 Mission of Division of Geothermal Energy . . . . .of the Division of Geothermal Energy and these directoratesof Energy, Division of Geothermal Energy effort is the

  3. Geothermal Power Development Resource Evaluation Aspects for Kyushu Electric Power Co., Inc., Fukuoka, Japan

    SciTech Connect (OSTI)

    None

    1980-10-30T23:59:59.000Z

    This report is a limited review of and presents comments on the geothermal resource exploration program of Kyushu Electric Power Company (KEPCO). This program is for developing geothermal resources to generate electric power on Kyushu Island, Japan. Many organizations in Japan and in particular Kyushu Electric Power Co., Inc. are actively exploring for and developing geothermal resources on Kyushu Island. KEPCO has already demonstrated an ability and expertise to explore for geothermal resources by their successful exploration and subsequent development of several fields (Hatchobaru and Otake) on the island of Kyushu for electric power generation. The review and comments are made relative to the geothermal resource aspects of Kyushu Electric Power Company's geothermal exploration program, and within the time, budget, and scope of the Rogers Engineering's effort under the existing contract. Rogers and its consultants have had a wide variety of geothermal exploration experience and have used such experience in the analysis of what has been presented by KEPCO. The remainder of the introduction section develops general knowledge concerning geothermal power development with particular emphasis on the resource exploration. The data received section describes the information available to perform the project work. There are no interpretative parts to the data received section. The philosophy section relates our understanding of the KEPCO thinking and conditions surrounding current geothermal resource development in Japan. The survey and methods sections presents three important items about each study KEPCO has performed in the resource exploration program. These three aspects are: what should be obtained from the method, what data was obtained and presented, and what is a review and analysis of where the KEPCO exploration program is currently in terms of progress and successful location of reservoirs. The final section presents recommendations on the many aspects of the resource exploration for geothermal power development.

  4. Geothermal Progress Monitor 12

    SciTech Connect (OSTI)

    None

    1990-12-01T23:59:59.000Z

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  5. Geothermal Regulatory Roadmap

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phonegeothermal/900546 Geothermal

  6. Geothermal: Promotional Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps

  7. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  8. STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES

    E-Print Network [OSTI]

    Stanford University

    STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

  9. 2013 National Geothermal Student Competition Background

    E-Print Network [OSTI]

    Carrington, Emily

    1 2013 National Geothermal Student Competition Background: The 2013 National Geothermal Student, is designed to advance the understanding of geothermal energy as a valued resource by promoting innovation to engage students in a collaborative exercise to develop a business plan for developing a geothermal

  10. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29T23:59:59.000Z

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  11. Earthquake and Geothermal Energy

    E-Print Network [OSTI]

    Kapoor, Surya Prakash

    2013-01-01T23:59:59.000Z

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  12. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  13. Forrest County Geothermal Energy Project

    Broader source: Energy.gov [DOE]

    Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

  14. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  15. Silica extraction from geothermal water

    DOE Patents [OSTI]

    Bourcier, William L; Bruton, Carol J

    2014-09-23T23:59:59.000Z

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  16. New River Geothermal Research Program

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

  17. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  18. State Regulatory Oversight of Geothermal

    E-Print Network [OSTI]

    State Regulatory Oversight of Geothermal Heat Pump Installations: 2012 Kevin McCray Executive of this project was to update previous research accomplished by the Geothermal Heat Pump Consortium (GHPC of ground-source heat pump (GSHP) systems. The work was to provide insight into existing and anticipated

  19. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.l i c a t i o n s of Geothermal Energy Substudy ParticipantsA N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 I

  20. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    D. E. Appendix Small Geothermal Power Plants . . . . . . .Assessment, (4) Small Geothermal Power Plants and (5) Hoti - b u t i o n of geothermal power (1400 W e ) . (XBL 785-

  1. Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook

    Broader source: Energy.gov [DOE]

    Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate growth of geothermal energy and prepare the local workforce to serve geothermal industry needs.

  2. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.A N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 Il i c a t i o n s of Geothermal Energy Substudy Participants

  3. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01T23:59:59.000Z

    BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

  4. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01T23:59:59.000Z

    the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

  5. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.d approach to solar and geothermal energy, r e s o u r c e sl f u e l boilers, and geothermal energy. The model was d e

  6. Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon

    SciTech Connect (OSTI)

    Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

    1980-09-01T23:59:59.000Z

    Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

  7. The 1980-1982 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

    1983-08-01T23:59:59.000Z

    Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

  8. Geopressured geothermal bibliography (Geopressure Thesaurus)

    SciTech Connect (OSTI)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01T23:59:59.000Z

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  9. Characterization of geothermal solid wastes

    SciTech Connect (OSTI)

    Morris, W.F.; Stephens, F.B.

    1981-07-01T23:59:59.000Z

    The compositions of 5 major types of geothermal wastes have been determined, and samples have been subjected to EPA recommended extraction tests to determine if they contain toxic metals that would classify the wastes as hazardous. Of the samples tested, the extracts of geothermal brines clearly contain levels of As, Ba and Pb exceeding the maximum allowed concentrations that characterize wastes as toxic. Only one other waste type, geothermal scale, exhibited EP toxicity. Pb was found in the extract of geothermal scale at a level of 7 mg/l, only 2 mg/l over the maximum limit. All of the other types of geothermal waste samples showed levels of toxic metals in the extracts well below the regulated limits.

  10. Geothermal resource data base: Arizona

    SciTech Connect (OSTI)

    Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1995-09-01T23:59:59.000Z

    This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

  11. Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Denton, J.M.; Bell, E.J.; Jodry, R.L.

    1980-11-01T23:59:59.000Z

    Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

  12. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01T23:59:59.000Z

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  13. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01T23:59:59.000Z

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  14. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

  15. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

  16. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

  17. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity...

  18. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  19. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)...

  20. Working Fluids and Their Effect on Geothermal Turbines

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

  1. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

  2. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Gardner, 2010) Exploration Activity...

  3. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area (Gardner, 2010) Exploration...

  4. Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

  5. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    ment methods for geothermal well system param- eters,on calcite-fouled geothermal wells (Michaels, 1979). An

  6. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    geology of three geothermal wells, Klamath Falls, Oregon,evaluation of five geothermal wells: in Proceedings Second

  7. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

  8. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Exploration Activity Details Location...

  9. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Exploration Activity Details Location...

  10. MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

    E-Print Network [OSTI]

    Wodin-Schwartz, Sarah

    2013-01-01T23:59:59.000Z

    Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

  11. A COMPARISON OF ESTIMATED AND BACKGROUND SUBSIDENCE RATES IN TEXAS-LOUISIANA GEOPRESSURED GEOTHERMAL AREAS

    E-Print Network [OSTI]

    Lee, L.M.

    2010-01-01T23:59:59.000Z

    Potential geopressured geothermal-related subsidence ratesto Potential Geopressured Geothermal-RelatedSubsidence Ratesmm). Potential geopressured geothermal-related rubaidence

  12. Measuring the Costs and Economic, Social, and Environmental Benefits of Nationwide Geothermal Heat Pump Deployment and The Potential Employment, Energy, and Environmental Impacts of Direct Use Applications

    Broader source: Energy.gov [DOE]

    Project objectives: To measure the costs and economic; social; and environmental benefits of nationwide geothermal heat pump (GHP) deployment; and To survey selected states as to their potential employment; energy use and savings; and environmental impact for direct use applications.

  13. Volume strain within the Geysers geothermal field

    SciTech Connect (OSTI)

    Mossop, Antony [Department of Geophysics, Stanford University, Stanford, California (United States)] [Department of Geophysics, Stanford University, Stanford, California (United States); Segall, Paul [Department of Geophysics, Stanford University, Stanford, California (United States)] [Department of Geophysics, Stanford University, Stanford, California (United States)

    1999-12-10T23:59:59.000Z

    During the 1970s and 1980s. The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5x10{sup -4} are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6x10{sup 9} Pa. However, seismic velocities indicate a much stiffer reservoir with K=3.4x10{sup 10} Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate. (c) 1999 American Geophysical Union.

  14. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  15. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect (OSTI)

    Stone, C. (comp.)

    1985-01-01T23:59:59.000Z

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  16. Geothermal Technologies Office: Publications

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)OctoberGeothermal Technologies

  17. Geothermal | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartmentGeothermal Heat

  18. RMOTC - Testing - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001DataGeothermal Testing Notice: As

  19. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal, Yakima,Geothermal Sandia Wins DOE

  20. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal, Yakima,Geothermal Sandia Wins

  1. Geothermal Energy (5 Activities)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phone 202-586-9904Geothermal EGSGeothermal

  2. Geothermal Technologies Subject Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011Programmatic Reports Geothermal Resource

  3. Geothermal: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011Programmatic ReportsContact Us Geothermal

  4. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAbout DOE's Geothermal Data

  5. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAbout DOE's Geothermal

  6. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAbout DOE's GeothermalNot Logged

  7. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)UnveilsGeorgeGeoscienceGeothermalPage

  8. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia

    E-Print Network [OSTI]

    Kiryukhin, A.V.

    2008-01-01T23:59:59.000Z

    of Kamchatka. Nauka, Moscow, Russia, 149 pp. (in Russian).geothermal field, Kamchatka, Russia. Geothermics 33, 421–geothermal field, Kamchatka, Russia. Geothermal Resources

  9. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01T23:59:59.000Z

    Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

  10. A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES

    E-Print Network [OSTI]

    Cosner, S.R.

    2010-01-01T23:59:59.000Z

    EXCHANGERS; GEOTHERMAL ENERGY: GEOTHERMAL SPACE HEATING;Well INFORMATION OWNER-- GEOTHERMAL ENERGY AND tUNERAL CORP.ION OhNEf. -- GEOTHERMAL ENERGY AND MINERAL CORP. DRILLING

  11. LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION

    E-Print Network [OSTI]

    Haven, Kendal F.

    2012-01-01T23:59:59.000Z

    of Geothermal Energy", Geothermal Energy, UNESCO, Paris,U. S . Department of Energy, Geothermal Energy DOE/ET/28442-Western United States, Geothermal Energy Magazine vo. 6, no.

  12. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01T23:59:59.000Z

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  13. Geothermal development plan: northern Arizona

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1981-01-01T23:59:59.000Z

    Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

  14. Geothermal: Sponsored by OSTI -- Geothermal Heat Pumps in K-12...

    Office of Scientific and Technical Information (OSTI)

    Heat Pumps in K-12 Schools -- A Case Study of the Lincoln, Nebraska, Schools Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

  15. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal...

    Open Energy Info (EERE)

    Venture's Plan for a 25 MW Commercial Geothermal Power Plant on Hawaii's Big Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Puna...

  16. Geothermal: Sponsored by OSTI -- Geothermal Energy Multi-Year...

    Office of Scientific and Technical Information (OSTI)

    Multi-Year Program Plan FY 1993-1997, January 1992, draft Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

  17. Geothermal: Sponsored by OSTI -- Geothermal Energy R&D Program...

    Office of Scientific and Technical Information (OSTI)

    R&D Program - Annual Progress Report for Fiscal Year 1990 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

  18. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  19. Enhanced Geothermal Systems Subprogram Overview

    Broader source: Energy.gov (indexed) [DOE]

    105.2 EGS Demonstrations 51.4 Innovative Exploration Technologies, 98.1 Ground Source Heat Pumps, 61.9 Geothermal Data, Development, Collection and Maintenance, 33.7 Low...

  20. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30T23:59:59.000Z

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.