Powered by Deep Web Technologies
Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Jump...

2

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

3

DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) |  

Open Energy Info (EERE)

DC Resistivity Survey (Schlumberger Array) At Coso DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes 18 USGS Schlumberger soundings and 6 Schlumberger soundings by Furgerson (1973) were plotted and automatically processed and interpreted References Jackson, D.B. ODonnell, J.E.; Gregory, D. I. (1 January 1977) Schlumberger soundings, audio-magnetotelluric soundings and telluric mapping in and around the Coso Range, California Retrieved from "http://en.openei.org/w/index.php?title=DC_Resistivity_Survey_(Schlumberger_Array)_At_Coso_Geothermal_Area_(1977)&oldid=591389

4

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

5

Electrical resistivity survey of the Pilgrim Springs geothermal area, Alaska  

Science Conference Proceedings (OSTI)

Pilgrim Springs is located on the Seward Peninsula about 50 miles north of Nome, Alaska. A case history of the use of electrical resistivity to delineate a geothermal reservoir and for drilling recommendations is presented. Pilgrim Springs water, being saline, has an electrical resistivity value of 1 ..cap omega..-m, providing an ideal contrast for resistivity definition of the reservoir. In 1979 several deep Schlumberger and co-linear dipole-dipole surveys were run in and near the 1.5 km/sup 2/ thaw window. The results suggest that there is a pancake-shaped reservoir near the surface, approximately 50 m thick, which has the shape of the thaw window but is thicker and deeper to the north under the Pilgrim river. The conduit is suspected to be a small feature which is difficult to find under the near-surface, low-resistivity reservoir.

Wescott, E.; Sydora, R.; Peace, J.; Lockhart, A.

1980-09-01T23:59:59.000Z

6

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes DC resistivity geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be

7

DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal Area (1977)  

Open Energy Info (EERE)

Dipole Array) At Coso Geothermal Area (1977) Dipole Array) At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique DC Resistivity Survey (Dipole-Dipole Array) Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Notes Detailed electrical resistivity survey for a 54 line-km. This survey has defined a bedrock resistivity low at least 4 sq mi (10 sq km) in extent; survey data indicate that a 10 to 20 ohm-meter zone extends from near surface to a depth greater than 750 meters. References Fox, R. C. (1 May 1978) Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California

8

Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the northeast which is similar to the

9

Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Dixie Valley Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity;

10

Direct-Current Resistivity Survey At Dixie Valley Geothermal...  

Open Energy Info (EERE)

pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), image the disposition of resistive, possible reservoir formations in the...

11

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

12

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

13

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA,  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. To these ends, we are acquiring a dense grid

14

Progress report on electrical resistivity studies, COSO Geothermal Area,  

Open Energy Info (EERE)

Progress report on electrical resistivity studies, COSO Geothermal Area, Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The first phase of an electrical geophysical survey of the Coso Geothermal Area is described. The objective of the survey was to outline areas of anomalously conductive ground that may be associated with geothermal activity and to assist in locating drilling sites to test the geothermal potential. Author(s): Ferguson, R. B. Published: Publisher Unknown, 6/1/1973 Document Number: Unavailable DOI: Unavailable Source: View Original Report Electrical Resistivity At Coso Geothermal Area (1972)

15

An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Details Activities (0) Areas (0) Regions (0) Abstract: In an attempt to define the resistivity model of the Chaves geothermal field in NE Portugal, a detailed survey with scalar audiomagnetotelluric measurements was performed. The soundings were made in the frequency range from 2300 to 4.1 Hz. Electrical resistivity models were derived from the application of 1-D inversion, 2-D trial and error modeling and 2-D inversion procedures. The resistivities inside the geothermal field are low, reaching not more than 30 Ωm and increasing up to 60-150 Ωm

16

Telluric Survey At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Telluric Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area.

17

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of...

18

Survey of Geothermal Heat Pump Shipments  

U.S. Energy Information Administration (EIA)

Others 930 3,369 454 4,753 ... Source: Energy Information Administration, Form EIA-902 "Annual Geothermal Heat Pump Manufacturers Survey." Relased: March 2006

19

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

20

Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...  

Open Energy Info (EERE)

geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location....

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...  

Open Energy Info (EERE)

geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location....

22

DC Resistivity Survey (Gradient Array) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Gradient Array) edit Details Activities (0) Areas (0) Regions (0)...

23

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL...  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation,...

24

Geothermal industry employment: Survey results & analysis  

DOE Green Energy (OSTI)

The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

Not Available

2005-09-01T23:59:59.000Z

25

Aeromagnetic Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

77) 77) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Notes A detailed low-altitude aeromagnetic survey of 576 line-mi (927 line-km) was completed over a portion of the Coso Hot Springs KGRA. This survey defined a pronounced magnetic low that could help delineate the geothermal system that has an areal extent of approximately 10 sq mi (26 sq km) partially due to magnetite destruction by hydrothermal solutions associated with the geothermal system. The anomoly coincides with two other geophysical anomalies: 1) a bedrock electrical resistivity low and 2) an area of relatively high near-surface temperatures. References Fox, R. C. (1 May 1978) Low-altitude aeromagnetic survey of a

26

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

27

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

28

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

29

Remote sensing survey of the Coso geothermal area, Inyo county...  

Open Energy Info (EERE)

sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Remote...

30

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

31

Experimental resistivity electrode emplacement for the Hawaii geothermal project  

SciTech Connect

Sandia Laboratories expertise in Earth-penetrating projectiles has been applied to problems of geothermal resource research. Field trials of an experimental terradynamics electrode for resistivity surveys have been carried out in cooperation with the Hawaii Institute of Geophysics, and the design of an instrumented magma penetrometer begun. (auth)

Brandvold, G.E.

1974-04-01T23:59:59.000Z

32

Direct-Current Resistivity At Dixie Valley Geothermal Field Area...  

Open Energy Info (EERE)

Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field...

33

Progress report on electrical resistivity studies, COSO Geothermal...  

Open Energy Info (EERE)

Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress...

34

Application Of Electrical Resistivity And Gravimetry In Deep Geothermal  

Open Energy Info (EERE)

Resistivity And Gravimetry In Deep Geothermal Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The electrical resistivity method has been proven applicable to geothermal exploration because of the direct relationship between fluid and rock temperatures on the one hand electrical conductivity on the other. The problem of exploitation of a surface technique, such as resistivity, to the determination of geothermal gradients or 'hot spots' is complicated by the other geological parameters which affect resistivity: porosity, fluid salinity, cementation factor and clay content. However, by rational

35

Reflection Survey At Coso Geothermal Area (1989) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey At Coso Geothermal Area (1989) Reflection Survey At Coso Geothermal Area (1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Coso Geothermal Area (1989) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 1989 Usefulness useful DOE-funding Unknown Exploration Basis Determine the crustul structure of the Coso geothermal system Notes In mid-1989 the authors designed and collected four seismic reflection/refraction profiles that addressed the crustal structure of the Coso geothermal field. The two main east-west and north-south profiles crossed at the southeastern most base of Sugar Loaf Mountain. Both in-line and cross-line Vibroseis and explosion data were recorded on each of these

36

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal...  

Open Energy Info (EERE)

Energy, 2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Effectiveness of Shallow Temperatures Surveys to Target a Geothermal...

37

Ground Gravity Survey At Coso Geothermal Area (1980) | Open Energy...  

Open Energy Info (EERE)

Activity Details Location Coso Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes The...

38

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are...

39

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

In Dixie Valley, Nevada Retrieved from "http:en.openei.orgwindex.php?titleGroundGravitySurveyAtDixieValleyGeothermalFieldArea(Blackwell,EtAl.,2009)&oldid38834...

40

Ground Gravity Survey At Raft River Geothermal Area (1978) |...  

Open Energy Info (EERE)

Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration...

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution...

42

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

43

Telluric Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1978) Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Telluric Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis Infer the structure and the general lithology underlying the valley Notes The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for lower values in the area of the geothermal system. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho

44

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal  

Open Energy Info (EERE)

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Author Richard Zehner Organization U.S. Department of Energy Published U.S. Department of Energy, 2010 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Citation Richard Zehner (U.S. Department of Energy). 2010. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously

45

Reflection Survey At Coso Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

At Coso Geothermal Area (2008) At Coso Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Coso Geothermal Area (2008) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis A reflection survey was done to analyze the brittle upper plate structure revealed by reflection seismic data Notes The relationships between upper crustal faults, the brittle-ductile transition zone, and underlying magmatic features imaged by multifold seismic reflection data are consistent with the hypothesis that the Coso geothermal field, which lies within an extensional step-over between dextral faults, is a young, actively developing metamorphic core complex.

46

Ground Gravity Survey At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1990) Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis To identify features related to the heat source and to seek possible evidence for an underlying magma chamber Notes 2D and 3D gravity modeling was done using gridded Bouguer gravity data covering a 45 by 45 km region over the Coso geothermal area. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest

47

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting:  

Open Energy Info (EERE)

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Authors H.M. Bibby, G.F. Risk, T.G. Caldwell and S.L. Bennie Conference World Geothermal Congress 2005; Antalya, Turkey; 2005/04/24 Published ?, 2005 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Citation H.M. Bibby,G.F. Risk,T.G. Caldwell,S.L. Bennie. 2005. Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from

48

DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Dipole-Dipole Array) Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

49

Direct-Current Resistivity Survey | Open Energy Information  

Open Energy Info (EERE)

Direct-Current Resistivity Survey Direct-Current Resistivity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Direct-Current Resistivity Survey Details Activities (65) Areas (34) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock type, mineral and clay content may be inferred. Stratigraphic/Structural: Determination of fracture zones, faults, depth to groundwater aquifers. Hydrological: Resistivity influenced by porosity, permeability, fluid saturation, fluid type and phase state of the pore water. Thermal: Resistivity influenced by temperature.[1] Cost Information

50

Characterization of Fractures in Geothermal Reservoirs Using Resistivity |  

Open Energy Info (EERE)

Characterization of Fractures in Geothermal Reservoirs Using Resistivity Characterization of Fractures in Geothermal Reservoirs Using Resistivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of Fractures in Geothermal Reservoirs Using Resistivity Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly important. This study aims to develop methodologies to use resistivity measurements to infer fracture properties in geothermal fields. The resistivity distribution in the field can be estimated by measuring potential differences between various points and the data can then be used to infer fracture properties due to the contrast in resistivity between water and rock.

51

Direct-Current Resistivity Survey At Cove Fort Area - Liquid (Combs 2006) |  

Open Energy Info (EERE)

- Liquid (Combs 2006) - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598127"

52

Refraction Survey At Coso Geothermal Area (1989) | Open Energy Information  

Open Energy Info (EERE)

Refraction Survey At Coso Geothermal Area (1989) Refraction Survey At Coso Geothermal Area (1989) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Refraction Survey Activity Date 1989 Usefulness useful DOE-funding Unknown Exploration Basis Determine the crustul structure of the Coso geothermal system Notes In mid-1989 the authors designed and collected four seismic reflection/refraction profiles that addressed the crustal structure of the Coso geothermal field. The two main east-west and north-south profiles crossed at the southeastern most base of Sugar Loaf Mountain. Both in-line and cross-line Vibroseis and explosion data were recorded on each of these approximately 12-mi lines. This was accomplished with the simultaneous operation of two 1024-channel sign bit recording systems while four

53

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

54

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

55

A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) | Open  

Open Energy Info (EERE)

Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Details Activities (0) Areas (0) Regions (0) Abstract: A preliminary magnetotelluric study consisting of twenty measurements, in the frequency range 128-0.016 Hz, was undertaken on the active volcanic island of Nissyros. Two boreholes identify the existence of high enthalpy manifestations. The results correlate well with the borehole logs and delineate, in a 1-D approximation, the existence and symmetry of a possible geothermal reservoir. Some of the main faulting features were detected as well as an inferred highly conductive zone at the centre of the

56

Static Temperature Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Static Temperature Survey At Coso Geothermal Area Static Temperature Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Temperature logs were taken during and after drilling: Results: Convective heat flow and temperatures greater than 350 F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA,

57

Misinterpretation of Electrical Resistivity Data in Geothermal...  

Open Energy Info (EERE)

Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

58

Resistivity studies of the Imperial Valley geothermal area, California |  

Open Energy Info (EERE)

Resistivity studies of the Imperial Valley geothermal area, California Resistivity studies of the Imperial Valley geothermal area, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Resistivity studies of the Imperial Valley geothermal area, California Abstract Electrical resistivity has been employed for mapping thehnperial Valley of California as part of a multi-disciplinaryapproach to assess its geothermal potential. Vertical and lateralresistivity changes were determined from Schlumherger deptilsoundings with effective probing depths up to 8000 ft.Chie/ conclusions were: (1) Known geothermal anomaliesappear as residual resistivity lows superimposed on the regionalgradient which decreases northwest.ward from the southeastcorner of the Imperial Valley, near the Colorado River, tovalues about two orders of magnitude lower at the Salton

59

Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney,  

Open Energy Info (EERE)

2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

60

Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Pritchett, 2004) Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Direct-Current Resistivity Survey At Northern Basin & Range Region  

Open Energy Info (EERE)

Region Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

62

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal  

Open Energy Info (EERE)

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Abstract Geobotanical anomalies have been associated with mineralization and hydrocarbon microseepage. As both of these phenomena have been associated with hydrothermal convection systems in the Great Basin it is likely that geobotanical anomalies are present over geothermal areas. This paper present preliminary results for the ongoing Cove Fort Sulphurdale, Utah and Dixie Valley, Utah, studies. Data acquisition for these areas has included

63

Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants  

DOE Green Energy (OSTI)

An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

DiPippo, R.

1980-01-01T23:59:59.000Z

64

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The high resolution aeromagnetic technique was very successful along the east side of the valley, but less along the geothermally important west side. Detailed correlation will be investigated when the high resolution data are available. The magnetic results will also vary from area to area depending on the local rock types more than in the other techniques. Nonetheless important information on the style of the faulting is contained in the data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

65

Category:Direct-Current Resistivity Survey | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Direct-Current Resistivity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Direct-Current Resistivity Survey page? For detailed information on Direct-Current Resistivity Survey as exploration techniques, click here. Category:Direct-Current Resistivity Survey Add.png Add a new Direct-Current Resistivity Survey Technique Subcategories This category has the following 2 subcategories, out of 2 total. E [×] Electrical Profiling Configurations‎ 3 pages V [×] Vertical Electrical Sounding Configurations‎ 2 pages

66

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Aeromagnetic Survey At Dixie Valley Geothermal Field Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution aeromagnetic survey was conducted over a 940 km2 area extending from Dixie Meadows northeastward to the Sou Hills, and from the eastern front of the Stillwater Range to the western edge of the Clan Alpine Range (Grauch, 2002). The resulting aeromagnetic map is described and discussed by Smith et al. (2002). Many of the shallow faults revealed by the aeromagnetic data (Figure 3) coincide with faults mapped based on surface expression on aerial photographs (Smith et al., 2001). However, in

67

Geothermal energy, an environmental and safety mini-overview survey  

DOE Green Energy (OSTI)

A survey is presented in order to determine the technology status, gaps, and needs for research and development programs in the environment and safety areas of this resource. The information gathered from a survey of geothermal energy development undertaken to provide background for an environment and safety overview program is summarized. A technology assessment for resource development is presented. The three specific environmental problems identified as most potentially limiting to geothermal development; hydrogen sulfide control, brine disposal, and subsidence, are discussed. Current laws, regulations, and standards applying to geothermal systems are summarized. The elements of the environment, health, and safety program considered to be intrinsically related to the development of geothermal energy systems are discussed. Interagency interfaces are touched on briefly. (MHR)

Not Available

1976-07-01T23:59:59.000Z

68

Reflection Survey At Coso Geothermal Area (2001) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity: Reflection Survey At Coso Geothermal Area (2001) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 2001 Usefulness not indicated DOE-funding Unknown Exploration Basis Look for features that are characteristic of the geothermal producing region not originally seen by imaging the Coso Field using seismic Notes During December of 1999, approximately 32 miles of seismic data were acquired as part of a detailed seismic investigation undertaken by the US Navy Geothermal Program Office. Data acquisition was designed to make effective use of advanced data processing methods, which include Optim's proprietary nonlinear velocity optimization technique and pre-stack Kirchhoff migration. The velocity models from the 2-D lines were combined

69

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

70

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_-_Vapor_(Warpinski,_Et_Al.,_2004)&oldid=598134"

71

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A dipole-dipole resistivity survey of the area was carried out with estimated penetration up to 700 meters and no indication of low values of resistivity were found associated with the thermal anomaly. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Marysville_Mt_Area_(Blackwell)&oldid=510539

72

Borehole survey instrumentation development for geothermal applications  

DOE Green Energy (OSTI)

The creation and subsequent study of hot dry rock geothermal reservoirs requires sophisticated tools and instruments that can function for relatively long periods of time in the hostile downhole environment. Detection of fracture dimensions and orientation of the geothermal reservoir is critical for the successful completion of the hot dry rock energy extraction system. The development of downhole instrumentation capable of characterizing the hydraulic-fracture systems must emphasize reliability of measuring devices and electro-mechanical components to function properly at borehole temperature exceeding 275/sup 0/C and pressures of 69 MPa (10,000 psi).

Dennis, B.R.

1980-01-01T23:59:59.000Z

73

Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A  

Open Energy Info (EERE)

Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Abstract N/A Authors James Kauahikaua and Douglas Klein Published Journal Geothermal Resources Council, TRANSACTIONS, 1978 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Citation James Kauahikaua,Douglas Klein. 1978. Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A. Geothermal Resources Council, TRANSACTIONS. 2:363-366. Retrieved from "http://en.openei.org/w/index.php?title=Results_of_Electric_Survey_in_the_Area_of_Hawaii_Geothermal_Test_Well_HGP-A&oldid=682499

74

Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA,  

Open Energy Info (EERE)

dipole resistivity survey of a portion of the Coso Hot Springs KGRA, dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: A detailed electrical resistivity survey of 54 line-km was completed at the Coso Hot Springs KGRA in September 1977. This survey has defined a bedrock resistivity low at least 4 sq mi (10 sq km) in extent associated with the geothermal system at Coso. The boundaries of this low are generally well defined to the north and west but not as well to the south where an approximate southern limit has been determined. The bedrock resistivity low merges with an observed resistivity low over gravel fill

75

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

76

Ornithological Survey of the Proposed Geothermal Well Site No. 2  

DOE Green Energy (OSTI)

The U.S. Fish and Wildlife Service (USFWS 1983) and the State of Hawaii (DLNR 1986) have listed as endangered six forest bird species for the Island of Hawaii. Two of these birds, the O'u (Psittirostra psittacea) and the Hawaiian hawk (Buteo solitarius) may be present within the Geothermal resource sub-zone (Scott et al. 1986). Thus, their presence could impact future development within the resource area. This report presents the results of a bird survey conducted August 11 and 12, 1990 in the sub-zone in and around the proposed well site and pad for True/Mid Pacific Geothermal Well No.2.

Jeffrey, Jack

1990-08-16T23:59:59.000Z

77

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Cove Fort Area (Warpinski, Et Al., Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

78

Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) |  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

79

Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Exploration Activity Details Location Roosevelt Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, MT, dipole-dipole resistivity, CSAMT; sufficient electrical data may be available" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Roosevelt_Hot_Springs_Area_(Combs_2006)&oldid=510548"

80

DC Resistivity Survey (Schlumberger Array) | Open Energy Information  

Open Energy Info (EERE)

Schlumberger Array) Schlumberger Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Schlumberger Array) Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DC Resistivity Survey (Wenner Array) | Open Energy Information  

Open Energy Info (EERE)

Wenner Array) Wenner Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Wenner Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

82

DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

Pole-Dipole Array) Pole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Pole-Dipole Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

83

2-M Probe Survey At Coso Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Coso Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis Correct previously analyzed 2-m probe data Notes Corrected 2-m temperature anomaly at Coso was compared with a low altitude aeromagnetic anomaly and an anomaly outlined by electrical resistivity methods obtained independently. Preliminary tests were made with a simple thermal conductivity probe demonstrating the feasibility of measuring soil thermal diffusivity at the time the 2-m temperatures are recorded. References Leschack, L. A.; Lewis, J. E.; Chang, D. C.; Lewellen, R. I.; O'Hara, N.W. (1 March 1979) Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report

84

Direct-Current Resistivity Survey At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Survey At Central Nevada Survey At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

85

Borehole temperature survey analysis hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) has been actively investigating the potential for extracting geothermal energy from hot dry rock. A man-made geothermal reservoir has been formed at the Fenton Hill Test Site in northern New Mexico. The 10-MW (thermal) prototype energy extraction circulation loop has been completed and has been continuously operating since January 28 of this year. The performance of the Phase I 1000-h circulation experiment would establish technological assessment of the particular hot dry rock geothermal reservoir. The major parameters of interest include equipment operations, geochemistry, water loss, and reservoir thermal drawdown. Temperature measurements were used extensively as one method to study the man-made geothermal reservoir. The temperature probe is one of the less complex wellbore survey tools that is readily fielded to allow on-line analysis of changing conditions in the hydraulic-fracture system. Several downhole temperature instruments have been designed and fabricated for use in the GT-2/EE-1 wellbores.

Dennis, B.R.; Murphy, H.D.

1978-01-01T23:59:59.000Z

86

Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The

87

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

(Warpinski, Et Al., (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598126" Categories: Exploration Activities DOE Funded Activities What links here

88

An Analysis Of The Bipole-Dipole Method Of Resistivity Surveying | Open  

Open Energy Info (EERE)

Bipole-Dipole Method Of Resistivity Surveying Bipole-Dipole Method Of Resistivity Surveying Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Analysis Of The Bipole-Dipole Method Of Resistivity Surveying Details Activities (0) Areas (0) Regions (0) Abstract: Bipole-dipole (B-D) resistivity mapping has been widely used as a reconnaissance method in geothermal exploration. In this technique, apparent resistivities are plotted at roving dipole receiver locations and the current source (bipole) is left fixed. Interpretation to date has been in terms of simple, layered, dike, vertical contact, or sphere models. In the case of more complicated two-dimensional models the interpretation is much more ambiguous and the detection of buried conductors depends very much on the choice of transmitter location. Since apparent resistivities

89

Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

90

A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand |  

Open Energy Info (EERE)

Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: Soil gases have been used as an exploration tool for minerals, oil and gas, and geothermal energy, through the detection of anomalous gas levels. This paper describes a soil gas survey conducted over a large part of the Rotorua geothermal field to supplement the sparse gas data from drillhole samples and to determine gas distribution patterns over the field. Data collected from a reference hole were used to observe the effect changing meteorological conditions had on soil gas levels. The results were

91

Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski, Et  

Open Energy Info (EERE)

Et Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a

92

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

Area (Thomas, Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=510541"

93

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to

94

Ground radon survey of a geothermal area in Hawaii | Open Energy  

Open Energy Info (EERE)

radon survey of a geothermal area in Hawaii radon survey of a geothermal area in Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Ground radon survey of a geothermal area in Hawaii Abstract Rates of ground radon emanation, inthe Puna geothermal area on the lower east riftof Kilauea volcano, were measured by alpha particle sensitive cellulose nitrate films. The survey successfully defined an area of thermal significance associated with the rift structure,and suggests that a thermally driven ground gas convection system exists within, and peripheralto, the rift. This type of survey was found suitable for the basaltic island environment characteristic of Hawaii and is now used in Hawaii as a routine geothermal exploration technique. Author Malcolm E. Cox Published Journal

95

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1957 - 1961 Usefulness not indicated DOE-funding Unknown Notes From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged

96

Definition: DC Resistivity Survey (Schlumberger Array) | Open...  

Open Energy Info (EERE)

Schlumberger Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Schlumberger Array) The Schlumberger array is a type of electrode configuration for a DC...

97

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

98

Survey of helium in soils and soil gases and mercury in soils at Roosevelt Hot Springs Known Geothermal Resource Area, Utah  

SciTech Connect

The concentrations of helium and mercury in soils and of helium in soil gases were surveyed in part of the Roosevelt Hot Springs Known Geothermal Resource Area to see what relationship helium and mercury concentrations might have to geothermal features of the area. High concentrations of helium occurred over the producing geothermal field, in an area of high temperature gradients. Low concentrations of helium in soils occurred over an area of visible hydrotheormal activity. High concentrations of mercury coincided with areas of high thermal gradients and low resistivity.

Hinkle, M.E.

1980-01-01T23:59:59.000Z

99

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are not as site specific as the seismic, but put the major parts of the structure in their proper location and places vital constraints on the possible interpretations of the seismic data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388459

100

A Survey Of Seismic Activity Near Wairakei Geothermal Field, New Zealand |  

Open Energy Info (EERE)

Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Survey Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: A five-week survey showed that seismic activity within 20 km of Wairakei Geothermal Field took place mainly at shallow depths (< 2 km), in or close to the Taupo Fault Belt, and occurred in swarms. Twenty-eight earthquakes, with magnitudes (M) between -1.3 and +2.8, were located; 43 other earthquakes, with M < 0.2, were recorded but could not be located. The distribution of located earthquakes did not correlate with known areas of surface geothermal activity. No located earthquake occurred beneath the

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

102

Aeromagnetic Survey At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Dense, magnetic rocks associated with a complex mafic pluton 9 km in diameter form a relatively impermeable north border of the Pleistocene volcanic field. A heat flow high nearly coincides with the west half of a 6-km-diameter magnetic low. A 2-km-diameter outcrop of a pre-Cenozoic silicic pluton, which has low magnetization compared to the surrounding metamorphic rocks, presumably typifies the rocks that underlie the magnetic low and heat flow high. Hydrothermal fluids may have destroyed some magnetite in the more magnetic wall rock, further reducing the magnetic intensity. References

103

Direct-Current Resistivity Survey At Lightning Dock Area (Cunniff & Bowers,  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Lightning Dock Area (Cunniff & Bowers, Direct-Current Resistivity Survey At Lightning Dock Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Two electrical resistivity survey lines were run in the project area: a southern east-west line along Caliche Road, and a northern east-west line in the south half Section 6, T25S, R19W (figure 5). The Caliche Road line is located south of the greenhouse complex and was run along the road, which was also used for a gravity traverse. The northern line, named

104

Remote sensing survey of the Coso geothermal area, Inyo county, California.  

Open Energy Info (EERE)

sensing survey of the Coso geothermal area, Inyo county, California. sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Details Activities (4) Areas (1) Regions (0) Abstract: The Coso geothermal area, located primarily within the test ranges of the Naval Weapons Center, China Lake, Calif., is an area of granitic rock exposure and fracture-controlled explosion breccias and perlitic domes. Fumarolic and hot springs activity are present at scattered locations. Remote sensing studies were made that included color and color IR photography, 8- to 14-micrometer IR imagery, and snowmelt patterns. Color photography and snowmelt patterns were of greatest utility in

105

A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal  

Open Energy Info (EERE)

Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Delineation and monitoring of surface thermal activity at geothermal development sites and in tourist and urban areas is important for safety, planning, scientific and field management reasons. Because the standard ground-based temperature measurement methods employed for such work are incomplete, expensive and often impractical, we have developed a helicopter-borne video thermal infrared scanner technique to replace them. The imagery obtained is conveniently stored on videotape and powerful image

106

Geothermal Research Program of the US Geological Survey  

DOE Green Energy (OSTI)

The beginning of the Geothermal Research Program, its organization, objectives, fiscal history, accomplishments, and present emphasis. The projects of the Geothermal Research Program are presented along with a list of references.

Duffield, W.A.; Guffanti, M.

1981-01-01T23:59:59.000Z

107

Results of Electric Survey in the Area of Hawaii Geothermal Test...  

Open Energy Info (EERE)

1978 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A...

108

Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report  

DOE Green Energy (OSTI)

The previously examined geothermal sites at Long Valley and Coso were studied in much greater detail. Techniques for correcting the 2-m temperature data were evaluated. Using a preliminary model and analysis of the Coso data, the importance of measuring soil thermal diffusivity data at each temperature probe site was shown. Corrected 2-m temperature anomaly at Coso was compared with a low altitude aeromagnetic anomaly and an anomaly outlined by electrical resistivity methods obtained independently. Preliminary tests were made with a simple thermal conductivity probe demonstrating the feasibility of measuring soil thermal diffusivity at the time the 2-m temperatures are recorded. This opens the way for operational shallow temperature surveys in areas which do not have, as at Coso, a simple set of surface conditions. It is concluded that making useful shallow temperature measurements where there is a modest amount of ground water flow need not be a hopeless task.

LeSchack, L.A.; Lewis, J.E.; Chang, D.C.; Lewellen, R.I.; O'Hara, N.W.

1979-03-01T23:59:59.000Z

109

Electromagnetic (EM-69) survey of the McCoy geothermal prospect, Nevada  

DOE Green Energy (OSTI)

A frequency-domain electromagnetic survey was conducted at 19 stations over a 200 km/sup 2/ area encompassing the McCoy geothermal prospect, Churchill County, central Nevada. The McCoy area is characterized by high heat flow, mercury mineralization, and recent volcanics. Three horizontal-loop transmitters were used with receivers from 0.5 to more than 4.0 km from the loops. Receiver stations were arranged along a pair of crossing north-south and east-west lines. Data were interpreted first with a simple apparent resistivity formula and then with a least-squares lumped-model inversion program. The rough terrain and complex geology introduce an element of uncertainty to the interpretations.

Wilt, M.; Haught, R.; Goldstein, N.E.

1980-12-01T23:59:59.000Z

110

An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii | Open  

Open Energy Info (EERE)

Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Abstract Concentrations of soil mercury of 15 to 1250ppb were determined in the Puna geothermal areaon the lower east rift zone of Kilauea volcano. As the area is young and volcanically active a wide range of soils exist. Hg concentrations are partly controlled by such factors as soil development and organic content, which tend to complicate interpretation of the absolute concentrations measured. The pH of both ground gas and soil may also influence transport and fixation of the Hg, and some low pH soils may be due to SO2 and C02 in ground gas. By relating the Hg concentration of

111

2-M Probe Survey At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis Compare directly shallow temperature results with standard geothermal exploration techniques. Notes Shallow soil temperature data (2m) were collected at 102 sites at Coso. Close geometrical similarity between the shallow soil temperature has been observed with the 30-m contour data for Coso using computer program. References Leschack, L. A.; Lewis, J. E.; Chang, D. C. (1 December 1977) Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Retrieved from "http://en.openei.org/w/index.php?title=2-M_Probe_Survey_At_Coso_Geothermal_Area_(1977)&oldid=47367

112

2-M Probe Survey At Coso Geothermal Area (2007) | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey At Coso Geothermal Area (2007) 2-M Probe Survey At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 2007 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis Analyze if coupling remote sensing and field data is effective for determining geothermal areas using 1-M probe Notes The field data include subsurface temperature measured with temperature probes at depths down to 1 m, surface temperatures recorded with a hand-held infrared camera and an infrared thermometer, reflectance of contrasting surfaces measured with a hand-held spectroradiometer for the purpose of estimating the albedo effect, and radiosonde atmospheric profiles of temperature, water vapor, and pressure in order to apply

113

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections...  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation,...

114

Direct-Current Resistivity Survey At Kilauea Summit Area (Keller, Et Al.,  

Open Energy Info (EERE)

1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea Summit Area (Keller, Et Al., 1979) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes An electromagnetic sounding survey by Jackson and Keller (1972) defined a strong resistivity anomaly above the center of inflation associated with volcanic activity during the early 1960's. References George V. Keller, L. Trowbridge Grose, John C. Murray, Catherine K. Skokan (1979) Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Kilauea_Summit_Area_(Keller,_Et_Al.,_1979)&oldid=510532

115

Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes In addition to the aeromagnetic data, the field survey program in Kawaihae included six Schlumberger resistivity soundings between Kawaihae and Waimea (Kauahikaua and Mattice, 1981). The results of these sounding (Fig. 35)

116

Lost circulation in geothermal wells: survey and evaluation of industry experience  

DOE Green Energy (OSTI)

Lost circulation during drilling and completion of geothermal wells can be a severe problem, particularly in naturally fractured and/or vugular formations. Geothermal and petroleum operators, drilling service companies, and independent consultants were interviewed to assess the lost circulation problem in geothermal wells and to determine general practices for preventing lost circulation. This report documents the results and conclusions from the interviews and presents recommendations for needed research. In addition, a survey was also made of the lost circulation literature, of currently available lost circulation materials, and of existing lost circulation test equipment.

Goodman, M.A.

1981-07-01T23:59:59.000Z

117

Geothermal power plants of Italy: A technical survey of existing installations  

DOE Green Energy (OSTI)

The dry-steam geothermal power plants in the Boraciferous (Larderello), Monte Amiata, and Travale regions of Italy are described. The geology of these areas is described along with the nature of the geothermal steam. Details are given about the drilling techniques and the methods used to complete the wells. Noncondensing and condensing steam turbines are described in detail, including special features aimed at improving the flexibility of the machines to meet a variety of geofluid specifications while, at the same time, maintaining high performance. The type of materials used to resist the corrosive and erosive nature of the geothermal fluid are also covered. Economic data and operating experience are presented.

DiPippo, R.

1978-10-01T23:59:59.000Z

118

Direct-Current Resistivity Survey At Valles Caldera - Redondo Area (Wilt &  

Open Energy Info (EERE)

Wilt & Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973; Geonomics Inc., 1976). These data are used to help define the electrical structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were

119

Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Wilt & Haar, 1986) Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973; Geonomics Inc., 1976). These data are used to help define the electrical structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were

120

Direct-Current Resistivity Survey At Lahaina-Kaanapali Area (Thomas, 1986)  

Open Energy Info (EERE)

Survey At Survey At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Four Schlumberger soundings were performed along the coastal strip adjacent to Lahaina town (Fig. 22). Three of the four soundings were able to detect a moderate to low-resistivity basement that was interpreted to be basalt saturated with seawater at 20degrees C (Mattice, 1981). None of the resistivity sounding data in this area indicated subsurface resistivities lower than could be accounted for by local ambient temperatures (Mattice and Lienert, 1980). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies

122

DC Resistivity Survey (Mise-Á-La-Masse) | Open Energy Information  

Open Energy Info (EERE)

Mise-Á-La-Masse) Mise-Á-La-Masse) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Mise-Á-La-Masse) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

123

Controlled-source electromagnetic survey at Soda Lakes geothermal area, Nevada  

DOE Green Energy (OSTI)

The EM-60 system, a large-moment frequency-domain electromagnetic loop prospecting system, was operated in the Soda Lakes geothermal area, Nevada. Thirteen stations were occupied at distances ranging from 0.5-3.0 km from two transmitter sites. These yielded four sounding curves--the normalized amplitudes and phases of the vertical and radial magnetic fields as a function of frequency--at each station. In addition, two polarization ellipse parameters, ellipticity and tilt angle, were calculated at each frequency. The data were interpreted by means of a least-squares inversion procedure which fits a layered resistivity model to the data. A three-layer structure is indicated, with a near-surface 20 ohm-m layer of 100-400 m thickness, a middle 2 ohm-m layer of approximately 1 km thickness, and a basement of greater than 10 ohm-m. The models indicate a northwesterly structural strike; the top and middle layers seem to thicken from northeast to southwest. The results agree quite well with previous results of dipole-dipole and magnetotelluric (MT) surveys. The EM-60 survey provided greater depth penetration (1 to 1.5 km) than dipole-dipole, but MT far surpassed both in its depth of exploration. One advantage of EM in this area is its ease and speed of operation. Another advantage, its relative insensitivity to lateral inhomogeneities, is not as pronounced here as it would be in areas of more complex geology.

Stark, M.; Wilt, M.; Haught, J.R.; Goldstein, N.

1980-07-01T23:59:59.000Z

124

THREE-DIMENSIONAL TERRAIN EFFECTS IN ELECTRICAL AND MAGNETOMETRIC RESISTIVITY SURVEYS  

E-Print Network (OSTI)

1 Introduction The Electrical Resistivity Method Terrainin Electrical Resistivity Surveys . . effects in electrical resistivity and magnetometric

Oppliger, G.L.

2012-01-01T23:59:59.000Z

125

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes The seismic reflection data are very useful and can be site specific when a profile is in the right place, but are sparse, very difficult to interpret correctly, and expensive to collect. The velocity values used are uncertain even though there are several sonic logs for the wells. A VSP, Vertical Seismic Profile, survey would significantly improve the precision of the interpretation References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada

126

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes "The gravity data are described by (Blackwell et al., 1999; 2002). On a basin-wide scale the gravity low in Dixie Valley is strongly asymmetrical from east to west. The west side is relatively well-defined by rapid horizontal changes in the gravity anomaly value, whereas along the east side horizontal changes are more subdued and often consist of several steps. The horizontal gradient of the gravity field has proved most useful

127

Upgrading Amerada-type survey clocks for high-temperature geothermal service  

DOE Green Energy (OSTI)

The Amerada type subsurface recording gauges have been used by the oil and gas industry for many years. These mechanical logging instruments are currently used by the growing geothermal industry. As the gauges were designed for service in low-temperature oil and gas wells, a significant number of failures are occurring at elevated geothermal temperatures. The spring-driven mechanical survey clocks appear to be the primary cause of these failures. The clock mechanisms tend to stop or lock-up when exposed to temperatures as high as 300/sup 0/C. A project that was undertaken to upgrade the survey clocks to 300/sup 0/C capability is summarized. The major problems causing clock failure were determined and were rectified by minor modifications and lubrication of the moving parts. Several clocks so modified performed reliably, both during laboratory oven tests and during field tests performed in actual geothermal wells at temperatures up to 330/sup 0/C.

Major, B.H.; Witten, C.L.

1980-04-01T23:59:59.000Z

128

Direct-Current Resistivity Survey At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct...

129

Direct-Current Resistivity Survey At Clear Lake Area (Skokan, 1993) | Open  

Open Energy Info (EERE)

Area (Skokan, 1993) Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Several direct-current, bipole-dipole surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid ( Fig. 6 ). The authors felt that local geologic noise could be reduced and large-scale features would be emphasized by this averaging. The most significant feature which resulted was a clear electrical signature of the

130

Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

131

Direct-Current Resistivity Survey At Stillwater Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Stillwater Area (Laney, 2005) Stillwater Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Stillwater Area (Laney, 2005) Exploration Activity Details Location Stillwater Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

132

Definition: DC Resistivity Survey (Wenner Array) | Open Energy...  

Open Energy Info (EERE)

Wenner Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Wenner Array) The Wenner array is a type of electrode configuration for a DC resistivity survey and...

133

Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report  

DOE Green Energy (OSTI)

Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly the shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation in making the necessary corrections to the 2-m temperature data were considered. The corrected data for both locations have been plotted up by computer to avoid any personal bias, and have been compared with the published 10-m contour data at Long Valley and the 30-m contour data for Coso. Close geometrical similarity has been observed. Additionally, previously located faults have been identified with the shallow temperature survey technique. Due to the relative inexpensiveness of the technique, it was concluded that shallow temperature exploration should be one of the first geophysical surveys initiated at a geothermal prospect to help guide the development and expenditure of financial resources when embarking on a detailed exploration program.

LeSchack, L.A.; Lewis, J.E.; Chang, D.C.

1977-12-01T23:59:59.000Z

134

Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report  

DOE Green Energy (OSTI)

Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California, and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly our shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation were considered in making the necessary corrections to our 2-m temperature data. The corrected data for both locations have been plotted up by computer to avoid any personal bias, and have been compared with the published 10-m contour data at Long Valley and the 30-m contour data for Coso. Close geometrical similarity has been observed. Additionally, previously located faults were identified with the shallow temperature survey technique. Due to the relative inexpensiveness of this technique, it was concluded that shallow temperature exploration should be one of the first geophysical surveys initiated at a geothermal prospect to help guide the development and expenditure of financial resources when embarking on a detailed exploration program.

LeSchack, L.A.; Lewis, J.E.; Chang, D.C.

1977-12-01T23:59:59.000Z

135

Dipole-dipole resistivity survey of a portion of the Coso Hot Springs KGRA, Inyo County, California  

DOE Green Energy (OSTI)

A detailed electrical resistivity survey of 54 line-km was completed at the Coso Hot Springs KGRA in September 1977. This survey has defined a bedrock resistivity low at least 4 sq mi (10 sq km) in extent associated with the geothermal system at Coso. The boundaries of this low are generally well defined to the north and west but not as well to the south where an approximate southern limit has been determined. The bedrock resistivity low merges with an observed resistivity low over gravel fill east of Coso Hot Springs. A complex horizontal and vertical resistivity structure of the surveyed area has been defined which precludes the use of layered-earth or two-dimensional interpretive models for much of the surveyed area. In general the survey data indicate that a 10 to 20 ohm-meter zone extends from near surface to a depth greater than 750 meters within the geothermal system. This zone is bordered to the north and west by bedrock resistivities greater than 200 ohm-meters and to the south by bedrock resistivities greater than 50 ohm-meters. A combination of observed increases in: (1) fracture density (higher permeability), (2) alteration (high clay content), and (3) temperatures (higher dissolved solid content of ground water) within the bedrock low explain its presence.

Fox, R.C.

1978-05-01T23:59:59.000Z

136

Gravity survey of the southwestern part of the sourthern Utah geothermal belt  

DOE Green Energy (OSTI)

A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

Green, R.T.; Cook, K.L.

1981-03-01T23:59:59.000Z

137

Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii  

DOE Green Energy (OSTI)

The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

Miller, S.E.; Burgett, J.; Bruegmann, M.

1995-04-01T23:59:59.000Z

138

Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks  

DOE Green Energy (OSTI)

Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

Roberts, J J; Detwiler, R L; Ralph, W; Bonner, B

2002-05-09T23:59:59.000Z

139

Geothermal power plants of Japan: a technical survey of existing and planned installations. Report No. CATMEC/9  

SciTech Connect

The technical features of the existing and planned geothermal power plants in Japan are surveyed. A description is given of the Geothermal Energy Research and Development Co., Ltd. (GERD) which has capabilities in all areas of geothermal power development, from exploratory geological activities through construction and operation of the plants. The survey includes reports on four types of plants: natural, dry steam; separated steam or ''single flash;'' separated steam/flash or ''double flash;'' and binary fluid. For each geothermal power plant, the following are included or discussed: exploration and geology of the site; wells and gathering system; turbine-generator; condenser, gas extractor and cooling tower; economic data; environmental effects; and plant operations. Many tables and figures are included, and a summary is given of the geothermal resource utilization efficiency for each operating plant. Promising areas of new development are listed with estimates of potential capacity.

DiPippo, R.

1978-03-01T23:59:59.000Z

140

Geothermal power plants of Japan: a technical survey of existing and planned installations. Report No. CATMEC/9  

DOE Green Energy (OSTI)

The technical features of the existing and planned geothermal power plants in Japan are surveyed. A description is given of the Geothermal Energy Research and Development Co., Ltd. (GERD) which has capabilities in all areas of geothermal power development, from exploratory geological activities through construction and operation of the plants. The survey includes reports on four types of plants: natural, dry steam; separated steam or ''single flash;'' separated steam/flash or ''double flash;'' and binary fluid. For each geothermal power plant, the following are included or discussed: exploration and geology of the site; wells and gathering system; turbine-generator; condenser, gas extractor and cooling tower; economic data; environmental effects; and plant operations. Many tables and figures are included, and a summary is given of the geothermal resource utilization efficiency for each operating plant. Promising areas of new development are listed with estimates of potential capacity.

DiPippo, R.

1978-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal-well completions: a survey and technical evaluation of existing equipment and needs  

DOE Green Energy (OSTI)

The geothermal environment and associated well completion problems are reviewed. Existing well completion equipment is surveyed and limitations are identified. A technical evaluation of selected completion equipment is presented. The technical evaluation concentrates on well cementing equipment and identifies potential failure mechanisms which limit the effectiveness of these tools. Equipment employed in sand control, perforating, and corrosion control are identified as potential subjects for future technical evaluation.

Nicholson, J.E.; Snyder, R.E.

1982-07-01T23:59:59.000Z

142

Imperial County baseline health survey potential impact of geothermal energy  

DOE Green Energy (OSTI)

The survey purpose, methods, and statistical methods are presented. Results are discussed according to: area differences in background variables, area differences in health variables, area differences in annoyance reactions, and comparison of symptom frequencies with age, smoking, and drinking. Included in appendices are tables of data, enumeration forms, the questionnaire, interviewer cards, and interviewer instructions. (MHR)

Deane, M.

1981-06-01T23:59:59.000Z

143

A survey of geothermal process heat applications in Guatemala: An engineering survey  

SciTech Connect

This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

Altseimer, J.H.; Edeskuty, F.J.

1988-08-01T23:59:59.000Z

144

A survey of geothermal process heat applications in Guatemala: An engineering survey  

DOE Green Energy (OSTI)

This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

Altseimer, J.H.; Edeskuty, F.J.

1988-08-01T23:59:59.000Z

145

Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski...  

Open Energy Info (EERE)

drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned...

146

Direct-Current Resistivity Survey At Beowawe Hot Springs Area...  

Open Energy Info (EERE)

Activity Details Location Beowawe Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown References Sabodh...

147

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...  

Open Energy Info (EERE)

Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical...

148

Geophysical survey, Paso Robles geothermal area, California, part of the resource assessment of low- and moderate-temperature geothermal resource areas in California  

DOE Green Energy (OSTI)

Some general background information concerning the geology and geothermal occurrences in the Southern Coast Ranges is included, as well as the more detailed information dealing with the Paso Robles area proper. Results for two geophysical methods that have been used in the area: the ground magnetic and gravity surveys, are discussed and interpreted.

Chapman, R.H.; Chase, G.W.; Youngs, L.G.

1980-11-10T23:59:59.000Z

149

Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks  

DOE Green Energy (OSTI)

Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P

2003-01-14T23:59:59.000Z

150

Electrical Resistivity as an Indicator of Saturation in Fractured Geothermal Reservoir Rocks: Experimental Data and Modeling  

DOE Green Energy (OSTI)

The electrical resistivity of rock cores under conditions representative of geothermal reservoirs is strongly influenced by the state and phase (liquid/vapor) of the pore fluid. In fractured samples, phase change (vaporization/condensation) can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring of geothermal reservoirs may provide a useful tool for remotely detecting the movement of water and steam within fractures, the development and evolution of fracture systems and the formation of steam caps. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction from the matrix. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J

2003-06-23T23:59:59.000Z

151

Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska  

DOE Green Energy (OSTI)

An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

1985-01-01T23:59:59.000Z

152

Toward assessing the geothermal potential of the Jemez Mountains volcanic complex: a telluric-magnetotelluric survey  

DOE Green Energy (OSTI)

Telluric-magnetotelluric studies were performed in the Jemez Mountains of north-central New Mexico to characterize the total geothermal system of the Valles Caldera and to be integrated with an east-west regional survey supported by the United States Geological Survey. The data from the regional survey indicate that electrically the San Juan Basin to the west of the Jemez Mountains is rather homogeneous in contrast to the eastern side near Las Vegas where the presence of a broad heterogeneous structure is clearly sensed. The data from the Jemez Mountain area are strikingly similar to other Rio Grande rift data and suggest a conducting layer at a depth of approximately 15 km. The telluric data indicate that the hydrothermal system in the area is of a localized nature.

Hermance, J.F.

1979-02-01T23:59:59.000Z

153

Deep resistivity structure in southwestern Utah and its geothermal significance  

DOE Green Energy (OSTI)

Magnetotelluric (MT) measurements in southwestern Utah have yielded a model of resistivity structure in this area to a depth of about 100 km. The MT observations are strongly affected by Great Basin graben sedimentary fill, which constitutes conductive upper-crustal lateral inhomogeneity and requires simulation using two- and three-dimensional modeling algorithms before deeper portions of the resistivity section can be resolved. Included in the model is a layer of low resistivity (20 ..cap omega..-m) residing from 35 to 65 km depth. Sensitivity tests of the data to the structure weigh strongly against the top of this layer being as shallow as 25 km and against the conductivity and thickness of the layer being highly correlated. No intra-crustal low-resistivity layer is indicated by the MT data.

Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

1983-02-01T23:59:59.000Z

154

Definition: DC Resistivity Survey (Dipole-Dipole Array) | Open Energy  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Dipole-Dipole Array) The Dipole-Dipole array is a type of electrode configuration for a Direct-Current Resistivity Survey and is defined by its electrode array geometry.[1] View on Wikipedia Wikipedia Definition References ↑ http://appliedgeophysics.berkeley.edu/dc/EM46.pdf Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:DC_Resistivity_Survey_(Dipole-Dipole_Array)&oldid=596974" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

155

Wellbore thermal simulation for geothermal wells. Survey of existing capability and industry needs and interest  

DOE Green Energy (OSTI)

Four operating companies and five service companies in the petroleum and geothermal industry were contacted (1) to determine needs for wellbore temperature predictions during operations and (2) to evaluate interest in use of a wellbore thermal simulator (computer program) if developed by ERDA. As a basis for contacting industry, a literature survey was undertaken to assess the state-of-the-art and availability of wellbore thermal simulation capability. The literature review is summarized in the four tables of Appendix 1. Written abstracts of the individual articles is given in Appendix 2. The feedback from industry is presented in Appendix 3 in the form of completed questionaires.

Goodman, M.A.

1977-06-01T23:59:59.000Z

156

SURVEY OF OPERATION AND MAINTENANCE-RELATED MATERIALS NEEDS IN GEOTHERMAL POWER PLANTS  

SciTech Connect

A survey was conducted to determine operation and maintenance (O and M)-related materials needs in geothermal power plants and to identify future research and development to address these needs. A total of 44 questionnaires was mailed to geothermal plant operators and industry consultants. The response rate was 54%. The participants were asked to describe type and frequency of materials problems, strategies currently used to mitigate such problems, barriers to using new or alternative materials and technologies, sources of information and give their views research and development priorities. A. wide range of opinions was obtained, reflecting each individual respondent's perspective and the site-specific nature of some problems. However, the consensus is that corrosion and scaling remain major issues and that components requiring performance improvements include pipelines, well casing, turbines, heat exchangers, condensers, valves and cooling towers. It is recommended that appropriate research and development continue to be directed at reducing O and M costs associated with materials failure or inadequate service. There should be a balance between optimizing existing materials through better design and understanding of behavior in geothermal environments and development of new materials. Life extension of existing equipment, service life prediction, education of plant personnel in materials and methods for mitigating corrosion, and improvements in inhibitors and biocides would also be beneficial.

ALLAN,M.L.

1998-06-01T23:59:59.000Z

157

Survey of operation and maintenance-related materials needs in geothermal power plants  

DOE Green Energy (OSTI)

A survey was conducted to determine operation and maintenance (O and M)-related materials needs in geothermal power plants and to identify future research and development to address these needs. A total of 44 questionnaires was mailed to geothermal plant operators and industry consultants. The response rate was 54%. The participants were asked to describe type and frequency of materials problems, strategies currently used to mitigate such problems, barriers to using new or alternative materials and technologies, sources of information and give their views on research and development priorities. A wide range of opinions was obtained, reflecting each individual respondent`s perspective and the site-specific nature of some problems. However, the consensus is that corrosion and scaling remain major issues and that components requiring performance improvements include pipelines, well casing, turbines, heat exchangers, condensers, valves and cooling towers. It is recommended that appropriate research and development continue to be directed at reducing O and M costs associated with materials failure or inadequate service. There should be a balance between optimizing existing materials through better design and understanding of behavior in geothermal environments and development of new materials. Life extension of existing equipment, service life prediction, education of plant personnel in materials and methods for mitigating corrosion, and improvements in inhibitors and biocides would also be beneficial.

Allan, M.L.

1998-06-01T23:59:59.000Z

158

SURVEY OF OPERATION AND MAINTENANCE-RELATED MATERIALS NEEDS IN GEOTHERMAL POWER PLANTS  

DOE Green Energy (OSTI)

A survey was conducted to determine operation and maintenance (O and M)-related materials needs in geothermal power plants and to identify future research and development to address these needs. A total of 44 questionnaires was mailed to geothermal plant operators and industry consultants. The response rate was 54%. The participants were asked to describe type and frequency of materials problems, strategies currently used to mitigate such problems, barriers to using new or alternative materials and technologies, sources of information and give their views research and development priorities. A. wide range of opinions was obtained, reflecting each individual respondent's perspective and the site-specific nature of some problems. However, the consensus is that corrosion and scaling remain major issues and that components requiring performance improvements include pipelines, well casing, turbines, heat exchangers, condensers, valves and cooling towers. It is recommended that appropriate research and development continue to be directed at reducing O and M costs associated with materials failure or inadequate service. There should be a balance between optimizing existing materials through better design and understanding of behavior in geothermal environments and development of new materials. Life extension of existing equipment, service life prediction, education of plant personnel in materials and methods for mitigating corrosion, and improvements in inhibitors and biocides would also be beneficial.

ALLAN,M.L.

1998-06-01T23:59:59.000Z

159

Literature survey on cements for remediation of deformed casing in geothermal wells  

DOE Green Energy (OSTI)

Brookhaven National Laboratory was requested to conduct a literature survey for the best available cement to use in the proposed casing patch as part of the Geothermal Drilling Organization (GDO) project on remediation of deformed casings. A total of 50 wells have been identified with deformed production casing in Unocal`s portion of The Geysers geothermal field. A procedure to address the casing deformation and avoid abandonment of these wells has been developed as described in the Geysers Deformed Casing Remediation Proposal. The proposed remediation procedure involves isolation of the zone of interest with an inflatable packer, milling the deformed casing and cementing a 7 inch diameter liner to extend approximately 100 ft above and 100 ft below the milled zone. During the milling operation it is possible that the original cement and surrounding formation may slough away. In order to specify a suitable cement formulation for the casing patch it is first necessary to identify and understand the deformation mechanism/s operating in The Geysers field. Subsequently, the required cement mechanical properties to withstand further deformation of the repaired system must be defined. From this information it can be determined whether available cement formulations meet these requirements. In addition to The Geysers, other geothermal fields are at possible risk of casing deformation due to subsidence, seismic activity, lateral and vertical formation movement or other processes. Therefore, the proposed remediation procedure may have applications in other fields.

Allan, M.L.; Philippacopoulos, A.J.

1998-12-31T23:59:59.000Z

160

Hydrocarbons in Soil Gas as Pathfinders in Geothermal Resource Surveys in Indonesia  

DOE Green Energy (OSTI)

A surface geochemical technique utilizing normal paraffin (C{sub 7+}) and aromatic (C{sub 8}) hydrocarbons in soil gas has been successfully used as pathfinders in surveys for geothermal resources in Indonesia. The Dieng field was used to test the technique. The result shows the paraffin anomalies to be near and over productive wells. Because productive wells usually lie over upflow zones it reinforces our hypothesis that paraffins define the upflow of geothermal systems. The aromatic hydrocarbon alkylbenzene C{sub 8} was found near and around productive wells in the southeast quadrant of the Dieng field (Sikidang-Merdada area) but they are more spread out and more diffuse than the paraffins. The shape of their anomaly seems to suggest a tendency of spreading into the direction of lower elevations. It is thought that the aromatics, which are much more soluble than their corresponding paraffins, express at the surface as anomalies not only of locations of the upflow but also of the outflow of the geothermal system as well. Therefore the combined paraffin and aromatic anomalies, and topography, may be used as an indicator for the direction of the outflow or the flow of the under ground waters. The scarcity of the aromatics in the northwest quadrant of the Dieng field (Sileri area) is unique. A hypothesis has been proposed which could explain this unique feature.

Pudjianto, R.; Suroto, M.; Higashihara, M.; Fukuda, M.; Ong, Akhadiana and Jan

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Session: Geopressured-Geothermal  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

162

SELF-POTENTIAL SURVEY AT THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network (OSTI)

Presented at the Geothermal Resources Council 1978 AnnualPrepared for the Division of Geothermal Energy of the U. S.of th'e dipole in km. Geothermal Field, Baja Cal ifornia,

Corwin, R.F.

2011-01-01T23:59:59.000Z

163

Comparative studies of geothermal surveys in 3-meter and temperature-gradient holes  

Science Conference Proceedings (OSTI)

The reliability of conducting temperature surveys within the upper 3 meters of the surface to map geothermal anomalies is demonstrated in experiments at two prospects in which deeper gradient hole data were obtained. The 3m temperatures faithfully outlined the thermal anomaly at McCoy, Nevada; and in Dixie Valley, NV 3m surveys reproduced and detailed patterns derived from 40m data. These encouraging results led to the development of multi-thermistor strings for logging the seasonal wave within the upper 3 meters. From many such logs, diffusivity variations can be detected, which might otherwise be misconstrued as thermal anomalies. The technique is demonstrated by a typical Basin-Range reconnaissance project. As many as 10 or more 3m holes can be emplaced in the time required for a conventional gradient well, and with considerably less impact on the environment.

Lang, A.L.; Deymonaz, J.; Pilkington, H.D.

1982-10-01T23:59:59.000Z

164

LITERATURE SURVEY ON CEMENTS FOR REMEDIATION OF DEFORMED CASING IN GEOTHERMAL WELLS  

DOE Green Energy (OSTI)

Brookhaven National Laboratory was requested to conduct a literature survey for the best available cement to use in the proposed casing patch as part of the Geothermal Drilling Organization (GDO) project on remediation of deformed casings. A total of 50 wells has been identified with deformed production casing in Unocal's portion of The Geysers geothermal field. Reduced internal diameter and casing doglegs result in lost production and the possible need for abandonment. The cause of the deformations is believed to be formation movement along fault planes and/or along weaker layers or interfaces between high impedance contrast media. Apparently, it is unclear whether shear or axial compression is the dominant failure mechanism. A procedure to address the casing deformation and avoid abandonment of these wells has been developed as described in the Geysers Deformed Casing Remediation Proposal. The proposed remediation procedure involves isolation of the zone of interest with an inflatable packer, milling the deformed casing and cementing a 7 inch diameter liner to extend approximately 100 ft above and 100 ft below the milled zone. During the milling operation it is possible that the original cement and surrounding formation may slough away. In order to specify a suitable cement formulation for the casing patch it is first necessary to identify and understand the deformation mechanism/s operating in The Geysers field. Subsequently, the required cement mechanical properties to withstand further deformation of the repaired system must be defined. From this information it can be determined whether available cement formulations meet these requirements. In addition to The Geysers, other geothermal fields are at possible risk of casing deformation due to subsidence, seismic activity, lateral and vertical formation movement or other processes. Therefore, the proposed remediation procedure may have applications in other fields. The literature survey focused on published properties for cements used in geothermal and oil well applications and the experiences of well casing deformation occurring in oil and gas fields. Dr. Mike Bruno of Terralog Technologies kindly supplied a reference list from the DEA (Drilling Engineering Association) 99 Project on Analysis of Well Casing Damage Induced by Reservoir Compaction and Overburden Shear.

ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

1998-11-01T23:59:59.000Z

165

Definition: DC Resistivity Survey (Pole-Dipole Array) | Open...  

Open Energy Info (EERE)

Pole-Dipole Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Pole-Dipole Array) The Pole-Dipole array is a type of electrode configuration for a DC...

166

Definition: Direct-Current Resistivity Survey | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Direct-Current Resistivity Survey Jump to: navigation, search Dictionary.png Direct-Current Resistivity Survey Direct-current (DC) resistivity is an active source electrical technique in which current is applied to the ground using electrodes and the earth response (voltage or potential difference) is recorded. This survey generates a geoelectric section of apparent resistivity and enables an inference of subsurface geology.[1] View on Wikipedia Wikipedia Definition References ↑ http://www.nga.com/Flyers_PDF/NGA_DC_Resistivity.pdf

167

Resistivity, induced polarization, and self-potential methods in geothermal exploration  

DOE Green Energy (OSTI)

An overview of the literature is presented. This is followed by a statement of some elementary electromagnetic theory necessary to establish the MKS system of units and the fundamental physics governing electrical methods of exploration. Next there is presented a reasonably detailed discussion of the electrical properties of earth materials including normal mode of conduction, surface conduction, electrode polarization, membrane polarization, semiconduction, melt conduction, real and complex resistivity, and the origin of self-potentials in geothermal systems. To illustrate how electrical methods are used within the framework of integrated geological, geochemical, and geophysical exploration, the case history of the Monroe-Red Hill hot springs system is presented.

Ward, S.H.; Sill, W.R.

1982-01-01T23:59:59.000Z

168

Geothermal resource assessment of Waunita Hot Springs, Colorado  

DOE Green Energy (OSTI)

This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

Zacharakis, T.G. (ed.)

1981-01-01T23:59:59.000Z

169

The US Agency for International Development--Los Alamos National Laboratory--US Geological Survey Central American Geothermal Resources Program  

SciTech Connect

Interdisciplinary field teams for this energy assistance program consisted of staff from Los Alamos, the US Geological Survey, the country of the study, and consultants; this provided the wide range of expertise necessary for geothermal resource evaluation. The program was successful largely because of the field teams dedication to their goals of verifying new geothermal resources and of sharing exploration techniques with in-country collaborators. Training programs included the geochemical, geophysical, and geological techniques needed for geothermal exploration. However, the most important aspect was long-term field work with in-country collaborators. Four geothermal gradient coreholes were drilled, three in Honduras and one in Guatemala. One of the coreholes was co-financed with Honduras, and showed their commitment to the project. Three of the exploration holes encountered high-temperature fluids, which provided information on the nature and extent of the geothermal reservoirs at promising sites in both countries. A geothermal well logging system was built and is shared between four Central American countries. For the evaluation of geothermal fluids, a geochemistry laboratory was established in Tegucigalpa, Honduras; it is now self-sufficient, and is part of Honduras' energy program. Through the teaching process and by working with counterparts in the field, the team expanded its own experience with a wide variety of geothermal systems, an experience that will be beneficial in the future for both the US investigators and in-country collaborators. At the working-scientists level, new contacts were developed that may flourish and professional ties were strengthened between scientists from a variety of US agencies. Rather than competing for research and field budgets, they worked together toward a common goal.

Heiken, G.; Goff, S. (Los Alamos National Lab., NM (United States)); Janik, K. (Geological Survey, Menlo Park, CA (United States). Branch of Igneous and Geothermal Processes)

1992-01-01T23:59:59.000Z

170

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "The seismic reflection profiles of the range front structures are difficult to interpret because of he steep dips and 3-d fault zone geometry, in the-classical paper by Okaya and Thompson (1985) the range-bounding fault is not imaged as they proposed. The reflection seismic studies are the most useful of the geophysical techniques also the most expensive. The reflection data are two-dimensional making structural interpretation complicated for the three-dimensional geometry of the basin so that the other structural studied have been critical in correctly interpreting the seismic profiles. There are many

171

Survey of Potential Geothermal Exploration Sites at Newberry Volcano Deschutes County, Oregon.  

SciTech Connect

The study summarizes the current data, generates some new data, and recommends further steps which should be taken to investigate the electrical power production potential of Newberry volcano. The objective was to concentrate on data from the developable flanks of the volcano. All previous data on the geology, hydrology, and geophysics were summarized. A soil-mercury survey focused on the flanks of the volcano was conducted. Samples from 1000 km/sup 2/ of the volcano were analyzed for mercury content. All this information was utilized to evaluate (1) the likelihood of future discovery of electrical-quality geothermal fluids on the flanks, and (2) the most cost-effective means of improving the quality of available power generation estimates for the volcano. 37 figures.

Priest, George R.; Vogt, Beverly F.; Black, Gerald L.

1983-01-01T23:59:59.000Z

172

Geophysical survey, Paso Robles Geothermal area, California: Part of the Resource Assessment of Low- and Moderate-Temperature Geothermal Resource Areas in California; Part of the Second year Report, 1979-80 of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation  

DOE Green Energy (OSTI)

This report presents the details of new geophysical work for the Paso Robles geothermal area, California performed under terms of the second year contract, 1979-80 between the US Department of Energy (DOE) and the California Division of Mines and Geology (CDMG). The report contains two sections. The first section is to provide background for the reader and consists of a reprint from CDMG's first year report (1979-80) to DOE. It describes only the Paso Robles studies performed by CDMG in its first year effort. The second section provides new information developed by CDMG in its 1979-80 studies concerning the geophysical survey of the Paso Robles geothermal area. Included in the first section is some general background information concerning the geology and geothermal occurrences in the Southern Coast Ranges, as well as the more detailed information dealing with the Paso Robles area proper. The second section is concerned only with discussion and interpretation of results for two geophysical methods that have so far been used by CDMG in the area: the ground magnetic and gravity surveys. The CDMG studies of the Paso Robles area are not yet complete and additional studies using newly acquired resistivity equipment are planned for the near future, as are more complete surveys of existing wells and new studies of the geothermal aquifers present in the area. A final report to DOE on the Paso Robles area is planned following completion of those studies.

Chapman, Rodger H.; Chase, Gordon W.; Youngs, Les G.

1980-11-10T23:59:59.000Z

173

Terrain effects in resistivity and magnetotelluric surveys  

Science Conference Proceedings (OSTI)

A three-dimensional finite element computer algorithm which can accommodate arbitrarily complex topography and subsurface structure, has been developed to model the resistivity response of the earth. The algorithm has undergone extensive evaluation and is believed to provide accurate results for realistic earth models. Testing included comparison to scale model measurements, analytically calculated solutions, and results calculated numerically by other independent means. Computer modeling experiments have demonstrated that it is possible to remove the effect of topography on resistivity data under conditions where such effects dominate the response. This can be done without resorting to lengthy and costly trial and error computer modeling. After correction, the data can be interpreted with confidence that the anomalies are due only to subsurface structure. The results of case studies on resistivity field data measured in high relief topography are discussed.

Holcombe, H.T.

1982-12-01T23:59:59.000Z

174

Rapid reconnaissance of geothermal prospects using shallow temperature...  

Open Energy Info (EERE)

reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid...

175

Geothermal exploration technology. Annual report, 1978  

DOE Green Energy (OSTI)

Progress is reported on the following programs: electrical and electromagnetic computer modeling techniques; minicomputer for in-field processing of magnetotelluric data; superconducting thin-film gradiometer and magnetometers for geophysical applications; magnetotellurics with SQUID magnetometers; controlled-source electromagnetic system; geothermal seismic field system development; Klamath Basin geothermal resource and exploration technique evaluation; Mt. Hood geothermal resource evaluation; East Mesa seismic study; seismological studies at Cerro Prieto; self-potential studies at Cerro Prieto; resistivity studies at Cerro Prieto; magnetotelluric survey at Cerro Prieto; and precision gravity studies at Cerro Prieto. (MHR)

Not Available

1978-01-01T23:59:59.000Z

176

3D Magnetotelluric characterization of the COSO Geothermal Field  

E-Print Network (OSTI)

model of the Coso geothermal field has been constructed. TheResistivity model of the Coso geothermal site compiled fromthe Department of Energy, Geothermal Program Office. MT data

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

177

Survey and preliminary evaluation of potential geothermal energy applications for Riverside, California  

DOE Green Energy (OSTI)

A preliminary assessment of the potential applications for geothermal energy in Riverside, California, was made. This assessment includes both potential electrical and non-electrical applications, and focuses on the following factors: the location of nearby geothermal resources; characteristics of these resources; types of applications suited to each resource; technical and economic feasibility of these applications; the potential impact on the energy demand of each application, and potential deterrents to the utilization of geothermal energy for the most promising application. It is concluded that geothermal energy has a promising potential to supply electricity, space heating and cooling, and process heat to Riverside. There are sufficient geothermal resources within 200 miles to supply the electrical requirements of Riverside for thousands of years. Depending on the particular reservoir involved, this electricity can probably be generated at costs ranging from 1 to 3 times the cost of conventional electric power generation. Over this distance, the additional unit cost for energy transmission should be comparatively small. The geothermal resource at nearby Arrowhead Hot Springs has the potential to supply space heating and cooling and process heat to Riverside for a hundred years. The technology for these non-electric uses is available. The cost of using geothermal energy for these applications is estimated at 1 to 2 times the cost of conventional fuels, depending on the population density of the service area. The most difficult problems in the possible use of geothermal energy in Riverside appear to be institutional difficulties in electric applications.

Bloomster, C.H.; Fassbender, L.L.; Schilling, A.H.; Lippek, H.E.

1978-03-01T23:59:59.000Z

178

Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006...  

Open Energy Info (EERE)

Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "EM sounding, MT, CSAMT, dipole-dipole resistivity; reservoir...

179

Session: Geopressured-Geothermal  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

180

Report on the reconnaissance resistivity survey in the East Mesa area, Imperial County, California for U. S. Department of the Interior, Bureau of Reclamation  

DOE Green Energy (OSTI)

A section of notes on geothermal exploration using the resistivity method precedes the main body of the paper. Field data from the Broadlands Area of New Zealand, Java, and the Imperial Valley, California are included. The reconnaissance resistivity survey recently completed in the East Mesa Area confirmed that a broad zone of low resistivities at depth extends through the area in a NNW direction. The interpretation of the resistivity data and the location of the resistivity lows at depth is much less definite in the Imperial Valley than it is in other areas of geothermal exploration. This is due to the extremely low background level of resistivities. The low resistivities in the Imperial Valley are due to the high porosity of the sediments and the high salinity of the solutions contained within the rock. The expected decrease in resistivity due to elevated temperature is much more difficult to detect in this environment. Edges of the zones of low resistivities have been delineated in almost all directions. (JGB)

Bell, B.S.; Hallof, P.G.

1974-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal power plants of Iceland: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

The technical features of the geothermal electric power plants of Iceland are described. Some description is given of the geology of the geothermal regions, and recent volcanic eruptions are discussed relative to their impact on the geothermal plant sites. The 3 MW, single-flash plant at Namafjall, the 60 MW, double-flash plant at Krafla, and the 1 MW unit at Grindavik are included. Information is given on well arrangements, casing programs, energy conversion systems, capital investments, and operating experiences, where such information is available.

DiPippo, R.

1978-11-01T23:59:59.000Z

182

Lightweight CO{sub 2}-resistant cements for geothermal well completions  

DOE Green Energy (OSTI)

Materials formed by acid-base reactions between calcium aluminate compounds and phosphate-containing solutions yield high strength, low permeability and CO{sub 2}-resistant cements when cured in hydrothermal environments. The cementing formulations are pumpable at temperatures up to 150{degrees}C. thereby making their use for well completions technically feasible. When this cementing matrix was exposed in an autoclave containing Na{sub 2}CO{sub 3},-saturated brine for 120 days. <0.4 wt% CaCO{sub 3} was produced. A conventional portland cement-based well completion material will form {approximately}10 wt% CACO, after only 7 days exposure. The addition of hollow aluminosilicate microspheres to the uncured matrix constituents yields slurries with densities as low as {approximately} 1.2 g/cc which cure to produce materials with properties meeting die criteria for well cementing. These formulations also exhibit low rates of carbonation. Laboratory characterization is nearing completion. engineering scale-up is underway, and plans for field testing in a variety of geothermal fluids are being made.

Kukacka, L.E.; Sugama, T.

1995-02-01T23:59:59.000Z

183

Geothermal power plants of Mexico and Central America: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

In this report, the fifth in a series describing the geothermal power plants of the world, the countries of Mexico and of Central America are studied. The geothermal plants are located in areas of recent and active volcanism; the resources are of the liquid-dominated type. Details are given about the plants located at Cerro Prieto in Mexico and at Ahuachapan in El Salvador. In both cases, attention is paid to the geologic nature of the fields, the well programs, geofluid characteristics, energy conversion systems, materials of construction, effluent handling systems, economic factors and plant operating experience. Exploration and development activities are described for other promising geothermal areas in Mexico and El Salvador, along with those in the countries of Costa Rica, Nicaragua, Guatemala, Honduras, and Panama.

DiPippo. R.

1978-07-01T23:59:59.000Z

184

Geothermal power plants of the United States: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

The development of geothermal energy as a source of electric power in the United States is reviewed. A thorough description is given of The Geysers geothermal power project in northern California. The recent efforts to exploit the hot-water resources of the Mexicali-Imperial Rift Valley are described. Details are given concerning the geology of the several sites now being used and for those at which power plants will soon be built. Attention is paid to the technical particulars of all existing plants, including wells, gathering systems, energy conversion devices, materials, environmental impacts, economics and operating characteristics. Specifically, plants which either exist or are planned for the following locations are covered: The Geysers, CA; East Mesa, CA; Heber, CA; Roosevelt Hot Springs, UT; Valles Caldera, NM; Salton Sea, CA; Westmorland, CA; Brawley, CA; Desert Peak, NV; and Raft River, ID. The growth of installed geothermal electric generating capacity is traced from the beginning in 1960 and is projected to 1984.

DiPippo, R.

1978-04-01T23:59:59.000Z

185

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

186

Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey  

DOE Green Energy (OSTI)

During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.

Davis, D.A.; Cook, K.L.

1983-04-01T23:59:59.000Z

187

Market survey of geothermal wellhead power generation systems. Final report, March 1978  

DOE Green Energy (OSTI)

The purpose of this study was to assess the market potential for a portable geothermal wellhead power conversion device (1-10 MW generating capacity). Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individuals in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.

Leeds, M.W.; Evensizer, J.

1979-04-01T23:59:59.000Z

188

Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity  

DOE Green Energy (OSTI)

In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

1997-01-01T23:59:59.000Z

189

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets-  

Open Energy Info (EERE)

D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Details Activities (0) Areas (0) Regions (0) Abstract: With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing

190

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

electromagnetic surveys as a reconnaissance technique for geothermal exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Airborne...

191

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network (OSTI)

at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

Feighner, Mark A.

2010-01-01T23:59:59.000Z

192

Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field to map the subsurface resistivity in the geothermal field and the surrounding area. The EM survey, consisting of 19 frequency-domain depth soundings made with the LBL EM-60 system, was undertaken to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 km. Lithologic and well log resistivity information from well 66-21 show that for EM interpretation the section can be reduced to a three-layer model consisting of moderately resistive alluvial sediments, low resistivity lacustrine sediments, and high resistivity Tertiary volcanics and older rocks. This three layer model was used as a starting point in interpreting EM sounding data. Variations in resistivity and thickness provided structural information and clues to the accumulation of geothermal fluids. The interpreted soundings reveal a 1 to 1.5-km-deep low-resistivity zone spatially associated with the geothermal field. The shallow depth suggests that the zone detected is either fluid leakage or hydrothermal alteration, rather than high-temperature reservoir fluids. The position of the low-resistivity zone also conforms to changes in depth to the high resistivity basal layer, suggesting that faulting is a control on the location of productive intervals. 10 refs., 7 figs.

Wilt, M.J.; Goldstein, N.E.

1985-03-01T23:59:59.000Z

193

Definition: DC Resistivity Survey (Mise--La-Masse) | Open Energy...  

Open Energy Info (EERE)

Mise--La-Masse) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Mise--La-Masse) The Mise--La-Masse technique is variation of a Direct-Current Resistivity...

194

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

195

Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Audio-magnetotelluric geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a

196

Finding Large Aperture Fractures in Geothermal Resource Areas Using a  

Open Energy Info (EERE)

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Because fractures and faults with sub-commercial permeability can propagate hot fluid and hydrothermal alteration throughout a geothermal reservoir, potential field geophysical methods including resistivity, gravity, heatflow and magnetics cannot distinguish between low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter synthetic aperture radar interferometry (PSInSAR) and structural kinematic analysis as an integrated method for locating and 3-D mapping of LAF's in shallow to intermediate depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing production field and find a new production field in a separate but related resource area. A full diameter production well will be drilled into each of the two lease blocks covered by the geophysical exploration program.

197

Survey of environmental regulations applying to geothermal exploration, development, and use.  

DOE Green Energy (OSTI)

Federal, State, and local environmental laws and regulations that apply to geothermal energy development are summarized. Most attention is given to those regulations which deal with air pollution, water pollution, solid wastes and impact assessments. Analyses are made of the regulations with respect to resource definition, pollutants currently not controlled, duplicity and overlap in permit and impact assessment requirements, the lack of uniformity of regulations between states, and the probable future approaches to the regulatory problems. This project updates a similar document (EPA/600/7-78-014) dated February 1978.

Beeland, G.V.

1984-03-01T23:59:59.000Z

198

Geothermal shell and tube heat exchanger augmentation  

DOE Green Energy (OSTI)

The heat exchangers for a moderate temperature geothermal plant represent a major portion of the plant capital cost. Therefore, reduction in heat exchanger size will significantly improve the electrical power economics. The potential heat exchanger size reduction that could be achieved by reducing any combination heat transfer resistance terms is evaluated. A literature survey of heat transfer augmentation schemes is summarized and equations for evaluating the impact of cleaning frequency on heat exchanger size are presented. Recommendations are made specifically for the Raft River Thermal Loop, however, the techniques are applicable to any other geothermal plant or heat transfer system.

Neill, D.T.

1976-11-01T23:59:59.000Z

199

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

200

Surveys of the distribution of seabirds found in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report  

DOE Green Energy (OSTI)

In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediately adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.

Reynolds, M.; Ritchotte, G.; Viggiano, A.; Dwyer, J.; Nielsen, B.; Jacobi, J.D. [Fish and Wildlife Service, Hawaii National Park, HI (United States). Hawaii Research Station

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Haleakala Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one self-potential profile and one controlled-source electromagnetic sounding. The geochemical data collected included a reconnaissance soil mercury and

202

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mauna Loa Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical electrical sounding surveys encountered few difficulties and were able to resolve basement resistivities in all locations. The resistivity sections derived indicated a 3000- 20,000 ohm.m surface layer underlain by a 500- 900 ohm-m cold freshwatersaturated layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1. and thus the basement resistivities probably correspond to basalts

203

Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mokapu Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys on Mokapu were restricted to three Schlumberger soundings (Fig. 17). The results of these soundings appeared to indicate a highly resistive surface section underlain by one or more layers of intermediate to low resistivity (Fig. 18). Basement resistivities in all cases were less than 3 ohm.m and were interpreted to correspond to alluvial layers saturated with cold seawater (Lienert, 1982). --- A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic

204

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

205

Attitudinal survey of citizens in a potential Gulf Coast geopressured-geothermal test-well locality. Final report  

DOE Green Energy (OSTI)

The results of a mail survey used to tap the opinions of the public at large in the study area are described. Attention in that section is focused on awareness of the resource, favorability toward the impending development, concerns about the development, attitudes regarding how the development should take place, levels of community satisfaction, and perceived future problems due to community growth. An analysis is given of the 33 interviews conducted with local representatives of the financial and commercial sectors, government, industry, agriculture, and environmental groups. The main foci here are perceived problems and benefits associated with geothermal development and the local capacity for coping with strains on community services resulting from any population growth which may be generated by resource development. A comparison and synthesis of the results from the general survey and the sector interviews is included. In conclusion, policy recommendations are made for means through which to consolidate goals and to achieve resource development objectives with minimal antagonism of and problems for local citizens and community sectors.

Lopreato, S.C.; Blissett, M.

1977-05-01T23:59:59.000Z

206

NEPA COMPLIANCE SURVEY Project Information Project TitJe: Geothermal Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Information Project TitJe: Geothermal Technologies Program Date: 12-11-()9 DOE Code: 6730.020.61041 Contractor Code: Project Lead: Project Overview This NEPA is for the laying of a 2,975 foot, 8" welded plastic water line from Little Teapot Creek near in the 1. What are the environmental impacts? intersection with Teapot Creek to the North Waterflood Facility (NWF) building. The entire project area is within Section 21 T39N R78W (map attached) and will not impact any wet land areas but will cross one 2. What is the legal location? intermittent stream. The stream is presently dry. The project will include the clearing of vegetation from a 12 3. What is the duration of the project? foot wide construction corridor along the route, digging a 5 foot deep trench, welding and placing the plastic

207

Principal facts for a gravity survey of Summer Lake Known Geothermal Resource Area, Oregon  

DOE Green Energy (OSTI)

Gravity survey data are tabulated for 73 stations. Site latitude, longitude, elevation, observed gravity, theoretical gravity, free-air correction, Bouguer correction, and the simple Bouguer anomaly are included. (WHK)

Peterson, D.L.; Meyer, R.F.

1976-01-01T23:59:59.000Z

208

Surveys of distribution and abundance of the Hawaiian hawk within the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report  

DOE Green Energy (OSTI)

In 1993, the US Fish and Wildlife Service (USFWS) entered an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of proposed geothermal development on the biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the distribution, habitat use, and density of the Hawaiian hawk or `Io (Buteo solitarius). Data were collected by the USFWS to assess the potential impacts of geothermal development on `Io populations on the island of Hawaii. These impacts include degradation of potential nesting habitat and increased disturbance due to construction and operation activities. Data from these surveys were analyzed as part of an island wide population assessment conducted by the Western Foundation of Vertebrate Zoology at the request of the USFWS.

Reynolds, M.; Ritchotte, G.; Viggiano, A.; Dwyer, J.; Nielsen, B.; Jacobi, J.D. [Fish and Wildlife Service, Hawaii National Park, HI (United States). Hawaii Research Station

1994-08-01T23:59:59.000Z

209

Total field aeromagnetic map of the Raft River known Geothermal...  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report:...

210

Rapid reconnaissance of geothermal prospects using shallow temperature...  

Open Energy Info (EERE)

reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid...

211

2008 Geothermal Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

the Middle East and Africa Asian and Oceanic Countries 2008 Geothermal Technologies Market Report | July 2009 9 The information shown in Figure 3 comes from industry surveys...

212

Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource  

DOE Green Energy (OSTI)

This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

Cunniff, Roy A.; Bowers, Roger L.

2005-08-01T23:59:59.000Z

213

Geothermal studies in northern Nevada  

DOE Green Energy (OSTI)

The Lawrence Berkeley Laboratory (LBL) and University of California (UCB), under the auspices of the U.S. Energy Research and Development Administration, are conducting field studies at potential geothermal resource areas in north-central Nevada. The goal of the LBL-UCB program is to develop and evaluate techniques for the assessment of the resource potential of liquid-dominated systems. Field studies presently being conducted in northern Nevada incorporate an integrated program of geologic, geophysical, and geochemical surveys leading to heat flow measurements, and eventually to deep (1.5 to 2 km) confirmatory drill holes. Techniques evaluated include geophysical methods to measure contrasts in electrical resistivity and seismic parameters. Geochemical studies have emphasized techniques to disclose the pathways of water from its meteoric origin into and through the hydrothermal systems. Geochemical and radiometric analyses also help to provide a baseline upon which the effects of future geothermal development may be superimposed.

Wollenberg, H.A.

1976-06-01T23:59:59.000Z

214

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network (OSTI)

Grange, L. I. (Compiler), Geothermal Steam for Power i n N eGeology of the Tauhara Geothermal Field, Lake Taupo,"DSIR Geological Survey Geothermal Report No. 4, 1966.

Pritchett, J.W.

2012-01-01T23:59:59.000Z

215

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network (OSTI)

Grange, L. I. (Compiler), Geothermal Steam for Power i n N eGeology of the Tauhara Geothermal Field, Lake Taupo,"DSIR Geological Survey Geothermal Report No. 4, 1966.

Pritchett, J.W.

2010-01-01T23:59:59.000Z

216

Direct-Current Resistivity Survey At Valles Caldera - Sulphur...  

Open Energy Info (EERE)

structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were compared for consistency of...

217

Direct-Current Resistivity Survey At Valles Caldera - Redondo...  

Open Energy Info (EERE)

structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were compared for consistency of...

218

Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Audio-Magnetotellurics At Raft River Geothermal Area Audio-Magnetotellurics At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes An area of low apparent resistivity values defined by the audiomagnetotelluric (AMT) survey appears to outline the extent of the geothermal reservoir even though the reservoir is deeper than the penetration of the survey. Self-potential anomalies relate to near surface hydrology. Upward leakage from the reservoir produces shallower effects that were measured by the AMT survey. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1

219

Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska Geothermal Project Springs, Alaska Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Pilgrim Hot Springs, Alaska Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A combination of existing and innovative remote sensing and geophysical techniques will be used to site the two confirmation core holes. These include a suite of Landsat, Aster, and FLIR techniques using infrared radiation combined with a CSAMT/AMT resistivity survey, 4.5 m to 150 m temperature gradient holes, and 1980 convective heat loss calculations. These will be used in combination to determine the natural heat loss from the Pilgrim geothermal system and allow an order of magnitude estimate of the resource potential.

220

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Bipole-dipole survey at Roosevelt Hot Springs, Thermal Area, Beaver County, Utah  

DOE Green Energy (OSTI)

A bipole-dipole electrical resistivity survey at Roosevelt Hot Springs thermal area, Beaver County, Utah was undertaken to evaluate the technique in a well-studied Basin and Range geothermal prospect. The major electrical characteristics of the area are clearly revealed but are not particularly descriptive of the geothermal system. More subtle variations of electrical resistivity accompanying the geothermal activity are detectable, although the influence of near-surface lateral resistivity variations imposes upon the survey design the necessity of a high station density. A useful practical step is to conduct a survey using transmitter locations and orientations which minimize the response of known features such as the resistivity boundary due to a range front fault. Survey results illustrate the effects of transmitter orientation and placement, and of subtle lateral resistivity variations. A known near-surface conductive zone is detected while no evidence is found for a deep conductive region.

Frangos, W.; Ward, S.H.

1980-09-01T23:59:59.000Z

222

Reconnaissance electrical surveys in the Coso Range, California | Open  

Open Energy Info (EERE)

electrical surveys in the Coso Range, California electrical surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance electrical surveys in the Coso Range, California Details Activities (3) Areas (1) Regions (0) Abstract: Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map

223

Preliminary geothermal investigations at Manley Hot Springs, Alaska  

DOE Green Energy (OSTI)

Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

East, J.

1982-04-01T23:59:59.000Z

224

Long-term dipole-dipole resistivity monitoring at the Cerro Prieto geothermal field  

DOE Green Energy (OSTI)

Dipole-dipole resistivity measurements for the combined purposes of reservoir delineation and reservoir monitoring were first made at Cerro Prieto in 1978 and have continued on approximately an annual basis since then. Two 20 km-long dipole-dipole lines with permanently emplaced electrodes at 1-km spacings were established over the field area. Resistivity remeasurements have been made on one line at 6- to 18-month intervals using a 25 kW generator capable of up to 80A output and a microprocessor-controlled signal-averaging receiver. This high-power, low-noise system provides highly accurate measurements even at large transmitter receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points. Results from four years of monitoring (1979-1983) indicate a 5% average annual increase in apparent resistivity over the present production area, and larger decreases in apparent resistivity in the region to the east. The increase in resistivity in the production zone is most likely due to dilution of reservoir fluids with fresher water, as evidenced by a drop in chloride content of produced waters. The area of decreasing resistivity east of the reservoir is associated with a steeply dipping conductive body, a zone of higher thermal gradients and an increase in shale thickness in the section. Decreasing resistivity in this area may be caused by an influx of high temperature, saline water from depths of 3/sup +/ km through a sandy gap in the shales.

Wilt, M.; Goldstein, N.E.; Sasaki, Y.

1984-04-01T23:59:59.000Z

225

Geothermal power plants of New Zealand, Philippines, and Indonesia: a technical survey of existing and planned installations. Report No. CATMET/17  

DOE Green Energy (OSTI)

This report is the fourth in a series dealing with the geothermal power plants of the world. Here the existing and planned stations in the south Pacific area are surveyed including New Zealand, the Philippines and Indonesia. Details are given for the plants at Wairakei and Kawerau, and for the one proposed at Broadlands in New Zealand; for the plants proposed for Tiwi and Los Banos, and the wellhead units operating at Los Banos and Tongonan in the Philippines; and for the wellhead unit soon to be installed at Kawah Kamojang on Java in Indonesia. The geologic characteristics of the fields are described along with wellflow particulars, energy conversion systems, environmental impacts, economic factors and operating experiences, where available. The geothermal resource utilization efficiency is computed or estimated for the power plants covered. Furthermore, some discussion is devoted to the other sites which may prove exploitable for the production of electricity.

DiPippo, R.

1978-06-01T23:59:59.000Z

226

Alum Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Alum Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow (6 ft) temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature and seismic data to create an integrated model that will be used to prioritize drill target locations. Four geothermal wells will be drilled and geologically characterized in Phase 2. The project will use a coiled-tube rig to test this drilling technology at a geothermal field for the first time. Two slimwells and two production wells will be drilled with core collected and characterized in the target sections of each well. In Phase 3, extended flow tests will be conducted on the producible wells to confirm the geothermal resource followed by an overall assessment of the productivity of the Alum geothermal area. Finally, Phase 3 will evaluate the relative contribution of each exploration technique in reducing risk during the early stages of the geothermal project.

227

Susanville Geothermal Investigations, California, Special Report  

DOE Green Energy (OSTI)

This report documents the investigations by the Bureau of Reclamation and others of the geothermal resource potential of the Susanville-Honey Lake Valley area, California, made during 1975 and the early part of 1976. Included are discussions on the nature of the resource and the analyses of the data gathered. Susanville is located in northeastern California about 210 miles (330 kilometers) northeast of San Francisco. The purpose of the study was to appraise the geothermal resources in the Susanville-Honey Lake area within the constraints of limited funds and available personnel. The main thrust of the studies consisted of: gathering and analyzing existing data; conducting and evaluating an electrical resistivity survey and an aerial thermal infrared survey; and drilling and logging of temperature gradient holes. The heat flow or energy potential of the resource was not determined.

none

1976-06-01T23:59:59.000Z

228

Geothermal energy resource assessment of parts of Alaska. Final report  

DOE Green Energy (OSTI)

The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

Wescott, E.M.; Turner, D.L.; Kienle, J.

1982-08-01T23:59:59.000Z

229

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Abstract Extended magnetotelluric (MT) profiling results over the Dixie Valley-Central Nevada Seismic Belt area were recently completed to explore the hypothesis that fluid circulation to depths of 10 km or more is generating well temperatures in the field >280 C.This transect has revealed families of resistivity structures commonly dominated by high-angle

230

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

231

Telluric Survey | Open Energy Information  

Open Energy Info (EERE)

Telluric Survey Telluric Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Telluric Survey Details Activities (3) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 522.2252,222 centUSD

232

National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry. [Copied from http://www.geothermaldata.org/Home.aspx

233

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

234

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

235

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

236

Temperature histories in geothermal wells: survey of rock thermomechanical properties and drilling, production, and injection case studies  

DOE Green Energy (OSTI)

Thermal and mechanical properties for geothermal formations are tabulated for a range of temperatures and stress conditions. Data was obtained from the technical literature and direct contacts with industry. Thermal properties include heat capacity, conductivity, and diffusivity. Undisturbed geothermal profiles are also presented. Mechanical properties include Youngs modulus and Poisson ratio. GEOTEMP thermal simulations of drilling, production and injection are reported for two geothermal regions, the hot dry rock area near Los Alamos and the East Mesa field in the Imperial Valley. Actual drilling, production, and injection histories are simulated. Results are documented in the form of printed GEOTEMP output and plots of temperatures versus depth, radius, and time. Discussion and interpretation of the results are presented for drilling and well completion design to determine: wellbore temperatures during drilling as a function of depth; bit temperatures over the drilling history; cement temperatures from setting to the end of drilling; and casing and formation temperatures during drilling, production, and injection.

Goodman, M.A.

1981-07-01T23:59:59.000Z

237

A survey of endangered waterbirds on Maui and Oahu and assessment of potential impacts to waterbirds from the proposed Hawaii Geothermal Project transmission corridor. Final report  

DOE Green Energy (OSTI)

A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds, resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.

Evans, K.; Woodside, D.; Bruegmann, M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

1994-08-01T23:59:59.000Z

238

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

239

A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs  

Open Energy Info (EERE)

Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Details Activities (0) Areas (0) Regions (0) Abstract: In total 24 direct current resistivity soundings were carried out during the preliminary stages of a geothermal exploration survey of the Langada hot springs area (northern Greece). The analysis of the data revealed a horst-type morphology striking NW-SE. Correlation between the location of hot springs, successful drill holes and the basement (horst) indicates that the sector of geothermal interest is concentrated along the major axis of the horst mapped. The horst type geothermal structure fits in

240

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Regions Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regions RegionsMap2012.jpg Geothermal regions were outlined for the western United States (including Alaska and Hawaii) to identify geothermal areas, projects, and exploration trends for each region. These regions were developed based on the USGS physiographic regions (U.S. Geological Survey), and then adjusted to fit geothermal exploration parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.[1] Add a new Geothermal Region List of Regions Area (km2) Mean MW

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

242

Surveys of forest bird populations found in the vicinity of proposed geothermal project subzones in the district of Puna, Hawaii  

DOE Green Energy (OSTI)

This report presents data on the distribution and status of forest bird species found within the vicinity of proposed geothermal resource development on the Island of Hawaii. Potential impacts of the proposed development on the native bird populations found in the project are are addressed.

Jacobi, J.D.; Reynolds, M.; Ritchotte, G.; Nielsen, B.; Viggiano, A.; Dwyer, J.

1994-10-01T23:59:59.000Z

243

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

244

Surveys on the distribution and abundance of the Hawaiian hoary bat (Lasiurus cinereus semotus) in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report  

DOE Green Energy (OSTI)

In 1993 the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct wildlife surveys relative to identifying potential impacts of geothermal resource development on the native biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the endangered Hawaiian hoary bat (Hawaiian bat), or opeapea (Lasiurus cinereus semotus), within the proposed Hawaii geothermal subzones. Potential effects of geothermal development on Hawaiian bat populations are also discussed. Surveys were conducted to determine the distribution and abundance of bats throughout the District of Puna. Baseline information was collected to evaluate the status of bats within the study area and to identify important foraging habitats. Little specific data exists in the published literature on the population status and potential limiting factors affecting the Hawaiian bat. A USFWS recovery plan does not exist for this endangered species.

Reynolds, M.; Ritchotte, G.; Dwyer, J.; Viggiano, A.; Nielsen, B.; Jacobi, J.D. [Fish and Wildlife Service, Hawaii National Park, HI (United States). Hawaii Research Station

1994-08-01T23:59:59.000Z

245

Imaging Multi-Dimensional Electrical Resistivity Structure as a Tool in Developing Enhanced Geothermal Systems (EGS)  

DOE Green Energy (OSTI)

The overall goal of this project has been to develop desktop capability for 3-D EM inversion as a complement or alternative to existing massively parallel platforms. We have been fortunate in having a uniquely productive cooperative relationship with Kyushu University (Y. Sasaki, P.I.) who supplied a base-level 3-D inversion source code for MT data over a half-space based on staggered grid finite differences. Storage efficiency was greatly increased in this algorithm by implementing a symmetric L-U parameter step solver, and by loading the parameter step matrix one frequency at a time. Rules were established for achieving sufficient jacobian accuracy versus mesh discretization, and regularization was much improved by scaling the damping terms according to influence of parameters upon the measured response. The modified program was applied to 101 five-channel MT stations taken over the Coso East Flank area supported by the DOE and the Navy. Inversion of these data on a 2 Gb desktop PC using a half-space starting model recovered the main features of the subsurface resistivity structure seen in a massively parallel inversion which used a series of stitched 2-D inversions as a starting model. In particular, a steeply west-dipping, N-S trending conductor was resolved under the central-west portion of the East Flank. It may correspond to a highly saline magamtic fluid component, residual fluid from boiling, or less likely cryptic acid sulphate alteration, all in a steep fracture mesh. This work gained student Virginia Maris the Best Student Presentation at the 2006 GRC annual meeting.

Philip E. Wannamaker

2007-12-31T23:59:59.000Z

246

Silver Peak Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Silver Peak Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The scope of this three phase project includes tasks to validate a variety of innovative exploration and drilling technologies which aim to accurately characterize the geothermal site and thereby reduce project risk. Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature data to create an integrated model that will be used to prioritize drill target locations.

247

Treatment methods for geothermal brines  

DOE Green Energy (OSTI)

A survey is made of commercially available methods currently in use as well as those which might be used to prevent scaling and corrosion in geothermal brines. More emphasis is placed on scaling. Treatments are classified as inhibitors, alterants and coagulants; they are applied to control scaling and corrosion in fresh and waste geothermal brines. Recommendations for research in brine treatment are described.

Phillips, S.L.; Mathur, A.K.; Garrison, W.

1979-04-01T23:59:59.000Z

248

Rapid reconnaissance of geothermal prospects using shallow temperature  

Open Energy Info (EERE)

Second technical report Second technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report Details Activities (1) Areas (1) Regions (0) Abstract: The previously examined geothermal sites at Long Valley and Coso were studied in much greater detail. Techniques for correcting the 2-m temperature data were evaluated. Using a preliminary model and analysis of the Coso data, the importance of measuring soil thermal diffusivity data at each temperature probe site was shown. Corrected 2-m temperature anomaly at Coso was compared with a low altitude aeromagnetic anomaly and an anomaly outlined by electrical resistivity methods obtained independently. Preliminary tests were made with a simple thermal conductivity probe

249

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

250

Principal facts for a gravity survey of the Double Hot Springs Known Geothermal Resource Area, Humboldt County, Nevada  

DOE Green Energy (OSTI)

During July 1977, forty-nine gravity stations were obtained in the Double Hot Springs Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

251

Electromagnetic soundings over a geothermal reservoir in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field with the purpose of mapping the subsurface resistivity in the geothermal field and its surroundings. The EM survey consisted of 19 frequency-domain depth soundings made with the EM-60 system using three separate horizontal-loop transmitters, and was designed to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 k. Most sounding curves could be fitted to three-layer resistivity models. The surface layer is moderately conductive (10 to 15 ohm-m), has a maximum thickness of 500 m, and consists mainly of alluvial fan and lake sediments. More conductive zones are associated with hydrothermally altered rocks; a resistivity high may be associated with siliceous hot spring deposits. The conductive second layer (2 to 5 ohm-m) varies in thickness from 400 to 800 m and thickens toward the center of the valley. This layer probably consists of lacustrine sediments saturated with saline waters. Local resistivity lows observed in the second layer may be related to elevated subsurface temperatures. This layer may act as a cap rock for the geothermal system. Resistivities of the third layer are high (50 to 100 ohm-m) except in a narrow 5-km band paralleling the range front. This low-resistivity zone, within volcanic rocks, correlates well in depth and location with reported zones of geothermal fluid production. It also seems to correlate with the western margin of a concealed graben structure previously inferred from other geophysical data.

Wilt, M.J.; Goldstein, N.E.

1983-04-01T23:59:59.000Z

252

Aeromagnetic Survey At Lightning Dock Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a comprehensive integrated geothermal model. From all of this information,

253

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

254

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

255

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

256

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

(Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

257

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

258

Direct-Current Resistivity At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

At Central Nevada Seismic At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

259

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

260

Geothermal materials development activities  

DOE Green Energy (OSTI)

This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

Kukacka, L.E.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

262

Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892  

DOE Green Energy (OSTI)

Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

1983-12-15T23:59:59.000Z

263

Property:Geothermal/AboutArea | Open Energy Information  

Open Energy Info (EERE)

AboutArea AboutArea Jump to: navigation, search Property Name Geothermal/AboutArea Property Type Text Description About the Area Pages using the property "Geothermal/AboutArea" Showing 18 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Churchill County, NV Alum Innovative Exploration Project Geothermal Project + Alum geothermal project is located in Nevada ~150 miles SE of Reno. It consists of federal geothermal leases that are 100% owned by SGP. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + Humboldt House-Rye Patch (HH-RP) geothermal resource area

264

Property:Geothermal/Awardees | Open Energy Information  

Open Energy Info (EERE)

Awardees Awardees Jump to: navigation, search Property Name Geothermal/Awardees Property Type String Description Awardees (Company / Institution) Pages using the property "Geothermal/Awardees" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Montana Tech of The University of Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + New Mexico Institute of Mining and Technology +

265

Imperial County geothermal development annual meeting: summary  

DOE Green Energy (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

266

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

267

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

268

Hydrogeologic and geothermal investigation of Pagosa Springs, Colorado  

SciTech Connect

The following topics are covered: geology; geophysical surveys; geothermal wells, springs, and heat flow; hydrology; drilling program, well testing, and mineralogical and petrographic studies of samples from geothermal wells. (MHR)

Galloway, M.J.

1980-01-01T23:59:59.000Z

269

Principal facts for a gravity survey of the Gerlach Extension Known Geothermal Resource Area, Pershing County, Nevada  

DOE Green Energy (OSTI)

During July 1977, fifty-one gravity stations were obtained in the Gerlach Extension Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity. Observed gravity is referenced to a base station in Gerlach, Nevada, having a value based on the Potsdam System of 1930. A density of 2.67 g per cm/sup 3/ was used in computing the Bouguer anomaly.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

270

Principal facts for a gravity survey of the Fly Ranch Extension Known Geothermal Resource Area, Pershing County, Nevada  

DOE Green Energy (OSTI)

During July 1977, forty-four gravity stations were obtained in the Fly Ranch Extension Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity. Observed gravity is referenced to a base station in Gerlach, Nevada, having a value based on the Potsdam System of 1930 (fig. 1). A density of 2.67 g per cm/sup 3/ was used in computing the Bouguer anomaly.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

271

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

272

Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California  

Science Conference Proceedings (OSTI)

An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters.

Schimschal, U. (U.S. Geological Survey, Denver, CO (US))

1991-02-01T23:59:59.000Z

273

Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from

274

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

275

Apacheta, a new geothermal prospect in Northern Chile  

DOE Green Energy (OSTI)

The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regional water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.

Urzua, Luis; Powell, Tom; Cumming, William B.; Dobson, Patrick

2002-05-24T23:59:59.000Z

276

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

277

Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598123

278

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

279

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

280

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

282

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

283

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

284

Property:Geothermal/FundingOpportunityAnnouncemt | Open Energy Information  

Open Energy Info (EERE)

Geothermal/FundingOpportunityAnnouncemt Geothermal/FundingOpportunityAnnouncemt Jump to: navigation, search Property Name Geothermal/FundingOpportunityAnnouncemt Property Type String Description Funding Opportunity Announcement Pages using the property "Geothermal/FundingOpportunityAnnouncemt" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + DE-FOA-0000109 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + DE-FOA-0000116 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + DE-FOA-0000109 +

285

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

286

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

287

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

288

Geothermal Geophysical Research in Electrical Methods at UURI  

DOE Green Energy (OSTI)

The principal objective of electrical geophysical research at UURI has been to provide reliable exploration and reservoir assessment tools for the shallowest to the deepest levels of interest in geothermal fields. Three diverse methods are being considered currently: magnetotellurics (MT, and CSAMT), self-potential, and borehole resistivity. Primary shortcomings in the methods addressed have included a lack of proper interpretation tools to treat the effects of the inhomogeneous structures often encountered in geothermal systems, a lack of field data of sufficient accuracy and quantity to provide well-focused models of subsurface resistivity structure, and a poor understanding of the relation of resistivity to geothermal systems and physicochemical conditions in the earth generally. In MT, for example, interpretation research has focused successfully on the applicability of 2-D models in 3-D areas which show a preferred structural grain. Leading computer algorithms for 2-D and 3-D simulation have resulted and are combined with modern methods of regularized inversion. However, 3-D data coverage and interpretation is seen as a high priority. High data quality in our own research surveys has been assured by implementing a fully remote reference with digital FM telemetry and real-time processing with data coherence sorting. A detailed MT profile across Long Valley has mapped a caldera-wide altered tuff unit serving as the primary hydrothermal aquifer, and identified a low-resistivity body in the middle crust under the west moat which corresponds closely with teleseismic delay and low density models. In the CSAMT method, our extensive tensor survey over the Sulphur Springs geothermal system provides valuable structural information on this important thermal regime and allows a fundamental analysis of the CSAMT method in heterogeneous areas. The self-potential (SP) method is promoted as an early-stage, cost-effective, exploration technique for covered hydrothermal resources, of low to high temperature, which has little or no adverse environmental impact and yields specific targets for temperature gradient and fluid chemistry testing. Substantial progress has been made in characterizing SP responses for several known, covered geothermal systems in the Basin and Range and southern Rio Grande Rift, and at identifying likely, causative source areas of thermal fluids. (Quantifying buried SP sources requires detailed knowledge of the resistivity structure, obtainable through DC or CSAMT surveys with 2-D or 3-D modeling.) Borehole resistivity (BHR) methods may help define hot and permeable zones in geothermal systems, trace the flow of cooler injected fluids and determine the degree of-water saturation in vapor dominated systems. At UURI, we develop methods to perform field surveys and to model and interpret various borehole-to-borehole, borehole-to-surface and surface-to-borehole arrays. The status of our BHR research may be summarized as follows: (1) forward modeling algorithms have been developed and published to evaluate numerous resistivity methods and to examine the effects of well-casing and noise; (2) two inverse two-dimensional algorithms have been devised and successfully applied to simulated field data; (3) a patented, multi-array resistivity system has been designed and is under construction; and (4) we are seeking appropriate wells in geothermal and other areas in which to test the methods.

Wannamaker, Philip E.; Wright, Phillip M.

1992-03-24T23:59:59.000Z

289

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

DOE Green Energy (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

290

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

291

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

292

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al.,  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Cove_Fort_Area_-_Liquid_(Warpinski,_Et_Al.,_2004)&oldid=598125" Categories: Exploration Activities

293

Resistivity Log At Alum Area (Moos & Ronne, 2010) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Resistivity Log At Alum Area (Moos & Ronne, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Alum Geothermal Area (Moos & Ronne, 2010) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness useful DOE-funding Unknown Notes Density and electrical resistivity data were important to calibrate structural models based on surface surveys. Fluid flow appeared to be concentrated beneath the detachment within an interval in which some mud losses occurred while drilling, and shallow-reading resistivity logs recorded much lower values than deeper-reading logs suggesting that

294

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...  

Open Energy Info (EERE)

SURVEY, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,...

295

Geological and geophysical analysis of Coso Geothermal Exploration...  

Open Energy Info (EERE)

Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the...

296

Direct-Current Resistivity At Honokowai Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

297

Geothermal materials development  

DOE Green Energy (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

298

Lester Meadow, Washington- A Geothermal Anomaly | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow, Washington- A Geothermal Anomaly Lester Meadow, Washington- A Geothermal Anomaly Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lester Meadow, Washington- A Geothermal Anomaly Details Activities (2) Areas (1) Regions (0) Abstract: Exploration of the Lester Hot Springs for geothermal potential found that a natural meadow adjacent to the hot springs represents a geothermal anomaly. This conclusion is supported by an anomaly in a thermal infrared survey, high levels of fluorine and boron from a soil survey, and the lack forest cover in the Lester meadow. These vegetation anomalies may be more common in the Cascade Mountains than realized and may be a useful indicator of the extent of geothermal activity at a location. Burlington Northern (BN) started conducting geothermal exploration in 1974 once the

299

Development of San Kamphaeng Geothermal Energy Project in Thailand  

SciTech Connect

San Kamphaeng Geothermal Field located in northern Thailand, has been selected for a case study and exploration drilling program due to relevant geologic data obtained from the area and favorable sociological conditions. The first geothermal exploration well in Thailand, GTE-1, was commenced at the end of 1981. At present, six geothermal exploration wells (GTE-1 to GTE-6), with an average maximum depth of 500 m., have been drilled. Two wells encountered hot water while the rest are dry. GTE-2 is now discharging hot water of 85C with a very small discharge. GTE-6 encountered hot water of 120C at a depth of 489 m. It is now discharging hot water of 104SC at 3.6 bars pressure and at approximately 4 1/s at the well head. A number of shallow wells, with depths of less than 50 m., were drilled in the thermal manifestation area. Here, resistivity surveys showed relatively low values at shallow depths, suggesting possible zones of thermal water accumulation. Five shallow wells encountered hot water with temperatures ranging from 100C to 130C. A reservoir model of the San Kamphaeng geothermal system is proposed. Under the joint technical program between the governments of Thailand and Japan, a deep exploration well of 1500 m. is scheduled to start in July of 1984.

Ramingwong, T.; Praserdvigai, S.

1984-06-01T23:59:59.000Z

300

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Property:Geothermal/Partner1 | Open Energy Information  

Open Energy Info (EERE)

Partner1 Partner1 Jump to: navigation, search Property Name Geothermal/Partner1 Property Type String Description Partner 1 Pages using the property "Geothermal/Partner1" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + University of Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + TBA + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Los Alamos National Laboratory + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + Lawrence Berkeley National Lab +

302

Property:Geothermal/AwardeeCostShare | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Geothermal/AwardeeCostShare Jump to: navigation, search Property Name Geothermal/AwardeeCostShare Property Type Number Description Awardee Cost Share Pages using the property "Geothermal/AwardeeCostShare" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 9,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 1,082,753 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 4,135,391 +

303

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) edit Details Activities (1) Areas (1) Regions (0)...

304

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

SciTech Connect

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

305

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

306

Geothermal Resources (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Conservation and Survey Division School of Natural Resources This section establishes the support of the state for the efficient development of Nebraska's geothermal resources, as well as permitting

307

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

308

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

309

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

310

Property:Geothermal/Impacts | Open Energy Information  

Open Energy Info (EERE)

Impacts Impacts Jump to: navigation, search Property Name Geothermal/Impacts Property Type Text Description Impacts Pages using the property "Geothermal/Impacts" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + If successful, this would mark a major advance in our ability to image potentially productive fluid pathways in fracture-dominated systems. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Successful application of techniques could allow replication to buildings across campus and in City of Butte, including county court house, the Federal court building, World Museum of Mining, and numerous privately owned historic buildings.

311

Materials for geothermal production  

DOE Green Energy (OSTI)

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

312

Direct-Current Resistivity At Lightning Dock Area (Warpinski, Et Al., 2002)  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a

313

A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua...  

Open Energy Info (EERE)

Of The Rotorua Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua...

314

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

315

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

316

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

317

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

318

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

319

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

320

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Airborne Electromagnetic Survey At Chena Area (Erkan, Et. Al., 2008) | Open  

Open Energy Info (EERE)

Airborne Electromagnetic Survey At Chena Area (Erkan, Et. Al., 2008) Airborne Electromagnetic Survey At Chena Area (Erkan, Et. Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Airborne Electromagnetic Survey At Chena Area (Erkan, Et. Al., 2008) Exploration Activity Details Location Chena Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 2008 Usefulness not indicated DOE-funding Unknown Notes The airborne resistivity (Fig. 2; panel c) shows high values in most of the areas including the Chena pluton, with the exception of the very northern and southern portion of the map where the Paleozoic metamorphic unit is located. Lineations of low resistivity at the west end of the area are generally associated with the location of the valley fill. However, some

322

Geothermal exploration techniques: a case study. Final report. [Coso geothermal area  

DOE Green Energy (OSTI)

The objective of this project was to review and perform a critical evaluation of geothermal exploration methods and techniques. The original intent was to publish the work as a handbook; however, the information is not specific enough for that purpose. A broad general survey of geothermal exploration techniques is reported in combination with one specific case study.

Combs, J.

1978-02-01T23:59:59.000Z

323

Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering, 2006) Exploration Activity...

324

Mapping Geothermal Potential In The Western United States | Open Energy  

Open Energy Info (EERE)

Geothermal Potential In The Western United States Geothermal Potential In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Geothermal Potential In The Western United States Details Activities (3) Areas (1) Regions (0) Abstract: The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. An important component of the assessment is the estimate of the spatial distribution and quantity of undiscovered geothermal resources. Weights of evidence and logistic regression models have been applied through a Geographic Information System (GIS) framework to produce maps of geothermal favorability. These maps provide the basis for characterizing the undiscovered geothermal resource base and could guide future exploration

325

Property:Geothermal/DOEFundingLevel | Open Energy Information  

Open Energy Info (EERE)

DOEFundingLevel DOEFundingLevel Jump to: navigation, search Property Name Geothermal/DOEFundingLevel Property Type Number Description DOE Funding Level (total award amount) Pages using the property "Geothermal/DOEFundingLevel" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 5,000,000 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 1,072,744 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 1,999,990 +

326

List of Geothermal ARRA Projects | Open Energy Information  

Open Energy Info (EERE)

ARRA Projects ARRA Projects Jump to: navigation, search List of Geothermal ARRA Funded Projects CSV State Project Type Topic 2 Awardees Funding Location of Project A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Nevada Validation of Innovative Exploration Technologies Magma Energy 5,000,000 Soda Lake, Nevada A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Montana Topic Area 1: Technology Demonstration Projects Montana Tech of The University of Montana 1,072,744 Butte, Montana A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project New Mexico Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources New Mexico Institute of Mining and Technology 1,999,990 Socorro, New Mexico

327

Property:Geothermal/AwardeeWebsite | Open Energy Information  

Open Energy Info (EERE)

AwardeeWebsite AwardeeWebsite Jump to: navigation, search Property Name Geothermal/AwardeeWebsite Property Type URL Description Awardee Website Pages using the property "Geothermal/AwardeeWebsite" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + http://www.magmaenergycorp.com/s/Home.asp + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + http://www.mtech.edu/ + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + http://www.nmt.edu/ +

328

Property:Geothermal/FundingSource | Open Energy Information  

Open Energy Info (EERE)

FundingSource FundingSource Jump to: navigation, search Property Name Geothermal/FundingSource Property Type String Description Funding Source Pages using the property "Geothermal/FundingSource" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + American Recovery and Reinvestment Act of 2009 +

329

Property:Geothermal/LocationOfProject | Open Energy Information  

Open Energy Info (EERE)

LocationOfProject LocationOfProject Jump to: navigation, search Property Name Geothermal/LocationOfProject Property Type Page Description Location of Project Pages using the property "Geothermal/LocationOfProject" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Soda Lake, Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Butte, Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Socorro, New Mexico +

330

Beowawe geothermal-resource assessment. Final report. Shallow-hole temperature survey geophysics and deep test hole Collins 76-17  

DOE Green Energy (OSTI)

Geothermal resource investigation field efforts in the Beowawe Geysers Area, Eureka County, Nevada are described. The objectives included acquisition of geotechnical data for understanding the nature and extent of the geothermal resource boundaries south of the known resource area. Fourteen shallow (<500 feet) temperature-gradient holes plus geophysics were used to select the site for a deep exploratory well, the Collins 76-17, which was completed to a total depth of 9005 feet. Maximum downhole recorded temperature was 311/sup 0/F, but no flow could be induced.

Jones, N.O.

1983-03-01T23:59:59.000Z

331

Temperature gradients in a portion of Michigan: a review of the usefulness of data from the AAPG geothermal survey of North America  

DOE Green Energy (OSTI)

Temperature gradient data derived from drill holes in an east-west zone through the center of the southern peninsula of Michigan are analyzed. The purpose of this work is to investigate possible problems in utilizing the American Association of Petroleum Geologists data base. Michigan was chosen because a review of that State's geothermal potential shows inconsistencies between gradients from shallow wells and nearby deeper wells and because the geology of the State is relativey simple. The structure and stratigraphy are discussed because an understanding of Michigan basin geology makes it easier to predict the influence of lithology on the basin's geothermal gradients. Explanations for elevated gradients are reviewed. (MHR)

Vaught, T.L.

1980-08-01T23:59:59.000Z

332

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

333

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

334

Property:Geothermal/Objectives | Open Energy Information  

Open Energy Info (EERE)

Objectives Objectives Jump to: navigation, search Property Name Geothermal/Objectives Property Type Text Description Objectives Pages using the property "Geothermal/Objectives" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Apply three-dimensional/three-component (3D-3C) reflection seismic technology to define transmissive geothermal structures at the Soda Lake Geothermal area, Churchill County, NV. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Install a heat-pump system in Montana Tech's new Natural Resources Building that will (a) provide efficient, geothermally based, climate control for the building, and (b) demonstrate the efficacy of using mine waters for heat pump systems. At a minimum, the system capacity will be in the 50- to 100-ton range, but could be larger if economics warrant.

335

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

336

Northern Nevada Geothermal Exploration Strategy Analysis | Open Energy  

Open Energy Info (EERE)

Nevada Geothermal Exploration Strategy Analysis Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Northern Nevada Geothermal Exploration Strategy Analysis Details Activities (1) Areas (1) Regions (0) Abstract: The results of exploration techniques applied to geothermal resource investigations in northern Nevada were evaluated and rated by seven investigators involved in the work. A quantitative rating scheme was used to obtain estimates of technique effectiveness. From survey cost information we also obtained and compared cost-effectiveness estimates for the various techniques. Effectiveness estimates were used to develop an exploration strategy for the area. However, because no deep confirmatory drilling has been done yet, the technique evaluations and exploration

337

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

338

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

339

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

340

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pueblo of Jemez Geothermal Feasibility Study Fianl Report  

DOE Green Energy (OSTI)

This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

2005-03-31T23:59:59.000Z

342

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

343

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

344

Florida Geological Survey - 2011 Monthly Oil and Gas Production...  

Open Energy Info (EERE)

Florida Geological Survey - 2011 Monthly Oil and Gas Production Data The Florida Geological Survey is where data related to oil, gas, and geothermal resources for the state of...

345

Refraction Survey At Snake River Plain Region (DOE GTP) | Open...  

Open Energy Info (EERE)

Refraction Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Snake River Plain...

346

Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Reflection Survey At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Jemez Pueblo Area (DOE GTP)...

347

Reflection Survey At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Wister Area (DOE GTP) Exploration...

348

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain...

349

Geothermal probabilistic cost study  

DOE Green Energy (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

350

Category:Geothermal References | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal References Jump to: navigation, search Add a new Reference Pages in category "Geothermal References" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2007 Annual Report A A Case History of Injection Through 1991 at Dixie Valley, Nevada A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii A geochemical model of the Kilauea east rift zone A model for the shallow thermal regime at Dixie Valley geothermal field

351

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

352

Geothermal: Promotional Video  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

353

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

354

Geothermal: Bibliographic Citation  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

355

Geothermal: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

356

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

357

Geothermal: Contact Us  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

358

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

359

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

360

Geothermal: Educational Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

362

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

363

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

364

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

365

Survey report: study of information/educational discussions with private industries and public institutions on the direct-heat utilization of geothermal energy  

DOE Green Energy (OSTI)

Results of a study of private and public institutions' responses to the proposed use of geothermal energy in the form of direct heat are summarized. This heat energy would be used as an alternate or supportive source for their process or other heat requirements. The summary includes information from over 75 personal contacts with firms in several categories. No attempt is made to reference specific data to any particular company. Although not necessarily confidential, some financial information concerning energy costs to profits was considered sensitive and is respected as such. The companies contacted are in the following categories: food processing--canning, drying, dehydration; chemicals; paper/wood-pulp processing; food machinery; horticulture; and dairy. The area covered in the study was from Seattle, Washington, to San Diego, California, during mid-1976. Industry's response varied from mild interest, as with corporations that had little or no knowledge of geothermal energy (and regard it as a new unproven science), to enthusiasm from corporations that employ their own energy departments. The study clearly indicated the need for a basic educational/promotional program and an operating demonstration project (industrial park) to prove economic feasibility and instill confidence in the potential of geothermal energy.

Davey, J.V.

1977-03-01T23:59:59.000Z

366

Resistivity Log | Open Energy Information  

Open Energy Info (EERE)

Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Resistivity Log At Fish Lake Valley Area (DOE GTP) Fish Lake Valley Geothermal Area GTP ARRA Spreadsheet...

367

National Geothermal Information Resource annual report, 1977  

DOE Green Energy (OSTI)

The National Geothermal Information Resource (GRID) of the Lawrence Berkeley Laboratory is chartered by the U.S. Department of Energy (DOE) to provide critically evaluated data and other information for the development and utilization of geothermal energy. Included are both site dependent and site independent information related to resource evaluation, electrical and direct utilization, environmental aspects, and the basic properties of aqueous electrolytes. The GRID project is involved in cooperative agreements for the interchange of information and data with other organizations. There are currently three U.S. data centers working to implement the collection and exchange of information on geothermal energy research and production: the DOE Technical Information Center (TIC), Oak Ridge, the GEOTHERM database of the U.S. Geological Survey in Menlo Park, and the GRID project. The data systems of TIC, GEOTHERM and GRID are coordinated for data collection and dissemination, with GRID serving as a clearinghouse having access to files from all geothermal databases including both numerical and bibliographic data. GRID interfaces with DOE/TIC for bibliographic information and with GEOTHERM for certain site-dependent numerical data. The program is organized into four principal areas: (1) basic geothermal energy data; (2) site-dependent data for both electrical and direct utilization; (3) environmental aspects, and (4) data handling development. The four sections of the report are organized in this way.

Phillips, S.L.

1978-04-19T23:59:59.000Z

368

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

369

Outstanding Issues For New Geothermal Resource Assessments | Open Energy  

Open Energy Info (EERE)

Outstanding Issues For New Geothermal Resource Assessments Outstanding Issues For New Geothermal Resource Assessments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Outstanding Issues For New Geothermal Resource Assessments Details Activities (1) Areas (1) Regions (0) Abstract: A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS)

370

Property:Geothermal/OtherPrincipalInvestigator | Open Energy Information  

Open Energy Info (EERE)

OtherPrincipalInvestigator OtherPrincipalInvestigator Jump to: navigation, search Property Name Geothermal/OtherPrincipalInvestigator Property Type String Description Other Principal Investigators Subproperties This property has the following 2 subproperties: A A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project D Development of Chemical Model to Predict the Interactions between Supercritical CO2 and Fluid, Rocks in EGS Reservoirs Geothermal Project Pages using the property "Geothermal/OtherPrincipalInvestigator" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + John Louie, University of Nevada and Lisa Shevenell, University of Nevada +

371

NREL: Financing Geothermal Power Projects - Overview of Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Financing Geothermal Power Projects Overview of Financing Geothermal Power Projects Financing geothermal power projects involves specific processes, costs, and risks. There are also several advantages and challenges to developing and financing geothermal power projects. The financing strategies presented apply to geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). In 2008, the U.S. Geological Survey completed an assessment of moderate- and high-temperature geothermal resources in 13 states. These data help lower project costs and risks for project developers by shortening the resource identification phase of project development; yet geothermal resource development still has risk. Financing Processes, Costs, and Risks

372

Direct Confirmation of Commercial Geothermal Resources in Colorado  

Open Energy Info (EERE)

Direct Confirmation of Commercial Geothermal Resources in Colorado Direct Confirmation of Commercial Geothermal Resources in Colorado Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Direct Confirmation of Commercial Geothermal Resources in Colorado Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The program is phased in three segments: -Phase 1: Acquisition, Processing and Analysis of Remote Sensing Data -Phase 2: Conduct on site Temperature Surveys and Map results -Phase 3: Drill and Test Geothermal Resource -minimum of Two Wells The direct benefits of a successful Program will be application of new processing of existing of Remote Sensing Data as a means to identify other commercial geothermal resouces throughout the United States.

373

Gamma Log At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Coso Geothermal Area (1977) Gamma Log At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Gamma Log Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes extensive geophysical logging surveys were conducted: natural gamma and neutron porosity logs indicate gross rock type References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Gamma_Log_At_Coso_Geothermal_Area_(1977)&oldid=510780"

374

Classification of public lands valuable for geothermal steam and associated geothermal resources  

DOE Green Energy (OSTI)

The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

1973-01-01T23:59:59.000Z

375

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

376

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

DOE Green Energy (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

377

Geothermal resource assessment of Ouray, Colorado. Resource series 15  

DOE Green Energy (OSTI)

In 1979, a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. In the Ouray area, this effort consisted of geological mapping, soil mercury geochemical surveys and resistivity geophysical surveys. The soil mercury obtained inconclusive results, with the Box Canyon area indicating a few anomalous values, but these values are questionable and probably are due to the hot spring activity and mineralization within the Leadville limestone rock. One isolated locality indicating anomalous values was near the Radium Springs pool and ball park, but this appears to be related to warm waters leaking from a buried pipe or from the Uncompahgre River. The electrical resistivity survey however, indicated several areas of low resistivity zones namely above the Box Canyon area, the power station area and the Wiesbaden Motel area. From these low zones it is surmised that the springs are related to a complex fault system which serves as a conduit for the deep circulation of ground waters through the system.

Zacharakis, T.G.; Ringrose, C.D.; Pearl, R.H.

1981-01-01T23:59:59.000Z

378

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

379

3D Magnetotelluic characterization of the Coso Geothermal Field | Open  

Open Energy Info (EERE)

Magnetotelluic characterization of the Coso Geothermal Field Magnetotelluic characterization of the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluic characterization of the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in understanding geothermal systems by imaging the geometry, bounds and controlling structures in existing production, and thereby perhaps suggesting new areas for field expansion. To these ends, a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the

380

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

382

Geothermal: Sponsored by OSTI -- Two-phase flow in geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Two-phase flow in geothermal energy sources. Annual report, June 1, 1975--May 31, 1976 Geothermal Technologies...

383

Geothermal: Sponsored by OSTI -- Hybrid Cooling for Geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report Geothermal Technologies Legacy Collection...

384

1992--1993 low-temperature geothermal assessment program, Colorada  

DOE Green Energy (OSTI)

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

Cappa, J.A.; Hemborg, H.T.

1995-01-01T23:59:59.000Z

385

Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Numerical Modeling Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The numerical modeling of the resistivity data is marginal for changes as small as those observed but the results suggest that changes of a few percent could be expected from a fracture zone extending from depth to within 100 m of the surface. References Sill, W. R. (1 September 1983) Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modeling_At_Raft_River_Geothermal_Area_(1983)&oldid=47387

386

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

387

Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

388

Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Brady Hot Springs Area (Combs 2006) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "sufficient geophysical data are not available" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Brady_Hot_Springs_Area_(Combs_2006)&oldid=594379"

389

Geothermal Tomorrow 2008  

Science Conference Proceedings (OSTI)

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

Not Available

2008-09-01T23:59:59.000Z

390

Alaska geothermal bibliography  

DOE Green Energy (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.) [comps.

1987-05-01T23:59:59.000Z

391

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

392

Newberry Geothermal | Open Energy Information  

Open Energy Info (EERE)

Newberry Geothermal Jump to: navigation, search Davenport Newberry Holdings (previously named Northwest Geothermal Company) started to develop a 120MW geothermal project on its...

393

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production...

394

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from...

395

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network (OSTI)

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

396

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

397

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the

398

Exploration and development of the Cerro Prieto geothermal field  

DOE Green Energy (OSTI)

A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

1983-07-01T23:59:59.000Z

399

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

402

Subsurface and seismic investigation of the geopressured-geothermal potential of south Louisiana. Final report  

DOE Green Energy (OSTI)

Specific sites (areas) for geopressured-geothermal energy potential have been evaluated: (1) Abbeville Area, (2) Chloe Area, (3) Turtle Bayou Field-Kent Bayou Field Area and (4) Lirette-Chauvin-Lake Boudreaux Area. To arrive at geologic conclusions concerning the geopressured-geothermal energy potential of each area, the following factors have been considered in this study: (1) depth of geopressured sands, (2) geopressured sand volumes, (3) porosities, (4) permeabilities, (5) temperatures, (6) salinities, (7) dissolved gas content, (8) structure - especially as it relates to continuity of reservoirs, and (9) petroleum prodution - espeially if the geopressured fluids are driving mechanisms for current petroleum prodution. To evaluate these parameters the most useful source of information has been petroleum well logs which most commonly are a continuous depth survey of the spontaneous potential (SP) and the electrical resistivity of the subsurface formations. A separate thesis for each of the above four areas was processed separately.

Kinsland, G.L.; Paine, W.R.; Duhon, M.P.; Dungan, J.R.; Kurth, R.J.; Moore, D.R.; Lyons, W.S.

1983-09-01T23:59:59.000Z

403

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

404

McCoy Area, Nevada geothermal reservoir assessment case history - Northern Basin and Range. Final report, 1 October 1978-30 September 1982  

DOE Green Energy (OSTI)

The McCoy geothermal prospect is located in north-central Nevada at the junction of the Augusta Mountains, Clan Alpine Mountains and the New Pass Range. Geothermal exploration on the prospect consisted of an integrated program of geologic, geochemical and geophysical studies. The geochemical studies included hydrogeochemistry, soil geochemistry, and drill cuttings geochemistry. Geophysical exploration included heatflow studies, aeromagnetic, self-potential, gravity, passive seismic, dipole-dipole resistivity, electromagnetic and magnetotelluric surveys. Exploration drilling includes fifty-two (52) shallow thermal gradient holes and five (5) intermediate depth temperature gradient wells. Shallow low-temperature geothermal reservoirs were encountered in two areas. In the McCoy Mine area the resource was found in the Permo-Pennsylvanian rocks. In the southern part of the prospect a resource with temperatures of 100/sup 0/C was encountered in the basal conglomeratic sandstone of the Triassic section.

Pilkington, H.D.

1982-10-01T23:59:59.000Z

405

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

406

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

407

The Krafla Geothermal System. A Review of Geothermal Research and Revision  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson Á., Steingrímsson B., Sigmundsson F., Axelsson G., Ármannsson H., Björnsson H., Ágústsson K., Saemundsson K., Ólafsson M., Karlsdóttir R., Halldórsdóttir S. and Hauksson T. Organization Iceland GeoSurvey Published Iceland GeoSurvey, 2009

408

Investigation of geothermal potential in the Waianae Caldera Area, Western Oahu, Hawaii. Assessment of Geothermal Resources in Hawaii: Number 2  

DOE Green Energy (OSTI)

Studies of Lualualei Valley, Oahu have been conducted to determine whether a thermal anomaly exists in the area and, if so, to identify sites at which subsurface techniques should be utilized to characterize the resource. Geologic mapping identifies several caldera and rift zone structures in the Valley and provides a tentative outline of their boundaries. Clay mineralogy studies indicate that minor geothermal alteration of near-surface rocks has occurred at some period in the history of the area. Schlumberger resistivity soundings indicate the presence of a low resistivity layer beneath the valley floor, which has been tentatively attributed to warm water-saturated basalt. Soil and groundwater chemistry studies outline several geochemical anomalies around the perimeter and within the inferred caldera boundaries. The observed anomalies strongly suggest a subsurface heat source. Recommendations for further exploratory work to confirm the presence of a geothermal reservoir include more intensive surveys in a few selected areas of the valley as well as the drilling of at least three shallow (1000-m) holes for subsurface geochemical, geological and geophysical studies.

Cox, M.E.; Sinton, J.M.; Thomas, D.M.; Mattice, M.D.; Kauahikaua, J.P.; Helstern, D.M.; Fan, P.

1979-09-01T23:59:59.000Z

409

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

410

Lost Circulation Experience in Geothermal Wells  

DOE Green Energy (OSTI)

Lost circulation during drilling and cementing in geothermal wells is a problem common to most geothermal areas. Material and rig time costs due to lost circulation often represent one fourth or more of the total well cost. Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported in the paper. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

Goodman, M. A.

1981-01-01T23:59:59.000Z

411

A Manpower Assessment of the Geothermal Industry  

DOE Green Energy (OSTI)

The authors were asked to estimate the net employment gains in the geothermal industry from 1980 to 1985 and 1990. Method was by survey. Response rates were high, so the estimates here likely reflect industry knowledge and outlooks at the start of the most active construction decade of the U.S. geothermal industry. An untitled table following Table IV-1 is of great interest because it breaks out employment requirement estimates for different phases/aspects of project development, i.e., exploration and resource assessment, exploratory drilling, production drilling, power plant construction, feed system (field piping) construction, field operation and maintenance, power plant operation and maintenance, and transmission line construction. Estimates like these are rare in the U.S. geothermal literature. While these estimates are dated, they comprise an historical economic baseline from which improvements in labor use in the geothermal industry might be constructed. (DJE 2005)

None

1979-08-24T23:59:59.000Z

412

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

413

Geothermal Technologies Office: Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

414

Category:Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

of 6 total. G GeothermalExploration GeothermalLand Use GeothermalLeasing GeothermalPower Plant GeothermalTransmission GeothermalWell Field Retrieved from "http:...

415

Geothermal: Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

416

Guidebook to Geothermal Finance  

Science Conference Proceedings (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

417

Geological and geophysical analysis of Coso Geothermal Exploration Hole No.  

Open Energy Info (EERE)

and geophysical analysis of Coso Geothermal Exploration Hole No. and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Details Activities (5) Areas (1) Regions (0) Abstract: The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a

418

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information  

Open Energy Info (EERE)

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Details Activities (1) Areas (1) Regions (0) Abstract: Large velocity contrasts are regularly encountered in geothermal fields due to poorly consolidated and hydro-thermally altered rocks. The appropriate processing of seismic data is therefore crucial to delineate the geological structure. To assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso Geothermal Field. We have shown that the two-dimensional migration of synthetic seismic data from a typical reservoir model resolves the geological structure very well

419

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The results

420

Evaluation Of Baltazor Known Geothermal Resources Area, Nevada | Open  

Open Energy Info (EERE)

Baltazor Known Geothermal Resources Area, Nevada Baltazor Known Geothermal Resources Area, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evaluation Of Baltazor Known Geothermal Resources Area, Nevada Details Activities (3) Areas (1) Regions (0) Abstract: By virtue of the Geothermal Steam Act of 1970, the U.S. Geological Survey is required to appraise geothermal resources of the United States prior to competitive lease sales. This appraisal involves coordinated input from a variety of disciplines, starting with reconnaissance geology and geophysics. This paper describes how the results of several geophysical methods used in KGRA evaluation were interpreted by the authors, two geophysicists, involved with both the Evaluation Committee and the research program responsible for obtaining and interpreting the

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

422

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

423

Structural Analysis of the Desert Peak-Brady Geothermal Fields,  

Open Energy Info (EERE)

Structural Analysis of the Desert Peak-Brady Geothermal Fields, Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Abstract Detailed geologic mapping, delineation of Tertiary strata, analysis of faults and folds, and a new gravity survey have elucidated the structural controls on the Desert Peak and Brady geothermal fields in the Hot Springs Mountains of northwestern Nevada. The fields lie within the Humboldt

424

Property:Geothermal/LegalNameOfAwardee | Open Energy Information  

Open Energy Info (EERE)

LegalNameOfAwardee LegalNameOfAwardee Jump to: navigation, search Property Name Geothermal/LegalNameOfAwardee Property Type String Description Legal Name of Awardee Pages using the property "Geothermal/LegalNameOfAwardee" Showing 13 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy (U.S.) Corp. + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + Board of Regents, NSHE, on behalf of UNR + An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations in CO2/Brine/Rock Systems Geothermal Project + Regents of the University of Minnesota +

425

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy...

426

Holocene Magmatic Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Holocene Magmatic Geothermal Region (Redirected from Holocene Magmatic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Holocene Magmatic Geothermal Region Details...

427

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

428

Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration  

Open Energy Info (EERE)

Thermal Infrared Imagery To Geothermal Exploration Thermal Infrared Imagery To Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: Burlington Northern (BN) conducted TIR surveys using a fixed wing aircraft over 17 different geothermal prospects in Washington, Montana and Wyoming because of this remote sensing tool's ability to detect variations in the heat emitted from the earth's surface. The surveys were flown at an average elevation of 5000 ft. above the ground surface which gave a spatial resolution of approximately 7 feet diameter. BN found thermal activity which had not been recognized previously in some prospects (e.g., Lester,

429

Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Electromagnetic Soundings At Raft River Geothermal Area (1977) Electromagnetic Soundings At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Electromagnetic Sounding Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of the survey was: (1) to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); (2) to present an example of the EM sounding data and interpretations using a

430

Rapid reconnaissance of geothermal prospects using shallow temperature  

Open Energy Info (EERE)

Semi-annual technical report Semi-annual technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Details Activities (1) Areas (1) Regions (0) Abstract: Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California, and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly our shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation were considered in making the necessary corrections to our 2-m temperature data. The corrected data for

431

Geothermal: Sponsored by OSTI -- Geothermal pump program  

Office of Scientific and Technical Information (OSTI)

pump program Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

432

Geothermal: Sponsored by OSTI -- Geothermal resource evaluation...  

Office of Scientific and Technical Information (OSTI)

resource evaluation of the Yuma area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

433

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

434

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

435

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

436

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

437

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

438

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The size and low resistivity of the clay cap associated with a geothermal system create a target well suited for electromagnetic (EM) methods and also make electrical detection of the underlying geothermal reservoir a challenge. Using 3-D numerical models, we evaluate four EM techniques for use in geothermal exploration: magnetotellurics (MT), controlled-source audio magnetotellurics (CSAMT), long-offset time-domain EM (LOTEM), and short-offset time-domain EM (TEM). Our results show that all of these techniques can delineate the clay cap, but none can be said to unequivocally detect the reservoir. We do find, however, that the EM

439

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

440

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal < Wisconsin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wisconsin Geothermal edit General Regulatory Roadmap Geothermal Power Projects Under...

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA Energy Kids - Geothermal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Geothermal Basics What Is Geothermal Energy? The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within ...

442

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

443

Inventory of geothermal resources in Nebraska. Final report  

DOE Green Energy (OSTI)

The goal of the State Coupled Resource Assessment Program is to identify and evaluate geothermal resources in the state, particularly low-temperature potential. Eight tasks were identified and documented in this report as follows: bottom-hole temperature survey, heat flow and temperature gradient survey, data translation studies, gravity data, substate regions, information dissemination, state geothermal map, and reports. The project had three major products: (1) a map, Geothermal Resources of Nebraska; (2) a significant amount of thermal data collected and documented within the state; and (3) a series of publications, presentations and meetings (documented as an Appendix).

Gosnold, W.D.; Eversoll, D.A.

1983-06-30T23:59:59.000Z

444

Geothermal Technologies Program: Washington  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

445

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

446

Geothermal Technologies Program: Oregon  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Oregon. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

447

Preliminary geothermal evaluation of the Mokapu Peninsula on the Island of Oahu, Hawaii  

DOE Green Energy (OSTI)

Preliminary geological, geochemical, and geophysical field surveys have been conducted on Mokapu Peninsula on the island of Oahu in an effort to determine whether sufficient indications of geothermal potential exist within or adjacent to the peninsula to justify further, more detailed, exploratory efforts. An evaluation of existing geologic data as well as recently completed mapping on Mokapu indicate that the peninsula is located on the edge of or immediately adjacent to the inferred caldera of Koolau volcano. Geochemical surveys conducted within and around the Mokapu Peninsula included mercury and radon ground gas surveys as well as a limited evaluation of groundwater chemistry. Groundwater sampling on Mokapu Peninsula was severely restricted due to the absence of wells within the study area and thus water chemistry analyses were limited to the Nuupia fish ponds. Schlumberger resistivity soundings were completed in three locations on the peninsula: KVS1, in the northeast quadrant within the Ulupau crater, KVS2 in the northwest quadrant along the main jet runway, and KVS3 in the southeast along Mokapu Road. KVS1 encountered a relatively high resistivity to a depth of approximately 20 meters below sea level which was underlain by a basement resistivity of about 2 to 3 ohm meters. KVS2 and KVS3 detected similar resistivities of 2 to 3 ohm meters at much shallower depths (approximately equivalent to local sea level) below a thin, moderately resistive layer having an impedance ranging from 15 to 118 ohm meters.

Not Available

1981-08-01T23:59:59.000Z

448

Static Temperature Survey At Hot Pot Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Static Temperature Survey At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Hot Pot Area...

449

Refraction Survey At New River Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Refraction Survey At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At New River Area (DOE GTP)...

450

Reflection Survey At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Hot Pot Area (DOE GTP)...

451

Reflection Survey At New River Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Reflection Survey At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At New River Area (DOE GTP)...

452

Results of investigation at the Ahuachapan Geothermal Field, El Salvador  

DOE Green Energy (OSTI)

The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

Fink, J.B. (HydroGeophysics, Tucson, AZ (United States))

1990-04-01T23:59:59.000Z

453

Geothermal well stimulation treatments  

DOE Green Energy (OSTI)

The behavior of proppants in geothermal environments and two field experiments in well stimulation are discussed. (MHR)

Hanold, R.J.

1980-01-01T23:59:59.000Z

454

Geothermal Energy Technology Guide  

Science Conference Proceedings (OSTI)

Geothermal power production is a renewable technology with a worldwide operating capacity of more than 11,000 MW. Geothermal reservoirs have been a commercial reality in Italy, Japan, the United States, Iceland, New Zealand, and Mexico for many decades. According to the Energy Information Administration, the United States is the world leader in electricity production from geothermal resources with approximately 16,791 GWh of net production in 2012. Future geothermal power generation will depend on ...

2013-12-23T23:59:59.000Z

455

South Dakota geothermal handbook  

SciTech Connect

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

1980-06-01T23:59:59.000Z

456

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

1980-01-01T23:59:59.000Z

457

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to the south and east of this fissure (Figs 48, 49). These data suggest that a

458

Gravity and magnetic features and their relationship to the geothermal system in southwestern South Dakota  

SciTech Connect

An attempt is made to determine the sources that are responsible for producing geothermal anomalies observed within the southern Black Hills region. Lithologic and structural boundaries residing in the upper crust and their relationship to the geothermal system are discussed. A regional gravity survey was supplemented by a regional aeromagnetic survey.

Hildenbrand, T.G.; Kucks, R.P.

1981-01-01T23:59:59.000Z

459

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

To assess the stimulation technology developed in the oil and gas industry as to its applicability to the problems of geothermal well stimulation, a literature search was performed through on-line computer systems. Also, field records of well stimulation programs that have worked successfully were obtained from oil and gas operators and service companies. The results of these surveys are presented. (MHR)

Not Available

1980-05-01T23:59:59.000Z

460

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir |  

Open Energy Info (EERE)

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Details Activities (3) Areas (1) Regions (0) Abstract: A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The

Note: This page contains sample records for the topic "resistivity survey geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Interpretation of electromagnetic soundings in the Raft River geothermal  

Open Energy Info (EERE)

Interpretation of electromagnetic soundings in the Raft River geothermal Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: An electromagnetic (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); to present an example of the EM sounding data and interpretations using a previously developed inversion program; and (3) to

462

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

463

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

464

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

465

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

466