National Library of Energy BETA

Sample records for residue burning total

  1. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. Total 4,471 6,479 7,281 4,217 5,941 6,842 1936-2015 PAD District 1 1,854 1,956 4,571 2,206 2,952 3,174 1981-2015 Connecticut 1995-2015 Delaware 204 678 85 1995-2015 Florida 677 351 299 932 836 1995-2015 Georgia 232 138 120 295 1995-2015 Maine 50 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,328 780 1,575 400 1,131 1,712 1995-2015 New York 7 6 1,475 998 350 322 1995-2015 North Carolina

  2. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  3. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  4. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  5. U.S. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia PAD District 2 Illinois Indiana Michigan Minnesota North Dakota Ohio Wisconsin PAD District 3 Alabama Louisiana Mississippi Texas PAD District 4 Idaho Montana PAD District 5 Alaska California Hawaii Oregon Washington Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day

  6. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  7. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  8. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500... 3.2 Q 0.8 0.9 0.8 0.5 500 to 999......

  10. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500... 3.2 357 336 113 188 177 59 500 to 999......

  11. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.4 500 to 999......

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.9 1.0 500 to 999......

  13. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.5 0.3 Q 500 to 999......

  14. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  15. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  17. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  18. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  19. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  20. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  1. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  2. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  3. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  4. Instrumented tube burns: theoretical and experimental observations

    SciTech Connect (OSTI)

    Yarrington, Cole Davis; Obrey, Stephen J; Foley, Timothy J; Son, Steven F

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  5. Category:Burns, OR | Open Energy Information

    Open Energy Info (EERE)

    72 KB SVSecondarySchool Burns OR PacifiCorp (Oregon).png SVSecondarySchool Burn... 70 KB SVSmallHotel Burns OR PacifiCorp (Oregon).png SVSmallHotel Burns OR ... 69 KB...

  6. SystemBurn

    Energy Science and Technology Software Center (OSTI)

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would bemore » recorded from the power panels within the computer room.« less

  7. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  8. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning Observation Project Specifically, the aircraft will obtain measurements of the microphysical, chemical, hygroscopic, and optical properties of aerosols. Data captured during BBOP will help scientists better understand how aerosols combine and change at a variety of distances and burn times. Locations Pasco, Washington. From July through September, the G-1 will be based out of its home base in Washington. From this location, it can intercept and measure smoke plumes from naturally

  9. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  10. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  11. The hybrid rich-burn/lean burn engine. Part 2

    SciTech Connect (OSTI)

    Smith, J.A.; Podnar, D.; Meyers, D.P.

    1996-12-31

    Southwest Research Institute (SwRI) has developed a unique engine technology called Hybrid Rich-Burn/Lean-Burn (HRBLB) that capitalizes on the low production of oxides of nitrogen (NO{sub x}) during extremely rich and lean combustion. The HRBLB concept is predicated on simultaneous combustion of extremely rich and lean natural gas-air mixtures in separate cylinders. Rich exhaust products undergo a catalytic water-gas shift reaction to form an intermediate combustible fuel composed of carbon monoxide, water vapor, hydrogen, and carbon dioxide. All of the intermediate fuel is added to lean natural gas-air mixtures in other cylinders to enhance ignitability that would otherwise result in misfire. This paper presents results obtained during the development of a stationary, turbocharged, and intercooled, 18-liter HRBLB engine. Results show that NO{sub x} can be reduced by a factor of 2.5 to 3.5 relative to stock engine emissions at equivalent efficiency. The HRBLB engine has demonstrated corrected NO{sub x} (15% O{sub 2}) levels of 23 ppm at rated load with thermal efficiencies of 35%.

  12. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  13. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  14. Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in barrels

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lutes, C.C.; Abbott, J.A.; Aldous, K.M.

    2000-02-01

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a recycling and a nonrecycling family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. This paper focuses on the PCDD/PCDF emissions and discusses the factors influencing PCDD/PCDF formation for different test burns. Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. Emissions of total PCDDs/PCDFs ranged between 0.0046 and 0.48 mg/kg of waste burned. Emissions are also presented in terms of 2,3,7,8-TCDD toxic equivalents. Emissions of PCDDs/PCDFs appear to correlate with both copper and hydrochloric acid emissions. The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). Comparison of burn barrel emissions to emissions from a hypothetical modern MWC equipped with high-efficiency flue gas cleaning technology indicates that about 2--40 households burning their trash daily in barrels can produce average PCDD/PCDF emissions comparable to a 182,000 kg/day (200 ton/day) MWC facility. This study provides important data on a potentially significant source of emissions of PCDDs/PCDFs.

  15. ARM - Field Campaign - Biomass Burning Observation Project -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BBOP Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or...

  16. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  17. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  18. Biomass Burning Observation Project Science Plan

    SciTech Connect (OSTI)

    Kleinman, KI; Sedlacek, AJ

    2013-09-01

    Aerosols from biomass burning perturb Earths climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  19. Mobility of organic carbon from incineration residues

    SciTech Connect (OSTI)

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  20. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  1. New Computer Codes Unlock the Secrets of Cleaner Burning Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Computer Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 ...

  2. Raymond Burns > Product Research Technologist - Exxon Mobile > Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni > The Energy Materials Center at Cornell Raymond Burns Product Research Technologist - Exxon Mobile raymond.burns@gmail.com Formerly a member of the DiSalvo Group, Ray earned his PhD in August 2013

  3. Burn to Learn | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burn to Learn Burn to Learn The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:06 min. CNS fire protection engineers recently visited Oak Ridge Fire Department to "Burn to Learn." During this event, they were able to burn materials that would be found at Y-12 (e.g,. personal protective equipment, a shredder) and analyze the results. Watch a video about the event here

  4. Kinetic calculations of explosives with slow-burning constituents

    SciTech Connect (OSTI)

    Howard, W.M.; Souers, P.C.; Pried, L.E.

    1997-07-01

    The equilibrium thermochemical code CHEETAH V 1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium Perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  5. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  6. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  7. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  8. Apparatus for burning bales of trash

    SciTech Connect (OSTI)

    Pazar, C. A.

    1985-08-13

    Bales of combustible trash made to specific specifications are burned in a furnace having two parallel upright sidewalls between which the bales pass during burning. A horizontal grate extends between the sidewalls. The bales, if remotely made from the furnace, are bound by an easily meltable strap. The length of the bale is measurably smaller than the distance between said sidewalls to accurately accommodate springback. A ram, after compacting the waste in segmental fashion, pushes each bale to a position between said sidewalls; with the length of the bale being perpendicular to the sidewalls, so that a bale enters the furnace. Springback following the melting of straps allows the bale to expand to fill the gap between the sidewalls. This facilitates ignition and/or burning of the bales and provides a seal against furnace sidewalls. When the ram feeds a fresh bale, previously charged bales (consumed proportional to time in the furnace) are advanced toward the ash discharge port. Before the bales are formed, the trash may be optionally dried by using heated air in the classification into ''light'' sort and ''heavy'' sort. The ''light'' sort is baled and burned as described above. The ''heavy'' sort or a part of the light sort may be premixed with noxious liquid or solid wastes before charging to the furnace. Temperatures consistent with economical use of refractory (1500/sup 0/ F. to 1700/sup 0/ F.) are maintained, for a limited area adjacent the inner wall of the furnace, by addition of liquid water, while interior temperatures of the furnace of about 3000/sup 0/ F. prevail in the central portion of the furnace necessary for the incineration of noxious wastes.

  9. U.S. BURNING PLASMA ORGANIZATION ACTIVITIES

    SciTech Connect (OSTI)

    Raymond J. Fonck

    2009-08-11

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  10. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  11. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  12. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  13. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  14. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  15. The smoke-fireplume model : tool for eventual application to prescribed burns and wildland fires.

    SciTech Connect (OSTI)

    Brown, D. F.; Dunn, W. E.; Lazaro, M. A.; Policastro, A. J.

    1999-08-17

    Land managers are increasingly implementing strategies that employ the use of fire in prescribed burns to sustain ecosystems and plan to sustain the rate of increase in its use over the next five years. In planning and executing expanded use of fire in wildland treatment it is important to estimate the human health and safety consequences, property damage, and the extent of visibility degradation from the resulting conflagration-pyrolysis gases, soot and smoke generated during flaming, smoldering and/or glowing fires. Traditional approaches have often employed the analysis of weather observations and forecasts to determine whether a prescribed burn will affect populations, property, or protected Class I areas. However, the complexity of the problem lends itself to advanced PC-based models that are simple to use for both calculating the emissions from the burning of wildland fuels and the downwind dispersion of smoke and other products of pyrolysis, distillation, and/or fuels combustion. These models will need to address the effects of residual smoldering combustion, including plume dynamics and optical effects. In this paper, we discuss a suite of tools that can be applied for analyzing dispersion. These tools include the dispersion models FIREPLUME and SMOKE, together with the meteorological preprocessor SEBMET.

  16. Mobilizable RDF/d-RDF burning program

    SciTech Connect (OSTI)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

  17. Modeling Deep Burn TRISO Particle Nuclear Fuel

    SciTech Connect (OSTI)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  18. Voluntary Protection Program Onsite Review, Burns & McDonnell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - September 2015 September...

  19. Arctic Haze: Effect of Anthropogenic and Biomass Burning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic For original submission and image(s), see ARM Research Highlights http:...

  20. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  3. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  8. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  9. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  10. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  11. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  12. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  13. Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

  14. Clean burning solid fuel stove and method

    SciTech Connect (OSTI)

    Smith, R.D.; Grouw, S.J.V.

    1985-10-08

    A stove for burning solid fuels having an insulated primary combustion chamber, uniform distribution of preheated primary air through upward facing holes in a grate, downward flow of combustion gas through the grate, retention of hot coals in the grate structure, preheated secondary air, individually controlled primary and secondary air flows, insulated vortex combustion chambers for secondary combustion, longitudinally finned tubes as a first stage heat exchanger, plate-fin assembly as a second stage heat exchanger, an induced draft fan to draw the air and combustion gases through the combustion chambers as well as the heat exchangers, and a forced air fan to blow cool room air through the two stage heat exchanger.

  15. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.

  16. Method and apparatus to measure the depth of skin burns

    DOE Patents [OSTI]

    Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  17. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  18. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  19. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect (OSTI)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  1. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  2. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Lean-burn SIDI ...

  3. Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit #2 Waste Site, Waste Site Reclassification Form 2005-038

    SciTech Connect (OSTI)

    R. A. Carlson

    2005-12-21

    The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  4. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  5. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  6. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    SciTech Connect (OSTI)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment of nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor Obrigheim in Germany for which sufficiently precise experimental reference data are available. (authors)

  7. Authors: Carol Burns, Mark Chadwick, John Erickson, David Funk...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures (N&PF) Pillar Authors: Carol Burns, Mark Chadwick, John ... as composed of four focus areas: Applied Nuclear Science and Engineering (ANS&E), Nuclear, ...

  8. Options for Burning LWR SNF in LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  9. Portsmouth Site Achieves Regulatory Milestone after Successful Controlled Burn

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio – Portsmouth Gaseous Diffusion Plant firefighters recently completed a prescribed fire, or controlled burn, of an 18-acre prairie at the site, two weeks ahead of a regulatory deadline.

  10. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  11. Radiochemical Mix Diagnostic in the Presence of Burn

    SciTech Connect (OSTI)

    Hayes, Anna C.

    2014-01-28

    There is a general interest in radiochemical probes of hydrodamicalmix in burning regions of NIF capsule. Here we provide estimates for the production of 13N from mixing of 10B ablator burning hotspot of a capsule. By comparing the 13N signal with x-ray measurements of the ablator mix into the hotspot it should be possible to estimate the chunkiness of this mix.

  12. New Computer Codes Unlock the Secrets of Cleaner Burning Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Computer Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 The Polk Power Station near Mulberry, Florida, is an Integrated Gasification Combined Cycle gasification plant. It is capable of generating 313 megawatts of electricity - 250 megawatts of which are supplied to the electric grid. The plant's gas cleaning technology removes more than 98 percent of the sulfur in coal,

  13. Lab scientists Burns, Hay named new AAAS Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burns, Hay named new AAAS Fellows Lab scientists Burns, Hay named new AAAS Fellows The AAAS is the world's largest general scientific society and publisher of the journal Science. February 3, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on

  14. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect (OSTI)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties, ideally suits the objectives and constraints of the heterogeneous assemblies. However, signi

  15. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  16. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  17. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect (OSTI)

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  18. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  19. Solidification process for sludge residue

    SciTech Connect (OSTI)

    Pearce, K.L.

    1998-09-10

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria.

  20. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on...

  1. Iron/potassium perchlorate pellet burn rate measurements

    SciTech Connect (OSTI)

    Reed, J.W.; Walters, R.R.

    1995-01-25

    A burn rate test having several advantages for low gas-producing pyrotechnic compacts has been developed. The technique involves use of a high speed video motion analysis system that allows immediate turnaround and produces all required data for rate computation on magnetic tape and becomes immediately available on the display screen. The test technique provides a quick method for material qualification along with data for improved reliability and function. Burn rate data has been obtained for both UPI and Eagle Pitcher Iron/Potassium Perchlorate blends. The data obtained for the UPI blends cover a range of composition, pellet density, and ambient (before ignition) pellet temperature. Burn rate data for the E-P blends were extended to include surface conditions or particle size as a variable parameter.

  2. DOE - Fossil Energy: A Bed for Burning Coal?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Bed for Burning Coal An Energy Lesson Cleaning Up Coal A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built

  3. Microsoft Word - Deep-Burn awards news release _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE Tim Jackson, DOE-Idaho Operations Office Wednesday, July 23, 2008 (208) 526-8484 U.S. Department of Energy Awards $7.3 million for "Deep-Burn" Gas-Reactor Technology Research & Development WASHINGTON, DC -Today the U.S. Department of Energy announced it has selected teams led by Idaho National Laboratory and Argonne National Laboratory to advance the technology of nuclear fuel "Deep-Burn," in which plutonium and higher transuranics recycled from spent nuclear fuel

  4. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    C. K. Branter; D. A. Conley; D. R. Moser; S. J. Corrigan

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of the RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  5. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    Branter, Curtis Keith; Conley, Dennis Allen; Corrigan, Shannon James; Moser, David Roy

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  6. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  7. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  8. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1,200 C to 1,400 C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  9. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1995-09-01

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  10. Examination of the Entry to Burn and Burn Control for the ITER 15 MA Baseline and Other Scenarios

    SciTech Connect (OSTI)

    Kesse, Charles E.; Kim, S-H.; Koechl, F.

    2014-09-01

    The entry to burn and flattop burn control in ITER will be a critical need from the first DT experiments. Simulations are used to address time-dependent behavior under a range of possible conditions that include injected power level, impurity content (W, Ar, Be), density evolution, H-mode regimes, controlled parameter (Wth, Pnet, Pfusion), and actuator (Paux, fueling, fAr), with a range of transport models. A number of physics issues at the L-H transition require better understanding to project to ITER, however, simulations indicate viable control with sufficient auxiliary power (up to 73 MW), while lower powers become marginal (as low as 43 MW).

  11. Evaluation of residue drum storage safety risks

    SciTech Connect (OSTI)

    Conner, W.V.

    1994-06-17

    A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

  12. Biomass Burning Observation Project (BBOP) Final Campaign Report

    SciTech Connect (OSTI)

    Kleinman, LI; Sedlacek, A. J.

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  13. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San

  14. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass,

  15. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  16. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  17. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  18. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  19. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  20. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

  1. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  2. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  3. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  4. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  5. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  6. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  7. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  8. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  9. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  10. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  11. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  12. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  13. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  14. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  15. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  16. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  17. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  18. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  19. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  20. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  1. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  2. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  3. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  4. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  5. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  6. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  7. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  8. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  9. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  10. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  11. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  12. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  13. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  14. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  15. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  16. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  17. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  18. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  19. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  20. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  1. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat

  2. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  3. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  4. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  5. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  6. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  7. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  8. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  9. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2.0 0.4 Q 0.3 Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings Yes......

  10. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region Home Appliances Usage Indicators South Atlantic East ...

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural Location (as Self-Reported) Housing Units (millions) Home ...

  18. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 14.8 10.5 2,263 1,669 1,079 1,312 1,019 507 N N N ConcreteConcrete Block... 5.3 3.4 2,393 1,660 1,614 Q Q Q Q Q Q Composition...

  19. RESIDUAL STRESSES IN 3013 CONTAINERS

    SciTech Connect (OSTI)

    Mickalonis, J.; Dunn, K.

    2009-11-10

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  20. Burn propagation in a PBX 9501 thermal explosion

    SciTech Connect (OSTI)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-12

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  1. ARM - News from the Biomass Burn Observation Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (BBOP)News from the Biomass Burn Observation Project Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Airborne Measurements Science Plan (PDF, 2.2MB) BBOP wiki Login Required Data Sets Experiment Planning Proposal Abstract and Related Campaigns BBOP Breakout Session, ASR Science Team Meeting, March 2014 BBOP Breakout Session, ASR Science Team Meeting, March 2013 BNL BBOP Website

  2. Microsoft Word - Deep-Burn awardee team members _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheet: DEEP-BURN AWARDEES RECIPIENTS RECIPIENT TEAM MEMBERS Advanced Modeling and Simulation Capability R&D for $1 million University of Chicago Argonne Argonne National Laboratory Oak Ridge National Laboratory Lawrence Livermore National Lab University of Michigan Transuranic Management Capabilities R&D for $6.3 million Battelle Energy Alliance, LLC Idaho National Laboratory Oak Ridge National Laboratory Argonne National Laboratory Los Alamos National Laboratory University of

  3. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  4. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  5. Particulate residue separators for harvesting devices

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  6. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  7. A Benchmark Study on Casting Residual Stress

    SciTech Connect (OSTI)

    Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast components. This enables incorporation of the residual stresses at the design phase along with external loads for accurate predictions of fatigue and fracture performance of the cast components.

  8. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect (OSTI)

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  9. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  10. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  11. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  12. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  13. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect (OSTI)

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (?10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  14. Long-Haul Truck Idling Burns Up Profits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Long-Haul Truck Idling Burns Up Profits Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce

  15. Development of a trial burn plan for a mixed waste fluidized bed incinerator

    SciTech Connect (OSTI)

    Kabot, F.J.; Ziegler, D.L.

    1988-01-01

    One of the more important elements of the incinerator permitting process under RCRA is the development of the Trial Burn Plan. This document describes the incinerator and defines the incinerator's process envelope within which the trial burns will be conducted. The data obtained during the trial burns will be the basis for the incinerator's operating permit. This paper describes the development of the Trial Burn Plan for a unique fluidized bed incinerator to be used for the incineration of hazardous and mixed wastes at the Department of Energy's Rocky Flats Plant. It describes a review process of the Trial Burn Plan involving a public comment period that actually preceded the trial burns. 2 refs., 1 fig.

  16. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect (OSTI)

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  17. Savannah River Site - K Area Burning/Rubble Pit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K Area Burning/Rubble Pit Savannah River Site - K Area Burning/Rubble Pit January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River Site Plume Name: K Area Burning/Rubble Pit Remediation Contractor: Savannah River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCs/SVOCs Present?: Yes VOC Name Concentration (ppb)

  18. Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Characterized particulate emissions from U.S.-legal stoichiometric GDI and European certified lean-burn GDI vehicles operating on ethanol blends PDF icon deer11_storey.pdf More Documents & Publications Measurement and Characterization of Unregulated Emissions from Advanced Technologies Measurement and Characterization of Unregulated Emissions from Advanced

  19. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment System | Department of Energy Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Lean-burn SIDI engine technology offers improved fuel economy. PDF icon deer10_viola.pdf More Documents & Publications Emissions Control for Lean Gasoline Engines NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Emissions Control for Lean Gasoline Engines

  20. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect (OSTI)

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  1. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  2. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect (OSTI)

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  3. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect (OSTI)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented. The analysis has shown that the feedstock production systems are capable of simultaneously increasing productivity and soil sustainability.

  4. U.S. Residual Fuel Oil Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes ...

  5. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day ...

  6. Trash burns, turns into $120,000 in annual savings

    SciTech Connect (OSTI)

    Smith, W.A.

    1981-09-01

    A plan was developed to generate a major portion of the energy required for heating and air conditioning by burning factory trash instead of using natural gas and electricity. Trash from the Rockwell Int'l. plant, including broken wood pallets, cardboard packing materials and office waste paper, amounted to 1,000 tons per year. Previously, a contractor was being paid to come to the plant several times a week, pick up the trash and haul it to a landfill. To supplement the 1,000 tons of usable waste generated by the plant annually, the additional 500 tons of similar trash needed to operate the system are received from other industries in the vicinity. Besides accepting waste from other plants, the Marysville facility stockpiles and uses refuse corn stalks harvested from 50 acres of Rockwell-owned land adjacent to the plant. The incinerator featuring a pyrolytic heat recovery system is presented and its operation is illustrated.

  7. Exhaust gas purification system for lean burn engine

    DOE Patents [OSTI]

    Haines, Leland Milburn (Northville, MI)

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  8. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  9. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Outcome City Pilot 2014 Building Technologies Office Peer Review Targeted Energy Outcomes A New City Energy Policy for Buildings Ken Baker - kbaker@neea.org Northwest Energy Efficiency Alliance Project Summary Timeline: Key Partners: Start date: 09/01/2012 Planned end date: 08/31/2015 Key Milestones 1. Produce outcome based marketing collateral; 04/03/14 New Buildings Institute Two to three NW cities 2. Quantify and define participating city actions; 04/03/14 3. Quantify ongoing

  10. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee Available $208,620 Fee

  11. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect (OSTI)

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.423.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 79% FIMA. Samples with burn-ups in excess of 79% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 35 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  12. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  13. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  14. Kaisheng Biomass Residue Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kaisheng Biomass Residue Power Co Ltd Jump to: navigation, search Name: Kaisheng Biomass Residue Power Co., Ltd. Place: Nanping City, Fujian Province, China Zip: 365001 Sector:...

  15. Immobilization of Rocky Flats graphite fines residues

    SciTech Connect (OSTI)

    Rudisill, T.S.; Marra, J.C.; Peeler, D.K.

    1999-07-01

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF{sub 2}), and 12 wt% plutonium oxide (PuO{sub 2}). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO{sub 2} concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF{sub 2} dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO{sub 2}) as a surrogate for PuO{sub 2} and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF{sub 2} and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.

  16. U.S. Total Stocks

    Gasoline and Diesel Fuel Update (EIA)

    Stock Type: Total Stocks Strategic Petroleum Reserve Non-SPR Refinery Tank Farms and Pipelines Leases Alaskan in Transit Bulk Terminal Pipeline Natural Gas Processing Plant Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Stock Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Crude Oil and Petroleum Products 1,968,618 1,991,182 2,001,135 2,009,097 2,021,553 2,014,788 1956-2015 Crude Oil

  17. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG

  18. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  19. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  20. Table A26. Total Quantity of Purchased Energy Sources by Census Region and

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Quantity of Purchased Energy Sources by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  1. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    SciTech Connect (OSTI)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 56 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6 N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60 N over snow and ice-covered surfaces reaches +0.58 W m?2, peaking at +3.3 W m?2 at noon over Scandinavia and Finland.

  2. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that duringmore » the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.« less

  3. System and method for measuring residual stress

    DOE Patents [OSTI]

    Prime, Michael B. (Los Alamos, NM)

    2002-01-01

    The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.

  4. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 7,133,307 Connecticut 1,459,239 155,372 4,648 4 1,619,263 Maine 706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 Vermont 310,932 52,453 224 0 363,609 Middle Atlantic 15,806,914 2,247,455 44,397 17

  5. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  6. Measurement of adiabatic burning velocity in natural gas-like mixtures

    SciTech Connect (OSTI)

    Ratna Kishore, V.; Duhan, Nipun; Ravi, M.R.; Ray, Anjan

    2008-10-15

    Experimental measurements of the adiabatic burning velocities were carried out for natural gas-like mixtures burning in air over a range of equivalence ratios at atmospheric pressure. Effect of CO{sub 2} dilution up to 60%, N{sub 2} dilution up to 40% and 25% enrichment of ethane on burning velocity of methane-air flames were studied. Heat flux method with setup similar to that of [K.J. Bosschaart, L.P.H. de Goey, Detailed analysis of the heat flux method for measuring burning velocity, Combustion and Flame 132 (2003) 170-180] was used for measurement of burning velocities. Initially experiments were done for methane-air and ethane-air mixtures at various equivalence ratios and the results were in good agreement with published data in the literature. Computations were performed using PREMIX code with GRI 3.0 reaction mechanism for all the mixtures. Predicted flame structures were used to the explain the effect of N{sub 2} and CO{sub 2} dilution on burning velocity of methane-air flames. Peak burning velocity for CH{sub 4}/CO{sub 2}-air mixtures occur near to {phi} = 1.0. (author)

  7. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  8. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  9. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  10. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  11. Optimization of perigee burns for manned interplanetary missions

    SciTech Connect (OSTI)

    Madsen, W.W.; Olson, T.S.; Siahpush, A.S.

    1991-01-01

    In choosing an engine concept for the rocket vehicle to be used for the initial manned exploration of Mars, the two main factors in the decision should be what can be feasibly built and flight qualified within approximately the next 20 years, and what level of engine performance is required to safely perform these missions. In order to reduce the overall cost in developing this next generation space transportation system, it would be desirable to have a single engine design that could be used for a broad class of missions (for example, cargo and piloted lunar and Mars missions, orbit transfers around the Earth, and robotic missions to the planets). The engine thrust that is needed for manned Mars missions is addressed in this paper. We find that these missions are best served by a thrust level around 75,000 lbf to 100,000 lbf, and a thrust-to-engine weight ratio of about three. This thrust level might best be obtained by clustering five 15,000 lbf or 20,000 lbf engines. It may be better to throttle the engines back from full power between perigee burns, rather than shutting down. 5 refs., 4 figs.

  12. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  13. Type B Accident Investigation of the Savannah River Site Arc Flash Burn

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injury on September 23, 2009, in the D Area Powerhouse | Department of Energy of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse October 1, 2009 This report documents the results of the Type B Accident Investigation Board investigation of the September 23, 2009, employee burn injury at the Department of Energy (DOE)

  14. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  15. Immobilization of Rocky Flats Graphite Fines Residues

    SciTech Connect (OSTI)

    Rudisill, T. S.

    1998-11-06

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

  16. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  1. Method for using global optimization to the estimation of surface-consistent residual statics

    DOE Patents [OSTI]

    Reister, David B. (Knoxville, TN); Barhen, Jacob (Oak Ridge, TN); Oblow, Edward M. (Knoxville, TN)

    2001-01-01

    An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.

  2. Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs

    SciTech Connect (OSTI)

    Anders, Andre; Yotsombat, Banchob; Binder, Robert

    2001-06-15

    Burning voltages of vacuum arcs were measured for 54 cathode materials and compared with literature data. As anticipated, a correlation between the arc burning voltage and the plasma temperature was found. However, more importantly, a correlation between the cohesive energy of the cathode material and the arc burning voltage could be demonstrated. This link between a cathode material property, the cohesive energy, and a discharge property, the arc burning voltage, is essential for the operation of the vacuum arc discharge because is determines the plasma temperature. Energy balance considerations show that this {open_quotes}cohesive energy rule{close_quotes} is responsible for several other secondary relationships, such as the correlation between the mean ion charge state and the boiling temperature of the cathode. {copyright} 2001 American Institute of Physics.

  3. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect (OSTI)

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  4. Vehicle Technologies Office Merit Review 2015: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced lean-burn...

  5. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect (OSTI)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect on flame instability is observed for the isomers of butanol. Critical flame radii are the same for the isomers of butanol. Peclet number decreases with the increase in equivalence ratio. (author)

  6. Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Particulate: Contrasting O2 and NO2 Oxidation | Department of Energy NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Reports on preliminary measurements of particulate reactivity and changes in microstructure upon exposure to NO2, which is often present at significant levels in diesel engine exhaust.

  7. Development of a Thermal Enhancer ’ for Combined Partial Range Burning and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbon Dosing | Department of Energy Thermal Enhancer ’ for Combined Partial Range Burning and Hydrocarbon Dosing Development of a Thermal Enhancer ’ for Combined Partial Range Burning and Hydrocarbon Dosing Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-10_ramsbottom.pdf More Documents & Publications EHRS Impact on Engine Warm-up and Fuel Economy Diesel Particulate Filter: A

  8. Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traps | Department of Energy Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_vanderwal.pdf More Documents &

  9. Type B Accident Investigation Report of the October 28, 2004, Burn Injuries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA | Department of Energy of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA Type B Accident Investigation Report of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA February 1, 2005 TYPE B Accident Investigation

  10. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    SciTech Connect (OSTI)

    Akagi, Sheryl; Yokelson, Robert J.; Burling, Ian R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, Gavin; Sullivan, Amy; Lee, Taehyoung; Kredenweis, Sonia; Urbanski, Shawn; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Weise, David

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ?HCN/?CO emission ratio, however, is fairly consistent at 0.9 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of hours to a day. It was possible to measure the chemical evolution of the plume on four of the fires and significant ozone (O3) formation (?O3/?CO from 10-90%) occurred in all of these plumes. Slower O3 production was observed on a cloudy day with low co-emissions of NOx and the fastest O3 production was observed on a sunny day when the plume almost certainly incorporated significant additional NOx by passing over the Columbia, SC metropolitian area. Due to rapid plume dilution, it was only possible to acquire high quality downwind data for two other species (formaldehyde and methanol) on two of the fires. In all four cases significant increases were observed. This is likely the first direct observation of post-emission methanol production in biomass burning plumes and the precursors likely included terpenes.

  11. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  12. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 850 159 549 Q 86 8 * 0 0 Q 3112 Grain and Oilseed Milling Q 2 Q 1 Q

  13. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 618 165 379 8 109 12 1 38 0 10 3112 Grain and Oilseed Milling 115

  14. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4,124 2,134 454 0 1,896 284 0 Q 0 Q 3112 Grain and Oilseed Milling

  15. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 73,551 1,887 55,824 711 823 0 111 45 0 205 3112 Grain and Oilseed Milling

  16. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2,723 127 2,141 4 111 * 0 5 0 7 3112 Grain and Oilseed Milling 153 6

  17. Residual Viremia in Treated HIV+ Individuals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conway, Jessica M.; Perelson, Alan S.

    2016-01-06

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore »activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  18. Residual Viremia in Treated HIV+ Individuals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conway, Jessica M.; Perelson, Alan S.

    2016-01-06

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore » activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  19. Thin layer chromatography residue applicator sampler

    DOE Patents [OSTI]

    Nunes, Peter J. (Danville, CA); Kelly, Fredrick R. (Modesto, CA); Haas, Jeffrey S. (San Ramon, CA); Andresen, Brian D. (Livermore, CA)

    2007-07-24

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  20. Systematic approach to verification and validation: High explosive burn models

    SciTech Connect (OSTI)

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code, run a simulation, and generate a comparison plot showing simulated and experimental velocity gauge data. These scripts are then applied to several series of experiments and to several HE burn models. The same systematic approach is applicable to other types of material models; for example, equations of state models and material strength models.

  1. In-Situ Method for Treating Residual Sodium

    DOE Patents [OSTI]

    Sherman, Steven R.; Henslee, S. Paul

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  2. In-situ method for treating residual sodium

    DOE Patents [OSTI]

    Sherman, Steven R. (Idaho Falls, ID); Henslee, S. Paul (Idaho Falls, ID)

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  3. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales ... "Back to Contents","Data 1: Residual Fuel Oil Sales to End Users Refiner Sales Volumes" ...

  4. ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and

  5. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect (OSTI)

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  6. Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)

    SciTech Connect (OSTI)

    DOE /NV

    2001-02-23

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred choice for CAU 490 was Alternative 3. This alternative was judged to meet all requirements for the technical components evaluated, all applicable state and federal regulations for closure of the site, and will eliminate potential future exposure pathways to the contaminated soils at this site.

  7. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Connecticut - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Maryland - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7 8 9 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells 43 34 44 32 20 From Oil

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 North Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 South Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    80 Wisconsin - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  2. Total System Performance Assessment Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  3. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of homogeneous organic material without identifiable cores.

  4. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  5. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOE Patents [OSTI]

    Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  6. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  7. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  8. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  9. "Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," ","

  10. Table A13. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "

  11. Table A20. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy

  12. Table A22. Total First Use (formerly Primary Consumption) of Combustible Ener

    U.S. Energy Information Administration (EIA) Indexed Site

    First Use (formerly Primary Consumption) of Combustible Energy for Nonfuel" " Purposes by Census Region, Census Division, and Economic Characteristics of the Establishment," 1994 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)","

  13. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  14. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  15. Fabrication of contacts for silicon solar cells including printing burn through layers

    DOE Patents [OSTI]

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  16. Technical Development on Burn-up Credit for Spent LWR Fuel

    SciTech Connect (OSTI)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  17. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  18. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  19. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know" ,,,"Total United States" ...

  20. "Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and

  1. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel

  2. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  3. Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed

    SciTech Connect (OSTI)

    Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang

    2009-04-15

    To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

  4. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Events for Select Western U.S. Cities (adapted from Energy Independence and Security Act Technical Guidance, USEPA, 2009) City 95th Percentile Event Rainfall Total...

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 New Jersey - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Rhode Island - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Vermont - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  16. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  17. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,3...

  18. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  19. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    SciTech Connect (OSTI)

    Prieto, A.M.; Santos, A.G.; Csipak, A.R.; Caliri, C.M.; Silva, I.C.; Arbex, M.A.; Silva, F.S.; Marchi, M.R.R.

    2012-12-15

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract3.9, 7.5, or 15.0 mg/kg body weight (BW)or with casearin X0.3, 0.25, or 1.2 mg/kg BWafter which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ? We assessed DNA protection of C. sylvestris ethanolic extract. ? We assessed DNA protection of casearin X. ? We used Tradescantia pallida micronucleus test as screening. ? We used comet assay and micronucleus test in mice. ? The compounds protected DNA against sugar cane burning pollutants.

  20. Method For Characterizing Residual Stress In Metals

    DOE Patents [OSTI]

    Jacobson, Loren A. (Santa Fe, NM); Michel, David J. (Alexandria, VA); Wyatt, Jeffrey R. (Burke, VA)

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  1. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  2. Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit

    SciTech Connect (OSTI)

    Palmer, E.

    1996-03-01

    This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

  3. Revisiting impacts of nuclear burning for reviving weak shocks in neutrino-driven supernovae

    SciTech Connect (OSTI)

    Nakamura, Ko; Kotake, Kei; Takiwaki, Tomoya; Nishimura, Nobuya

    2014-02-20

    We revisit potential impacts of nuclear burning on the onset of the neutrino-driven explosions of core-collapse supernovae. By changing the neutrino luminosity and its decay time to obtain parametric explosions in one- and two-dimensional (1D and 2D, respectively) models with or without a 13 isotope ? network, we study how the inclusion of nuclear burning could affect the postbounce dynamics for 4 progenitor models; 3 for 15.0 M {sub ?} stars and 1 for an 11.2 M {sub ?} star. We find that the energy supply due to the nuclear burning of infalling material behind the shock can energize the shock expansion, especially for models that produce only marginal explosions in the absence of nuclear burning. These models are energized by nuclear energy deposition when the shock front passes through the silicon-rich layer and/or later as it touches the oxygen-rich layer. Depending on the neutrino luminosity and its decay time, the diagnostic energy of the explosion increases up to a few times 10{sup 50} erg for models with nuclear burning compared to the corresponding models without. We point out that these features are most remarkable for the Limongi-Chieffi progenitor in both 1D and 2D because the progenitor model possesses a massive oxygen layer, with an inner-edge radius that is smallest among the employed progenitors, which means that the shock can touch the rich fuel on a shorter timescale after bounce. The energy difference is generally smaller (?0.1-0.2 10{sup 51} erg) in 2D than in 1D (at most ?0.6 10{sup 51} erg). This is because neutrino-driven convection and the shock instability in 2D models enhance the neutrino heating efficiency, which makes the contribution of nuclear burning relatively smaller compared to 1D models. Considering uncertainties in progenitor models, our results indicate that nuclear burning should remain one of the important ingredients to foster the onset of neutrino-driven explosions.

  4. California: Agricultural Residues Produce Renewable Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Agricultural Residues Produce Renewable Fuel California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The project has completed 1,500 hours of

  5. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Environmental Management (EM)

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  6. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  7. SF 6110-AC Residual Inventory of Material or Equipment Furnished...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification No. and whether item is Classified, Furnished, Acquired, Esplosive, Toxic, Raw Mat'l, Good Part, or Scrap. The above listing is a COMPLETE inventory of residual...

  8. Wet Gasification of Ethanol Residue: A Preliminary Assessment

    SciTech Connect (OSTI)

    Brown, Michael D.; Elliott, Douglas C.

    2008-09-22

    A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

  9. Potential solubility controls for Iodine-129 in residual tank waste

    SciTech Connect (OSTI)

    Denham, M. E.

    2015-08-03

    This report documents a scoping analysis of possible controls on the release of 129I from tank 12H residual waste.

  10. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Broader source: Energy.gov (indexed) [DOE]

    the project objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale...

  11. Water dynamics clue to key residues in protein folding

    SciTech Connect (OSTI)

    Gao, Meng [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Zhu, Huaiqiu, E-mail: hqzhu@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Yao, Xin-Qiu [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China) [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 (Japan); She, Zhen-Su, E-mail: she@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)

    2010-01-29

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  12. Residual orientation in micro-injection molded parts

    SciTech Connect (OSTI)

    Healy, John; Edward, Graham H.; Knott, Robert B. (Monash); (ANSTO)

    2008-06-30

    The residual orientation following micro-injection molding of small rectangular plates with linear polyethylene has been examined using small-angle neutron scattering, and small- and wide-angle X-ray scattering. The effect of changing the molding conditions has been examined, and the residual chain orientation has been compared to the residual orientation of the crystallites as a function of position in the sample. This study has found that, for micromoldings, the orientation of the crystallites decreases with increasing injection speed and increasing mold thickness. The combined data suggest that the majority of the orientation present comes from oriented crystal growth rather than residual chain orientation.

  13. Residual Stresses for Structural Analysis and Fatigue Life Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stresses for Structural Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual ...

  14. Comparison of residual stresses in Inconel 718 simple parts made...

    Office of Scientific and Technical Information (OSTI)

    SC USDOE - Office of Science (SC) Country of Publication: United States Language: English Subject: Inconel 718; residual stess; electron beam melting; direct laser metal ...

  15. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    SciTech Connect (OSTI)

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  16. Application of spectral hole burning to the study of in vitro cellular systems

    SciTech Connect (OSTI)

    Milanovich, Nebojsa

    1999-11-08

    Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe model systems. Appendix A describes the uptake and subcellular distribution of APT in MCF-10F and MCF-7 cells and Appendix B compares the hole burning characteristics of APT in cells when the cells are in suspension and when they are examined while adhering to a glass coverslip. Appendix C presents preliminary results for a novel probe molecule, referred to as a molecular thumbtack, designed by the authors for use in future hole burning applications to cellular systems.

  17. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  18. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect (OSTI)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  19. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect (OSTI)

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  20. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with macros.xls") Waste Stream a Volume (cy) Mass (g) 2 Radiological Profile 3 Nuclide Activity (Ci) 4 Total % of Total U-238 U-234 U-235 Th-228 Th-230 Th-232 Ra-226 Ra-228 Rn-222 5 Activity if > 1% Raffinate Pits Work Zone (Ci) Raffinate processed through CSS Plant 1 159990 1.49E+11 Raffinate 6.12E+01 6.12E+01

  1. Multiparameter measurement utilizing poloidal polarimeter for burning plasma reactor

    SciTech Connect (OSTI)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi; Kusama, Yoshinori

    2014-08-21

    The authors have made the basic and applied research on the polarimeter for plasma diagnostics. Recently, the authors have proposed an application of multiparameter measurement (magnetic field, B, electron density, n{sub e}, electron temperature, T{sub e}, and total plasma current, I{sub p}) utilizing polarimeter to future fusion reactors. In this proceedings, the brief review of the polarimeter, the principle of the multiparameter measurement and the progress of the research on the multiparameter measurement are explained. The measurement method that the authors have proposed is suitable for the reactor for the following reasons; multiparameters can be obtained from a small number of diagnostics, the proposed method does not depend on time-history, and far-infrared light utilized by the polarimeter is less sensitive to degradation of of optical components. Taking into account the measuring error, performance assessment of the proposed method was carried. Assuming that the error of ?? and ?? were 0.1 and 0.6, respectively, the error of reconstructed j{sub ?}, n{sub e} and T{sub e} were 12 %, 8.4 % and 31 %, respectively. This study has shown that the reconstruction error can be decreased by increasing the number of the wavelength of the probing laser and by increasing the number of the viewing chords. For example, By increasing the number of viewing chords to forty-five, the error of j{sub ?}, n{sub e} and T{sub e} were reduced to 4.4 %, 4.4 %, and 17 %, respectively.

  2. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  3. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  4. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  5. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004...

  6. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  7. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  8. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  9. A total risk assessment methodology for security assessment.

    SciTech Connect (OSTI)

    Aguilar, Richard; Pless, Daniel J.; Kaplan, Paul Garry; Silva, Consuelo Juanita; Rhea, Ronald Edward; Wyss, Gregory Dane; Conrad, Stephen Hamilton

    2009-06-01

    Sandia National Laboratories performed a two-year Laboratory Directed Research and Development project to develop a new collaborative risk assessment method to enable decision makers to fully consider the interrelationships between threat, vulnerability, and consequence. A five-step Total Risk Assessment Methodology was developed to enable interdisciplinary collaborative risk assessment by experts from these disciplines. The objective of this process is promote effective risk management by enabling analysts to identify scenarios that are simultaneously achievable by an adversary, desirable to the adversary, and of concern to the system owner or to society. The basic steps are risk identification, collaborative scenario refinement and evaluation, scenario cohort identification and risk ranking, threat chain mitigation analysis, and residual risk assessment. The method is highly iterative, especially with regard to scenario refinement and evaluation. The Total Risk Assessment Methodology includes objective consideration of relative attack likelihood instead of subjective expert judgment. The 'probability of attack' is not computed, but the relative likelihood for each scenario is assessed through identifying and analyzing scenario cohort groups, which are groups of scenarios with comparable qualities to the scenario being analyzed at both this and other targets. Scenarios for the target under consideration and other targets are placed into cohort groups under an established ranking process that reflects the following three factors: known targeting, achievable consequences, and the resources required for an adversary to have a high likelihood of success. The development of these target cohort groups implements, mathematically, the idea that adversaries are actively choosing among possible attack scenarios and avoiding scenarios that would be significantly suboptimal to their objectives. An adversary who can choose among only a few comparable targets and scenarios (a small comparable target cohort group) is more likely to choose to attack the specific target under analysis because he perceives it to be a relatively unique attack opportunity. The opposite is also true. Thus, total risk is related to the number of targets that exist in each scenario cohort group. This paper describes the Total Risk Assessment Methodology and illustrates it through an example.

  10. Thermoacoustic method for relaxation of residual stresses in welded joints

    SciTech Connect (OSTI)

    Koshovyi, V.V.; Pakhn`o, M.I.; Tsykhan, O.I.

    1995-01-01

    We propose a thermoacoustic method for the relaxation of residual stresses in welded joints, present a block diagram of a generator of local thermoacoustic pulses designed for implementation of this method, and describe our experiment aimed at relaxation of residual tensile stresses.

  11. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  12. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  13. Total Crude Oil and Products Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other

  14. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  15. Preliminary design of ultra-long cycle fast reactor employing breed-and-burn strategy

    SciTech Connect (OSTI)

    Tak, T. W.; Yu, H.; Kim, J. H.; Lee, D.; Kim, T. K.

    2012-07-01

    A new design of ultra-long cycle fast reactor with power rate of 1000 MWe (UCFR) has been developed based on the strategy of breed-and burn. The bottom region of the core with low enriched uranium (LEU) plays a role of igniter of the core burning and the upper natural uranium (NU) region acts as blanket for breeding. Fissile materials are bred in the blanket and the active core moves upward at a speed of 5.4 cm/year. Through the core depletion calculation using Monte Carlo code, McCARD, it is confirmed that a full power operation of 60 years without refueling is feasible. Core performance characteristics have been evaluated in terms of axial/radial power shapes, reactivity feedback coefficients, etc. This design will serve as a base model for further design study of UCFRs using LWR spent fuels in the blanket region. (authors)

  16. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    SciTech Connect (OSTI)

    HUNT, J.W.

    1998-11-11

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

  17. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  18. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  19. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Ursula Burns, Xerox Corporation)

    ScienceCinema (OSTI)

    Burns, Ursula (Xerox Corporation, Chairman and CEO)

    2014-04-11

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Ursula Burns, Chairman and CEO of the Xerox Corporation, gave the second keynote address of the third day's sessions on February 29.

  20. Rice straw burning in Southeast Asia as a source of CO and COS to the atmosphere

    SciTech Connect (OSTI)

    Nguyen, B.C.; Mihalopoulos, N.; Putaud, J.P. [Centre des Faibles Radioactivites, Gif-sur-Yvette (France)

    1994-08-20

    This paper discusses the results of aerosol monitoring field tests conducted in four locations in Viet Nam during 1992 and 1993. Atmospheric samples were collected during the dry and wet seasons during the time when rice straw burning was taking place in the agricultural rangelands. The samples were analyzed for carbon monoxide, carbon dioxide, and carbonyl sulfide. Experimental methods and implications of the analytical results are described. 21 refs., 2 figs., 3 tabs.

  1. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

  2. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information »

  3. Authors: Carol Burns, Mark Chadwick, John Erickson, David Funk, and Robert Fulton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures (N&PF) Pillar Authors: Carol Burns, Mark Chadwick, John Erickson, David Funk, and Robert Fulton Contributions by: Malcolm Andrews, Mike Baker, Joe Carlson, Bruce Carlsten, Aaron Couture, Mark Crawford, Greg Dale, Ed Dendy, Brenda Dingus, Steve Elliott, Juan Fernandez, Julianna Fessenden-Rahn, Alex Friedland, Chris Fryer, Michael Graesser, Rajan Gupta, Anna Hayes, Andrew Hime, Hui Li, Andi Klein, Tom Kwan, Bob Little, Bill Louis, Christopher Mauger, Pat McGaughey,

  4. DOE/SC-ARM-13-014 Biomass Burning Observation Project Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Biomass Burning Observation Project Science Plan LI Kleinman AJ Sedlacek September 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  5. ADVANCED BURNING STAGES AND FATE OF 8-10 M{sub Sun} STARS

    SciTech Connect (OSTI)

    Jones, S.; Hirschi, R.; Nomoto, K.; Fischer, T.; Martinez-Pinedo, G.; Timmes, F. X.; Herwig, F.; Paxton, B.; Toki, H.; Suzuki, T.; Lam, Y. H.; Bertolli, M. G.

    2013-08-01

    The stellar mass range 8 {approx}< M/M{sub Sun} {approx}< 12 corresponds to the most massive asymptotic giant branch (AGB) stars and the most numerous massive stars. It is host to a variety of supernova (SN) progenitors and is therefore very important for galactic chemical evolution and stellar population studies. In this paper, we study the transition from super-AGB (SAGB) star to massive star and find that a propagating neon-oxygen-burning shell is common to both the most massive electron capture supernova (EC-SN) progenitors and the lowest mass iron-core-collapse supernova (FeCCSN) progenitors. Of the models that ignite neon-burning off-center, the 9.5 M{sub Sun} star would evolve to an FeCCSN after the neon-burning shell propagates to the center, as in previous studies. The neon-burning shell in the 8.8 M{sub Sun} model, however, fails to reach the center as the URCA process and an extended (0.6 M{sub Sun }) region of low Y{sub e} (0.48) in the outer part of the core begin to dominate the late evolution; the model evolves to an EC-SN. This is the first study to follow the most massive EC-SN progenitors to collapse, representing an evolutionary path to EC-SN in addition to that from SAGB stars undergoing thermal pulses (TPs). We also present models of an 8.75 M{sub Sun} SAGB star through its entire TP phase until electron captures on {sup 20}Ne begin at its center and of a 12 M{sub Sun} star up to the iron core collapse. We discuss key uncertainties and how the different pathways to collapse affect the pre-SN structure. Finally, we compare our results to the observed neutron star mass distribution.

  6. Savannah River Site "Live Burn" Training Sharpens Skills | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration "Live Burn" Training Sharpens Skills | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  7. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect (OSTI)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  8. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOE Patents [OSTI]

    Kostiuk, Larry W. (Edmonton, CA); Cheng, Robert K. (Kensington, CA)

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  9. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation

    SciTech Connect (OSTI)

    Jerzembeck, S.; Peters, N. [RWTH, Aachen (Germany); Pepiot-Desjardins, P.; Pitsch, H. [Department of Mechanical Engineering, Stanford University, CA (United States)

    2009-02-15

    Spherical flames of n-heptane, iso-octane, PRF 87 and gasoline/air mixtures are experimentally investigated to determine laminar burning velocities and Markstein lengths under engine-relevant conditions by using the constant volume bomb method. Data are obtained for an initial temperature of 373 K, equivalence ratios varying from {phi}=0.7 to {phi}=1.2, and initial pressures from 10 to 25 bar. To track the flame front in the vessel a dark field He-Ne laser Schlieren measurement technique and digital image processing were used. The propagating speed with respect to the burned gases and the stretch rate are determined from the rate of change of the flame radius. The laminar burning velocities are obtained through a linear extrapolation to zero stretch. The experimentally determined Markstein numbers are compared to theoretical predictions. A reduced chemical kinetic mechanism for n-heptane and iso-octane was derived from the Lawrence Livermore comprehensive mechanisms. This mechanism was validated for ignition delay times and flame propagation at low and high pressures. In summary an overall good agreement with the various experimental data sets used in the validation was obtained. (author)

  10. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ?10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  11. Evolution of titanium residue on the walls of a plasma-etching reactor and its effect on the polysilicon etching rate

    SciTech Connect (OSTI)

    Hirota, Kosa, E-mail: hirota-kousa@sme.hitachi-hitec.com; Itabashi, Naoshi; Tanaka, Junichi [Hitachi, Ltd., Central Research Laboratory, 1-280, Higashi-Koigakubo, Kokubunji, Tokyo 185-8601 (Japan)

    2014-11-01

    The variation in polysilicon plasma etching rates caused by Ti residue on the reactor walls was investigated. The amount of Ti residue was measured using attenuated total reflection Fourier transform infrared spectroscopy with the HgCdTe (MCT) detector installed on the side of the reactor. As the amount of Ti residue increased, the number of fluorine radicals and the polysilicon etching rate increased. However, a maximum limit in the etching rate was observed. A mechanism of rate variation was proposed, whereby F radical consumption on the quartz reactor wall is suppressed by the Ti residue. The authors also investigated a plasma-cleaning method for the removal of Ti residue without using a BCl{sub 3} gas, because the reaction products (e.g., boron oxide) on the reactor walls frequently cause contamination of the product wafers during etching. CH-assisted chlorine cleaning, which is a combination of CHF{sub 3} and Cl{sub 2} plasma treatment, was found to effectively remove Ti residue from the reactor walls. This result shows that CH radicals play an important role in deoxidizing and/or defluorinating Ti residue on the reactor walls.

  12. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 7,806,277 2,262,752 57,837 18,541,042 Connecticut 2,523,349...

  13. Central Shops Burning/Rubble Pit 631-6G Additonal Sampling and Monitor Well Installation Report

    SciTech Connect (OSTI)

    Palmer, E.

    1995-02-01

    The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents.

  14. A manual for implementing residual radioactive material guidelines

    SciTech Connect (OSTI)

    Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

    1989-06-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

  15. Method to control residual stress in a film structure and a system thereof

    DOE Patents [OSTI]

    Parthum, Sr., Michael J. (Rochester, NY)

    2008-12-30

    A method for controlling residual stress in a structure in a MEMS device and a structure thereof includes selecting a total thickness and an overall equivalent stress for the structure. A thickness for each of at least one set of alternating first and second layers is determined to control an internal stress with respect to a neutral axis for each of the at least alternating first and second layers and to form the structure based on the selected total thickness and the selected overall equivalent stress. Each of the at least alternating first and second layers is deposited to the determined thickness for each of the at least alternating first and second layers to form the structure.

  16. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

  17. "Table A28. Total Expenditures for Purchased Energy Sources by Census Region"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke","

  18. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  19. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  20. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  1. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  2. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  3. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  4. Improvement of coke quality by utilization of hydrogenation residue

    SciTech Connect (OSTI)

    Meckel, J.F. ); Wairegi, T. )

    1993-01-01

    Hydrogenation residue is the product left over when petroleum residue feedstocks (or coal) are treated by, e.g. the Veba Combi Cracking (VCC) process. Many tests in semitechnical and full-sized coke ovens were carried out with hydrogenation residue (HR) as an additive in coking coal blends for the production of blast furnace coke or foundry coke. The results of the investigations reported in this paper demonstrate that HR is a very promising alternative for enlarging the coking coal basis compared to other processes or the use of other additives. The application of HR on an industrial scale did not indicate any negative impact on the handling of the hydrogenation residue or on the operation of the coke oven battery.

  5. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S. (Pleasanton, CA)

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  6. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 9,228,173 9,219,173 9,224,005 9,225,079 9,225,911 9,228,240 1989-2015 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Lower 48 States 9,144,581 9,135,581 9,140,412 9,141,486 9,142,319 9,144,648

  7. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  8. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Peloquin, R.A. )

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  9. Total Crude Oil and Petroleum Products Exports

    Gasoline and Diesel Fuel Update (EIA)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  10. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  11. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  12. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  13. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  14. Overcoming residual stresses and machining distortion in the production of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum alloy satellite boxes. (Technical Report) | SciTech Connect Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes. Citation Details In-Document Search Title: Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information

  15. RESIDUAL STRESSES IN ADDITIVELY MANUFACTURED INCONEL 718 ENGINE MOUNT

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: RESIDUAL STRESSES IN ADDITIVELY MANUFACTURED INCONEL 718 ENGINE MOUNT Citation Details In-Document Search Title: RESIDUAL STRESSES IN ADDITIVELY MANUFACTURED INCONEL 718 ENGINE MOUNT Authors: Watkins, Thomas R [1] ; Cornwell, Paris A [1] ; Dehoff, Ryan R [1] ; Nangia, Vinod [2] ; Godfrey, Donald G. [2] + Show Author Affiliations ORNL Honeywell Aerospace Services Publication Date: 2015-01-01 OSTI Identifier: 1224750 DOE Contract Number:

  16. Method for residual stress relief and retained austenite destabilization

    DOE Patents [OSTI]

    Ludtka, Gerard M.

    2004-08-10

    A method using of a magnetic field to affect residual stress relief or phase transformations in a metallic material is disclosed. In a first aspect of the method, residual stress relief of a material is achieved at ambient temperatures by placing the material in a magnetic field. In a second aspect of the method, retained austenite stabilization is reversed in a ferrous alloy by applying a magnetic field to the alloy at ambient temperatures.

  17. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  18. Assessment of alternatives for long-term management of uranium ore residues and contaminated soils located at DOE's Niagara Falls Storage Site

    SciTech Connect (OSTI)

    Merry-Libby, P.

    1984-11-05

    About 11,000 m/sup 3/ of uranium ore residues and 180,000 m/sup 3/ of wastes (mostly slightly contaminated soils) are consolidated within a diked containment area at the Niagara Falls Storage Site (NFSS) located about 30 km north of Buffalo, NY. The residues account for less than 6% of the total volume of contaminated materials but almost 99% of the radioactivty. The average /sup 226/Ra concentration in the residues is 67,000 pCi/g. Several alternatives for long-term management of the wastes and residues are being considered, including: improvement of the containment at NFSS, modification of the form of the residues, management of the residues separately from the wastes, management of the wastes and residues at another humid site (Oak Ridge, TN) or arid site (Hanford, WA), and dispersal of the wastes in the ocean. Potential radiological risks are expected to be smaller than the nonradiological risks of occupational and transportation-related injuries and deaths. Dispersal of the slightly contaminated wastes in the ocean is not expected to result in any significant impacts on the ocean environment or pose any significant radiological risk to humans. It will be necessary to take perpetual care of the near-surface burial sites because the residues and wastes will remain hazardous for thousands of years. If controls cease, the radioactive materials will eventually be dispersed in the environment. Predicted loss of the earthen covers over the buried materials ranges from several hundred to more than two million years, depending primarily on the use of the land surface. Groundwater will eventually be contaminated in all alternatives; however, the groundwater pathway is relatively insignificant with respect to radiological risks to the general population. A person intruding into the residues would incur an extremely high radiation dose.

  19. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  20. "Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  1. Hanford tank residual waste contaminant source terms and release models

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-PH phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

  2. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  3. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  4. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  5. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOE Patents [OSTI]

    Gold, Raymond (Richland, WA); McElroy, William N. (Richland, WA)

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  6. Midwest (PADD 2) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  7. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  8. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  9. Midwest (PADD 2) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  10. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  11. Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL

    Office of Scientific and Technical Information (OSTI)

    Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent

  12. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  13. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  14. Personal PM2.5 exposure among wildland firefighters working at prescribed forest burns in southeastern United States.

    SciTech Connect (OSTI)

    Adetona, Olorunfemi; Dunn, Kevin; Hall, Daniel, B.; Achtemeier, Gary; Stock, Allison; Naeher, Luke, P.

    2011-07-15

    This study investigated occupational exposure to wood and vegetative smoke in a group of 28 forest firefighters at prescribed forest burns in a southeastern U.S. forest during the winters of 2003-2005. During burn activities, 203 individual person-day PM{sub 2.5} and 149 individual person-day CO samples were collected; during non-burn activities, 37 person-day PM{sub 2.5} samples were collected as controls. Time-activity diaries and post-work shift questionnaires were administered to identify factors influencing smoke exposure and to determine how accurately the firefighters qualitative assessment estimated their personal level of smoke exposure with discrete responses: 'none' or 'very little,' 'low,' 'moderate,' 'high,' and 'very high.' An average of 6.7 firefighters were monitored per burn, with samples collected on 30 burn days and 7 non-burn days. Size of burn plots ranged from 1-2745 acres (avg = 687.8). Duration of work shift ranged from 6.8-19.4 hr (avg = 10.3 hr) on burn days. Concentration of PM{sub 2.5} ranged from 5.9-2673 {mu}g/m{sup 3} on burn days. Geometric mean PM{sub 2.5} exposure was 280 {mu}g/m{sup 3} (95% CL = 140, 557 {mu}g/m{sup 3}, n = 177) for burn day samples, and 16 {mu}g/m{sup 3} (95% CL = 10, 26 {mu}g/m{sup 3}, n = 35) on non-burn days. Average measured PM{sub 2.5} differed across levels of the firefighters categorical self-assessments of exposure (p < 0.0001): none to very little = 120 {mu}g/m{sup 3} (95% CL = 71, 203 {mu}g/m{sup 3}) and high to very high = 664 {mu}g/m{sup 3} (95% CL = 373, 1185 {mu}g/m{sup 3}); p < 0.0001 on burn days. Time-weighted average PM{sub 2.5} and personal CO averaged over the run times of PM{sub 2.5} pumps were correlated (correlation coefficient estimate, r = 0.79; CLs: 0.72, 0.85). Overall occupational exposures to particulate matter were low, but results indicate that exposure could exceed the ACGIH{reg_sign}-recommended threshold limit value of 3 mg/m{sup 3} for respirable particulate matter in a few extreme situations. Self-assessed exposure levels agreed with measured concentrations of PM{sub 2.5}. Correlation analysis shows that either PM{sub 2.5} or CO could be used as a surrogate measure of exposure to woodsmoke at prescribed burns.

  15. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect (OSTI)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  16. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  17. 2014 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    Total (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 16,464 399,492 41,691.0 10.44 Alaska Power and Telephone Co AK Investor Owned 7,630 63,068 17,642.0 27.97 Alaska Village Elec Coop, Inc AK Cooperative 10,829 97,874 53,522.0 54.68 Anchorage Municipal Light and Power AK Municipal 30,791 1,012,784 134,950.6 13.32

  18. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    Fee Available (N/A) Total Fee Paid $23,179,000 $18,632,000 $16,680,000 $18,705,000 $25,495,000 $34,370,000 $32,329,000 $33,913,000 $66,794,000 $10,557,000 $3,135,000 $283,789,000 FY2015 FY2014 FY2013 FY2009 FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee Dec 2015 Contract Number: Cost Plus Incentive Fee Contractor: $3,264,909,094 Contract Period: EM Contractor Fee s Idaho Operations Office - Idaho Falls, ID Contract Name: Idaho Cleanup Project $0 Contract Type: CH2M Washington Group

  19. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  20. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  1. Total Supplemental Supply of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 64,575 60,088 61,366 54,650 59,528 59,693 1980-2015 Alabama 0 0 0 0 0 1967-2014 Alaska 0 0 0 0 0 2004-2014 Arizona 0 0 0 0 0 1967-2014 Arkansas 0 0 0 0 0 1967-2014 Colorado 5,148 4,268 4,412 4,077 4,120

  2. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  3. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  4. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1996-12-31

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  5. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2002-08-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules are provided. General conclusions are given in Chapter 5.

  6. Measurement of laminar burning speeds and Markstein lengths using a novel methodology

    SciTech Connect (OSTI)

    Tahtouh, Toni; Halter, Fabien; Mounaim-Rousselle, Christine [Institut PRISME, Universite d'Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France)

    2009-09-15

    Three different methodologies used for the extraction of laminar information are compared and discussed. Starting from an asymptotic analysis assuming a linear relation between the propagation speed and the stretch acting on the flame front, temporal radius evolutions of spherically expanding laminar flames are postprocessed to obtain laminar burning velocities and Markstein lengths. The first methodology fits the temporal radius evolution with a polynomial function, while the new methodology proposed uses the exact solution of the linear relation linking the flame speed and the stretch as a fit. The last methodology consists in an analytical resolution of the problem. To test the different methodologies, experiments were carried out in a stainless steel combustion chamber with methane/air mixtures at atmospheric pressure and ambient temperature. The equivalence ratio was varied from 0.55 to 1.3. The classical shadowgraph technique was used to detect the reaction zone. The new methodology has proven to be the most robust and provides the most accurate results, while the polynomial methodology induces some errors due to the differentiation process. As original radii are used in the analytical methodology, it is more affected by the experimental radius determination. Finally, laminar burning velocity and Markstein length values determined with the new methodology are compared with results reported in the literature. (author)

  7. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to incinerate or transmutate the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  8. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

  9. Residual strain mapping of Roman styli from Iulia Concordia, Italy

    SciTech Connect (OSTI)

    Salvemini, Filomena; Grazzi, Francesco; Angelini, Ivana; Davydov, Vadim; Vontobel, Peter; Vigoni, Alberto; Artioli, Gilberto; Zoppi, Marco

    2014-05-01

    Iulia Concordia is an important Roman settlement known for the production of iron objects and weapons during the Roman Empire. A huge number of well-preserved styli were found in the past century in the bed of an old channel. In order to shed light about the production processes used by Roman for stylus manufacturing, a neutron diffraction residual strain analysis was performed on the POLDI materials science diffractometer at the Paul Scherrer Institut in Switzerland. Here, we present results from our investigation conducted on 11 samples, allowing to define, in a non-invasive way, the residual strain map related to the ancient Roman working techniques. - Highlights: • We examined 11 Roman styli from the settlement of Iulia Concordia, Italy. • We performed a neutron diffraction residual strain analysis on POLDI at PSI (CH). • We identified the production processes used by Roman for stylus manufacturing. • We clarified the way and direction of working applied for different classes of styli.

  10. Residual stresses and plastic deformation in GTA-welded steel

    SciTech Connect (OSTI)

    Brand, P.C. ); Keijser, T.H. de; Ouden, G. den )

    1993-03-01

    Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straight Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.

  11. Study on rheological characteristics of petroleum coke residual oil slurry

    SciTech Connect (OSTI)

    Shou Weiyi; Xu Xiaoming; Cao Xinyu

    1997-07-01

    We have embarked on a program to develop petroleum coke residual oil slurry (POS) as an alternative fuel for existing oil-fired boilers. The industrial application of petroleum coke residual oil slurry requires full knowledge of its flow behavior. This paper will present the results of an experimental investigation undertaken to study the Theological properties using a rotating viscometer at shear rate up to 996 s{sup -1}. The effects of temperature, concentration, particle size distribution and additives are also investigated. The experiments show that petroleum coke residual oil slurry exhibits pseudoplastic behavior, which has favorable viscosity property under a certain condition and has broad prospect to be applied on oil-fired boilers.

  12. Characterization of Residual Medium Peptides from Yersinia pestis Cultures

    SciTech Connect (OSTI)

    Clowers, Brian H.; Wunschel, David S.; Kreuzer, Helen W.; Engelmann, Heather E.; Valentine, Nancy B.; Wahl, Karen L.

    2013-04-03

    Using a range of common microbial medium formulations (TSB, BHI, LB, and G-media), two attenuated strains of Y. pestis (KIM D27 (pgm-) and KIMD1 lcr-) were cultivated in triplicate. These cellular suspensions were used to develop a method of extracting residual medium peptides from the final microbial preparation to assess their relative abundance and identity. Across the conditions examined, which included additional cellular washing and different forms of microbial inactivation, residual medium peptides were detected. Despite the range of growth medium sources used and the associated manufacturing processes used in their production, a high degree of peptide similarity was observed for a given medium recipe. These results demonstrate that residual medium peptides are retained using traditional microbial cultivation techniques and may be used to inform forensic investigations with respect to production deduction.

  13. Melting of Uranium Metal Powders with Residual Salts

    SciTech Connect (OSTI)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-07-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing {approx} 30 wt% residual LiCl-Li{sub 2}O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li{sub 2}O residual salt. (authors)

  14. Modeling of residual stresses by HY-100 weldments

    SciTech Connect (OSTI)

    Zacharia, T.; Taljat, B.; Radhakrishnan, B.

    1997-02-01

    Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.

  15. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect (OSTI)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  16. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  17. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    DOE Patents [OSTI]

    Taylor, Robert S. (Livermore, CA); Boyer, Norman W. (Livermore, CA)

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  18. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  19. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  20. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  1. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the ...

  2. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  3. NREL: Building America Total Quality Management - 2015 Peer Review...

    Energy Savers [EERE]

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the...

  4. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

  5. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... PM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  6. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  7. Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios

    SciTech Connect (OSTI)

    S. Bays; H. Zhang; M. Pope

    2009-05-01

    The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium two-tier fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or threshold-fissioning isotopes in the ARRs fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the front-end reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs back-end transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

  8. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  9. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L.

    1997-12-31

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  10. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia

    SciTech Connect (OSTI)

    Zhang, Y.; Fu, Rong; Yu, Hongbin; Qian, Yun; Dickinson, Robert; Silva Dias, Maria Assuncao F.; da Silva Dias, Pedro L.; Fernandes, Katia

    2009-05-30

    Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth > 0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence occurs in northwestern Amazonia (5S-5N, 60W-40 70W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina.

  11. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2004-12-19

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and {sigma}{sub {lambda}}, as well as the standard hole burning parameters (namely, {gamma} and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (f{Delta}{mu}) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between f{Delta}{mu}s in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of cryopreservatives, shows the ability to distinguish between carcinoma and analogous normal cells on the single-cell level. In future applications, this system has the potential to be used with smears of tissue samples for single-layer HBI analysis. These conclusions demonstrate that HBI has the potential of providing detailed information about localized intracellular environments and for detecting changes in the physical characteristics (e.g., electrical properties) of cells which constitute the in vitro tissue samples. For the latter, the long-term goal will be to develop NPHB into a diagnostic technique for the early detection of cancer by exploiting the physical differences between normal and cancerous cells and tissues. Moreover, because of the aforementioned HBI's capability to detect cellular anomalies, it has the potential of being used in conjunction with studies involving photodynamic therapy, assuming the chromophore is carefully selected.

  12. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  13. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  14. SystemBurn: Principles of Design and Operation, Release 2.0

    SciTech Connect (OSTI)

    Kuehn, Jeffery A; Poole, Stephen W; Hodson, Stephen W; Lothian, Josh; Dobson, Jonathan D; Reister, David B; Lewkow, Nicholas R; Glandon, Steven R; Peek, Jacob T

    2012-01-01

    As high performance computing technology progresses toward the progressively more extreme scales required to address critical computational problems of both national and global interest, power and cooling for these extreme scale systems is becoming a growing concern. A standardized methodology for testing system requirements under maximal system load and validating system environmental capability to meet those requirements is critical to maintaining system stability and minimizing power and cooling risks for high end data centers. Moreover, accurate testing permits the high end data center to avoid issues of under- or over-provisioning power and cooling capacity saving resources and mitigating hazards. Previous approaches to such testing have employed an ad hoc collection of tools, which have been anecdotally perceived to produce a heavy system load. In this report, we present SystemBurn, a software tool engineered to allow a system user to methodically create a maximal system load on large scale systems for the purposes of testing and validation.

  15. SystemBurn: Principles of Design and Operation Release 3.0

    SciTech Connect (OSTI)

    Dobson, Jonathan D; Kuehn, Jeffery A; Poole, Stephen W; Hodson, Stephen W; Glandon, Steven R; Reister, David B; Lewkow, Nicholas R; Peek, Jacob T

    2012-09-01

    As high performance computing technology progresses toward the progressively more extreme scales required to address critical computational problems of both national and global interest, power and cooling for these extreme scale systems is becoming a growing concern. A standardized methodology for testing system requirements under maximal system load and validating system environmental capability to meet those requirements is critical to maintaining system stability and minimizing power and cooling risks for high end data centers. Moreover, accurate testing permits the high end data center to avoid issues of under- or over-provisioning power and cooling capacity saving resources and mitigating hazards. Previous approaches to such testing have employed an ad hoc collection of tools, which have been anecdotally perceived to produce a heavy system load. In this report, we present SystemBurn, a software tool engineered to allow a system user to methodically create a maximal system load on large scale systems for the purposes of testing and validation.

  16. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2002-06-27

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q{sub y}-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll{sub a} (BChl{sub a}) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  17. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Pavel Hejzlar; Cliff Davis

    2004-09-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  18. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Hejzlar, Pavel [Massachusetts Institute of Technology (United States); Davis, Cliff B. [Idaho National Engineering and Environmental Laboratory (United States)

    2004-09-15

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  19. Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors

    SciTech Connect (OSTI)

    Michael A. Pope

    2012-07-01

    High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

  20. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect (OSTI)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  1. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  2. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  3. Analysis of mass loss of a coal particle during the course of burning in a flow of inert material

    SciTech Connect (OSTI)

    Pelka, Piotr

    2009-08-15

    This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

  4. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect (OSTI)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  5. Viscosity stabilization of SRC residual oil. Final technical report

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-05-01

    The use of SRC residual oils for No. 6 Fuel Oil substitutes has been proposed. The oils exhibit viscosity characteristics at elevated temperatures that allow this substitution with only minor modifications to the existing fuel oil infrastructure. However, loss of low-boiling materials causes an increase in the viscosity of the residual oils that is greater than expected from concentration changes. A process has been developed that minimizes the loss of volatiles and thus maintains the viscosity of these materials. The use of an additive (water, phenol, or an SRC light oil cut rich in low-boiling phenols in amounts up to 2.0 wt %) accomplishes this and hence stabilizes the pumping and atomizing characteristics for an extended period. During the course of the work, the components of the volatiles lost were identified and the viscosity change due to this loss was quantified. 3 references, 6 figures, 9 tables.

  6. Residual Stresses for Structural Analysis and Fatigue Life Prediction in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy Stresses for Structural Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual Stresses for Structural Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program 2009 DOE Hydrogen Program

  7. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    SciTech Connect (OSTI)

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  8. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  9. Washing of Rocky Flats Combustible Residues (Conducted March - May 1995)

    SciTech Connect (OSTI)

    Mary E. Barr; Ann R. Schake; David A. Romero; Gordon D. Jarvinen

    1999-03-01

    The scope of this project is to determine the feasibility of washing plutonium-containing combustible residues using ultrasonic disruption as a method for dislodging particulate. Removal of plutonium particulate and, to a lesser extent, solubilized plutonium from the organic substrate should substantially reduce potential fire, explosion or radioactive release hazards due to radiolytic hydrogen generation or high flammability. Tests were conducted on polypropylene filters which were used as pre-filters in the rich-residue ion-exchange process at the Los Alamos Plutonium Facility. These filters are similar to the Ful-Flo{reg_sign} cartridges used at Rocky Flats that make up a substantial fraction of the combustible residues with the highest hazard rating. Batch experiments were run on crushed filter material in order to determine the amount of Pu removed by stirring, stirring and sonication, and stirring and sonication with the introduction of Pu-chelating water-soluble polymers or surfactants. Significantly more Pu is removed using sonication and sonication with chelators than is removed with mechanical stirring alone.

  10. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  11. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of ...

  12. FY 2007 Total System Life Cycle Cost, Pub 2008

    Broader source: Energy.gov [DOE]

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  13. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  14. Texas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Texas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  15. Texas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. West Virginia Natural Gas % of Total Residential Deliveries ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) West Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  17. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  19. North Carolina Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Carolina Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. North Carolina Natural Gas % of Total Residential Deliveries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) North Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...