Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Aviation fuels, 1983  

Science Conference Proceedings (OSTI)

Properties of some aviation gasolines and aviation turbine fuels marketed in the United States during 1983 are presented in this report. The samples represented are typical 1983 production and were analyzed in the laboratories of 12 manufacturers of aviation gasolines and 18 producers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for properties of 34 samples of grades 80/87, 100/130, and 100LL for aviation gasolines, and 104 samples of military grades JP-4 and JP-5, and commercial type Jet A for aviation turbine fuels are included in this report.

Shelton, E.M.; Dickson, C.L.

1984-04-01T23:59:59.000Z

2

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

3

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

4

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

5

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

6

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

7

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane ...  

U.S. Energy Information Administration (EIA)

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) Geographic Area

8

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

9

aviation fuels | OpenEI  

Open Energy Info (EERE)

aviation fuels aviation fuels Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated Unknown Keywords aviation fuels diesel fuel oil oil petrol Data application/vnd.ms-excel icon annual production, imports, and exports of all oil products (xls, 294.9 KiB) application/vnd.ms-excel icon quarterly production of oil products by fuel type (xls, 272.4 KiB) application/vnd.ms-excel icon total petrol (xls, 155.1 KiB) application/vnd.ms-excel icon premium unleaded petrol (xls, 95.2 KiB) application/vnd.ms-excel icon regular unleaded petrol (xls, 119.3 KiB) application/vnd.ms-excel icon diesel (xls, 151 KiB)

10

Alternative fuels : how can aviation cross the "Valley of Death"  

E-Print Network (OSTI)

Aviation has used petroleum-derived fuels for over 100 years. With the rapidly rising price of oil and concerns about supply, the military and the commercial airlines are fostering the development of an alternative aviation ...

Harrison, William E. (William Elton)

2008-01-01T23:59:59.000Z

11

Table 41. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 ...  

U.S. Energy Information Administration (EIA)

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene No. 1 Distillate Propane ... 51.4 75.5 6,451.9 3,309.5 W 476.2 ...

12

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

13

Certification of alternative aviation fuels and blend components  

SciTech Connect

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

14

Baylor University - Renewable Aviation Fuels Development Center | Open  

Open Energy Info (EERE)

Renewable Aviation Fuels Development Center Renewable Aviation Fuels Development Center Jump to: navigation, search Name Baylor University - Renewable Aviation Fuels Development Center Address One Bear Place #97413 Place Waco, Texas Zip 76798 Region Texas Area Coordinates 31.496762°, -97.305664° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.496762,"lon":-97.305664,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Table 46. Prime Supplier Sales Volumes of Aviation Fuels, No. 4 ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 144 Table 46. Prime Supplier Sales Volumes of Aviation Fuels, No. 4 Fuel Oil, Propane,

16

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

17

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

18

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

19

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

20

Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

i of 43 i of 43 Page i DOD-DOE Workshop Summary and Action Plan: Fuel Cells in Aviation Table of Contents Executive Summary .............................................................................................................................................iii Drivers for Leaner, Cleaner Energy Use in Aviation .......................................................................... iv The Opportunity for Hydrogen and Fuel Cell Technologies in Aviation ............................................. v Potential Impacts ................................................................................................................................. vi Barriers and Challenges ...................................................................................................................... vii

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

[Research and workshop on alternative fuels for aviation. Final report  

DOE Green Energy (OSTI)

The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available at that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.

NONE

1999-09-01T23:59:59.000Z

22

Table 36. Refiner Prices of Aviation Fuels and Kerosene by PAD ...  

U.S. Energy Information Administration (EIA)

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to ... 102.5 96.1 51.9 53.7 72.9 54.7 Florida

23

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

24

Crop residues as feedstock for renewable fuels  

Science Conference Proceedings (OSTI)

Nutrient removal and net costs weigh on decisions to use crop residues as biofuel feedstocks. Crop residues as feedstock for renewable fuels Inform Magazine Biofuels and Bioproducts and Biodiesel Inform Archives Crop residues as feedstock for rene

25

Ethyl-tertiary-butyl-ether (ETBE) as an aviation fuel: Eleventh international symposium on alcohol fuels  

DOE Green Energy (OSTI)

This paper discusses the preliminary flight testing of an aircraft using neat burning ethyl-tertiary-butyl-ether (ETBE) as a fuel. No additional changes were made to the fuel delivery systems which had previously been modified to provide the higher fuel flow rates required to operate the engine on neat ethanol. Air-fuel ratios were manually adjusted with the mixture control. This system allows the pilot to adjust the mixture to compensate for changes in air density caused by altitude, pressure and temperature. The engine was instrumented to measure exhaust gas temperatures (EGT), cylinder head temperatures (CHT), and fuel flows, while the standard aircraft instruments were used to collect aircraft performance data. Baseline engine data for ETBE and Avgas are compared. Preliminary data indicates the technical and economic feasibility of using ETBE as an aviation fuel for the piston engine fleet. Furthermore, the energy density of ETBE qualifies it as a candidate for a turbine engine fuel of which 16.2 billion gallons are used in the US each year.

Maben, G.D.; Shauck, M.E.; Zanin, M.G.

1996-12-31T23:59:59.000Z

26

U.S. Residual Fuel Oil Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

27

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

28

DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia  

NLE Websites -- All DOE Office Websites (Extended Search)

Boeing Sponsored Projects in Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Lennie Klebanoff and Joe Pratt Sandia National Laboratories Livermore CA 94551 September 30, 2010 "Exceptional Service in the National Interest" DOE-DOD Workshop on Uses of Fuel Cells in Aviation * ~ 8,300 employees * ~ 1,500 PhDs; ~2800 MS/MA * ~ 700 on-site contractors Sandia National Laboratories Sandia is a government-owned/contractor operated (GOCO) facility. Sandia Corporation, a Lockheed Martin company, manages Sandia for the U.S. Department of Energy's National Nuclear Security Administration. Website: www.sandia.gov Annual Budget ~ $2.2 Billion ($1.3 Billion DOE, $0.9 Billion work for others) 3 Origin: Boeing Interested in Bringing Fuel Cell Technology to Ground Support Equipment (GSE)

29

Process for Converting Algal Oil to Alternative Aviation Fuel ...  

Conversion of triglyceride oils extracted from algae-derived lipids into aircraft fuel is a critical goal development for our national energy security. romising ...

30

Process for Converting Algal Oil to Alternative Aviation Fuel  

triglyceride oils extracted from algae-derived lipids into aircraft fuel is a critical goal development for our national energy security. romising ...

31

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

32

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day...

33

Residual Fuel Demand - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In the 1986 to 1991 period, residual fuel oil demand declined only slightly both in absolute and as a percent of total product demand. While not shown, residual fuel ...

34

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

35

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users Sales for Resale Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 93.3 8.2 10.0 12.0 10.9 11.4 1983-2013 Kerosene-Type Jet Fuel 32,893.1 32,452.7 33,281.4 32,532.8 29,876.9 29,004.1 1983-2013 Propane (Consumer Grade) 6,321.3 6,161.4 5,990.4 6,377.7 6,892.8 3,264.5 1983-2013 Kerosene 3.5 2.4 3.6 2.2 3.6 8.8 1983-2013 No. 1 Distillate 45.2 31.9 36.3 32.5 44.6 103.0 1983-2013 No. 2 Distillate 11,266.8 11,311.6 11,647.9 11,375.1 11,192.1 12,138.1 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013

36

Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel  

Science Conference Proceedings (OSTI)

We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

2007-09-15T23:59:59.000Z

37

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

38

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

39

U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 413.1 602.6 593.2 547.1 431.5 432.6 1983-2013 Kerosene-Type Jet Fuel 26,119.1 27,197.0 28,168.9 27,226.7 25,645.0 27,379.5 1983-2013 Propane (Consumer Grade) 26,164.7 24,627.2 25,506.9 30,382.5 31,250.8 38,981.9 1983-2013 Kerosene 1,302.3 897.9 1,049.8 1,199.7 1,224.4 1,318.9 1983-2013 No. 1 Distillate 197.2 124.8 141.7 228.9 336.0 947.3 1983-2013 No. 2 Distillate 148,472.9 149,527.5 153,402.1 152,957.9 149,298.1 160,704.2 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013 Ultra Low-Sulfur 140,589.9 143,645.5 145,899.9 142,352.7 139,922.9 151,092.7 2007-2013 Low-Sulfur 1,976.7 1,020.9 2,521.9 2,944.3 2,205.9 3,904.5 1994-2013 High-Sulfur

40

,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vtr_mgalpd_m.htm"

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vwr_mgalpd_m.htm"

42

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

43

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

44

Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel.  

Science Conference Proceedings (OSTI)

For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to get than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.

Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.

2010-10-01T23:59:59.000Z

45

Ohio Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Imports of Residual Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2000: 0: 0: 0: 0: 0: 108: 0: 0: 0: 0: 0: 27: 2001: 0: 44 ...

46

Residual fuel outlook - 1981 through 1995. Final report  

SciTech Connect

This report forecasts the future availability of residual fuel and its implications to the marine industry. The results are based on the completion of three separate tasks. The first examines past trends and recent developments in worldwide supply and demand markets for residual and other fuels, while the second investigates upgrading and expansion activities by the refining industry. The combination of these efforts produces an overview of the worldwide residual market and a complete understanding of refiners' economic and technical decision factors determining final product mix production. The last task utilizes information gained in previous tasks to review available longterm forecasts and their underlying assumptions. The forecasts completed by the National Petroleum Council (NPC) were utilized for a depiction of residual availability in 1985, while the Department of Energy's (DOE) Midterm Energy Forecasting System (MEFS) was utilized and adjusted to provide estimates of residual availability in 1990 and 1995.

Varndell, T.B.

1982-03-01T23:59:59.000Z

47

Crop residues as a fuel for power generation  

DOE Green Energy (OSTI)

Crop residues could serve as an alternative energy source for producing electric power and heat in agricultural regions of the United States. Nearly 2 quads of residues are estimated to be available as a sustainable annual yield. These can substitute for up to one quad of conventional fuels used to generate electricity and up to an additional quad of petroleum and natural gas currently used for producing heat. The most promising routes to residue conversion appear to be regional generators sized in the megawatt range, and the mixing of residues with coal for burning in coal power plants. Costing farmers from $0.70 to $1.25 per million Btu, to harvest and prepare for use as a fuel, residues can be a competitive renewable energy supply.

Bhagat, N.; Davitian, H.; Pouder, R.

1979-07-01T23:59:59.000Z

48

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

49

Diesel engine lubrication with poor quality residual fuel  

Science Conference Proceedings (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

50

Towards greener aviation : a comparative study on the substitution of standard jet fuel with algal based second generation biofuels.  

E-Print Network (OSTI)

??The negative environmental impact of the aviation industry, related mainly to the gaseous emissions from turbine exhausts, is increasing with the increased demand on travel. (more)

Haddad, Mona Abdul Majid

2011-01-01T23:59:59.000Z

51

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

52

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

2,393.2 702.7 3,804.5 3,037.5 W 134.0 See footnotes at end of table. 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District 352 Energy Information Administration ...

53

Residual fuel consumption in the U.S. continues to decline - Today ...  

U.S. Energy Information Administration (EIA)

Crude oil , gasoline, heating ... in the late 1970s, demand for residual fuel oil in the United ... Changes on both the residual fuel supply and demand side of the ...

54

Page i of 43 DOD-DOE Workshop Summary and Action Plan: Fuel Cells in Aviation  

E-Print Network (OSTI)

..........................................................................................3 The Office of the Secretary of Defense nonessential loads (galleys, in-flight entertainment) can be used to gradually introduce this technology to in-service operation. Applying fuel cells in this way can remove these loads from the power system, decreasing the size

55

Aviation forecasting and systems analyses  

SciTech Connect

The 9 papers in this report deal with the following areas: method of allocating airport runway slots; method for forecasting general aviation activity; air traffic control network-planning model based on second-order Markov chains; analyzing ticket-choice decisions of air travelers; assessing the safety and risk of air traffic control systems: risk estimation from rare events; forecasts of aviation fuel consumption in Virginia; estimating the market share of international air carriers; forecasts of passenger and air-cargo activity at Logan International Airport; and forecasting method for general aviation aircraft and their activity.

Geisinger, K.E.; Brander, J.R.G.; Wilson, F.R.; Kohn, H.M.; Polhemus, N.W.

1980-01-01T23:59:59.000Z

56

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 Kerosene-Type Jet Fuel 40,136.3 39,913.9 37,954.6 34,775.2 33,272.0 32,545.7 1983-2012 Propane (Consumer Grade) 3,263.4 2,672.2 3,671.1 3,871.2 4,457.3 5,556.4 1983-2012 Kerosene 139.7 46.0 39.8 30.3 27.1 21.0 1983-2012 No. 1 Distillate 161.0 102.0 100.9 107.8 108.9 108.5 1983-2012 No. 2 Distillate 24,345.6 20,801.6 17,757.7 15,767.1 13,802.1 12,536.7 1983-2012 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2012 Ultra Low-Sulfur 12,415.9 12,419.4 12,458.2 11,698.0 10,441.1 10,608.9 2007-2012 Low-Sulfur 7,720.2 6,037.6 3,392.4 3,186.1 2,579.3 1,185.4 1994-2012 High-Sulfur 3,419.6 1,403.5 1,028.3 448.8 402.0 427.5 1994-2012 No. 2 Fuel Oil 789.9 941.0 878.9 434.2 379.7 314.9

57

Aviation Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aviation Management Aviation Management Aviation Management Executive Secretariat Energy Reduction at HQ Facilities and Infrastructure Federal Advisory Committee Management Freedom...

58

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

DOE Green Energy (OSTI)

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

59

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Gasoline and Diesel Fuel Update (EIA)

Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History Residual Fuel Oil 11,012.1 9,799.5 9,875.4 10,018.0 9,930.4 9,430.3 1983-2013 Sulfur Less Than or Equal to 1% 3,072.6 2,251.1...

60

Aviation safety analysis  

E-Print Network (OSTI)

Introduction: Just as the aviation system is complex and interrelated, so is aviation safety. Aviation safety involves design of aircraft and airports, training of ground personnel and flight crew members' maintenance of ...

Ausrotas, Raymond A.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A case for biofuels in aviation  

DOE Green Energy (OSTI)

In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown at major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.

NONE

1996-12-31T23:59:59.000Z

62

Fuel gas production from animal residue. Dynatech report No. 1551  

DOE Green Energy (OSTI)

A comprehensive mathematical model description of anaerobic digestion of animal residues was developed, taking into account material and energy balances, kinetics, and economics of the process. The model has the flexibility to be applicable to residues from any size or type of animal husbandry operation. A computer program was written for this model and includes a routine for optimization to minimum unit gas cost, with the optimization variables being digester temperature, retention time, and influent volatile solids concentration. The computer program was used to determine the optimum base-line process conditions and economics for fuel gas production via anaerobic digestion of residues from a 10,000 head environmental beef feedlot. This feedlot at the conditions for minimum unit gas cost will produce 300 MCF/day of methane at a cost of $5.17/MCF (CH/sub 4/), with a total capital requirement of $1,165,000, a total capital investment of $694,000, and an annual average net operating cost of $370,000. The major contributions to this unit gas cost are due to labor (37 percent), raw manure (11 percent), power for gas compression (10 percent), and digester cost (13 percent). A conceptual design of an anaerobic digestion process for the baseline conditions is presented. A sensitivity analysis of the unit gas cost to changes in the major contributions to unit gas cost was performed, and the results of this analysis indicate areas in the anaerobic digestion system design where reasonable improvements could be expected so as to produce gas at an economically feasible cost. This sensitivity analysis includes the effects on unit gas cost of feedlot size and type, digester type, digester operating conditions, and economic input data.

Ashare, E.; Wise, D.L.; Wentworth, R.L.

1977-01-14T23:59:59.000Z

63

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

64

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

65

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

66

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

67

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

68

Ohio Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

69

Wisconsin Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

70

Michigan Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

71

Vermont Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

72

Midwest (PADD 2) Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

73

Wood Residues as Fuel Source for Lime Kilns  

E-Print Network (OSTI)

One of the main obstacles to total energy self sufficiency of kraft mills appears to be the fossil fuel requirements of the lime kilns. If an economical technology can be developed which allows fossil fuel to be replaced in whole or in part by wood-based fuel, the savings in fossil fuel by the pulp and paper industry would be very substantial. Our study focuses around the direct in-situ combustion of hog fuel fed from the cold feed end in order to substantially reduce the fossil fuel fired from the hot product discharge end of the lime kiln. Thus far we have carried out two series of tests using two different pilot-scale kilns and dry limestone in the first test series and mill produced lime mud in the second test series. Mill scale trials have just been completed and the preliminary results indicate that our approach is potentially a very cost-effective and simple option to substantially reduce or possibly eliminate fossil-fuel usage in lime kilns.

Azarniouch, M. K.; Philp, R. J.

1984-01-01T23:59:59.000Z

74

Methods for assessing the stability and compatibility of residual fuel oils  

SciTech Connect

The declining quality of residual fuel oil is of significant concern to residual fuel oil users in the electric utility industry. This project was concerned with the specific problems of instability (sediment formation or viscosity increases) and incompatibility (formation of sediment on blending with another fuel or cutter stock) which can adversely affect the fuel storage and handling systems. These problems became more severe in the late 70's and early 80's with the decline in quality of refinery feedstocks and an increase in severity of processing for conversion of resid to distillate products. Current specifications and quality control tests are inadequate to prevent or even predict problems due to instability or incompatibility. The objective of this project was to evaluate/develop rapid simple tests which utilities can use to anticipate and prevent problems from instability/incompatibility. 22 refs., 23 figs., 23 tabs.

Anderson, R.P.; Reynolds, J.W. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1989-11-01T23:59:59.000Z

75

Molecular gas in early-type galaxies: Fuel for residual star formation  

E-Print Network (OSTI)

Abstract: Molecular gas in early-type galaxies: Fuel for residual star formation Timothy A. Davis Survey 2. The ATLAS3D CARMA Survey 3. Kinematic Misalignments 4. Origin of the molecular gas The ATLAS3D results: - 23% of early-type galaxies have significant molecular gas reservoirs - Detection rate

Bureau, Martin

76

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

Not available. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

77

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

No data reported. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

78

Corrosion in Commercial Aviation  

Science Conference Proceedings (OSTI)

...upper fuselage resulted in federal airworthiness directives, establishing requirements to prevent or control corrosion in aircraft. The Department of Transportation, Federal Aviation Administration (FAA) Title 14 CFR Parts 121, 129, and 135 require that the maintenance and inspection programs include...

79

Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes  

SciTech Connect

A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs.

Forsberg, C.W.

1997-03-01T23:59:59.000Z

80

Microstructure, residual stress, and mechanical properties of thin film materials for a microfabricated solid oxide fuel cell  

E-Print Network (OSTI)

The microstructure and residual stress of sputter-deposited films for use in microfabricated solid oxide fuel cells are presented. Much of the work focuses on the characterization of a candidate solid electrolyte: Yttria ...

Quinn, David John, Sc. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Aviation Weather Information Requirements Study  

Science Conference Proceedings (OSTI)

The Aviation Safety Program (AvSP) has as its goal an improvement in aviation safety by a factor of 5 over the next 10 years and a factor of 10 over the next 20 years. Since weather has a big impact on aviation safety and is associated with 30 percent ...

Keel Byron M.; Stancil Charles E.; Eckert Clifford A.; Brown Susan M.; Gimmestad Gary G.; Richards Mark A.

2000-06-01T23:59:59.000Z

82

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Annual Energy Outlook 2012 (EIA)

3,173.3 2,917.4 2,860.6 2,583.8 3,410.3 2,073.8 1983-2012 Sulfur Greater Than 1% 5,046.1 6,554.0 6,931.4 8,130.3 8,790.3 6,759.3 1983-2012 No. 4 Fuel Oil 260.4 152.5 121.3 W 103.7...

83

,"U.S. Residual Fuel Oil Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_c_nus_eppr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_c_nus_eppr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

84

TRANSPORTATION CENTER--NORTHWESTERN UNIVERSITY Aviation Symposium: The Future for Aviation  

E-Print Network (OSTI)

TRANSPORTATION CENTER--NORTHWESTERN UNIVERSITY Aviation Symposium: The Future for Aviation April The Transportation Center has organized a special Aviation Symposium focusing on important aviation industry topics, Professor of Transportation at Northwestern University and former Director of the Transportation Center

Bustamante, Fabián E.

85

Addendum to methods for assessing the stability and compatibility of residual fuel oils  

Science Conference Proceedings (OSTI)

An improved method for predicting the compatibility or incompatibility which will result on the blending of two or more residual fuel oils is presented. Incompatability (formation of sludge on blending of two fuels) results when the solvency power of a blend is inadequate to keep asphaltenes in solution. Prediction and thereby prevention of incompatibility requires the use of two fuel parameters. One is a measure of solvency power (i.e.,aromaticity); an adequate measure is the Bureau of Mines Correlation Index (BMCI). The second parameter required is a measure of solvency required to completely dissolve the asphaltenes. This parameter is the toluene equivalence which is expressed as the minimum percent of toluene which is required in a toluene/heptane blend to completely dissolve the asphaltene. In earlier work, complete solubility was determined by a spot test. That method was a tedious trial and error procedure but a more important problem was that it was not possible to obtain reproducible results with a number of fuels. A new method which appears to have overcome both of these problems has been developed. The new procedure is a titration method in which the fuel is dissolved in toluene and titrated in the endpoint,''i.e., the point at which precipitation of asphaltenes occurs. Precipitation of asphaltenes is detected by examination of a drop of solution under a microscope. Polarized light is used to distinguish between waxes and precipitated asphaltenes. The entire procedure can be completed in 30 minutes and does not require expensive equipment. 6 refs., 6 figs., 2 tabs.

Anderson, R.P.; Pearson, C.D. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1991-06-01T23:59:59.000Z

86

Economics of biomass fuels for electricity production: a case study with crop residues  

E-Print Network (OSTI)

In the United Sates and around the world, electric power plants are among the biggest sources of greenhouse gas emissions which the Intergovernmental Panel on Climate Change argued was the main cause of climate change and global warming. This dissertation explores the factors which may induce electricity producers to use biomass fuels for power generation and thereby mitigate the impact of greenhouse gas emissions. Analyses in this dissertation suggest that there are two important factors which will play a major role in determining the future degree of bioelectricity production: the price of coal and the future price of carbon emissions. Using The Forest and Agricultural Sector Optimization ModelGreen House Gas version (FASOMGHG) in a case study examining the competitiveness of crop residues, this dissertation finds that crop residues currently cost much more than coal as an electricity generation feedstock because they have lower heat content and higher production /hauling costs. For them to become cost competitive with coal, the combined costs of production and hauling must be cut by more than half or the coal price needs to rise. In particular, for crop residues to have any role in electricity generation either the price of coal has to increase to about $43 per ton or the carbon equivalent price must rise to about $15 per ton. The simulation results also show that crop residues with higher heat content such as wheat residues will have greater opportunities in bioelectricity production than the residues with lower heat content. In addition, the analysis shows that improvements in crop yield do not have much impact on bioelectricity production. However, the energy recovery efficiency does have significant positive impact on the bioelectricity desirability but again only if the carbon equivalent price rises substantially. The analysis also shows the desirability of cofiring biomass as opposed to 100% replacement because this reduces haling costs and increases the efficiency of heat recovery. In terms of policy implications, imposing carbon emission restrictions could be an important step in inducing electric power producers to include biofuels in their fuelmix power generation portfolios and achieve significant greenhouse gas emission reductions.

Maung, Thein Aye

2008-08-01T23:59:59.000Z

87

Impact of Aviation on Climate: Research Priorities  

Science Conference Proceedings (OSTI)

Though presently small in magnitude, aviations future impact on climate will likely increase with the absence of effective mitigation measures. With the exception of CO2 emissions, climate impacts of aviation emissions are quite uncertain, and ...

Guy P. Brasseur; Mohan Gupta

2010-04-01T23:59:59.000Z

88

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

89

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

90

Patricia Hagerty, Aviation Program Analyst - Bio | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Hagerty, Aviation Program Analyst - Bio Patricia Hagerty, Aviation Program Analyst - Bio HagertyPatPersonalProfile.pdf More Documents & Publications Ferrin Moore, Senior...

91

Patricia Hagerty, Aviation Program Analyst  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF AVIATION MANAGEMENT Personal Profile Name: Patricia L. "Pat" Hagerty Title: Aviation Program Analyst Organization: Office of Aviation Management/MA-30 Address: Headquarters, United States Department of Energy 1000 Independence Avenue S.W. Washington, D.C. 20585 E-mail Address: patricia.hagerty@hq.doe.gov Phone Number: Office: (202) 586-5489, Mobile: (240) 477-3671 Fax Number: (202) 586-6008 Field of Expertise/ Experience: Prior to joining the Office of Aviation Management on March 28, 2008, Pat was a Transportation Industry Analyst (TIA) in the Department of Transportation's Office of the General Counsel, Aviation Consumer Protection Division. As a TIA, Pat evaluated domestic and foreign air carriers to ensure compliance with existing consumer protection

92

A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask  

Science Conference Proceedings (OSTI)

This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

Sanders, T.L. (Sandia National Labs., Albuquerque, NM (United States)); Jordan, H. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Pasupathi, V. (Battelle, Columbus, OH (United States)); Mings, W.J. (USDOE Idaho Field Office, Idaho Falls, ID (United States)); Reardon, P.C. (GRAM, Inc., Albuquerque, NM (United States))

1991-09-01T23:59:59.000Z

93

Aviation emission inventory development and analysis  

Science Conference Proceedings (OSTI)

An up to date and accurate aviation emission inventory is a prerequisite for any detailed analysis of aviation emission impact on greenhouse gases and local air quality around airports. In this paper we present an aviation emission inventory using real ... Keywords: Air traffic, Aviation emission, Emission inventory, Environmental modelling

Viet Van Pham; Jiangjun Tang; Sameer Alam; Chris Lokan; Hussein A. Abbass

2010-12-01T23:59:59.000Z

94

Figure HL1. U.S. Sales of Distillate and Residual Fuel Oils by ...  

U.S. Energy Information Administration (EIA)

Sales of Fuel Oil and Kerosene in 2009 . ... the need for electric utilities to consume distillate fuel to meet peak summer generation loads remained ...

95

Ash cloud aviation advisories  

SciTech Connect

During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

1992-06-25T23:59:59.000Z

96

General Aviation Aircraft Reliability Study  

Science Conference Proceedings (OSTI)

This reliability study estimates Complex General Aviation (GA) Aircraft System reliability. As part of an effort to successfully improve the safety and reliability of the next generation of GA aircraft, a benchmarking of the current reliability of GA ...

Pettit Duane; Turnbull Andrew

2001-02-01T23:59:59.000Z

97

HEFA and F-T jet fuel cost analyses  

E-Print Network (OSTI)

Aviation and the Environment 2. HEFA jet fuel from vegetable oil bottom-up cost study 3. HEFA jet fuel from microalgae bottom-up cost

Nick Carter; Michael Bredehoeft; Christoph Wollersheim; Hakan Olcay; James Hileman; Steven Barrett; Website Lae. Mit. Edu

2012-01-01T23:59:59.000Z

98

Idaho Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene-Type Jet Fuel Refiner Sales Volumes; Idaho Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

99

Effect of residual stress on the life prediction of dry storage canisters for used nuclear fuel  

E-Print Network (OSTI)

Used nuclear fuel dry storage canisters will likely be tasked with holding used nuclear fuel for a period longer than originally intended. Originally designed for 20 years, the storage time will likely approach 100 years. ...

Black, Bradley P. (Bradley Patrick)

2013-01-01T23:59:59.000Z

100

New England (PADD 1A) Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Biofuels for Aviation: More Future Land Grabbing and Deforestation for Agrofuels to Justify Todays Airport Expansion?  

E-Print Network (OSTI)

Biofuels and efficiency gains are the aviation industrys two green promises, used to justify never-ending aviation expansion in the face of growing public awareness and concern over climate change. Biofuels play an integral role in the aviation industrys lobbying strategy, even though biofuels are not yet permitted for use in aviation fuel. However, aviation biofuels are not just a lobbying gimmick. Oil and biotech companies, airlines and aircraft manufacturers, government agencies (particularly in the US) and venture capitalists are investing large sums into research and development of biofuels for aircraft. Recent test flights have shown that biofuel use in aviation is technically possible. Two types of aviation biofuels are in the process of being certified, i.e. licensed for use in aircraft: Fischer-Tropsch fuel from biomass as well as fossil fuels, and jet fuel from hydrotreated vegetable oil. The latter has been tested in four test flights and could be certified for commercial use as early as 2010. There are strong vested interests behind those developments including the military and in particular the US Air Force, which is committed to sourcing half its fuel in the lower 48 US states from domestic non-oil sources (coal, natural gas and biomass) by

unknown authors

2009-01-01T23:59:59.000Z

102

An Operations Research approach to aviation security  

E-Print Network (OSTI)

Since the terrorist attacks of September 11, 2001, aviation security policy has remained a focus of national attention. We develop mathematical models to address some prominent problems in aviation security. We explore ...

Martonosi, Susan Elizabeth

2005-01-01T23:59:59.000Z

103

Emergency Guidebook for General Aviation Airports  

E-Print Network (OSTI)

Emergency Guidebook for General Aviation Airports A Guidebook for Municipal Airport Managers #12;Emergency Guidebook for General Aviation Airports Published by: Minnesota Airport Technical Assistance................................................................................................................................................1 Developing an Airport Emergency Plan

Janssen, Michel

104

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network (OSTI)

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio Committee Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported

Victoria, University of

105

Aviation Sustainable Biofuels: An Asian Airline Perspective  

E-Print Network (OSTI)

Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

106

Aviation Manager | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Aviation Manager | National Nuclear Security Administration Aviation Manager | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Joseph Ginanni Aviation Manager Joseph Ginanni Joseph Ginanni Role: Aviation Manager Award: U.S. General Services Administration (GSA) Federal Aviation Professional Award

107

Aviation Manager | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Aviation Manager | National Nuclear Security Administration Aviation Manager | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Joseph Ginanni Aviation Manager Joseph Ginanni Joseph Ginanni Role: Aviation Manager Award: U.S. General Services Administration (GSA) Federal Aviation Professional Award

108

Ferrin Moore, Senior Aviation Policy Officer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ferrin Moore Ferrin Moore Title: Senior Aviation Policy Officer Organization: Office of Aviation Management/MA-30 Address: Headquarters, United States Department of Energy 1000 Independence Avenue S.W. Washington, D.C. 20585 E-mail Address: Ferrin.Moore@hq.doe.gov Phone Number: Office: (202) 586-6171, Mobile: Fax Number: (202) 586-6008 Biographical Summary: Ferrin Moore is a highly experience aviation manager and leader with 30 years of aviation experience in the private and government sector. Prior to joining the Office of Aviation Management Ferrin served 15 years with the Federal Aviation Administration as an Aviation Safety Inspector and Manager. While in the private sector, he worked for United Airlines Maintenance Division in San Francisco and Washington D.C.

109

Fuel Cells & Renewable Portfolio Standards  

E-Print Network (OSTI)

.....................................................12 SOFC Battery Range Extender Auxiliary Power Unit (SOFC) as Military APU Replacements" (presentation, DOD-DOE Workshop on Fuel Cells in Aviation cell plasma lighting demonstration, a solid oxide fuel cell (SOFC) battery range extender APU

110

New Jersey No. 2 Fuel Oil Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: New Jersey No. 2 Fuel Oil Refiner Sales Volumes; New Jersey Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

111

Arkansas Kerosene-Type Jet Fuel Retail Sales by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Arkansas Kerosene-Type Jet Fuel Refiner Sales Volumes; Arkansas Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 ...

112

Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Accurate prediction of groundwater contamination from solid-waste disposal sites requires leaching rates for fossil fuel combustion waste chemicals. In a wide-ranging literature review, this study obtained data on 28 inorganic constituents and identified the need for new data to improve leachate composition prediction models.

1987-08-01T23:59:59.000Z

113

DOE Federal Aviation Professional Awards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Aviation Program Awards Federal Aviation Program Awards NOMINATION FORM ENTRIES MUST BE MAILED OR FAXED NOT LATER THAN JULY 14, 2006. Please type your information and use a separate form for each entry. Please attach the "Nomination Criteria Questionnaire" and up to four pages of justification to each form. In the justification, please describe your program-number of aircraft, number of people, mission, flying hours, cost of program, etc. Send to: Michael Miles, GSA, 1800 F St., NW, Room G-219, Washington, DC, 20405, or FAX 202-501-0349. For a digital copy of the nomination forms, send an e-mail to michael.miles@gsa.gov. Name of Professional: ___MICHAEL W. L. ASHER_________________ (Must be a civilian Federal Employee; contractors and uniformed military members are not eligible.)

114

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

115

Development of an autoland system for general aviation aircraft  

E-Print Network (OSTI)

Accidents due to engine failure, pilot disorientation or pilot incapacitation occur far more frequently in general aviation than in commercial aviation, yet general aviation aircraft are equipped with less safety-enhancing ...

Siegel, Diana

2012-01-01T23:59:59.000Z

116

Fatigue Fractures of General Aviation Aircraft Wings  

Science Conference Proceedings (OSTI)

... on general aviation airplanes is greatly affected by low-altitude flying, such as in pipeline patrol, commuter, and aerial survey and photography operations.

117

BADGER, a Probe for Nondestructive Testing of Residual Boron-10 Absorber Density in Spent-Fuel Storage Racks: Development and Demons tration  

Science Conference Proceedings (OSTI)

The in-service degradation of Boraflex -- a neutron absorber material used in spent-fuel racks for criticality control -- is a problem at some 50 U.S. nuclear plants. EPRI has developed the BADGER probe to nondestructively measure the residual boron-10 areal density in Boraflex. The probe has been demonstrated in BWR and PWR spent-fuel pools. BADGER measurements can be used to monitor the loss of boron-10 and confirm the integrity of the remaining Boraflex.

1997-12-09T23:59:59.000Z

118

Ferrin Moore, Senior Aviation Policy Officer - Bio | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ferrin Moore, Senior Aviation Policy Officer - Bio Ferrin Moore, Senior Aviation Policy Officer - Bio FerrinMoorePersonalProfile.pdf More Documents & Publications...

119

Nevada Field Office recognized for its outstanding aviation program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Williams, Director of Maintenance for WSI-SRS Aviation Operations Department at the Savannah River Site, is the recipient of the 2012 John Cooley Aviation OperationsSupport...

120

Environmental and economic assessment of microalgae-derived jet fuel  

E-Print Network (OSTI)

Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

Carter, Nicholas Aaron

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2012 2013 Projected Aviation Program Costs  

E-Print Network (OSTI)

2012 ­ 2013 Projected Aviation Program Costs UND Aerospace offers two aviation degree programs with a total of seven academic majors. Each has its own flight course requirements, which affect the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey of Flight

Delene, David J.

122

2013-2014 Projected Aviation Program Costs  

E-Print Network (OSTI)

06/21/13 2013-2014 Projected Aviation Program Costs UND Aerospace offers two aviation degree the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey Certificate $ 11,574 **NOTE: Total flight costs are based on averages and are subject to change. Also, the ATC

Delene, David J.

123

AVIATION BOARD OF DIRECTORS BYLAWS AND PROTOCOLS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AVIATION BOARD OF DIRECTORS AVIATION BOARD OF DIRECTORS BYLAWS AND PROTOCOLS The Department of Energy strives to manage its Aviation Program toward the highest standards of safety, efficiency, fairness in contracting, preservation of competition in the private sector, open communication, prudent property management, and the best examples of resource management. Toward these ends, the Department has established a management structure led by a Board of Directors comprising active Federal employee aviation managers from the Department. AUTHORITY: The following authorities serve as basis for this structure and system: Office of Management and Budget Circular A-126, FMR 102.33, DEAR 109, DOE Order 440.2B, Aviation Management Review Team Report, March 1999, and Secretary of Energy Appointment and Delegation of Authority, April 15, 1999.

124

Aviation Management Professional Award Nomination for:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Professional Nomination for Professional Nomination for Managerial/Official Award: Joseph M. Ginanni Aviation Manager US Department of Energy/National Nuclear Security Administration, Nevada Site Office Bio Joseph M. Ginanni Aviation Manager National Nuclear Security Administration Nevada Site Office Mr. Ginanni has worked for the Nevada Site Office (NSO) since 1991. For the past five years, he has served as the NSO Aviation Manager, managing and overseeing the Management and Operating contractor's aviation services department and their operation and maintenance of NSO's five aircraft (3 Beechcraft King Airs and 2 Bell 412s) which are stationed at both Nellis AFB, NV and Andrews AFB, MD. Prior to his position as Aviation Manager, he was the team leader for the Radioactive Waste

125

Beginner's Guide to Aviation Efficiency  

E-Print Network (OSTI)

Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel

126

Combustion of EDS mid-distillate and refined shale-oil residual fuel in a gas turbine with large single-combustion chamber  

DOE Green Energy (OSTI)

The test fuels included a coal derived mid distillate recycle liquid from the EDS coal liquefaction process, produced by Exxon, and a hydroprocessed residual Paraho shale oil fraction originating from a US Government sponsored program. A BBC (Brown Boveri Co.) type 9 fully equipped 35 MW capacity gas turbine, located at BBC's test facilities near Basel, Switzerland, was utilized. The objective of the combustion test was to establish whether these alternate fuels can be fired in large single combustor turbines without deleterious effects to the turbine or environment. Nitrogen in the shale oil was on the order of 0.4 wt% while the EDS distillate contained slightly less than 10 wt% hydrogen. The test program entailed the firing of 600 barrels of each test fuel at varying turbine loads and a comparison of the results with those from a base case petroleum diesel fuel. Fuel bound nitrogen was not found to contribute significantly to NO/sub x/ emissions in contrast to other work reported earlier in subscale gas turbine tests. Water injection at 0.6 to 0.7 water-fo-fuel mass ratios was effective in meeting EPA requirements for NO/sub x/ emissions from the diesel, shale and coal derived fuels at full turbine load. Low fuel hydrogen content did not cause any operational or emission problems. Combustor wall temperature, the major problem with low hydrogen fuels, rose only slightly within acceptable limits.

Not Available

1983-01-01T23:59:59.000Z

127

Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell  

SciTech Connect

A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

Borole, Abhijeet P [ORNL; Hamilton, Choo Yieng [ORNL; Schell, Daniel J [National Renewable Energy Laboratory (NREL)

2012-01-01T23:59:59.000Z

128

DOE Federal Aviation Program Awards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Awards Program Awards NOMINATION FORM ENTRIES MUST BE MAILED OR FAXED NOT LATER THAN May 19, 2006. Please type your information and use a separate form for each entry. Please attach the "Nomination Criteria Questionnaire" and up to four pages of justification to each form. In the justification, please describe your program-number of aircraft, number of people, mission, flying hours, cost of program, etc. Send to: David N. Lopez, Headquarters U.S. Department of Energy, Office of Aviation Management/MA-30, Room 4B-218, 1000 Independence Ave, NW, , Washington, DC, 20585, or FAX 202-586-6008. Please send digital copies of the nomination forms by e-mail to david.lopez@hq.doe.gov. Name of Program: ______________________________________________________

129

DOE Federal Aviation Professional Awards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Professional Awards Professional Awards NOMINATION FORM ENTRIES MUST BE MAILED OR FAXED NOT LATER THAN May 19, 2006. Please type your information and use a separate form for each entry. Please attach the "Nomination Criteria Questionnaire" and up to four pages of justification to each form. In the justification, please include a brief biography of the nominee and a description of the nominee's duties. Send to: David N. Lopez, Headquarters U.S. Department of Energy, Office of Aviation Management/MA-30, Room 4B-218, 1000 Independence Ave, NW, , Washington, DC, 20585, or FAX 202-586-6008. Please send digital copies of the nomination forms by e-mail to david.lopez@hq.doe.gov. Name of Professional: ___________________________________________________

130

Federal Aviation Administration | Open Energy Information  

Open Energy Info (EERE)

Aviation Administration Aviation Administration Jump to: navigation, search Logo: Federal Aviation Administration Name Federal Aviation Administration Address 800 Independence Ave., SW Place Washington, District of Columbia Zip 20591 Year founded 1958 Website http://www.faa.gov/ Coordinates 38.8872756°, -77.0230138° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8872756,"lon":-77.0230138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Residual Fuel Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

132

Current and historical trends in general aviation in the United States  

E-Print Network (OSTI)

General aviation (GA) is an important component of aviation in the United States. In 2011, general aviation and air taxi operations represented 63% of all towered operations in the United States, while commercial aviation ...

Shetty, Kamala Irene

2012-01-01T23:59:59.000Z

133

Biofuels Jet fuel  

This is a process for producing jet fuel from biological feed stock, including animal fats and oils, vegetable oils, and crop seed oils. The aviation and fuel-producing communities would have the option of leveraging available renewable and/or ...

134

Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System  

SciTech Connect

In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

Allgood, Glenn O [ORNL; Olama, Mohammed M [ORNL; Lake, Joe E [ORNL; Brumback, Daryl L [ORNL

2010-01-01T23:59:59.000Z

135

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

136

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1  

Science Conference Proceedings (OSTI)

Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

137

The U.S. aviation system to the year 2000  

E-Print Network (OSTI)

Introduction: 1.1 The Future of the Aviation System. It is nothing if not presumptuous to look ahead twenty years in any phase of human activity. This seems particularly true in civil aviation where the certificated airlines ...

Ausrotas, Raymond A.

1982-01-01T23:59:59.000Z

138

Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards  

Science Conference Proceedings (OSTI)

Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection ...

Gimmestad Gary G.; Papanicolopoulos Chris D.; Richards Mark A.; Sherman Donald L.; West Leanne L.

2001-06-01T23:59:59.000Z

139

An assessment of the health implications of aviation emissions regulations  

E-Print Network (OSTI)

An exploration of the health implications of aviation emissions regulations is made by assessing the results of a study of aviation's effects on United States air quality mandated by the Energy Policy Act of 2005. The ...

Sequeira, Christopher J

2008-01-01T23:59:59.000Z

140

Future trends in local air quality impacts of aviation  

E-Print Network (OSTI)

The International Civil Aviation Organization is considering the use of cost-benefit analyses to estimate interdependencies between the industry costs and the major environmental impacts in policy-making for aviation. To ...

Rojo, Julien Joseph

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Benefit-cost assessment of aviation environmental policies  

E-Print Network (OSTI)

This thesis aids in the development of a framework in which to conduct global benefit-cost assessments of aviation policies. Current policy analysis tools, such as the aviation environmental portfolio management tool (APMT), ...

Gilmore, Christopher K. (Christopher Kenneth)

2012-01-01T23:59:59.000Z

142

The air quality and health impacts of aviation in Asia  

E-Print Network (OSTI)

Aviation in Asia is growing more rapidly than other regions around the world. Adverse health impacts of aviation are linked to an increase in the concentration of particulate matter smaller than 2.5 [mu]m in diameter ...

Lee, In Hwan, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

143

Statistics and Possible Sources of Aviation Turbulence over South Korea  

Science Conference Proceedings (OSTI)

The characteristics of aviation turbulence over South Korea during the recent five years (200308, excluding 2005) are investigated using pilot reports (PIREPs) accumulated by the Korea Aviation Meteorological Agency (KAMA). Among the total of ...

Jung-Hoon Kim; Hye-Yeong Chun

2011-02-01T23:59:59.000Z

144

Alabama Aviation Gasoline All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) Alabama Aviation Gasoline All Sales/Deliveries by Prime Supplier ... Alabama Prices, ...

145

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

146

Impact of Personal Privacy Devices for WAAS Aviation Users  

E-Print Network (OSTI)

Impact of Personal Privacy Devices for WAAS Aviation Users Grace Xingxin Gao, Kazuma Gunning, Todd or monitored. Figure 1 lists some examples of PPDs currently for sale on Internet. They are low-cost jamming [3], potentially aviation users. Figure 1. PPDs for Sale on Internet Aviation users rely on Wide Area

Stanford University

147

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13T23:59:59.000Z

148

HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site  

SciTech Connect

This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered residue were also important for material control and accountability purposes. In summary, the results of the holdup assays were essential for determining compliance with the Waste Acceptance Criteria, Material Control & Accountability, and to ensure that administrative criticality safety controls were not exceeded. This paper discusses the {gamma}-ray assay measurements conducted and the modeling of the acquired data to obtain measured holdup in process equipment, exhaust components, and fixed geometry scrap cans. It also presents development work required to model new acquisition configurations and to adapt available instrumentation to perform the assays.

DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

2005-03-11T23:59:59.000Z

149

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

150

FAQS Job Task Analyses - DOE AVIATION MANAGER (AvM)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGER (AvM) - JOB TASK ANALYSIS MANAGER (AvM) - JOB TASK ANALYSIS Job Analysis Worksheet for Tasks DOE AVIATION MANAGER Task Source Importance Frequency A Establishes goals for the field aviation program based on the anticipated requirements as applicable to DOE/NNSA, the field element, and other DOE/NNSA organizations that may require aviation services. DOE O 440.2C, chng 1 5 1 B Implements DOE/NNSA aviation management and safety policy and establishes the field element's standards for the aviation program that will ensure an effective, safe, secure and cost-efficient operation in accordance with this Order. DOE O 440.2C, chng 1 5 2 C Develops the organization's Aviation Implementation Documents (AID) and annually reviews the AID to ensure that it is current. DOE O 440.2C, chng 1 5 1

151

Production of biocomponent containing jet fuels  

Science Conference Proceedings (OSTI)

Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Further than quality requirements were more aggravated in front of jet fuels. This was generated by ... Keywords: aromatic content, biocomponent, crystallization point, jet fuel, kerosene, vegetable oil

Z. Eller; P. Solymosi; T. Kasza; Z. Varga; J. Hancsk

2011-12-01T23:59:59.000Z

152

FAQS Qualification Card - Aviation Safety Officer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Officer Safety Officer FAQS Qualification Card - Aviation Safety Officer A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-AviationSafetyOfficer.docx Description Aviation Safety Officer Qualification Card More Documents & Publications FAQS Qualification Card - Aviation Manager

153

Contemporary aviation weather sensing technology to improve safety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contemporary aviation weather sensing technology to improve safety and reduce delays and its possible application to air quality monitoring Speaker(s): James E. Evans Date:...

154

FAQS Qualification Card - Aviation Manager | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manager Manager FAQS Qualification Card - Aviation Manager A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-AviationManager.docx Description Aviation Manager Qualification Card More Documents & Publications FAQS Qualification Card - Aviation Safety Officer

155

DOE - Office of Legacy Management -- Bendix Aviation Corporation...  

Office of Legacy Management (LM)

Corporation Kansas City Plant - MO 06 FUSRAP Considered Sites Site: Bendix Aviation Corporation Kansas City Plant (MO.06) Designated Name: Alternate Name: Location: Evaluation...

156

Aviation Safety and Air Traffic Management Analysis - Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

support tools. Visualization and analysis of diverse data sources including flight track, weather, airport, aircraft, ATM elements and geographic data supports aviation safety...

157

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

158

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

Speed Redcutions on Vessel-Based Emissions for InternationalAviation-Related GHG Emissions: A Systems Analysis forthe Environment. Greenhouse Gas Emissions from Aviation and

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

159

FAQS Job Task Analyses - DOE AVIATION SAFETY OFFICER (ASO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SAFETY OFFICER (ASO) - JOB TASK ANALYSIS SAFETY OFFICER (ASO) - JOB TASK ANALYSIS Job Analysis Worksheet for Task DOE AVIATION SAFETY OFFICER Task Source Importance Frequency A Gathers, trends, and analyzes aviation safety performance data to ensure the safety of the field aviation program. DOE O 440.2C, chng 1 4 3 B Conducts periodic assessments of aviation activities to ensure that requirements, policies, and procedures are implemented and followed and prepares reports documenting assessment findings, concerns, and recommendations and tracks corrective actions to help prevent similar occurrences. DOE O 440.2C, chng 1 4 3 C Participates as directed in aviation accident or incident investigations and provides assistance to accident investigation boards during their investigations.

160

Trends of petroleum fuels  

SciTech Connect

Trends in properties of motor gasolines for the years 1942 through 1984; diesel fuels for the years 1950 through 1983; aviation fuels for the years 1947 through 1983; and heating oils for the years 1955 through 1984, have been evaluated based upon data contained in surveys prepared and published by the National Institute for Petroleum and Energy Research (NIPER) formerly the Bartlesville Energy Technology Center (BETC). The surveys for motor gasolines were conducted under a cooperative agreement with the Coordinating Research Council (CRC) and the Bureau of Mines from 1935 through 1948 and in cooperation with the American Petroleum Institute (API) since 1948 for all surveys. The motor gasoline surveys have been published twice annually since 1935 describing the properties of motor gasolines throughout the country. Other surveys prepared in cooperation with API and the Bureau of Mines, the Energy Research and Development Administration, the Department of Energy, and currently NIPER were aviation gasolines beginning in 1947, diesel fuels in 1950, aviation turbine fuels in 1951, and heating oils, formerly burner fuel oils, in 1955. Various companies throughout the country obtain samples of motor gasolines from retail outlets and refinery samples for the other surveys, and analyze the samples using American Society for Testing and Materials (ASTM) procedures. The analytical data are sent to the Bartlesville Center for survey preparation and distribution. A summary report has been assembled from data in 83 semiannual surveys for motor gasolines that shows trends throughout the entire era from winter 19

Shelton, E.M.; Woodward, P.W.

1985-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,  

Gasoline and Diesel Fuel Update (EIA)

41.8 41.8 706.1 57,805.1 57,186.2 19,255.2 18,038.2 37,293.4 February ................................... 603.8 735.2 58,810.1 55,734.5 14,352.8 19,882.7 34,235.5 March ........................................ 693.1 675.6 59,143.7 40,326.8 13,589.5 18,472.2 32,061.7 April .......................................... 816.1 567.3 60,408.7 33,387.8 9,591.6 17,777.5 27,369.1 May ........................................... 925.8 799.7 60,325.7 26,854.4 7,093.1 16,017.5 23,110.5 June .......................................... 950.1 877.4 61,257.3 26,771.1 8,852.7 17,544.1 26,396.8 July ........................................... 1,030.3 884.1 61,401.8 28,838.3 7,254.9 19,950.4 27,205.4 August ...................................... 1,059.8 881.6 61,710.5 34,944.4 7,342.1 20,393.7 27,735.8 September

162

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

01.2 01.2 94.7 61.3 60.3 71.8 65.8 February ............................. 100.6 96.5 56.9 57.3 73.4 65.7 March .................................. 105.0 100.6 59.0 59.6 69.0 68.0 April .................................... 111.4 107.5 66.0 65.3 80.5 75.1 May ..................................... 114.4 110.0 63.3 62.2 68.4 66.1 June .................................... 113.5 107.0 57.7 57.5 58.5 59.8 July ..................................... 113.7 105.3 60.3 59.6 64.6 61.7 August ................................ 114.4 107.1 65.1 64.5 69.5 66.6 September .......................... 114.3 106.8 71.8 71.6 76.4 75.6 October ............................... 115.0 107.1 73.6 73.6 87.1 80.7 November ........................... 115.1 108.4 71.7 72.2 88.7 79.7 December ........................... 115.3

163

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,  

Gasoline and Diesel Fuel Update (EIA)

71.7 71.7 588.5 56,673.6 54,346.7 12,106.5 21,030.6 33,137.1 February ................................... 834.8 890.3 57,750.3 47,277.7 10,579.0 22,424.4 33,003.4 March ........................................ 731.6 757.0 58,791.1 34,964.0 7,414.9 20,425.4 27,840.2 April .......................................... 766.9 730.9 60,322.2 31,714.4 6,811.5 18,166.1 24,977.7 May ........................................... 897.1 789.7 59,572.1 28,454.2 6,772.5 17,383.9 24,156.5 June .......................................... 940.7 714.1 62,704.7 27,177.7 6,415.2 18,715.9 25,131.1 July ........................................... 1,088.6 710.3 62,496.7 28,647.8 7,508.6 19,724.2 27,232.8 August ...................................... 1,028.5 837.4 62,747.5 31,743.2 8,180.1 18,800.6 26,980.7 September

164

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...  

Gasoline and Diesel Fuel Update (EIA)

790.3 6,200.2 648.4 4,283.7 3,323.4 44,204.9 February ... 151.1 456.7 46,811.8 13,168.9 661.0 5,865.0 639.0 3,498.4 4,030.8 40,811.0 March...

165

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

99.6 99.6 92.9 52.3 52.2 67.4 56.6 February ............................. 99.8 93.2 52.2 52.0 62.8 55.2 March .................................. 99.0 93.1 50.5 50.1 59.4 52.8 April .................................... 101.3 96.6 52.8 52.6 56.1 56.0 May ..................................... 105.8 102.2 55.0 54.7 51.7 57.7 June .................................... 106.4 101.6 53.2 53.1 54.9 53.2 July ..................................... 101.8 100.1 51.9 51.3 51.3 52.3 August ................................ 99.2 98.9 53.4 53.1 53.3 54.9 September .......................... 101.3 98.7 55.7 55.2 57.3 58.0 October ............................... 96.8 96.3 54.9 54.1 56.5 57.0 November ........................... 95.4 94.2 57.0 56.3 62.8 60.5 December ........................... 96.0 95.3 59.2 58.6

166

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,  

Gasoline and Diesel Fuel Update (EIA)

64.8 64.8 1,113.8 54,765.4 50,474.8 14,751.6 15,834.7 30,586.3 February ................................... 668.4 1,109.1 51,874.7 53,325.1 15,057.1 18,393.2 33,450.3 March ........................................ 769.5 1,087.5 53,941.3 38,432.9 12,043.4 16,348.0 28,391.3 April .......................................... 802.8 911.4 54,353.2 30,216.7 8,771.4 14,743.5 23,515.0 May ........................................... 973.7 1,080.8 55,284.8 27,798.1 7,705.6 15,130.0 22,835.6 June .......................................... 1,000.6 991.1 56,209.3 28,204.2 9,455.4 13,696.5 23,151.9 July ........................................... 1,063.8 1,300.5 56,468.8 27,811.1 10,786.1 12,367.3 23,153.4 August ...................................... 1,098.5 1,188.9 57,758.7 32,654.7 10,893.1 15,430.4

167

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...  

Annual Energy Outlook 2012 (EIA)

2,083.2 26,581.1 August ... 201.6 810.9 52,026.8 12,609.7 241.1 1,226.9 227.0 450.2 2,304.5 28,715.2 September ... 179.3 713.1...

168

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...  

Annual Energy Outlook 2012 (EIA)

District I January ... 40.3 90.0 10,208.0 3,500.0 227.8 2,856.8 W 306.2 123.4 7,320.4 February ... 53.1 127.4 11,484.5 3,658.7 165.7...

169

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...  

Gasoline and Diesel Fuel Update (EIA)

District I January ... 48.5 92.9 13,156.5 2,264.2 160.7 2,282.7 W 48.2 134.5 5,492.8 February ... 55.9 108.8 13,753.8 2,289.2 147.5...

170

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...  

Gasoline and Diesel Fuel Update (EIA)

District I January ... 65.1 94.0 13,005.3 1,820.3 216.2 2,794.9 W 73.1 103.6 6,203.4 February ... 74.3 96.6 13,308.6 1,702.8 308.8...

171

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

172

Aviation Safety Officer Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

64-2003 64-2003 September 2003 CHANGE NOTICE NO. 1 January 2010 DOE STANDARD AVIATION SAFETY OFFICER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1164-2003 CH-1 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1164-2003 CH-1 iv List of Changes Page/paragraph Change Page ii Change to new FAQS format Page iii Change in approval signature Page iv Added list of changes Page v Updated Table of Contents Page vii Changes to organizational names and

173

Aviation Manager Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1165-2003 September 2003 CHANGE NOTICE NO. 1 December 2009 DOE STANDARD AVIATION MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1165-2003 CH-1 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1165-2003 CH-1 iv List of Changes Page/paragraph Change Page ii Change to new FAQS format Page iii Change in approval signature Page iv Added list of changes Page v Changes to Table of Contents Page vii Changes to organizational names and

174

Federal Aviation Administration retained savings program proposal  

SciTech Connect

Federal legislation allows federal agencies to retain up to 50% of the savings associated with implementing energy efficiency and water conservation measures and practices. Given budget pressures to reduce expenditures, the use of retained savings to fund additional projects represents a source of funds outside of the traditional budget cycle. The Southwest Region Federal Aviation Administration (FAA) has tasked Pacific Northwest National Laboratory (PNNL) to develop a model retained savings program for Southwest Region FAA use and as a prototype for consideration by the FAA. PNNL recommends the following steps be taken in developing a Southwest Region FAA retained savings program: Establish a retained savings mechanism. Determine the level at which the retained savings should be consolidated into a fund. The preliminary recommendation is to establish a revolving efficiency loan fund at the regional level. Such a mechanism allows some consolidation of savings to fund larger projects, while maintaining a sense of facility ownership in that the funds will remain within the region.

Hostick, D.J.; Larson, L.L. [Pacific Northwest National Lab., Richland, WA (United States); Hostick, C.J. [IBP, Inc., Pasco, WA (United States)

1998-03-01T23:59:59.000Z

175

General aviation Omega navigation in the national airspace system  

E-Print Network (OSTI)

Introduction: Omega navigation has great potential as a navigation sensor for general aviation aircraft. Advantages of Omega navigation include signal availability at all altitudes, and no need for overflying of various ...

Wischmeyer, Carl Edward

1976-01-01T23:59:59.000Z

176

Flight test and evaluation of Omega navigation for general aviation  

E-Print Network (OSTI)

A seventy hour flight test program was accomplished to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely ...

Hwoschinsky, Peter V.

1975-01-01T23:59:59.000Z

177

The Meteorological Development Laboratorys Aviation Weather Prediction System  

Science Conference Proceedings (OSTI)

The Meteorological Development Laboratory (MDL) has developed and implemented an aviation weather prediction system that runs each hour and produces forecast guidance for each hour into the future out to 25 h covering the major forecast period of ...

Judy E. Ghirardelli; Bob Glahn

2010-08-01T23:59:59.000Z

178

A general equilibrium analysis of climate policy for aviation  

E-Print Network (OSTI)

Regulation of aviation's contribution to the global problem of climate change is increasingly likely in the near term, but the method agreed upon by most economists-a multi-sectoral market-based approach such as a cap and ...

Gillespie, Christopher Whittlesey

2011-01-01T23:59:59.000Z

179

Issues and Uncertainties Affecting Metrics for Aviation Impacts on Climate  

Science Conference Proceedings (OSTI)

Metrics such as radiative forcing and global warming potential have proven to be useful tools in climate policyrelated studies, including evaluation of the effects of aviation on climate, to relate different emissions to one another in order to ...

Don Wuebbles; Piers Forster; Helen Rogers; Redina Herman

2010-04-01T23:59:59.000Z

180

Comparative analysis of aviation safety information feedback systems  

E-Print Network (OSTI)

In the aviation system, there are several feedback systems to prevent an accident. First of all, the accident and serious incident reporting and investigation system is established by the Chicago Convention. In general, ...

Funahashi, Yoshifuru

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

highest potential to save aviation fuel. highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of contact, and routed through an analysis process to prepare the initiative for presenta- tion to the Air Force's corporate structure. The corporate structure then evaluates and determines the initiatives with the highest potential fuel savings. Fuel-saving efforts focus on six major areas: policy, planning, execution, maintenance, science and technology, and fuel-efficient aircraft systems. The MAF also established a predetermined set of fuel-savings metrics and required reporting. In fiscal year 2011, implemented fuel initiatives saved the MAF more than 42 million gallons of aviation fuel in both

182

The National Energy Modeling System: An Overview 1998 - International...  

Annual Energy Outlook 2012 (EIA)

products include: traditional gasoline (including aviation), reformulated gasoline, No. 2 heating oil, low-sulfur distillate fuel, high- and low-sulfur residual fuel, jet fuel...

183

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

184

Imports of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

185

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

186

Residual Fuel Oil Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

187

Delaware Imports of Residual Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

188

Stocks of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

All stock levels are as of the end of the period. Data may not add to total due to independent rounding. Weekly data for RBOB with Ether, RBOB with Alcohol, ...

189

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network (OSTI)

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

190

AVIATION MANAGER QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

model, and series airplane. This reduction is achieved through a reduction of the maximum zero fuel weight or other means. One instance involves the Boeing business jet, but other...

191

Dynamics of Implementation of Mitigating Measures to Reduce CO2 Emissions from Commercial Aviation  

E-Print Network (OSTI)

Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO2 emissions from aviation. Case studies of historical changes in the aviation industry have ...

Kar, Rahul

2010-07-13T23:59:59.000Z

192

Aviation environmental policy effects on national- and regional-scale air quality, noise, and climate impacts  

E-Print Network (OSTI)

The continued growth of the aviation industry poses a challenge to policy-makers and industry stakeholders as each decision represents a trade-off on efficiency, equity, and environmental impact. The Aviation environmental ...

Wolfe, Philip J. (Philip James)

2012-01-01T23:59:59.000Z

193

The air quality impact of aviation in future-year emissions scenarios  

E-Print Network (OSTI)

The rapid growth of aviation is critical to the world and US economy, and it faces several important challenges among which lie the environmental impacts of aviation on noise, climate and air quality. The first objective ...

Ashok, Akshay

2011-01-01T23:59:59.000Z

194

A system theoretic safety analysis of U.S. Coast Guard aviation mishap involving CG-6505  

E-Print Network (OSTI)

During a 22-month period, between 2008 and 2010, the U.S. Coast Guard experienced seven Class-A aviation mishaps resulting in the loss of 14 Coast Guard aviators and seven Coast Guard aircraft. This represents the highest ...

Hickey, Jon (Jon Patrick)

2012-01-01T23:59:59.000Z

195

Dynamics of implementation of mitigating measures to reduce CO? emissions from commercial aviation  

E-Print Network (OSTI)

Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO? emissions from aviation. Case studies of historical changes in the aviation industry have ...

Kar, Rahul, 1979-

2010-01-01T23:59:59.000Z

196

Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF  

SciTech Connect

A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different fuel injection strategies. Finally, mixture distributions for late injection obtained using quantitative PLIF are compared to predictions of computational fluid dynamics calculations. (author)

Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

2010-10-15T23:59:59.000Z

197

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

Table F9: Residual Fuel Oil Consumption Estimates, 2011 State Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total...

198

Community response to noise from a general aviation airport  

SciTech Connect

The paper provides relationships between noise level and response variables through an analysis of social survey and physical data collected around a small general aviation airport. The responses investigated included annoyance, activity interference, health effects, and non-noise effects of general aviation traffic, such as fear of crashes, air pollution, aircraft lights, house vibration, and television interference. Results indicate a much higher response than that predicted by Schultz (1978), e.g., at 30 NEF, Schultz predicts approximately 15% highly annoyed, compared with 28% in this study.

Birnie, S.E.; Hall, F.L.; Taylor, S.M.

1980-07-01T23:59:59.000Z

199

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

200

The Impact of Climate Policy on U.S. Aviation  

E-Print Network (OSTI)

We evaluate the impact of an economy-wide cap-and-trade policy on U.S. aviation taking the American Clean Energy and Security Act of 2009 (H.R.2454) as a representative example. We use an economywide model to estimate the ...

Winchester, Niven

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

202

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

203

Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.

Dennis, C.B.

1993-09-01T23:59:59.000Z

204

Aviation Enterprises Ltd see Marine Current Turbines Ltd | Open Energy  

Open Energy Info (EERE)

Enterprises Ltd see Marine Current Turbines Ltd Enterprises Ltd see Marine Current Turbines Ltd Jump to: navigation, search Name Aviation Enterprises Ltd see Marine Current Turbines Ltd Sector Marine and Hydrokinetic Website http://http://www.escoot.co.uk Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Aviation_Enterprises_Ltd_see_Marine_Current_Turbines_Ltd&oldid=678251" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties About us

205

Impact of Ground-level Aviation Emissions on Air Quality in the Western United States.  

E-Print Network (OSTI)

??The aviation industry has experienced sustained growth since its inception result- ing in an increase in air pollutant emissions. Exposure to particulate matter less than (more)

Clark, Eric Edward

2010-01-01T23:59:59.000Z

206

A Thermodynamics Based Model for Predicting Piston Engine Performance for Use in Aviation Vehicle Design .  

E-Print Network (OSTI)

??Advances in piston engine technology, coupled with high costs of turbine engines have led many general aviation manufacturers to explore the use of piston engines (more)

Highley, Justin L.

2004-01-01T23:59:59.000Z

207

DOE O 440.2C Admin Chg 1, Aviation Management and Safety  

Directives, Delegations, and Requirements

To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

2011-06-15T23:59:59.000Z

208

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

209

US Navy mobility fuels: Worldwide survey and analysis of both commercial and Navy fuels. Final report  

SciTech Connect

Quality and worldwide availability of distillate fuels have become increasing concerns to the U.S. Department of Defense. In response to these concerns, the David Taylor Research Center (DTRC) has conducted a worldwide survey of such fuels through a contract with the National Institute for Petroleum and Energy Research (NIPER). Representative fuels were collected at both Navy and commercial ports around the world through a NIPER subcontract to ABS Worldwide Technical Services (ABSTECH). The collected fuels were Naval Distillate Fuel (MIL-F-16884H, NATO F-76), Marine Gas Oil (MGO), Heavy Marine Gas Oil (HMGO), and Marine Diesel Fuel (MDF) for the Navy; Automotive/Truck Diesel for the Army; and Aviation Turbine Fuel (MIL-T-5624L, NATO JP-5) for the Naval Air Propulsion Center. The Navy F-76 fuel samples were characterized at NIPER by 44 different fuel property analyses.

Woodward, P.W.; Shay, J.Y.

1989-07-01T23:59:59.000Z

210

Development of an income-based hedonic monetization model for the assessment of aviation-related noise impacts  

E-Print Network (OSTI)

Aviation is an industry that has seen tremendous growth in the last several decades. With demand for aviation projected to rise at an annual rate of 5% over the next 20 to 25 years, it is important to consider technological, ...

He, Qinxian, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

211

Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-Flight Icing, Turbulence, and Volcanic Ash  

Science Conference Proceedings (OSTI)

Advanced Satellite Aviation Weather Products (ASAP) was jointly initiated by the NASA Applied Sciences Program and the NASA Aviation Safety and Security Program in 2002. The initiative provides a valuable bridge for transitioning new and existing ...

John R. Mecikalski; Todd A. Berendes; Wayne F. Feltz; Kristopher M. Bedka; Sarah T. Bedka; John J. Murray; Anthony J. Wimmers; Pat Minnis; David B. Johnson; Julie Haggerty; Ben Bernstein; Michael Pavolonis; Earle Williams

2007-10-01T23:59:59.000Z

212

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

213

Automated safety and training avionics for general aviation aircraft  

E-Print Network (OSTI)

The past decade has seen the U.S. general aviation community plagued by substantial cost increases while operating in an increasingly complex and crowded air traffic control structure. Unfortunately, there has been a corresponding rise in accident rates involving these aircraft. In an attempt to improve safety factors and training programs for this aviation sector, researchers at Texas A&M University are investigating "smart cockpit systems." This research program is titled Automated Safety and Training Avionics (ASTRA). ASTRA research is focused on integrating low-cost, yet sophisticated, computing technology into general aviation aircraft. The system architecture includes a Flight Mode Interpreter (FMI), which provides real-time identification of the aircraft operational maneuvering mode, through interpretation by fuzzy logic of aircraft state variables. This inference controls a Head-Up Display (HUD) to automatically present a unique display format appropriate to the operational situation. The FMI also drives a rule-based Pilot Advisor for generation of alarms and piloting advice. The pilot communicates with ASTRA through the Head-Down Display (HDD), which is configured similarly to the Multi-Function Displays found in many "glass cockpit" aircraft. This configuration permits the pilot to readily access, edit, and display a wide variety of information. The research reported in this thesis was to formally define the performance and test specifications for ASTRA and its various subsystems, as well as to design the system displays. Performance of these research tasks drew heavily on the author's experience as an Army experimental test pilot. Because the FMI is a unique development in modem aeronautics, definition of its functionality and integration with other system components could not rely on existing methodology and called for a imaginative approach. Likewise, design of the HUD and HDD display formats, as integrated with the FMI, was equally challenging. It is hoped that the research contributions of this thesis will form a firm foundation for the implementation and evaluation of the ASTRA system. It is felt that the success of the system will hinge on its functionality and perceived utility from the perspective of the general aviation pilot.

Trang, Jeffrey Alan

1997-01-01T23:59:59.000Z

214

Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)  

SciTech Connect

Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2006-10-15T23:59:59.000Z

215

DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer Div - IA  

Office of Legacy Management (LM)

Bendix Aviation Corp Pioneer Div - Bendix Aviation Corp Pioneer Div - IA 05 FUSRAP Considered Sites Site: BENDIX AVIATION CORP., PIONEER DIV. (IA.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Pioneer Division, Bendix Aviation Corporation Bendix Aviation Corporation Bendix Pioneer Division IA.05-1 IA.05-2 IA.05-3 Location: Davenport , Iowa IA.05-1 Evaluation Year: 1990 IA.05-2 IA.05-4 Site Operations: Conducted studies to investigate the feasibility of using sonic cleaning equipment to decontaminate uranium contaminated drums. IA.05-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited operations at the site IA.05-2 IA.05-4 IA.05-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium IA.05-1

216

Civil aviation and technogeopolitics: the struggle for control of world air routes, 1910-1939  

E-Print Network (OSTI)

This thesis examines the development of international civil aviation from 1910 to 1939 at four international conferences from 1910 to 1928. The impact of civil aviation technology on the geopolitical position of the United States, Britain, and Germany is the main focus at these conferences. In order to give the reader a full background on the relationship between technology and geopolitics, this thesis examines the development of the modern state in Chapter I. Chapter II explores three periods of civil aviation technology advancement, with Chapter IV evaluating the relationship between civil and military aviation. Chapters V through VIII investigate the four international civil aviation conferences. Chapter IX concludes by explaining the three principles surrounding my argument for technogeopolitics, with examples from the four conferences.

Butler, David Lawrence

1996-01-01T23:59:59.000Z

217

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network (OSTI)

of fuels through use at refinery Energy: other industrialas a process fuel by refineries) (see discussion above); i)residual fuel produced by refineries that produce mainly

Delucchi, Mark

2005-01-01T23:59:59.000Z

218

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network (OSTI)

of fuels through use at refinery Energy: other industrialas a process fuel by refineries) (see discussion above); i)residual fuel produced by refineries that produce mainly

Delucchi, Mark

2005-01-01T23:59:59.000Z

219

,"U.S. Aviation Gasoline Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Aviation Gasoline Refiner Sales Volumes" Aviation Gasoline Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Aviation Gasoline Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_c_nus_eppv_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_c_nus_eppv_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

220

,"Aviation Gasoline Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Aviation Gasoline Sales to End Users Refiner Sales Volumes" Aviation Gasoline Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Aviation Gasoline Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_eppv_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_eppv_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Glen F. Wattman Director, Office of Aviation Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glen F. Wattman Glen F. Wattman Director, Office of Aviation Management A native of New York, Glen Wattman has served as a civilian Airline Pilot for more than thirteen years flying Boeing 757, 767 and 727 transport category aircraft. He has extensive experience operating flights domestically and throughout Central and South America and Europe. Mr. Wattman is currently a Major in the United States Air Force Reserve and serves as a subject matter expert as a liaison to the Florida Wing of the Civil Air Patrol. Mr. Wattman has expertise in all aspects of the CAP mission to include Disaster Relief, Search and Rescue, Civil Defense, Homeland Security, Drug Interdiction, and Aerospace Education. Prior to becoming an Airline Pilot, Mr. Wattman served as an Air Force Officer, Detachment Commander, Fighter Pilot, and

222

ICME for Residual Stress  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... Application of ICME to Weld Process Innovations and Residual Stress ... Incorporation of Residual Stresses into Design of Ni-Base Superalloy...

223

Assessing environmental benefits and economic costs of aviation environmental policy measures  

E-Print Network (OSTI)

Despite the recent global economic downturn, longer term growth is anticipated for aviation with an increasing environmental impact, specifically in the areas of noise, air quality, and climate change. To ensure sustainable ...

Mahashabde, Anuja (Anuja Anil)

2009-01-01T23:59:59.000Z

224

DOE - Office of Legacy Management -- North American Aviation Inc - CA 07  

Office of Legacy Management (LM)

North American Aviation Inc - CA 07 North American Aviation Inc - CA 07 FUSRAP Considered Sites Site: NORTH AMERICAN AVIATION, INC. (CA.07) Eliminated from consideration under FUSRAP Designated Name: None Designated Alternate Name: None Location: Downey , California CA.07-1 Evaluation Year: 1987 CA.07-1 Site Operations: Research and development on a bench scale using a small reactor; work done during the early 1950s. CA.07-1 Site Disposition: Eliminated - Potential for contamination remote based on limited scope of operations CA.07-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.07-3 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to NORTH AMERICAN AVIATION, INC. CA.07-1 - Memorandum/Checklist; Young to the File; Subject:

225

Evaluation of primary flight display enhancements for improving general aviation safety  

E-Print Network (OSTI)

The information architecture of general aviation cockpits is shifting from one of independent mechanical instruments to one of digital sensors, common databuses, and liquid crystal displays. This integrated architecture ...

Craig, Daniel R

2005-01-01T23:59:59.000Z

226

The impacts of aviation emissions on human health through changes in air quality and UV irradiance  

E-Print Network (OSTI)

World-wide demand for air transportation is rising steadily. The air transportation network may be limited by aviation's growing environmental impacts. These impacts take the form of climate impacts, noise impacts, and ...

Brunelle-Yeung, Elza

2009-01-01T23:59:59.000Z

227

Assessment of the Aviation Weather Center Global Forecasts of Mesoscale Convective Systems*  

Science Conference Proceedings (OSTI)

This paper examines the precision of location and top height of mesoscale convective systems, as forecast by the Aviation Weather Center (AWC). The examination was motivated by the Mediterranean Israeli Dust Experiment (MEIDEX) on the space ...

Baruch Ziv; Yoav Yair; Karin Presman; Martin Fllekrug

2004-05-01T23:59:59.000Z

228

Fly and Be Damned: What Now for Aviation and Climate Change?  

Science Conference Proceedings (OSTI)

Fly and Be Damned gets underneath the well-known facts about the unsustainable nature of the aviation industry and argues for fundamental change to our traveling habits. The first book to transcend the emotional debate between the entrenched positions ...

Peter McManners

2012-03-01T23:59:59.000Z

229

The Quantitative Use of PIREPs in Developing Aviation Weather Guidance Products  

Science Conference Proceedings (OSTI)

An evaluation of the utility of pilot reports (PIREPs) of weather for aviation forecasting product development is presented. Although PIREPs were never intended for quantitative use, this limitation has not prevented developers of improved ...

Barry Schwartz

1996-09-01T23:59:59.000Z

230

Human factors studies of an ADS-B based traffic alerting system for general aviation  

E-Print Network (OSTI)

Several recent high profile mid-air collisions highlight the fact that mid-air collisions are a concern for general aviation. Current traffic alerting systems have limited usability in the airport environment where a ...

Silva, Sathya Samurdhi

2012-01-01T23:59:59.000Z

231

Symbiotic strategies in enterprise ecology : modeling commercial aviation as an Enterprise of Enterprises  

E-Print Network (OSTI)

We investigate the effectiveness of strategic alternatives that are designed to dampen the cyclicality manifest in the commercial aviation (CA)-related industries. In this research we introduce the conceptual framework of ...

Sgouridis, Sgouris P

2007-01-01T23:59:59.000Z

232

Developing quantum dot phosphor-based light-emitting diodes for aviation lighting applications  

Science Conference Proceedings (OSTI)

We have investigated the feasibility of employing quantum dot (QD) phosphor-based light-emitting diodes (LEDs) in aviation applications that request Night Vision Imaging Systems (NVIS) compliance. Our studies suggest that the emerging QD phosphorbased ...

Fengbing Wu; Dawei Zhang; Shuzhen Shang; Yiming Zhu; Songlin Zhuang; Jian Xu

2012-01-01T23:59:59.000Z

233

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

and the Environment. Greenhouse Gas Emissions from AviationD17): 4560. EPA (2006). Greenhouse Gas Emissions from theInventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

234

Gas Turbine Condition Monitoring and Predictive Maintenance Capability Analysis Between Aviation and Power Generation Industries  

Science Conference Proceedings (OSTI)

This study compares and contrasts aviation and power generation condition monitoring and fault diagnosis. The report provides an overview of the technology, process, sensor suite and decision-making processes for both industries. The study highlights the level of decision automation and the structure to automatically initiate a maintenance process in aviation as one of the key differences between the two industries. This automation has important potential cost and operational benefits for the power gener...

2007-12-21T23:59:59.000Z

235

Refinery Net Production of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

236

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

237

Residual Fuel Oil Sales for Military Use  

Gasoline and Diesel Fuel Update (EIA)

17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 East Coast (PADD 1) 15,618 8,626 14,049 9,344 14,362 9,408 1984-2012 New England (PADD 1A) 1,880 729 767 693 574 174 1984-2012 Connecticut 599 729 767 693 574 174 1984-2012 Maine 0 0 0 0 0 0 1984-2012 Massachusetts 1,280 0 0 0 0 0 1984-2012 New Hampshire 0 0 0 0 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 7,518 7,012 11,744 7,200 12,458 8,922 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 6,638 6,291 6,479 7,200 6,022 5,754 1984-2012 New Jersey 0 0 1,740 0 1,539 585 1984-2012 New York 0 0 3,518 0 4,897 2,583 1984-2012 Pennsylvania

238

Residual Fuel Oil Imports from Kazakhstan  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

239

Residual Fuel Oil Imports from Syria  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

240

Residual Fuel Oil Imports from Peru  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Residual Fuel Oil Imports from Chile  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

242

Blender Net Production of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

243

Total Adjusted Sales of Residual Fuel Oil  

Annual Energy Outlook 2012 (EIA)

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions,...

244

Residual Fuel Oil Imports from Spratly Islands  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

245

Residual Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

246

Residual Fuel Oil Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

247

Fossil Fuel Prices to Electric Utilities  

U.S. Energy Information Administration (EIA)

Natural gas for power generation is projected to yield its apparent average price advantage over residual fuel oil by the fourth quarter of this year.

248

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

249

A jet fuel surrogate formulated by real fuel properties  

Science Conference Proceedings (OSTI)

An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658 has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate. (1)A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O{sub 2}/N{sub 2} and POSF 4658 surrogate/O{sub 2}/N{sub 2} at 12.5 atm and 500-1000 K, fixing the carbon content at 0.3% for both mixtures. (2)The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the strained extinction limit of diffusion flames. (3)The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714 K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675 K) and high temperature (900 K+) are extremely similar. Slight differences in the transition from the end of the negative temperature coefficient regime to hot ignition are observed. The diffusion flame strained extinction limits of the fuels are observed to be indistinguishable when compared on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied in both shock tube and rapid compression machine experiments. A chemical kinetic model is constructed and utilized to interpret the experimental observations and provides a rationale as to why the real fuel and surrogate fuel exhibit such similar reactivity. (author)

Dooley, Stephen; Won, Sang Hee; Chaos, Marcos; Heyne, Joshua; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Kumar, Kamal; Sung, Chih-Jen [School of Engineering, University of Connecticut, Storrs, CT (United States); Wang, Haowei; Oehlschlaeger, Matthew A. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Santoro, Robert J.; Litzinger, Thomas A. [Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA (United States)

2010-12-15T23:59:59.000Z

250

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

251

NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction)  

SciTech Connect

Data Systems Engineering Organization (DSEO) personnel developed a prototype computer aided instruction CAI system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project was to provide a CAI prototype that could be used as an enhancement to existing NALDA training. The CAI prototype project was performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. The findings from Phase I are documented in Recommended CAI Approach for the NALDA System (Duncan et al., 1987). In Phase II, a structured design and specifications were developed, and a prototype CAI system was created. A report, NALDA CAI Prototype: Phase II Final Report, was written to record the findings and results of Phase II. NALDA CAI: Recommendations for an Advanced Instructional Model, is comprised of related papers encompassing research on computer aided instruction CAI, newly developing training technologies, instructional systems development, and an Advanced Instructional Model. These topics were selected because of their relevancy to the CAI needs of NALDA. These papers provide general background information on various aspects of CAI and give a broad overview of new technologies and their impact on the future design and development of training programs. The paper within have been index separately elsewhere.

Handler, B.H. (Oak Ridge K-25 Site, TN (USA)); France, P.A.; Frey, S.C.; Gaubas, N.F.; Hyland, K.J.; Lindsey, A.M.; Manley, D.O. (Oak Ridge Associated Universities, Inc., TN (USA)); Hunnum, W.H. (North Carolina Univ., Chapel Hill, NC (USA)); Smith, D.L. (Memphis State Univ., TN (USA))

1990-07-01T23:59:59.000Z

252

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

Science Conference Proceedings (OSTI)

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

253

Development of Energy Balances for the State of California  

E-Print Network (OSTI)

waxes, unfinished oils, motor and aviation gasoline blendingimports for motor gasoline, jet fuel, and residual fuel oil.Motor gasoline consumption by end-use sector 41 Table 24. Distillate fuel oil

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

254

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas b Petroleum Retail Elec- tricity f Total g Aviation Gasoline Distillate Fuel Oil c Jet Fuel LPG d Lubri- cants Motor Gasoline e Residual Fuel Oil Total 1973 Total...

255

Table 7.4b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coala Petroleum Natural Gasf Other Gasesg Biomass Otherj Distillate Fuel Oilb Residual Fuel Oilc

256

Modeling aviation's global emissions, uncertainty analysis, and applications to policy  

E-Print Network (OSTI)

(cont.) fuel burn results below 3000 ft. For emissions, the emissions indices were the most influential uncertainties for the variance in model outputs. By employing the model, this thesis examined three policy options for ...

Lee, Joosung Joseph, 1974-

2005-01-01T23:59:59.000Z

257

U.S. Aviation Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

2 Diesel, Ultra Low-Sulfur No. 2 Diesel, Low-Sulfur No. 2 Diesel, High-Sulfur No. 2 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

258

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

259

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

260

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze...

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

262

A Comparative Verification of Localized Aviation Model Output Statistics Program (LAMP) and Numerical Weather Prediction (NWP) Model Forecasts of Ceiling Height and Visibility  

Science Conference Proceedings (OSTI)

In an effort to support aviation forecasting, the National Weather Services Meteorological Development Laboratory (MDL) has recently redeveloped the Localized Aviation Model Output Statistics (MOS) Program (LAMP) system. LAMP is designed to run ...

David E. Rudack; Judy E. Ghirardelli

2010-08-01T23:59:59.000Z

263

Crop, forestry, and manure residue inventory: continental United States. Volume 3. West North-Central, including: Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota  

SciTech Connect

Tabulated data are compiled on the generation and utilization of crop, forestry, and manure residues. The utilization categories are defined as selling the residue for use other than as a fuel, feeding the residues to animals, use as fuel, return of the residue to the soil, and wastage. The tabulations are by state and by county within the state. (JSR)

1976-06-01T23:59:59.000Z

264

California's program converts biomass residues to energy  

SciTech Connect

This paper provides a brief introduction to the emerging biomass fuel industry in California and includes descriptions of California's biomass potential, California's biomass development program, and legislation that expands the state's developmental efforts in biomass commercialization. California's agriculture and forest industries residues were discussed. These residues can be converted to energy, and now, through California's aggressive development program, more residues will be converted. (DP)

Ward, P.F.

1980-01-01T23:59:59.000Z

265

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

266

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

267

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1983 ...................................... 127.8 123.0 87.0 87.8 91.3 52.8 94.5 90.1 1984 ...................................... 124.7 119.5 83.5 85.0 93.3 50.9 106.0 92.2 1985 ...................................... 121.4 115.3 78.5 82.2 91.5 44.9 104.9 88.1 1986 ...................................... 100.6 91.8 52.8 52.2 86.0 32.7 81.0 61.6 1987 ...................................... 90.9 85.0 54.1 55.6 82.3 31.0 78.1 58.9 1988 ...................................... 89.5 82.9 51.2 51.3 84.8 29.8 73.3 55.3 1989 ...................................... 99.2 92.2 59.1 60.1 75.8 29.2 69.3 67.2 1990 ...................................... 112.3 105.3 75.9 78.3 91.8 45.0 86.4 84.4 1991 ...................................... 105.6 100.3 65.3 67.2 W 40.5 81.0 74.0 1992 ......................................

268

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,  

Gasoline and Diesel Fuel Update (EIA)

34.7 34.7 428.4 46,539.7 12,728.4 790.3 6,200.2 648.4 4,283.7 3,323.4 44,204.9 February ......................... 151.1 456.7 46,811.8 13,168.9 661.0 5,865.0 639.0 3,498.4 4,030.8 40,811.0 March .............................. 155.1 534.1 47,764.0 11,796.0 685.4 3,081.1 347.2 1,274.9 2,912.8 32,094.6 April ................................ 181.4 632.9 48,092.4 12,418.7 309.0 1,382.4 162.4 425.7 2,671.8 27,292.6 May ................................. 194.0 730.2 48,978.1 11,174.4 288.0 868.9 122.3 240.3 2,628.8 22,213.6 June ................................ 184.4 739.6 50,091.3 10,034.5 424.7 571.0 151.7 314.2 2,237.4 23,117.3 July ................................. 205.9 830.4 50,287.4 11,139.2 226.4 714.5 145.1 261.5 2,057.6 25,037.3 August ............................ 200.2 854.8 50,327.4 11,706.4 202.7 1,112.1

269

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1983 ...................................... 127.8 123.0 87.0 87.8 91.3 52.8 94.5 90.1 1984 ...................................... 124.7 119.5 83.5 85.0 93.3 50.9 106.0 92.2 1985 ...................................... 121.4 115.3 78.5 82.2 91.5 44.9 104.9 88.1 1986 ...................................... 100.6 91.8 52.8 52.2 86.0 32.7 81.0 61.6 1987 ...................................... 90.9 85.0 54.1 55.6 82.3 31.0 78.1 58.9 1988 ...................................... 89.5 82.9 51.2 51.3 84.8 29.8 73.3 55.3 1989 ...................................... 99.2 92.2 59.1 60.1 75.8 29.2 69.3 67.2 1990 ...................................... 112.3 105.3 75.9 78.3 91.8 45.0 86.4 84.4 1991 ...................................... 105.6 100.3 65.3 67.2 W 40.5 81.0 74.0 1992 ......................................

270

Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,  

Gasoline and Diesel Fuel Update (EIA)

4.2 4.2 406.0 45,968.1 11,079.0 534.5 5,366.3 833.9 4,675.6 3,248.9 44,872.7 February ......................... 146.6 499.8 47,800.3 10,256.4 357.8 3,591.8 621.7 2,731.9 3,684.2 38,357.8 March .............................. 150.3 518.6 48,152.6 10,316.6 365.5 2,056.1 336.2 1,114.2 3,284.7 28,091.6 April ................................ 171.8 592.8 49,135.3 9,493.8 287.9 1,335.2 199.7 438.4 3,352.9 25,786.2 May ................................. 172.2 665.1 49,770.4 9,886.7 249.2 1,017.4 176.2 314.9 2,935.6 24,783.5 June ................................ 175.3 759.4 52,048.3 10,834.1 192.7 754.0 194.4 360.2 2,313.9 24,285.6 July ................................. 239.2 853.3 51,725.7 10,840.4 136.7 1,348.8 199.7 362.4 2,083.2 26,581.1 August ............................ 201.6 810.9 52,026.8 12,609.7 241.1 1,226.9

271

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1983 ...................................... 127.8 123.0 87.0 87.8 91.3 52.8 94.5 90.1 1984 ...................................... 124.7 119.5 83.5 85.0 93.3 50.9 106.0 92.2 1985 ...................................... 121.4 115.3 78.5 82.2 91.5 44.9 104.9 88.1 1986 ...................................... 100.6 91.8 52.8 52.2 86.0 32.7 81.0 61.6 1987 ...................................... 90.9 85.0 54.1 55.6 82.3 31.0 78.1 58.9 1988 ...................................... 89.5 82.9 51.2 51.3 84.8 29.8 73.3 55.3 1989 ...................................... 99.2 92.2 59.1 60.1 75.8 29.2 69.3 67.2 1990 ...................................... 112.3 105.3 75.9 78.3 91.8 45.0 86.4 84.4 1991 ...................................... 105.6 100.3 65.3 67.2 W 40.5 81.0 74.0 1992 ......................................

272

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

predicts that oil usage will peak around 2035. Worldoil reserves are the two main factors that will affect the exact date of the peak.

Hu, Sangran

2012-01-01T23:59:59.000Z

273

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

reaction/reactor SMR: steam methane reformer FTR: Fischer-reformed in a steam methane reformer (SMR) to yield syngas,

Hu, Sangran

2012-01-01T23:59:59.000Z

274

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

first generation biofuel are biodiesel from bio-derived oilaviation infrastructure. Biodiesel has high energy content

Hu, Sangran

2012-01-01T23:59:59.000Z

275

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

efficiency than conventional gasification technologies when1.2.3 Feedstock and gasification Coal, biomass and naturalin many different ways including gasification or natural gas

Hu, Sangran

2012-01-01T23:59:59.000Z

276

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

methane reformer FTR: Fischer-Tropsch reactor LCA: life38, 17 Mark E. Dry, The FischerTropsch process: 19502000,From the internet, FischerTropsch process Wikipedia site:

Hu, Sangran

2012-01-01T23:59:59.000Z

277

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

entering the reactor. The gasifier is operated at 750 o C,will be removed from the gasifier and char will be burned to

Hu, Sangran

2012-01-01T23:59:59.000Z

278

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

mixture of CO and hydrogen (called syngas or synthesis gas).The syngas mixture is then converted by the F-T process. AThe process to produce syngas usually uses coal or other

Hu, Sangran

2012-01-01T23:59:59.000Z

279

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network (OSTI)

6 . The depletion of oil reserves may make the problem morerate of depletion of oil reserves are the two main factorss attention as the reserve of crude oil was grossly limited

Hu, Sangran

2012-01-01T23:59:59.000Z

280

Liquid fuel reformer development.  

DOE Green Energy (OSTI)

At Argonne National Laboratory we are developing a process to convert hydrocarbon fuels to a clean hydrogen feed for a fuel cell. The process incorporates a partial oxidation/steam reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. We have tested the catalyst with three diesel-type fuels: hexadecane, low-sulfur diesel fuel, and a regular diesel fuel. We achieved complete conversion of the feed to products. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 800 C. For the two diesel fuels, higher temperatures, >850 C, were required to approach similar levels of hydrogen in the product stream. At 800 C, hydrogen yield of the low sulfur diesel was 32%, while that of the regular diesel was 52%. Residual products in both cases included CO, CO{sub 2}, ethane, ethylene, and methane.

Ahmed, S.; Krumpelt, M.; Pereira, C.; Wilkenhoener, R.

1999-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

282

30th Annual Texas Aviation Conference: Application & Contract for Exhibit Space  

E-Print Network (OSTI)

30th Annual Texas Aviation Conference: Application & Contract for Exhibit Space Please email are using Adobe Reader you will not be able to save this form. Event Management & Planning Texas Transportation Institute Texas A&M University System 3135 TAMU College Station, TX 77843-3135 March 28 ­ March 30

283

Mesoscale Weather and Aviation Safety: The Case of Denver International Airport  

Science Conference Proceedings (OSTI)

The new Denver International Airport will be the first new major commercial airport to be built in the United States in 20 years. Concern has been expressed about the meteorology at the new airport site and its potential impact on aviation ...

Steven L. Rhodes

1992-04-01T23:59:59.000Z

284

Flying by the seat of their pants: what can high frequency trading learn from aviation?  

Science Conference Proceedings (OSTI)

As we build increasingly large scale systems (and systems of systems), the level of complexity is also rising. We still expect people to intervene when things go wrong, however, and to diagnose and fix the problems. Aviation has a history of developing ... Keywords: flash crash, high frequency trading, human-in-the-loop, ironies of automation, socio-technical systems

Gordon Baxter, John Cartlidge

2013-05-01T23:59:59.000Z

285

Challenges for agile development of large systems in the aviation industry  

Science Conference Proceedings (OSTI)

The current challenges of the aviation industry call for the development of new and revolutionary aircraft concepts. In general, the task of developing new aircraft is risky and an extremely complex task, and aircraft manufacturers seek to control this ... Keywords: agile development, certification, change notification, development risk, generative design, open tool platform, situation awareness

Martin Glas; Sven Ziemer

2009-10-01T23:59:59.000Z

286

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

287

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

288

Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0  

SciTech Connect

This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H. [and others

1994-02-01T23:59:59.000Z

289

Sooting characteristics of surrogates for jet fuels  

Science Conference Proceedings (OSTI)

Currently, modeling the combustion of aviation fuels, such as JP-8 and JetA, is not feasible due to the complexity and compositional variation of these practical fuels. Surrogate fuel mixtures, composed of a few pure hydrocarbon compounds, are a key step toward modeling the combustion of practical aviation fuels. For the surrogate to simulate the practical fuel, the composition must be designed to reproduce certain pre-designated chemical parameters such as sooting tendency, H/C ratio, autoignition, as well as physical parameters such as boiling range and density. In this study, we focused only on the sooting characteristics based on the Threshold Soot Index (TSI). New measurements of TSI values derived from the smoke point along with other sooting tendency data from the literature have been combined to develop a set of recommended TSI values for pure compounds used to make surrogate mixtures. When formulating the surrogate fuel mixtures, the TSI values of the components are used to predict the TSI of the mixture. To verify the empirical mixture rule for TSI, the TSI values of several binary mixtures of candidate surrogate components were measured. Binary mixtures were also used to derive a TSI for iso-cetane, which had not previously been measured, and to verify the TSI for 1-methylnaphthalene, which had a low smoke point and large relative uncertainty as a pure compound. Lastly, surrogate mixtures containing three components were tested to see how well the measured TSI values matched the predicted values, and to demonstrate that a target value for TSI can be maintained using various components, while also holding the H/C ratio constant. (author)

Mensch, Amy; Santoro, Robert J.; Litzinger, Thomas A. [Department of Mechanical and Nuclear Engineering, and The Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, S.-Y. [Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

2010-06-15T23:59:59.000Z

290

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

Alternative Fuels and Power Notes Marine Total Reductionfootprints. Marine Alternative fuels and power sources also3.2 Marine Transportation 3.3 Alternative Fuels and Power

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

291

Competition and congestion in the National Aviation System : multi-agent, multi-stakeholder approaches for evaluation and mitigation  

E-Print Network (OSTI)

The US National Aviation System (NAS) is a complex system with multiple, interacting agents including airlines, passengers, and system operators, each with somewhat different objectives and incentives. These interactions ...

Vaze, Vikrant (Vikrant Suhas)

2011-01-01T23:59:59.000Z

292

Stabilized fuel with silica support structure  

DOE Patents (OSTI)

This report describes a stabilized fuel which is supported by a silica support structure. The silica support structure provides a low density, high porosity vehicle for safely carrying hydrocarbon fuels. The silica support structure for hydrocarbon fuel does not produce toxic material residues on combustion which would pose environmentally sensitive disposal problems. The silica stabilized fuel composition is useful as a low temperature, continuous burning fire starter for wood or charcoal.

Poco, J.F.; Hrubesh, L.W.

1991-12-31T23:59:59.000Z

293

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

294

DOE - Office of Legacy Management -- Eclipse-Pioneer Div of Bendix Aviation  

Office of Legacy Management (LM)

Eclipse-Pioneer Div of Bendix Eclipse-Pioneer Div of Bendix Aviation Corp - NJ 30 FUSRAP Considered Sites Site: Eclipse-Pioneer Div. of Bendix Aviation Corp. (NJ.30 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Allied Bendix Aerospace Corporation Sumitomo Machinery Corporation of America Metpath Incorporated NJ.30-7 Location: Teterboro , New Jersey NJ.30-4 Evaluation Year: Circa 1989 NJ.30-1 NJ.30-2 NJ.30-3 NJ.30-5 Site Operations: Plant #4 built by U.S. Navy on contractor property to cast magnesium-thorium alloy aircraft parts during WWII. Foundry operated till about 1966. Manufactured electronic components for MED 1940s-1950s. Operated under NRC license - closed out 22 October 1981. Property released for unrestricted use. NJ.30-6

295

Human error and general aviation accidents: A comprehensive, fine-grained analysis using HFACS  

E-Print Network (OSTI)

The Human Factors Analysis and Classification System (HFACS) is a theoretically based tool for investigating and analyzing human error associated with accidents and incidents. Previous research performed at both at the University of Illinois and the Civil Aerospace Medical Institute (CAMI) have been highly successful and have shown that HFACS can be reliably used to analyze the underlying human causes of both commercial and general aviation (GA) accidents. these analyses have helped identify general trends in the types of human factors issues and aircrew errors that have contributed to civil aviation accidents. The next step is to identify the exact nature of the human errors identified. The purpose of this research effort, therefore, was to address these questions by performing a fine-grained HFACS analysis of the individual human causal factors associated with GA accidents and to assist in the generation of intervention programs. This report details those findings and offers an approach for developing interventions to address them.

Douglas A. Wiegmann; Albert Boquet; Cristy Detwiler; Kali Holcomb; Troy Faaborg; Douglas A. Wiegmann, Ph.D., Ph.D.; Albert Boquet, Ph.D.; Cristy Detwiler; Kali Holcomb; Troy Faaborg

2005-01-01T23:59:59.000Z

296

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

297

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

298

Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel  

SciTech Connect

The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

Corporan, E. [Air Force Research Laboratory, Wright-Patterson AFB, OH; DeWitt, M. [Air Force Research Laboratory, Wright-Patterson AFB, OH; Klingshirn, Christopher D [ORNL; Striebich, Richard [Air Force Research Laboratory, Wright-Patterson AFB, OH; Cheng, Mengdawn [ORNL

2010-01-01T23:59:59.000Z

299

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

300

Agriculture Residues Recycling  

E-Print Network (OSTI)

Abstract: Saudi Arabia, as well as other countries in the Near East region, is characterized by erratic weather conditions, limited area of fertile arable lands, and with acute water shortage. Although agricultural residues (AGR) production in the region is huge (more than 440 million tons), most of these residues are either burned in the field or utilized in an inefficient way. Utilization of AGR as compost may contribute to expansion of arable lands through its use for reclamation of soil and reduce irrigation requirements. This study was conducted at Al Khalidiah farm, Riyadh, Saudi Arabia to assess compost production at large commercial scale using several types of agricultural and animal by-products with addition of a BZTCompost Activator (based mainly on microorganism, enzymes and yeast). In this study, two types of compost piles were made at the farm. The first pile of compost was made of different agriculture residues, namely: animal wastes (quail, goat and sheep manure), brownian agricultural wastes (windbreaks residues, date trees, citrus and olive trees pruning) and green landscape grasses (50%, 25 % and 25%, respectively) and was treated with a tested compost activator. The same agriculture residues combination was also made for the second pile as traditional compost

M. W. Sadik; H. M. El Shaer; H. M. Yakot

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels  

DOE Green Energy (OSTI)

Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

2010-09-01T23:59:59.000Z

302

Alcohol fuels bibliography, 1901-March 1980  

DOE Green Energy (OSTI)

This annotated bibliography is subdivided by subjects, as follows: general; feedstocks-general; feedstocks-sugar; feedstocks-starch; feedstocks-cellulose crops and residues; production; coproducts; economics; use as vehicle fuel; government policies; and environmental effects and safety. (MHR)

Not Available

1981-04-01T23:59:59.000Z

303

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

304

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

305

Potential of biomass residue availability; The case of Thailand  

SciTech Connect

An acute shortage of fuel wood and charcoal prevails in many developing countries. A logical approach to the problem places emphasis on the development of alternative energy sources, including use of biomass residues. An assessment of the potential of biomass residues for energy and other uses calls for an estimation of their annual production. Also, because the residues are normally bulky they should be utilized near their place of origin whenever possible to avoid high transportation costs. Thus knowledge of the total national generation of residues per year does not provide enough information for planning residue utilization. This article illustrates a method of residue estimation that takes the case of Thailand as an example. It presents the annual generation of nine agricultural resides (paddy husk, paddy straw, bagasse, cotton stalk, corn cob, groundnut shell, cassava stalk and coconut husk and shell) and one forestry residue (sawdust) in different agroeconomic zones and regions of Thailand. The methodology used for the investigation of crop-to-residue ratios is outlined. The annual generation figures for the different residues along with observations about their traditional uses are presented.

Bhattacharya, S.C.; Shrestha, R.M.; Ngamkajornvivat, S. (Energy Technology Div., Asian Institute of Technology, Bangkok 10501 (TH))

1989-01-01T23:59:59.000Z

306

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

307

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

308

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

309

New fuels for old  

SciTech Connect

A combination of price, availability, and government policies is forcing electric utilities to look to non-oil fuels even though only a small percentage of the conversions will be uncomplicated. Even those plants that originally burned coal will require extensive modifications to meet present pollution regulations and to restore their coal preparation and handling equipment. Hybrid fuels, such as coal-oil and coal-water, offer the flexibility of oil at a lower cost, but many utilities lack the capital to gamble on non-traditional alternatives. The Electric Power Research Institute (EPRI) programs that can provide the information that utilities need to make fuel decisions include work on coal and oil or water mixtures, municipal solid wastes, peat, and wood residues. The information EPRI gathers will allow utilities to identify the alternative best suited to their existing equipment, financial position, environment, and location. (DCK)

Lihach, N.

1981-04-01T23:59:59.000Z

310

A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells  

SciTech Connect

Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

Brown, L.F.

1996-03-01T23:59:59.000Z

311

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

312

Residual Stresses and Numerical Simulation  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Advances in Hydroelectric Turbine Manufacturing and Repair: Residual Stresses and Numerical Simulation Sponsored by: Metallurgical...

313

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

314

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

315

Characteristics of Deep GPS Signal Fading Due to Ionospheric Scintillation for Aviation Receiver Design  

E-Print Network (OSTI)

Aircraft navigation based on GPS (Global Positioning System) and WAAS (Wide Area Augmentation System) requires both code and carrier measurements to calculate the position estimate [1]. A GPS receivers carrier tracking loop is weaker than code tracking loop. Thus, carrier lock can more easily be broken under deep signal fading caused by ionospheric scintillation. If a receiver cannot track code and carrier of at least four satellite channels, the aircraft cannot navigate using GPS or WAAS. The solar maximum data set analyzed in this research demonstrates frequent deep fades and almost all satellites in view suffered from scintillation, which could significantly reduce number of simultaneous tracked satellites. Statistics of number of tracked satellites under 45 minutes of strong scintillation are given in this paper and importance of shorter reacquisition time of a receiver is also emphasized. In order to design an aviation receiver with shorter reacquisition time under frequent deep signal fadings, characteristics of signal fading have to be well understood. Two important characteristics of deep fading are analyzed, which are fading duration and time between deep fades. The fading duration model in this paper can provide a guideline for more robust aviation receiver design. Even if the receiver could reacquire phase lock quickly, frequent deep fades significantly increase noise level in smoothed pseudoranges, which results in lower navigation availability. Statistics of time between deep fades given in this paper shows very frequent deep fades that could be a major concern of GPS navigation under strong scintillation during solar maximum period.

Jiwon Seo; Todd Walter; Tsung-yu Chiou; Per Enge

2008-01-01T23:59:59.000Z

316

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

317

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

318

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

319

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

320

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network (OSTI)

the compression stroke. The residues calculated from the proposed model were validated with those generated from to detect the fuel ethanol concentration by placing them in the tank or in the fuel line. However by means of the closed-loop air/fuel ratio correction signal based on the Exhaust Gas Oxygen (EGO) sensor

Stefanopoulou, Anna

322

Leaching hierarchies in co-combustion residues  

Science Conference Proceedings (OSTI)

The leaching propensities from co-combustion residues of 10 trace elements (Be, V, Cr, Zn, As, Se, Cd, Ba, Hg, Pb) were evaluated. Eight fuels varying from coal blends to coal and secondary fuel mixtures to ternary mixtures were co-combusted in two reactor configurations and at two temperatures (850 and 950{sup o}C). The ash was subjected to a miniaturized toxicity characteristic leaching procedure (TCLP) developed for this study, and the trace element content in the leachate was analyzed, andpercentage retentions of elements in the ashes and leachates were calculated. Hg and Se were almost completely volatilized during combustion and, therefore, were largely absent from the ashes, in all cases. For the other trace elements, it was not possible to establish a hierarchy of relative trace-element retention. Retention was primarily a function of the combustion method, with no clear effect of temperature retention being observed. The measured trace-element retentions were compared to those predicted by thermodynamic equilibrium modeling, using the MTDATA software. The model successfully predicted the measured values in many cases; however, many anomalies were also noted. From trace-element analysis in the leachates, an extent-of-leaching hierarchy could be established. The elements that underwent low degrees of leaching were Zn, Hg, Pb, low to moderate leaching were Be, Cr, and Cd, and thoseleached to a greater extent were V, As, Se, and Ba. This hierarchy was observed for all fuels and conditions studied. Leaching was found to be a strong function of the combustion temperature and combustion method. When assessing the potential toxicity of leachate from co-combustion residues, Zn, Hg, and Pb may be deemed of least concern, while a greater emphasis should be placed in mitigating the release of the remaining elements. 18 refs., 7 tabs.

A. George; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering and Chemical Technology

2008-05-15T23:59:59.000Z

323

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

324

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

325

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

326

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

327

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

328

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

329

Virtual Globe visualization of ash-aviation encounters, with the special case of the 1989 Redoubt-KLM incident  

Science Conference Proceedings (OSTI)

The impact of natural hazards on the local environment causes major issues for those agencies responsible for warning and understanding of the risks. Analysis of past events can assist and improve future warning capabilities. Here, volcanic ash-aviation ... Keywords: Dispersion modeling and Virtual Globes, Puff, Volcanic ash

P. W. Webley

2011-01-01T23:59:59.000Z

330

"Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f...

331

Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)  

DOE Green Energy (OSTI)

This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

Tarud, J.; Phillips, S.

2011-08-01T23:59:59.000Z

332

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

333

United States navy fleet problems and the development of carrier aviation, 1929-1933  

E-Print Network (OSTI)

The U.S. Navy first took official notice of aviation in 1910, but its development of carrier aviation lagged behind Great Britain??s until the 1920s. The first American aircraft carrier, the Langley, commissioned in 1919, provided the Navy with a valuable platform to explore the potential uses of carrier aviation, but was usually limited to scouting and fleet air defense in the U.S. Navy??s annual interwar exercises called fleet problems. This began to change in 1929 with the introduction of the carriers Lexington and Saratoga in Fleet Problem IX. After this exercise, which included a raid by aircraft from the Saratoga that ??destroyed?? the Pacific side of the Panama Canal, the carriers were assigned a wider variety of roles over the next five years of exercises. During this time, the carriers gained their independence from the battle line, which the smaller and slower Langley had been unable to do. Reflecting the advanced capabilities of the new carriers, the fleet problems conducted during Admiral William Veazie Pratt??s tenure as Chief of Naval Operations, 1930-1933, began to test the employment of the new carriers as the centerpiece of one of the opposing fleets within the exercises. The Lexington and Saratoga were used offensively during these exercises, employing their aircraft to sink surface ships, though not battleships, and successfully strike targets ashore. The carriers became successful in spite of the unreliability of early 1930s carrier aircraft, particularly the torpedo bombers, that could carry heavy payloads. Lessons learned from the Lexington and Saratoga Fleet Problems IX through XIV influenced the design of the next generation of American aircraft carriers, the Yorktownclass, which were authorized in 1933. These new carriers were faster and much larger than the carrier Ranger, commissioned in 1934 and designed before the Lexington and Saratoga began participating in the exercises. Features incorporated into the Yorktownclass based on operational experience included the reduced need for large surface batteries because of the use of escort vessels, the emphasis of armoring against shellfire over aerial bombs and torpedoes, and the capability to launch large numbers of aircraft quickly.

Wadle, Ryan David

2005-08-01T23:59:59.000Z

334

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

335

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

336

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

finished jet fuel product. 13. Fischer-Tropsch synthesis ofwinglets/. ] 38. Fischer-Tropsch synthesis of transportationfuel (HRJ) 12 and Fischer-Tropsch (FT) fuels. 13 A plant- or

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

337

Fuel oil and kerosene sales, 1989  

Science Conference Proceedings (OSTI)

Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2 percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.

Not Available

1991-01-22T23:59:59.000Z

338

DOE-STD-1165-2003; Aviation Manager Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5-2003 5-2003 September 2003 DOE STANDARD AVIATION MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1165-2003 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

339

DOE-STD-1164-2003; Aviation Safety Officer Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-2003 4-2003 September 2003 DOE STANDARD AVIATION SAFETY OFFICER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Facilities Technical Personnel U.S. Department of Energy AREA-TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1164-2003 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

340

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

342

BT8 Residual Stress Diffractometer  

Science Conference Proceedings (OSTI)

... 5) T. Gnaupel-Herold, HJ Prask, AV Clark, CS Hehman, TN Nguyen, A Comparison of Neutron and Ultrasonic Determinations of Residual Stress ...

343

BT8 Residual Stress Diffractometer  

Science Conference Proceedings (OSTI)

... Residual Stresses and Mechanical Damage in Gas Pipelines. ... Pressure in a pipeline superimposes a stress on ... are exceeded in pipelines with low ...

344

Techniques for Measuring Residual Stresses  

Science Conference Proceedings (OSTI)

Table 1   Classification of techniques for measuring residual stress...stress A-1 Stress-relaxation techniques using electric

345

Techniques for Measuring Residual Stresses  

Science Conference Proceedings (OSTI)

Table 1   Classification of techniques for measuring residual stress...stress A-1 Stress relaxation techniques using electric

346

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

347

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

348

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

349

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

350

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

351

A new glide path: re-architecting the Flight School XXI Enterprise at the U.S. Army Aviation Center of Excellence  

E-Print Network (OSTI)

This thesis utilizes eight Enterprise Architecture views to analyze the U.S. Army Aviation Center of Excellence's Flight School XXI Enterprise and provides recommendations to improve the effectiveness and efficiency of ...

Enos, James R. (James Robert)

2010-01-01T23:59:59.000Z

352

Adjusted Residual Fuel Oil for All Other Uses  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 18: 33: 19: 229: 109: 12: 1984-2012: Delaware: 0: 0: 0: 182: 0: 0: 1984-2012: District of Columbia: 0: 0: 0: 0: 0: 0: ...

353

Table 16. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA)

1996 ..... 0.526 0.456 0.433 0.389 0.455 0.420 1997 ..... 0.488 0.415 0.403 0.366 0.423 0.387 1998 ..... 0.354 0.299 0.287 0 ...

354

New Jersey Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

1,954: 1,518: 1,613: 2,550: 2,835: 2,293: 1997: 1,158: 2,519: 2,310: 1,971: 2,003: 657: 2,225: 1,104: 1,023: 1,392: 1,779: 1,002: 1998: 2,722: 1,010: ...

355

U.S. Total Imports of Residual Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia PAD District 2 Illinois Indiana Michigan Minnesota North Dakota Ohio PAD District 3 Alabama Louisiana Mississippi Texas PAD District 4 Idaho Montana PAD District 5 Alaska California Hawaii Oregon Washington Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Area: U.S. Total PAD District 1 Connecticut Delaware Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia PAD District 2 Illinois Indiana Michigan Minnesota North Dakota Ohio PAD District 3 Alabama Louisiana Mississippi Texas PAD District 4 Idaho Montana PAD District 5 Alaska California Hawaii Oregon Washington Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

356

U.S. Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Louisiana Mississippi New Mexico Texas Rocky Mountain (PADD 4) Colorado Idaho Montana Utah Wyoming West Coast (PADD 5) Alaska Arizona California Hawaii Nevada Oregon Washington Period: Monthly Annual

357

Residual Fuel Oil Sales for Oil Company Use  

Gasoline and Diesel Fuel Update (EIA)

43,972 57,914 25,166 20,783 19,759 17,031 1984-2012 43,972 57,914 25,166 20,783 19,759 17,031 1984-2012 East Coast (PADD 1) 21,290 7,593 5,726 3,827 2,793 2,205 1984-2012 New England (PADD 1A) 705 178 413 953 36 0 1984-2012 Connecticut 150 178 413 146 36 0 1984-2012 Maine 532 0 0 668 0 0 1984-2012 Massachusetts 0 0 0 0 0 0 1984-2012 New Hampshire 23 0 0 139 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 20,584 7,113 5,017 2,622 2,540 2,115 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 873 669 549 479 598 377 1984-2012 New Jersey 1,409 1,420 1,407 1,344 1,200 1,082 1984-2012 New York 614 467 477 748 742 656 1984-2012 Pennsylvania

358

Residual Fuel Oil Imports from Georgia, Republic of  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

359

U.S. Residual Fuel Oil Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Singapore: 250 : 217: 431: 449 : 1993-2011: South Africa : 175: 2005-2012: Spain: 2,035: 2,598: 1,142: 167: 315: 82: 1993-2012: Spatly Islands : 2004-2004: Sweden ...

360

U.S. Residual Fuel Oil Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Singapore : 1993-2011: South Africa: 87 : 2005-2013: Spain : 1993-2012: Spatly Islands : 2004-2004: Sweden : 285: 36: 1: 4 : 1994-2013: Switzerland : 2000-2005: Syria

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

U.S. Residual Fuel Oil Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Singapore: 1 : 1: 1: 1 : 1993-2011: South Africa : 0: 2005-2012: Spain: 6: 7: 3: 0: 1: 0: 1993-2012: Spatly Islands : 2004-2004: Sweden: 4: 1: 1: 4: 6: 2: 1994-2012 ...

362

Mississippi Adjusted Sales of Residual Fuel Oil by End Use  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

363

Delaware Imports of Residual Fuel - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

364

U.S. Total Imports of Residual Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

365

Residual Fuel Oil Bulk Terminal Stocks by Type  

U.S. Energy Information Administration (EIA)

Stock Type: Download Series History: Definitions, Sources & Notes: Show Data By: Product: Stock Type: Area: Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 View History; U ...

366

Residual Fuel Oil Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

367

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. 10,921.7 8,431.6 8,544.1 7,556.6 6,422.8 5,516.8 1983-2012 PADD 1 4,095.0 2,687.4 2,890.4 2,080.3 1,414.7 1,057.0 1983-2012 New...

368

Residual Fuel Oil Prices, Average - Sales to End Users  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. 1.376 1.944 1.340 1.729 - - 1983-2012 East Coast (PADD 1) 1.377 1.897 1.374 1.809 - - 1983-2012 New England (PADD 1A) 1.351 1.841...

369

Vermont Imports of Residual Fuel - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

370

Sales of Residual Fuel Oil for All Other Use  

Annual Energy Outlook 2012 (EIA)

0 1984-2011 New Hampshire -- 0 0 325 0 0 1984-2011 Rhode Island -- 0 0 0 0 0 1984-2011 Vermont -- 0 0 52 0 0 1984-2011 Central Atlantic (PADD 1B) 0 17 27 17 196 95 1984-2011...

371

Vermont Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 51: 60: 21: 156: 86: 2000's: 49: 74: 53: 482: 623: 656: 518: 423: 1,313: 269 ...

372

West Coast (PADD 5) Residual Fuel Oil Imports  

U.S. Energy Information Administration (EIA)

Spatly Islands : 2004-2004: Sweden : 2006-2006: Syria : 2011-2011: Taiwan : 2010-2010: Thailand : 2006-2007: Trinidad and Tobago: 344 : 400: 351: 6: 336: 1995-2013:

373

Midwest (PADD 2) Imports from Canada of Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 24: 4: 15: 55: 13: 59: 16: 16: 55: 1994: 16: 9: 15: 116: 105: 5: 1995: 0: 48: 87: 40: 45: 0: 16: 16: 67: 0 ...

374

Alternative Fuels Data Center: Drop-In Biofuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Drop-In Biofuels to Drop-In Biofuels to someone by E-mail Share Alternative Fuels Data Center: Drop-In Biofuels on Facebook Tweet about Alternative Fuels Data Center: Drop-In Biofuels on Twitter Bookmark Alternative Fuels Data Center: Drop-In Biofuels on Google Bookmark Alternative Fuels Data Center: Drop-In Biofuels on Delicious Rank Alternative Fuels Data Center: Drop-In Biofuels on Digg Find More places to share Alternative Fuels Data Center: Drop-In Biofuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Drop-In Biofuels Drop-in biofuels are hydrocarbon fuels substantially similar to gasoline, diesel, or jet fuels. These fuels can be made from a variety of biomass feedstocks including crop residues, woody biomass, dedicated energy crops,

375

Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit  

DOE Green Energy (OSTI)

Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

M. Namazian, S. Sethuraman and G. Venkataraman

2004-12-31T23:59:59.000Z

376

Feasibility study for anaerobic digestion of agricultural crop residues. Dynatech report No. 1935  

DOE Green Energy (OSTI)

The objective of this study was to provide cost estimates for the pretreatment/digestion of crop residues to fuel gas. A review of agricultural statistics indicated that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of wheat straw, corn stover, and rice straw for small farm-, cooperative-, and industrial scales. The small farm scale processed the residue from an average size US farm (400 acres), and the other sizes were two and three orders of magnitude greater. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low cost chemicals can be utilized. Additional development is necessary in this area. Use of low cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

Ashare, E.; Buivid, M. G.; Wilson, E. H.

1979-07-31T23:59:59.000Z

377

District of Columbia Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 10,721: 15,894: 11,949: 13,216: 15,149: 15,321: 1984-2012: Residual ...

378

Delaware Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 68,223: 61,302: 57,382: 56,676: 57,720: 57,230: 1984-2012: Residual ...

379

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and...

380

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

382

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

383

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

384

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network (OSTI)

same end use) or natural gas used for power generation (samepower generation use COMMODITIES TO Input commodity Residual fuel Coal Natural gas

Delucchi, Mark

2005-01-01T23:59:59.000Z

385

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network (OSTI)

same end use) or natural gas used for power generation (samepower generation use COMMODITIES TO Input commodity Residual fuel Coal Natural gas

Delucchi, Mark

2005-01-01T23:59:59.000Z

386

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

387

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor...

388

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

389

How refinery fuel indexes have varied  

Science Conference Proceedings (OSTI)

Refinery fuels costs have endured a steady incline since 1993, except for a period in 1993. As shown in the accompanying table, these increases in cost have occurred for residual fuel oil costs in three of the five PADD districts. The cost for natural gas for refinery usage also dropped steadily during the 3-year study. These conclusions are based on costs of an average refinery fuel consisting of 1 bbl each of PADD Districts 1--5 and an average US cost of 4.4 MMscf natural gas (a 1 bbl equivalent on a BTU content basis). Raw residual fuel oil and natural gas prices come from publications put out by the US Department of Labor.

Farrar, G.

1997-01-06T23:59:59.000Z

390

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

larger ships, new combined cycle or diesel-electric engines,Fuel efficiency optimization, Combined cycle operation and2005; MARINTEK 2000). Combined-cycle diesel engines, which

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

391

Findings and views concerning the exemption of aviation gasoline from the mandatory petroleum allocation and price regulations  

SciTech Connect

Presented are DOE's findings and views with respect to its proposal to exempt aviation gasoline from the Mandatory Petroleum Allocation and Price Regulations (10 CFR, Parts 210, 211, and 212), an added section of which requires that any amendment submitted to the Congress for the purpose of exempting a petroleum product or refined product category from regulation be supported with certain findings and views on a variety of matters related to the exemption. Section 102 of the Energy Conservation and Production Act (ECPA), Public Law 94-385 (August 14, 1976), requires separate submissions to the Congress of energy actions exempting a refined product category from both price and allocation provisions of the DOE regulations, but it does permit separate energy actions exempting a product from price and allocation regulations to be submitted concurrently. Based on an analysis of historic and projected supply, demand, and price trends, the DOE has concluded that allocation and price controls are no longer necessary for aviation gasoline and that its exemption in addition to satisfying the other requisite criteria of Section 12 of the EPAA, will be consistent with the attainment of the objectives specified in Section 4 (b)(1) of the EPAA. Accordingly, the DOE is submitting concurrently to the Congress in accordance with the provisions of Section 12 of the EPAA, Section 551 of the EPCA, and Section 102 of the ECPA, two energy actions to exempt aviation gasoline from allocation and price controls.

1978-06-01T23:59:59.000Z

392

Residual Circulation and Tropopause Structure  

Science Conference Proceedings (OSTI)

The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied ...

Thomas Birner

2010-08-01T23:59:59.000Z

393

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

394

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

395

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

396

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

397

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

398

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

399

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

400

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

402

Fuel oil and kerosene sales 1994  

SciTech Connect

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

403

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

404

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

Science Conference Proceedings (OSTI)

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

405

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

406

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

407

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

408

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

409

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

410

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

411

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

412

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

413

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

414

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

415

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

416

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

417

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

418

Feasibility study for anaerobic digestion of agricultural crop residues. Final report  

DOE Green Energy (OSTI)

This study provides cost estimates for the pretreatment/digestion of crop residues to fuel gas. Agricultural statistics indicate that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of sheat straw, corn stover, and rice straw for small farm, cooperative, and industrial scales. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low-cost chemicals can be utilized. Use of low-cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low-cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

Ashare, E.; Buivid, M. G.; Wilson, E. H.

1979-10-01T23:59:59.000Z

419

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

420

Advanced thermally stable jet fuels: Technical progress report, July 1994--September 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 3 subtasks which are described: Pyrolysis of n-alkylbenzenes; Thermal decomposition of n-tetradecane in near-critical region; and Re-examining the effects of reactant and inert gas pressure on tetradecane pyrolysis--Effect of cold volume in batch reactor. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Investigation of the quantitative degradation chemistry of fuels, is subtask, Effects of high surface area activated carbon and decalin on thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Screening potential jet fuel stabilizers using the model compound dodecane; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, is subtask, Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels. 25 refs., 64 figs., 22 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of Technical Innovations for Co-Production of Transportation Fuels and Electricity  

Science Conference Proceedings (OSTI)

As environmental pressures against sulfur emissions increase, residues from crude oil refining have correspondingly lower values for use in blended fuel oil. This situation has intensified interest in residue gasification to produce low-sulfur synthesis gas (CO + H2) for fuel use in combustion turbine power generation or for conversion to liquid transportation fuels, chemicals such as methanol and ammonia, and hydrogen. This report reviews the driving market forces as well as technologies used in the coa...

2001-08-28T23:59:59.000Z

422

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

423

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

424

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

425

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

426

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

427

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

428

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

429

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

430

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

431

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

432

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

433

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

434

Thermal dissolution of solid fossil fuels  

Science Conference Proceedings (OSTI)

The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

E.G. Gorlov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

435

Chemistry of combined residual chlorination  

DOE Green Energy (OSTI)

The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

Leao, S.F.; Selleck, R.E.

1982-01-01T23:59:59.000Z

436

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

437

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

438

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

439

Collection, transportation, and storage of biomass residues in the Pacific Northwest  

DOE Green Energy (OSTI)

This study was conducted to identify potential methods for the collection, transportation and storage of agricultural and forest residues in the Pacific Northwest. Information was gathered from available literature and through contacts with researchers, equipment manufacturers, and other individuals involved in forest and agricultural activities. This information was evaluated, combined, and adapted for situations existing in the Pacific Northwest. A number of methods for collection, transportation, and storage of biomass residues using currently available technology are described. Many of these methods can be applied to residue fuel materials along with their current uses in the forest and agricultural industries.

Inaba, L.K.; Eakin, D.E.

1981-11-01T23:59:59.000Z

440

Spent nuclear fuel project detonation phenomena of hydrogen/oxygen in spent fuel containers  

DOE Green Energy (OSTI)

Movement of Spent N Reactor fuels from the Hanford K Basins near the Columbia River to Dry interim storage facility on the Hanford plateau will require repackaging the fuel in the basins into multi-canister overpacks (MCOs), drying of the fuel, transporting the contained fuel, hot conditioning, and finally interim storage. Each of these functions will be accomplished while the fuel is contained in the MCOs by several mechanisms. The principal source of hydrogenand oxygen within the MCOs is residual water from the vacuum drying and hot conditioning operations. This document assesses the detonation phenomena of hydrogen and oxygen in the spent fuel containers. Several process scenarios have been identified that could generate detonation pressures that exceed the nominal 10 atmosphere design limit ofthe MCOS. Only 42 grams of radiolized water are required to establish this condition.

Cooper, T.D.

1996-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

442

Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

DOD-DOE Aircraft Petroleum Use Reduction Workshop DOD-DOE Aircraft Petroleum Use Reduction Workshop The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office and the U.S. Department of Defense (DOD) held a workshop on September 30, 2010, in Washington, DC, to discuss the potential for fuel cells to reduce aircraft petroleum use. Workshop objectives were to discuss collaboration across DOD and DOE in keeping with the DOD-DOE Memorandum of Understanding (MOU), to motivate RD&D for auxiliary power unit (APU) applications and identify R&D challenges, and to identify next steps and potential collaboration opportunities. Workshop Agenda Aircraft Petroleum Use Reduction Workshop Agenda Workshop Proceedings Report of the DOD-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan

443

European experience in transport/storage cask for vitrified residues  

SciTech Connect

Available in abstract form only. Full text of publication follows: Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN{sup TM}81 casks currently in use in Switzerland and the TN{sup TM}85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN{sup TM}81 and TN{sup TM}85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN{sup TM}81 and the TN{sup TM}85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN{sup TM}28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. (authors)

Otton, Camille; Sicard, Damien [AREVA - TN International (France)

2007-07-01T23:59:59.000Z

444

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network (OSTI)

comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

445

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

446

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

447

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

448

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

449

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

450

FUEL ELEMENT  

DOE Patents (OSTI)

A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

Fortescue, P.; Zumwalt, L.R.

1961-11-28T23:59:59.000Z

451

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

452

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

453

Vitrification of NAC process residue  

Science Conference Proceedings (OSTI)

Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

Merrill, R.A.; Whittington, K.F.; Peters, R.D.

1995-09-01T23:59:59.000Z

454

Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1995-02-01T23:59:59.000Z

455

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Digg

456

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

457

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

458

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

459

Fuel Cell Technologies Office: Fuel Cell Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

460

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

462

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

463

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

464

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

465

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

466

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

467

Transforms for prediction residuals in video coding  

E-Print Network (OSTI)

Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

Kam??l?, Fatih

2010-01-01T23:59:59.000Z

468

There has been recent interest in the application of the tilt-rotor concept to civil aviation. The concept offers the speed and altitude capability of the turbojet  

E-Print Network (OSTI)

Hybrid electric will be explored. The impact of engine location and Part-Span tilt wing will also of a helicopter. Such a vehicle could fill a number of niches in the aviation market. Some tilt-rotor studies have through the application of new technologies to the concept. Advanced materials and systems, including

469

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

470

Off-Highway Transportation-Related Fuel Use  

Science Conference Proceedings (OSTI)

The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usage and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to include all devices that have wheels, can move or be moved from one point to another, and use fuel. An attempt has been made to exclude off-highway engines that do not meet all three of these criteria (e.g., chain saws and generators). The following approach was used to determine the current off-highway fuel use. First, a literature review was conducted to ensure that all sources with appropriate information would be considered. Secondly, the fuel use data available from each source were compiled and compared in so far as possible. Comparable data sets (i.e., same fuel type; same application) were evaluated. Finally, appropriate data sets were combined to provide a final tally.

Davis, S.C.

2004-05-08T23:59:59.000Z

471

Synthetic fuels  

Science Conference Proceedings (OSTI)

In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

Not Available

1989-01-01T23:59:59.000Z

472

California Fuel Cell Partnership Alternative Fuels Research  

E-Print Network (OSTI)

and maintenance are both important. Propane and CNG are NOT "cleaner burning". RSD is a very good tool but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department inventories · Only need one week of work and fuel sales to get fuel based emissions inventories · RSD

473

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2011 I Hudson Consulting I September 2011  

E-Print Network (OSTI)

Recycled fibre Energy crops, forest residues and tree stumps The first reports on wood fuel usage data hadWoodfuel Usage Update 1 I Wood fuel use in Scotland 2011 I Hudson Consulting I September 2011 Woodfuel Demand and Usage in Scotland Report 2011 #12;Woodfuel Usage Update 2 I Wood fuel use in Scotland

474

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

475

RESIDUAL STRESSES IN 3013 CONTAINERS  

SciTech Connect

The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

Mickalonis, J.; Dunn, K.

2009-11-10T23:59:59.000Z

476

Rhode Island Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 77,882: 61,856: 59,789: 65,067: 65,295: 62,041: 1984-2012: Residual ...

477

Alternative Fuels Data Center: Natural Gas Fuel Rate Reduction...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

478

Alternative Fuels Data Center: Natural Gas Fuel Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

479

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 have also been produced and shipped to the US Air Force for further testing. Lummus-Crest Inc. is now completing a preliminary process design for the profitable production of JP-8 and has made recommendations for a production run to produce larger quantities of JP-8. 2 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1989-01-01T23:59:59.000Z

480

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 are nearly completed. Specification of a design basis for profitable production of JP-8 is under way. 5 figs., 4 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residuals aviation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly  

National Nuclear Security Administration (NNSA)

Spacer Grid Structural Guide Tube End Fitting Fuel Rod Upper Tie Plate ULTRAFLOW Spacer Water Channel Part-length Fuel Rod Lower Tie Plate PWR pressurized water reactor BWR ...

482

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

483

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

484

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

485

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

486

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

487

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

488

Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Taxation Study Commission to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Taxation Study Commission

489

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

490

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

491

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

492

Alternative Fuels Data Center: Alternative Fuel Production Subsidy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Production Subsidy Prohibition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Production Subsidy Prohibition

493

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

494

Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Infrastructure Tax Credit

495

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

496

Alternative Fuels Data Center: Alternative Fuels Feasibility Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Feasibility Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Feasibility Study The North Carolina State Energy Office, Department of Administration,

497

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Registration

498

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative