National Library of Energy BETA

Sample records for residuals aviation fuels

  1. Aviation fuels technology

    SciTech Connect (OSTI)

    Goodger, E.; Vere, R.

    1985-01-01

    This book presents the current specifications for aviation gasolines and turbine fuels, with descriptions of the method of test for each property, and of the main production processes to achieve the specified standards. The possibilities of supplemental fuels derived from alternative sources are discussed. The availability, properties and performance of a range of substitute fuels, together with the energy economy of the production and use of these alternatives are also examined. Topics covered include: current aero engine types; current aviation fuel types; production; specification test methods; operational handling; fuel characteristics within air-craft fuel systems; fuel combustion performance; development of specifications; relaxation of specifications; aviation fuels from alternative sources; aviation fuels substitutes; and fuels for high performance aircraft.

  2. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  3. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  4. Alternative fuels for general aviation

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The price and availability of fuel continues to be a major barrier to the free expansion of general aviation. Although this increase in fuel prices had a more severe impact on airlines, it has also slowed the demand for general aviation aircraft. With the sales of general aviation aircraft in a depressed state, the development of alternative fuels such as liquid methane, ethanol, methanol, and automobile gasoline can help spur the industry back to health. Recent flight tests of these alternative fuels are examined.

  5. Demonstration of alcohol as an aviation fuel

    SciTech Connect (OSTI)

    NONE

    1996-07-01

    A recently funded Southeastern Regional Biomass Energy Program (SERBEP) project with Baylor University will demonstrate the effectiveness of ethanols as an aviation fuel while providing several environmental and economic benefits. Part of this concern is caused by the petroleum industry. The basis for the petroleum industry to find an alternative aviation fuel will be dictated mainly by economic considerations. Three other facts compound the problem. First is the disposal of oil used in engines burning leaded fuel. This oil will contain too much lead to be burned in incinerators and will have to be treated as a toxic waste with relatively high disposal fees. Second, as a result of a greater demand for alkalites to be used in the automotive reformulated fuel, the costs of these components are likely to increase. Third, the Montreal Protocol will ban in 1998 the use of Ethyl-Di-Bromide, a lead scavenger used in leaded aviation fuel. Without a lead scavenger, leaded fuels cannot be used. The search for alternatives to leaded aviation fuels has been underway by different organizations for some time. As part of the search for alternatives, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, has received a grant from the Federal Aviation Administration (FAA) to improve the efficiencies of ethanol powered aircraft engines and to test other non-petroleum alternatives to aviation fuel.

  6. Airlines & Aviation Alternative Fuels: Our Drive to Be Early...

    Energy Savers [EERE]

    Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Plenary III: Early Market...

  7. Aviation Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due DateOpportunityManual Audit

  8. Liquid hydrogen - An alternative aviation fuel

    SciTech Connect (OSTI)

    Price, R.O.

    1991-02-01

    This paper examines the past and current activities concerning the development of liquid hydrogen as an alternative turbine engine aviation fuel, and also provides a look at the technical and market requirements that determine the viability of substitutes for conventional jet fuel. Alternative aviation fuels must address the following issues: availability, distribution, energy density, compatibility, economics, safety, handling, and quality control. Preliminary hardware demonstrations and analyses have shown that liquid hydrogen seems to be technically feasible, and may be eventually superior to petroleum-based jet fuel. Disadvantages include low ignition energy and a high flame velocity. From the environmental standpoint, hydrogen combustion in aircraft turbine engines can be expected to eliminate smoke emissions, hydrocarbon, and carbon monoxide. As to the marketing perspective, liquid hydrogen has broad applicability as a fuel in other transportation sectors that could allow multiindustry involvement in its development and commercialization.

  9. Estimating the environmental benefits of aviation fuel and emissions reductions

    E-Print Network [OSTI]

    Dorbian, Christopher S. (Christopher Salvatore)

    2010-01-01

    With commercial aviation continuing to grow and environmental policymaking activity intensifying, it is becoming increasingly necessary to assess the environmental impact of measures that result in changes in aviation fuel ...

  10. Alternative fuels : how can aviation cross the "Valley of Death"

    E-Print Network [OSTI]

    Harrison, William E. (William Elton)

    2008-01-01

    Aviation has used petroleum-derived fuels for over 100 years. With the rapidly rising price of oil and concerns about supply, the military and the commercial airlines are fostering the development of an alternative aviation ...

  11. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

  12. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  13. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  14. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    that we should use alternative aviation fuels instead ofbe used as an aviation alternative fuel. Bio-ethanol does1.1.3 Aviation biofuels Biofuels are alternative fuels

  15. Impact of petroleum, synthetic and cryogenic fuels on civil aviation. Final report

    SciTech Connect (OSTI)

    Blake, C.L.

    1982-06-01

    Partial contents of this report are: World and Long-Term Energy View; U.S. Aviation in the Fuel Market; U.S. Petroleum Forecasting; Enhanced Oil Recovery (EOR); Petroleum Refining and Aviation Fuels; Natural Gas; Synthetic Fuels for Aviation; Cryogenic Fuels and Other; Aviation Propulsion; Alternative Ground Fuels and Energy Sources; Fuel Conservation in Aviation and Disruption of U.S. Crude Oil Imports.

  16. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  17. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  18. Thermochemical Conversion Proceeses to Aviation Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific Measures 51 | Bioenergy 1 Program

  19. Aviation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    To establish framework for an effective aviation program. Cancels DOE 5480.13A. Canceled by DOE O 440.2A.

  20. Aviation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-08

    To establish the framework for an effective aviation program, and reduce or eliminate accidental losses and injuries in Departmental and contractor aviation operations. It includes Change 1, Change 2, and Change3. (Cancels DOE 5480.13A) Canceled DOE O 440.2A.

  1. Alternative fuels for general aviation. Hearing before the Subcommittee on Transportation, Aviation, and Materials, U. S. House of Representatives, Ninety-Eighth Congress, First Session, August 29, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Five witnesses representing general aviation and aviation fuel industries and the Federal Aviation Administration testified on the potential for using alternative fuels in general aviation to counteract the effects of high prices and supply vulnerability on the industry. The witnesses described test results of liquid methane and alcohol fuels, noting that those fuels which most closely emulate the properties of petroleum will best serve the industry's needs. Their testimony covered environmental and economic effects as well as fuel performance. The Synthetic Fuels Corporation, DOE, National Aeronautics and Space Administration, and the Department of Defense, as well as the aviation industry have research programs on aviation fuels.

  2. Economic and emissions impacts of renewable fuel goals for aviation in the US

    E-Print Network [OSTI]

    McConnachie, Dominic

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal ...

  3. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    energy crop cultivation 16 . The second and third generation biofuels have much better potential as aviation fuelenergy, a CBTL process with CE-CERT process combined is expected to be of great potential in Fischer-Tropsch synthetic aviation fuel

  4. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  5. Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 43 Page i DOD-DOE Workshop Summary and Action Plan: Fuel Cells in Aviation Table of Contents Executive Summary ......

  6. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per...

  7. Highly Selective Condensation of Biomass-Derived Methyl Ketones as a Source of Aviation Fuel

    E-Print Network [OSTI]

    Toste, Dean

    Highly Selective Condensation of Biomass-Derived Methyl Ketones as a Source of Aviation Fuel Eric R,[b] and Alexis T. Bell*[a] Introduction Aviation fuels must meet a number of stringent specifications, the most by branched and cyclic hydrocar- bons, and, consequently, these types of fuels are not likely to be displaced

  8. [Research and workshop on alternative fuels for aviation. Final report

    SciTech Connect (OSTI)

    1999-09-01

    The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available at that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.

  9. aviation

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 MalesG1/%2A

  10. Aviation 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Since the development of "Alternate Liquid Fuels" (ALF) in FY '77 approximately 16.6 million gallons of ALF have been produced, and consumed at Brookhaven National Laboratory. Conservatively this represents an initial saving of over $1,253,000 thru...

  11. Future fuels for general aviation; Proceedings of the Symposium on Future Fuels for General Aviation Intermittent Combustion, Baltimore, MD, June 29, 1988

    SciTech Connect (OSTI)

    Strauss, K.H.; Gonzalez, C.

    1989-01-01

    The conference presents papers on motor gasoline use in aircraft, alternative fuel use in aircraft, and future fuel requirements. Aircraft field experience with automotive gasoline in the U.S. is considered as well as field experience with type certified civil aircraft operated on motor gasolines and a worldwide survey of motor gasoline characteristics. Attention is also given to the performance of alternative fuels in general aviation aircraft, ethanol and methanol in intermittent combustion engines, and investigations into gasoline/alcohol blends for use in general aviation.

  12. Implementation of alternative bio-based fuels in aviation: The Clean Airports Program

    SciTech Connect (OSTI)

    Shauck, M.E.; Zanin, M.G.

    1997-12-31

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% of the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.

  13. iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow-

    E-Print Network [OSTI]

    Lee, Tonghun

    L iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow- ering our transportation systems in the foreseeable future. Transportation fuels derived from-derived transportation fuels are to substitute (on a large scale) for petroleum-based fuels. For example, how do we

  14. Total Imports of Residual Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr.Theories81 toDepartment ofTopo2009 2010 2011 2012

  15. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product: Total CrudeMay-15

  16. Ethyl-tertiary-butyl-ether (ETBE) as an aviation fuel: Eleventh international symposium on alcohol fuels

    SciTech Connect (OSTI)

    Maben, G.D.; Shauck, M.E.; Zanin, M.G.

    1996-12-31

    This paper discusses the preliminary flight testing of an aircraft using neat burning ethyl-tertiary-butyl-ether (ETBE) as a fuel. No additional changes were made to the fuel delivery systems which had previously been modified to provide the higher fuel flow rates required to operate the engine on neat ethanol. Air-fuel ratios were manually adjusted with the mixture control. This system allows the pilot to adjust the mixture to compensate for changes in air density caused by altitude, pressure and temperature. The engine was instrumented to measure exhaust gas temperatures (EGT), cylinder head temperatures (CHT), and fuel flows, while the standard aircraft instruments were used to collect aircraft performance data. Baseline engine data for ETBE and Avgas are compared. Preliminary data indicates the technical and economic feasibility of using ETBE as an aviation fuel for the piston engine fleet. Furthermore, the energy density of ETBE qualifies it as a candidate for a turbine engine fuel of which 16.2 billion gallons are used in the US each year.

  17. Three-Dimensional Fluorescence Spectra of Thermally Stressed Commercial Jet A-1 Aviation Fuel in the Autoxidative Regime

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Three-Dimensional Fluorescence Spectra of Thermally Stressed Commercial Jet A-1 Aviation Fuel: In this study, the thermal oxidative stability of a kerosene-type Jet A-1 commercial aviation fuel has been investigated using a three-dimensional (3D) excitation/emission matrix fluorescence (EEMF) method. The fuel

  18. The Potential of Turboprops to Reduce Aviation Fuel Consumption

    E-Print Network [OSTI]

    Smirti, Megan; Hansen, Mark

    2009-01-01

    Kerosene-Type Jet Fuel Wholesale/Resale Price by Refiners (FIGURE 1 U.S. Jet Fuel Wholesale/Resale Price by Refiners,with a regional jet. As fuel prices seen in 2008 were above

  19. Economic and emissions impacts of renewable fuel goals for aviation in the US*

    E-Print Network [OSTI]

    for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR renewable oils. Our approach employs an economy-wide model of economic activity and energy systemsEconomic and emissions impacts of renewable fuel goals for aviation in the US* Niven Winchester

  20. Thermochemical Conversion Proceeses to Aviation Fuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department of EnergyPROGRAM The StateTheThe-

  1. Baylor University - Renewable Aviation Fuels Development Center | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: EnergyCounty, Wisconsin:Energy

  2. DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30, 2010, in Washington, DC. aircraft8klebanoff.pdf More Documents & Publications Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial...

  3. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.3 12,393.4

  4. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.3 12,393.441.8

  5. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.3 12,393.441.871.7

  6. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.3

  7. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.349.9 360.4

  8. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar AprCubic(Million24565.199.6 92.9

  9. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar AprCubic(Million24565.199.6

  10. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar AprCubic(Million24565.199.613.7

  11. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar

  12. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar87.1 81.2 38.0 37.3 51.5 42.0

  13. Process for Converting Algal Oil to Alternative Aviation Fuel - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions | National NuclearProbingProbingxx by ASMEPlasma

  14. Airlines and Aviation Alternative Fuels: Our Drive to Be Early...

    Energy Savers [EERE]

    N. Young, VP-Environment; CAAFI Environment Team Co-Lead June 23, 2015 Why Airlines Want Alternative Fuels airlines.org 2 New Supply Chain * Energy SecuritySupply Reliability...

  15. Demonstration and implementation of ethanol as an aviation fuel. Final report

    SciTech Connect (OSTI)

    1998-01-01

    The objectives of the program were to demonstrate the viability of ethanol as an aviation fuel at appropriate locations and audiences in the participating Biomass Energy Program Regions, and to promote implementation projects in the area. Seven demonstrations were to be performed during the Summer 1995 through December 1996 period. To maximize the cost effectiveness of the program, additional corporate co-sponsorships were sought at each demonstration site and the travel schedule was arranged to take advantage of appropriate events taking place in the vicinity of the schedule events or enroute. This way, the original funded amount was stretched to cover another year of activities increasing the number of demonstrations from seven to thirty-nine. While the Renewable Aviation Fuels Development Center (RAFDC) contract focused on ethanol as an aviation fuel, RAFDC also promoted the broader use of ethanol as a transportation fuel. The paper summarizes locations and occasions, and gives a brief description of each demonstration/exhibit/presentation held during the term of the project. Most of the demonstrations took place at regularly scheduled air shows, such as the Oshkosh, Wisconsin Air Show. The paper also reviews current and future activities in the areas of certification, emission testing, the international Clean Airports Program, air pollution monitoring with instrumented aircraft powered by renewable fuels, training operation and pilot project on ethanol, turbine fuel research, and educational programs.

  16. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    2007) Commercial Aviation Alternative Fuels Initiative:the Commercial Aviation Alternative Fuels Initiative (the potential of alternative fuels for aviation.

  17. Aviation-fuel additives. January 1970-December 1989 (Citations from the NTIS data base). Report for January 1970-December 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This bibliography contains citations concerning research and development of aviation-fuel additives, together with pertinent characteristics. Included are studies on antioxidants, antimist, antistatic, lubricity, corrosion inhibition, and icing inhibition additives. Other characteristics are covered in investigations into additives for vulnerability reduction, thermal stability, and storage stability of aviation fuels. (This updated bibliography contains 212 citations, 22 of which are new entries to the previous edition.)

  18. Residual Fuel Oil Sales for Industrial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012 2013

  19. Residual Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012 201314,609

  20. Residual Fuel Oil for All Other Uses

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011

  1. Residual Fuel Oil for Commercial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011415,107 356,343

  2. Total Adjusted Sales of Residual Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8, 2015End Use: TotalEnd

  3. Total Sales of Residual Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product:269,010

  4. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect (OSTI)

    Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  5. Environmental and economic tradeoffs of feedstock usage for liquid fuels and power production

    E-Print Network [OSTI]

    Trivedi, Parthsarathi

    2014-01-01

    The thesis is divided into two parts - 1) assessing the energy return on investment for alternative jet fuels, and 2) quantifying the tradeoffs associated with the aviation and non-aviation use of agricultural residues. ...

  6. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    ATA (2009). “ Alternative Aviation Fuels Q&A. ” Retrievedsectors, alternative aviation and marine fuels face numerousHRJ. The Commercial Aviation Alternative Fuels Initiative (

  7. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  8. Transport impacts on atmosphere and climate: Aviation

    E-Print Network [OSTI]

    2010-01-01

    Alternative Fuels and their Potential Impact on Aviationalternative fuels, liquid hydrogen represents a possibility and may reduce some of aviation’s impacts on climate if the fuelalternative fuels ‘Alternative fuels’ here, refers to fuels that are alternative energy sources to aviation

  9. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    fuel) is called CTL (coal-to-liquid), GTL (gas-to-liquid)Tropsch jet fuel CTL: coal to liquid BTL: biomass to liquidTable 2 Coal and biosolid physical properties Liquid Fuels:

  10. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    Conversion of Natural Gas to Transportation Fuels via theTransportation Total energy Fossil fuel Coal Natural gastransportation and distribution Total energy Fossil energy Coal Natural gas

  11. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    became the fuel for jet engines. Frank Whittle from Britainforerunner for future jet engine design, and kerosene becameaviation fuel. The early jet engines were more tolerant to

  12. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    of Municipal Sewage Sludge to Produce Synthetic Fuels,the Use or Disposal of Sewage Sludge; Final Rules, Unitedof Municipal Sewage Sludge to Produce Synthetic Fuels,

  13. DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODS DERIVATION-2013,

  14. Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A Wholesale Power Rate ScheduleSHERMAN STREET,and Action Plan |

  15. Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment ofEnergy 1Air-to-Water Heat Pumps

  16. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    Coal and biosolid physical properties……………………………………..22Table 2 Coal and biosolid physical properties Liquid Fuels:coal mining and transportation………………………..23 Table.7: Energy consumption and GHG emission for biosolid transportation……..24 Table.8: F-T jet fuel properties

  17. Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop...

    Energy Savers [EERE]

    objectives. One of the solutions being explored under the MOU is the use of hydrogen and fuel cell applications to curb the use of logistics fuel across several DOD agencies....

  18. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    Jet fuel and crude oil price history……………………………. …………6Figure 2 Jet fuel and crude oil price history. From IATAa sharp decrease in crude oil price occurred in the 1950s.

  19. The Future of Biofuels: U.S. (and Global) Airlines & Aviation Alternative Fuels

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths for Biojet Fuel TonyBiofuels:

  20. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.0 45,096.6

  1. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.0

  2. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.014.2 406.0

  3. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.014.2

  4. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.014.25.6

  5. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD District

  6. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD District

  7. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD District

  8. U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan

  9. U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S.SalesPropane,

  10. U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet) DepletedDiscoveriesArea: U.S.-Propane,

  11. U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet)

  12. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  13. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  14. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  15. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    22 Table.5: Energy consumption for coal mining and23 Table.7: Energy consumption and GHG emission for biosolid26 Table.9: Energy consumption for F-T jet fuel

  16. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    of Municipal Sewage Sludge to Produce Synthetic Fuels,5.4 million dry metric tons of sludge annually or 47pounds of sewage sludge (dry weight basis) for every

  17. Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    in terms of hydrogen yield and sulfur-tolerance; catalysts containing small levels of palladium and rhodium) to hydrogen through steam reforming poses a challenge since these fuels contain sulfur up to about 1000 ppm

  18. California: Agricultural Residues Produce Renewable Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOof Energy Office04 Calendar

  19. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  20. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  1. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  2. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  3. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  4. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  5. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  6. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  7. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  8. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  9. Residual Fuel Oil Prices, Average - Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012 2013 2014

  10. Residual Fuel Oil Sales for Oil Company Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012

  11. Residual Fuel Oil Sales for Vessel Bunkering Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 20124,589,049

  12. U.S. Residual Fuel Oil Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan FebFeet)YearCrude

  13. U.S. Residual Fuel Oil Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S. East Coast

  14. U.S. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area:U.S.Import

  15. Prime Supplier Sales Volumes of Residual Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet)22,108.1

  16. Residual Fuel Oil Prices, Average - Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016 East Coast (PADD 1)

  17. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016 East Coast (PADD 1)May-15

  18. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8)3

  19. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01

    alternative fuels, including alcohols (ethanol and methanol), aviation fuel (Alternative fuels and their potential impact on aviation.

  20. Wood Residues as Fuel Source for Lime Kilns 

    E-Print Network [OSTI]

    Azarniouch, M. K.; Philp, R. J.

    1984-01-01

    One of the main obstacles to total energy self sufficiency of kraft mills appears to be the fossil fuel requirements of the lime kilns. If an economical technology can be developed which allows fossil fuel to be replaced in whole or in part by wood...

  1. ,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longecReformulated Gasoline RefinerResidual Fuel

  2. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and Residual

  3. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    limitations for shipping applications are fuel storagefuel, or possibly the inclusion of aviation and shipping andfuels used in international aviation and maritime shipping),

  4. ,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longecReformulated Gasoline RefinerResidual

  5. Aviation safety analysis

    E-Print Network [OSTI]

    Ausrotas, Raymond A.

    1984-01-01

    Introduction: Just as the aviation system is complex and interrelated, so is aviation safety. Aviation safety involves design of aircraft and airports, training of ground personnel and flight crew members' maintenance of ...

  6. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,

  7. GOES Aviation Products Aviation Weather Forecasting

    E-Print Network [OSTI]

    Kuligowski, Bob

    GOES Aviation Products · The GOES aviation forecast products are based on energy measured in different characteristics #12;GOES Aviation Products Quiz · What is a geostationary satellite? · What generates energy received by the satellite in the visible band? · What generates energy received by the satellite

  8. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6 6,676.5 14,388.9

  9. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6 6,676.5

  10. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6 6,676.5555.2

  11. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6

  12. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan FebFeet)YearCrudeVolumes

  13. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S.Sales

  14. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet) DepletedDiscoveriesArea: U.S.-

  15. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet) DepletedDiscoveriesArea:Volumes

  16. The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters

    SciTech Connect (OSTI)

    Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

    2013-08-01

    With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

  17. ENVIRONMENT AVIATION, ENERGY

    E-Print Network [OSTI]

    Peraire, Jaime

    TRANSPORT ASSOCIATION PRESIDENT AND CEO, CONGRESSIONAL TESTIMONY, 200712 Aviation, environment, and energy

  18. Reducing Aviation's Environmental Impact Through Large Aircraft For Short Ranges

    E-Print Network [OSTI]

    Zingg, David W.

    aviation's impact on climate change. Examples include alternative fuels,4,5 blendedReducing Aviation's Environmental Impact Through Large Aircraft For Short Ranges Gaetan K.W Kenway,500 nm. We show that the impact of civil aviation on climate change can be reduced by using large

  19. The Impact of Advanced Biofuels on Aviation Emissions and Operations in the U.S.

    E-Print Network [OSTI]

    Winchester, N.

    We analyze the economic and emissions impacts on U.S. commercial aviation of the Federal Aviation Administration’s renewable jet fuel goal when met using advanced fermentation (AF) fuel from perennial grasses. These fuels ...

  20. A case for biofuels in aviation

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown at major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.

  1. Microstructure, residual stress, and mechanical properties of thin film materials for a microfabricated solid oxide fuel cell

    E-Print Network [OSTI]

    Quinn, David John, Sc. D. Massachusetts Institute of Technology

    2006-01-01

    The microstructure and residual stress of sputter-deposited films for use in microfabricated solid oxide fuel cells are presented. Much of the work focuses on the characterization of a candidate solid electrolyte: Yttria ...

  2. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-11-27

    To establish the framework for an efficient, effective, secure, and safe aviation program in the Department of Energy (DOE) and its contractor aviation operations. Cancels DOE O 440.2A. Canceled by DOE O 440.2C.

  3. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-03-02

    To establish the framework for an efficient, effective, secure, and safe aviation program in the Department of Energy (DOE) and its contractor aviation operations. Cancels DOE O 440.2. Canceled by DOE O 440.2B.

  4. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-11-27

    This directive establishes the framework for an efficient, effective, secure, and safe aviation program in the DOE and its contractor operations. Cancels DOE O 440.2A, Aviation, dated 3-8-02.

  5. Aviation Field 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy would make use of fuels containing transuranic (TRU) nuclides in nuclear reactors. This would prolong reactor operation...

  6. Patricia Hagerty, Aviation Program Analyst

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS - WE NEED A CHANGEof TheNREL seniorPatAVIATION

  7. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Supersedes DOE O 440.2B.

  8. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  9. The Impact of Advanced Biofuels on Aviation Emissions and

    E-Print Network [OSTI]

    . In all cases, as renewable jet fuel represents around 1.4% of total fuel consumed by commercial aviation, the goal has a small impact on aviation operations and emissions relative to a case without the renewable for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR

  10. A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

    SciTech Connect (OSTI)

    Sanders, T.L. ); Jordan, H. . Rocky Flats Plant); Pasupathi, V. ); Mings, W.J. ); Reardon, P.C. )

    1991-09-01

    This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

  11. ,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longecReformulated Gasoline

  12. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and6.. Total

  13. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    aboard ships (e.g. , heavy fuel oil and residual fuel oil)natural gas for heavy fuel oil (i.e. , residual fuel oil).fuels. Residual fuel oil (also called heavy fuel oil (HFO))

  14. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  15. Effect of residual stress on the life prediction of dry storage canisters for used nuclear fuel

    E-Print Network [OSTI]

    Black, Bradley P. (Bradley Patrick)

    2013-01-01

    Used nuclear fuel dry storage canisters will likely be tasked with holding used nuclear fuel for a period longer than originally intended. Originally designed for 20 years, the storage time will likely approach 100 years. ...

  16. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1Sales to End Users Refinerto End

  17. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015" ,"ReleaseMonthly","10/2015"Net Receipts byDistillate

  18. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLOTM fuel cladding using a modified shear-lag model

    E-Print Network [OSTI]

    Motta, Arthur T.

    Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLOTM fuel Accepted 2 June 2015 Available online xxx Keywords: ATF (accident tolerant fuel) coating Micromechanical modelling Metal-coating interface Fission Zirconium Accident tolerant fuels (ATF) a b s t r a c t This paper

  19. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015" ,"ReleaseMonthly","10/2015"Prime Supplier Sales VolumesPrices by Sales Type" ,"Click

  20. ,"U.S. Residual Fuel Oil Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015" ,"ReleaseMonthly","10/2015"Prime Supplier Sales VolumesPrices by Sales Type"

  1. ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" "10.3 Relative5

  2. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" "10.3

  3. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2 48.3

  4. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2 48.35.1

  5. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2

  6. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.243.9 36.4

  7. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.243.9

  8. Table A3. Refiner/Reseller Prices of Distillate and Residual Fuel Oils,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel"

  9. Table A3. Refiner/Reseller Prices of Distillate and Residual Fuel Oils,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel" PAD

  10. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 155 Reasons that Made

  11. U.S. Adjusted Sales of Residual Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries and TBDArea: U.S.

  12. U.S. Sales of Residual Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S.

  13. ,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longecReformulated GasolineSales Volumes of

  14. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.; Smith, Frances N.; Mausolf, Edward J.; Scheele, Randall D.

    2014-02-10

    Nitrogen trifluoride (NF3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (?70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF3 in argon between 400 and 550?C, removed molybdenum and technetium near 400?C as their volatile fluorides, and ruthenium near 500?C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metals from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.

  15. Studies on the practical application of producer gas from agricultural residues as supplementary fuel for diesel engines

    SciTech Connect (OSTI)

    Cruz, I.E.

    1980-01-01

    Gasification of various agricultural residues in down-draft, fixed bed gas producers and the utilization of the gas in small diesel engines converted for dual-fuel operation were studied at the College of Engineering, University of the Philippines. Such agricultural residues as coconut shells, wood waste, rice hulls and corn cobs were readily gasified in gas producers of simple design. Cleaning of the gas before its use in diesel engines presented some problems. Use of charcoal in the gas producers to provide gas to a 5-brake horsepower single cylinder engine and a 65-brake horsepower six cylinder engine proved satisfactory. With charcoal as fuel, the percentage of the total energy from diesel oil replaced by producer gas and utilized in the single cylinder engine was higher (79%) compared to that in the six cylinder engine (73%). The thermal efficiency of the bigger gas producer, however was significantly better (85%) compared to the smaller gas producer (70%). The total gasification rate of the bigger reactor (20 kg/h) was 8 times that (2.5 kg/h) of the smaller reactor.

  16. Aviation Safety Council Taipei, Taiwan

    E-Print Network [OSTI]

    Ladkin, Peter B.

    Aviation Safety Council Taipei, Taiwan GE 536 Occurrence Investigation Report Runway Overrun During ............................................................. 12 1.6.1 Maintenance Records......................................................... 12 1

  17. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    natural gas for heavy fuel oil (i.e. , residual fuel oil).fuel oil (also called heavy fuel oil (HFO)) can be replacedaboard ships (e.g. , heavy fuel oil and residual fuel oil)

  18. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Schell, Daniel J

    2012-01-01

    A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

  19. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo “Mini” Fuel Foils and Plates

    SciTech Connect (OSTI)

    Brown, Donald W.; Okuniewski, M. A.; Sisneros, Thomas A.; Clausen, Bjorn; Moore, G. A.; Balogh, L

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  20. 2007 Instrument Procedures Handbook; Chapter 5 Approach Authors: US Department of Transportation, Federal Aviation Administration (Flight

    E-Print Network [OSTI]

    Kaber, David B.

    , Federal Aviation Administration (Flight Procedures Standards Branch) From: www.faa.gov/library/manuals/aviation with weather around airports because it #12;influences the approaches they can implement, the amount of fuel used, and alternate approach planning. AIRPLANE PERFORMANCE OPERTING LIMITATIONS (Page 5-6) All

  1. An Update on FAA Alternative Jet Fuel Efforts

    Broader source: Energy.gov [DOE]

    Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Nate Brown, Alternative Fuels Project Manager, Office of the Environment and Energy, Federal Aviation Administration

  2. Air Force Achieves Fuel Efficiency through Industry Best Practices...

    Office of Environmental Management (EM)

    Presentation Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan...

  3. An Operations Research approach to aviation security

    E-Print Network [OSTI]

    Martonosi, Susan Elizabeth

    2005-01-01

    Since the terrorist attacks of September 11, 2001, aviation security policy has remained a focus of national attention. We develop mathematical models to address some prominent problems in aviation security. We explore ...

  4. Office of Marine and Aviation Operations NOAA's Office of Marine and Aviation Operations

    E-Print Network [OSTI]

    Office of Marine and Aviation Operations NOAA's Office of Marine and Aviation Operations (OMAO) 101 2015 #12;Office of Marine and Aviation Operations For future questions and information on OMAO://www.legislative.noaa.gov/. #12;Office of Marine and Aviation Operations Director, OMAO and the NOAA Corps Rear Admiral David A

  5. Aviation Sustainable Biofuels: An Asian Airline Perspective

    E-Print Network [OSTI]

    Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

  6. Low Carbon Aviation Committee Meeting

    Broader source: Energy.gov [DOE]

    The first committee meeting of the Propulsion and Energy Systems to Reduce Commercial Aviation Carbon Emissions Project will be held on June 2–3, 2015 at the National Academy of Sciences. BETO Director Jonathan Male will be speaking on a Department of Energy panel at the meeting, and Lead Analyst Zia Haq will be in attendance.

  7. Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue

    DOE Patents [OSTI]

    Longanbach, J.R.

    1981-11-13

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  8. DOE Federal Aviation Professional Awards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional Awards More Documents &

  9. Aviation security: A system's perspective

    SciTech Connect (OSTI)

    Martin, J.P.

    1988-01-01

    For many years the aviation industry and airports operated with security methods and equipment common to most other large industrial complexes. At that time, the security systems primarily provided asset and property protection. However, soon after the first aircraft hijacking the focus of security shifted to emphasize the security requirements necessary for protecting the traveling public and the one feature of the aviation industry that makes it unique---the airplane. The airplane and its operation offered attractive opportunities for the homesick refugee, the mentally unstable person and the terrorist wanting to make a political statement. The airport and its aircraft were the prime targets requiring enhanced security against this escalated threat. In response, the FAA, airport operators and air carriers began to develop plans for increasing security and assigning responsibilities for implementation.

  10. Development of an autoland system for general aviation aircraft

    E-Print Network [OSTI]

    Siegel, Diana

    2012-01-01

    Accidents due to engine failure, pilot disorientation or pilot incapacitation occur far more frequently in general aviation than in commercial aviation, yet general aviation aircraft are equipped with less safety-enhancing ...

  11. Rheology and stability of SRC residual fuel oils - storage evaluation. SRC-1 quarterly technical report, October-December 1982. Supplement

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    In Air Products ongoing study to characterize the rheology and stability of various SRC residual oils, single-phase blends of 50 wt % HSRC and TSL SRC in 1:1 mixtures of 1st- and 2nd-stage process solvents were subjected to storage stability tests at 150/sup 0/F in nitrogen and air atmospheres. Using viscosity as an indicator, it was observed that the blends studied increased in viscosity with storage time in an air atmosphere; the viscosity increase began after a 4-week storage period. The increase in HSRC blend viscosity was significantly greater than that of the TSL SRC blend. A 60-day air-stored blend will require a pumping temperature about 10/sup 0/F higher than that specified for an unaged blend in order to have the same viscosity. The viscosity increase under nitrogen storage was relatively insignificant. Nitrogen blanketing appears to be important in maintaining the specified viscosity characteristics of the blends during storage in the 150/sup 0/F storage condition tested. A loss of volatiles undoubtedly occurs during high-temperature storage under laboratory conditions. Such losses contribute to an increase in the viscosity of the blend. In commercial practice, volatile losses are expected to be significantly lower. Solvent extraction data and analysis of separated fractions suggest that during storage under the above conditions, some oxidative polymerization of pentane-soluble oil components forms higher molecular weight pentane insolubles (asphaltenes and benzene insolubles). Asphaltenes are also involved in the increase in viscosity and do chemically change. 1 reference, 8 figures, 27 tables.

  12. TAUM-AVIATION: ITS TECHNICALFEATURES ANDSOMEEXPERIMENTALRESULTS

    E-Print Network [OSTI]

    TAUM-AVIATION: ITS TECHNICALFEATURES ANDSOMEEXPERIMENTALRESULTS Pierre IsabeHe and Laurent Bourbeau undertook the construction of TAUM-AVIATION, an experimental system for English to French translation in the sublanguage of technical maintenance manuals. A detailed description of the resulting prototype is offered

  13. 2014-2015 Projected Aviation Program Costs

    E-Print Network [OSTI]

    Delene, David J.

    2014-2015 Projected Aviation Program Costs UND Aerospace offers two aviation degree programs with a total of seven academic majors. Each has its own flight course requirements, which affect the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey of Flight

  14. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  15. fuel

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  16. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Winchester, N.

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

  17. Improved Usability of Aviation Automation Through Direct

    E-Print Network [OSTI]

    Kaber, David B.

    Improved Usability of Aviation Automation Through Direct Manipulation and Graphical User Interface Design David B. Kaber and Jennifer M. Riley Department of Industrial Engineering North Carolina State University Kheng-Wooi Tan Department of Industrial Engineering Mississippi State University Problems

  18. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  19. Aviation Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesA Case Study from the3Management »

  20. Environmental and economic assessment of microalgae-derived jet fuel

    E-Print Network [OSTI]

    Carter, Nicholas Aaron

    2012-01-01

    Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

  1. Aviation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections Audits &drivers to see big savingsManagement

  2. aviation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46A NAME AND TITLE1/%2Aaviation |

  3. Aviation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools to someoneAstrophysics

  4. Current and historical trends in general aviation in the United States

    E-Print Network [OSTI]

    Shetty, Kamala Irene

    2012-01-01

    General aviation (GA) is an important component of aviation in the United States. In 2011, general aviation and air taxi operations represented 63% of all towered operations in the United States, while commercial aviation ...

  5. Benefit-cost assessment of aviation environmental policies

    E-Print Network [OSTI]

    Gilmore, Christopher K. (Christopher Kenneth)

    2012-01-01

    This thesis aids in the development of a framework in which to conduct global benefit-cost assessments of aviation policies. Current policy analysis tools, such as the aviation environmental portfolio management tool (APMT), ...

  6. The air quality and health impacts of aviation in Asia

    E-Print Network [OSTI]

    Lee, In Hwan, S.M. Massachusetts Institute of Technology

    2012-01-01

    Aviation in Asia is growing more rapidly than other regions around the world. Adverse health impacts of aviation are linked to an increase in the concentration of particulate matter smaller than 2.5 [mu]m in diameter ...

  7. Future trends in local air quality impacts of aviation

    E-Print Network [OSTI]

    Rojo, Julien Joseph

    2007-01-01

    The International Civil Aviation Organization is considering the use of cost-benefit analyses to estimate interdependencies between the industry costs and the major environmental impacts in policy-making for aviation. To ...

  8. An assessment of the health implications of aviation emissions regulations

    E-Print Network [OSTI]

    Sequeira, Christopher J

    2008-01-01

    An exploration of the health implications of aviation emissions regulations is made by assessing the results of a study of aviation's effects on United States air quality mandated by the Energy Policy Act of 2005. The ...

  9. The U.S. aviation system to the year 2000

    E-Print Network [OSTI]

    Ausrotas, Raymond A.

    1982-01-01

    Introduction: 1.1 The Future of the Aviation System. It is nothing if not presumptuous to look ahead twenty years in any phase of human activity. This seems particularly true in civil aviation where the certificated airlines ...

  10. Environmental and economic assessment of alternative transportation fuels

    E-Print Network [OSTI]

    Withers, Mitch Russell

    2014-01-01

    Alternative fuels have the potential to mitigate transportation's impact on the environment and enhance energy security. In this work, we investigate two alternative fuels: liquefied natural gas (LNG) as an aviation fuel, ...

  11. Texas A&M University -Central Texas Aviation History I

    E-Print Network [OSTI]

    Diestel, Geoff

    Texas A&M University - Central Texas Aviation History I ASCK 307 110 Fall 2013 Instructor: Dr;Username: Your Tarleton email address (the complete email address, e.g. john.doe@go.tarleton.edu) Initial.org/UNILERT I. Overview Aviation History Part I gives students a unique perspective on international aviation

  12. Report to the United States Congress AVIATION AND THE ENVIRONMENT

    E-Print Network [OSTI]

    Waitz, Ian A.

    Report to the United States Congress AVIATION AND THE ENVIRONMENT A National Vision Statement, Framework for Goals and Recommended Actions #12;Report to the United States Congress AVIATION and Recommended Actions FireflyProductions/CORBIS #12; Report to the United States Congress: Aviation

  13. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  14. The Potential of Turboprops to Reduce Aviation Fuel Consumption

    E-Print Network [OSTI]

    Smirti, Megan; Hansen, Mark

    2009-01-01

    and Grimme, W.G. , 2007. Emissions trading for internationalinvestigating an open emission trading system for aviationin the European Union Emissions Trading Scheme (Wit et al. ,

  15. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5.8 W W 739.0 1997 Average ... 0.9 W 391.3 98.2 2.4 61.0 5.4 7.2 19.8 452.2 Michigan January ... W W 759.3 74.4 8.7 199.9 63.6 99.8 W...

  16. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Illinois January ... W W 1,773.0 58.9 W 136.1 W 257.0 W 1,452.2 February ... W W 1,826.4 139.9 W 44.8 W 134.3 W 1,288.7 March...

  17. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    W 11.3 444.9 148.4 4.6 489.5 W W 42.3 915.8 December ... W 11.5 452.2 139.2 5.7 653.4 W W 41.7 1,229.8 1995 Average ... 5.3 11.7 385.0...

  18. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    W 1,098.8 July ... 15.1 W 2,361.6 1,712.7 W W 1,452.2 August ... 16.6 - 2,850.7 2,038.2 W W 2,012.1...

  19. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 65.2 154.6 10,824.4 3,435.1 64.3 571.3 0.7 14.1 96.9 3,422.1 May ... 53.3 133.5 11,416.4 2,802.0 48.6 964.8 W 6.8...

  20. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    87.1 81.2 38.0 37.3 51.5 42.0 February ... 85.1 79.2 36.5 35.2 49.9 37.8 March ... 90.1 86.3 39.6 39.5 53.6 43.7 April...

  1. EA-2000: Proposed Land Transfer to Develop a General Aviation...

    Energy Savers [EERE]

    2000: Proposed Land Transfer to Develop a General Aviation Airport at the East Tennessee Technology Park Heritage Center, Oak Ridge, Tennessee EA-2000: Proposed Land Transfer to...

  2. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    aviation and marine travel are higher than energy efficiencyintensity of the energy sources used in aviation and marineand marine diesel oil) or to other renewable energy sources,

  3. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    SciTech Connect (OSTI)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  4. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    0: Residual Fuel Oil Price and Expenditure Estimates, 2013 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation...

  5. ISSUE NO. 8 The Aviation Safety Reporting System is a cooperative program established by the Federal Aviation

    E-Print Network [OSTI]

    nearly 30 papers on aviation safety and incident reporting, and was called upon to present testimony as an authoritative witness on aviation safety at several Congressional hearings. Bill already had an illustrious University College of Law in 1969, Bill served as Legal Counsel / Congressional Affairs to the National

  6. Published: April 19, 2011 r 2011 American Chemical Society 2142 dx.doi.org/10.1021/ef2002102 |Energy Fuels 2011, 25, 21422150

    E-Print Network [OSTI]

    Gülder, Ömer L.

    |Energy Fuels 2011, 25, 2142­2150 ARTICLE pubs.acs.org/EF Analysis of Aviation Fuel Thermal Oxidative, Toronto, Ontario M3H 5T6, Canada ABSTRACT: In modern gas-turbine aircraft, aviation fuel is routinely used, in addition to its conventional role as the energy source through combustion. The increase of the fuel

  7. 2003-01-2975 NASA's Aviation System Monitoring and Modeling Project

    E-Print Network [OSTI]

    Maluf, David A.

    flight data recorders, ATC radar tracks, maintenance logs, weather records, aviation safety incident2003-01-2975 NASA's Aviation System Monitoring and Modeling Project Irving C. Statler and David A NASA's Aviation Safety Program, the Aviation System Monitoring and Modeling (ASMM) Project addresses

  8. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    Aviation and Marine Transportation: Mitigation Potential and Policies Additional optimization of shipping logistics, routing and maintenance

  9. Service network design optimization for Army Aviation lift planning

    E-Print Network [OSTI]

    Mogensen, Matthew D. (Matthew David)

    2014-01-01

    The need for optimized aviation lift planning is becoming increasingly important as the United States and her allies participate in the Global War on Terror (GWOT). As part of a comprehensive effort, our nation's fighting ...

  10. Flight test and evaluation of Omega navigation for general aviation

    E-Print Network [OSTI]

    Hwoschinsky, Peter V.

    1975-01-01

    A seventy hour flight test program was accomplished to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely ...

  11. Comparative analysis of aviation safety information feedback systems

    E-Print Network [OSTI]

    Funahashi, Yoshifuru

    2010-01-01

    In the aviation system, there are several feedback systems to prevent an accident. First of all, the accident and serious incident reporting and investigation system is established by the Chicago Convention. In general, ...

  12. A general equilibrium analysis of climate policy for aviation

    E-Print Network [OSTI]

    Gillespie, Christopher Whittlesey

    2011-01-01

    Regulation of aviation's contribution to the global problem of climate change is increasingly likely in the near term, but the method agreed upon by most economists-a multi-sectoral market-based approach such as a cap and ...

  13. Automated safety and training avionics for general aviation aircraft 

    E-Print Network [OSTI]

    Trang, Jeffrey Alan

    1997-01-01

    and Training Avionics (ASTRA). ASTRA research is focused on integrating low-cost, yet sophisticated, computing technology into general aviation aircraft. The system architecture includes a Flight Mode Interpreter (FMI), which provides real-time identification...

  14. Fuel burn reduction potential from delayed deceleration approaches

    E-Print Network [OSTI]

    Dumont, Jean-Marie, S.M. Massachusetts Institute of Technology

    2012-01-01

    Changing aircraft operational procedures is one strategy that can be used to reduce fuel burn and mitigate environmental impacts of aviation in relatively short timeframes with existing aircraft types. One promising ...

  15. Biofuels in Defense, Aviation, and Marine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor4GerardUS Departmentfor thein

  16. UNSW School of Aviation S2-2015 Colloquium Series Location: School of Aviation, Old Main Building, Level 2, Room 221

    E-Print Network [OSTI]

    New South Wales, University of

    UNSW School of Aviation S2-2015 Colloquium Series Location: School of Aviation, Old Main Building September Jim Mitchell UWS Human Factors & Safety Automation in light aircraft: a cross national analysis

  17. 6437r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 64376441 : DOI:10.1021/ef1012837

    E-Print Network [OSTI]

    Gülder, Ömer L.

    6437r 2010 American Chemical Society pubs.acs.org/EF Energy Fuels 2010, 24, 6437­6441 : DOI:10.1021/ef1012837 Published on Web 11/16/2010 Spectroscopic Study of Aviation Jet Fuel Thermal Oxidative September 21, 2010 Aviation fuel is used as a coolant to remove waste heat loads from an aircraft

  18. Federal Aviation Administration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmland ProtectionInformation

  19. Oregon Department of Aviation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data availableInformationOptonyAgriculture Jump

  20. California: Agricultural Residues Produce Renewable Fuel | Department...

    Office of Environmental Management (EM)

    in America to reduce our dependence on imported oil. Addthis Related Articles The Energy Department's Bioenergy Technologies Office engages with the U.S. Department of...

  1. Consideration of the environmental impact of aircraft has become critical in commercial aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions,

    E-Print Network [OSTI]

    Papalambros, Panos

    aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions airframe, engine and mission. The environmental metrics considered in this investigation are CO2 emissions -- which are proportional to fuel burn -- and landing- takeoff NOx emissions. The results are compared

  2. Aware of the risks, the Federal Aviation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections Audits &drivers to seeAwardsAwards |AwardsAware

  3. Ferrin Moore, Senior Aviation Policy Officer

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to CongressApril 6, 2012Certification | Department

  4. Aviation Manager | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReporteeo | National Nucleara min [Type theCertificationPrograms

  5. Aviation Management Professional Award Nomination for:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THEEnergyAO isProfessional

  6. Aviation Manager Functional Area Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THEEnergyAO

  7. Aviation Safety Officer Functional Area Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THEEnergyAO2003 September 2003

  8. AVIATION MANAGER QUALIFICATION STANDARD REFERENCE GUIDE

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance of9,Septemeber 19, 2014INITIATED

  9. AVIATION SAFETY OFFICER QUALIFICATION STANDARD REFERENCE GUIDE

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance of9,Septemeber 19, 2014INITIATEDSafety

  10. Biomass from Logging Residue and Mill Residue

    E-Print Network [OSTI]

    Biomass from Logging Residue and Mill Residue in East Texas, 2008 by Curtis L. VanderSchaaf, Forest Resource Analyst October 2009 #12;N Introduction The abundance of woody biomass from East Texas forests. This report represents the most current data on the availability of woody biomass in the form of logging

  11. A response surface model of the air quality impacts of aviation

    E-Print Network [OSTI]

    Ma?ek, Tudor

    2008-01-01

    Aviation demand is expected to double in the coming decades, and there are growing concerns about its impacts on the environment. Governments seek to mitigate the impacts of aviation on climate, air quality, and noise by ...

  12. A system theoretic safety analysis of U.S. Coast Guard aviation mishap involving CG-6505

    E-Print Network [OSTI]

    Hickey, Jon (Jon Patrick)

    2012-01-01

    During a 22-month period, between 2008 and 2010, the U.S. Coast Guard experienced seven Class-A aviation mishaps resulting in the loss of 14 Coast Guard aviators and seven Coast Guard aircraft. This represents the highest ...

  13. Dynamics of Implementation of Mitigating Measures to Reduce CO2 Emissions from Commercial Aviation

    E-Print Network [OSTI]

    Kar, Rahul

    2010-07-13

    Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO2 emissions from aviation. Case studies of historical changes in the aviation industry have ...

  14. Aviation environmental policy effects on national- and regional-scale air quality, noise, and climate impacts

    E-Print Network [OSTI]

    Wolfe, Philip J. (Philip James)

    2012-01-01

    The continued growth of the aviation industry poses a challenge to policy-makers and industry stakeholders as each decision represents a trade-off on efficiency, equity, and environmental impact. The Aviation environmental ...

  15. The air quality impact of aviation in future-year emissions scenarios

    E-Print Network [OSTI]

    Ashok, Akshay

    2011-01-01

    The rapid growth of aviation is critical to the world and US economy, and it faces several important challenges among which lie the environmental impacts of aviation on noise, climate and air quality. The first objective ...

  16. Dynamics of implementation of mitigating measures to reduce CO? emissions from commercial aviation

    E-Print Network [OSTI]

    Kar, Rahul, 1979-

    2010-01-01

    Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO? emissions from aviation. Case studies of historical changes in the aviation industry have ...

  17. Airborne Volcanic Ash--A Global Threat to Aviation U.S. Department of the Interior

    E-Print Network [OSTI]

    Airborne Volcanic Ash--A Global Threat to Aviation U.S. Department of the Interior U.S. Geological on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control

  18. Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

    E-Print Network [OSTI]

    Jacobson, Mark

    of the world econ- omy and demand for aviation and its emissions are expected to increase in the future from aviation (mainly carbon dioxide (CO2), water vapor (H2O), nitrogen oxides (NOx = NO + NO2), VOCsComparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

  19. INTELLIGENT ILLICIT OBJECT DETECTION SYSTEM FOR ENHANCED AVIATION SECURITY

    E-Print Network [OSTI]

    Blumenstein, Michael

    , Gold Coast Campus, QLD 9726, Australia. Email: {v.muthu, m.blumenstein, j.jo, s.green}@griffith.edu.au ABSTRACT Although aviation security is not a new phenomenon to the world, current threats are much more stopped by an object, the kinetic energy of those electrons is converted to heat and X

  20. Aero/Astro 50th Anniversary May 2008 Sustainable Aviation

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    : Develop technologies that will allow a tripling of capacity with a reduction in environmental impact. #12 follows AATR-42 · acoustic noise is dispersed over large area · 4800 foot separation for IFR approach FourAero/Astro 50th Anniversary May 2008 Sustainable Aviation: Future Air Transportation

  1. The Impact of Climate Policy on U.S. Aviation

    E-Print Network [OSTI]

    Winchester, Niven

    We evaluate the impact of an economy-wide cap-and-trade policy on U.S. aviation taking the American Clean Energy and Security Act of 2009 (H.R.2454) as a representative example. We use an economywide model to estimate the ...

  2. Availability Impact on GPS Aviation due to Strong

    E-Print Network [OSTI]

    Stanford University

    Availability Impact on GPS Aviation due to Strong Ionospheric Scintillation JIWON SEO TODD WALTER availability during a severe scintillation period observed using data from the previous solar maximum are considered. Availability results for both vertical and horizontal navigation during the severe scintillation

  3. Implementation Guide - Aviation Program Performance Indicators (Metrics) for use with DOE O 440.2B, Aviation Management And Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-10

    The Guide provides information regarding Departmental expectations on provisions of DOE 440.2B, identifies acceptable methods of implementing Aviation Program Performance Indicators (Metrics) requirements in the Order, and identifies relevant principles and practices by referencing Government and non-Government standards. Canceled by DOE G 440.2B-1A.

  4. X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gallons per Day) - Continued Geographic Area Month Aviation Gasoline Naphtha- Type Jet Fuel Kerosene- Type Jet Fuel Propane (Consumer Grade) Residual Fuel Oil Sulfur Less...

  5. Cost-benefit analysis of ultra-low sulfur jet fuel

    E-Print Network [OSTI]

    Kuhn, Stephen (Stephen Richard)

    2010-01-01

    The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

  6. Fuel Burn and Emissions Reduction Potential of Low Power/Low Drag Approaches

    E-Print Network [OSTI]

    Dumont, Jean-Marie

    Changing aircraft operational procedures is one strategy that can be used to reduce fuel burn and mitigate environmental impacts of aviation in relatively short timeframes with existing aircraft types. This study quantifies ...

  7. Duality, Residues, Fundamental class

    E-Print Network [OSTI]

    2011-05-22

    May 22, 2011 ... Duality, Residues, Fundamental class. Joseph Lipman. Purdue University. Department of Mathematics lipman@math.purdue.edu. May 22 ...

  8. Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0

    SciTech Connect (OSTI)

    Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H.

    1994-02-01

    This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

  9. Biomass from Logging Residue and Mill Residue

    E-Print Network [OSTI]

    as a renewable energy resource or for chemical extraction. This report represents the most current data harvesting or are cut off the central stem of the tree due to a merchantability standard. Limbs refer for energy production or chemical extraction. Table 1 shows the logging residue available in East Texas

  10. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    2001) The impact of CO 2 emissions trading on the EuropeanJ. D. et al. (2007) Emissions Trading for internationalinvestigating an open emission trading system for aviation

  11. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    Extending the EU Emissions Trading Scheme to Aviation.Air Transport Emissions Trading Scheme Workshop, UKaviation in its GHG emission trading system (i.e. , by

  12. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27...

  13. Microalgae-derived HEFA jet fuel : environmental and economic impacts of scaled/integrated growth facilities and global production potential

    E-Print Network [OSTI]

    Ames, Jacob L. (Jacob Lee)

    2015-01-01

    Biofuels have the potential to mitigate the environmental impact of aviation and offer increased energy security through the displacement of conventional jet fuel. This study investigates strategies designed to reduce the ...

  14. Hybrid-electric propulsion for automotive and aviation applications

    E-Print Network [OSTI]

    Friedrich, C.; Robertson, P. A.

    2014-12-30

    on the CFM56-7 turbofan engine with an electric boost on the low pressure fan, is then implemented in Simulink. The Simulink code itself is simplified during take-off and landing; due to the relationship of the altitude and the performance... to a volatile oil price. In the United States for example, within the overall transportation sector, which accounted for 28 % of the primary energy consumption in 2010, the aviation fleet accounted for 9.4 % of this sector, as shown in Figure 1...

  15. Implementation Guide - Aviation Management, Operations, Maintenance, Security, and Safety for Use with DOE O 440.2B, Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-07-18

    This Guide provides detailed information to help all personnel, responsible for a part of the aviation program, understand and comply with the rules and regulations applicable to their assignments. Canceled by DOE G 440.2B-2A.

  16. Temporal and spatial variability in the aviation NO[subscript x]-related O[subscript 3] impact

    E-Print Network [OSTI]

    Koo, Jamin

    Aviation NO[subscript x] emissions promote tropospheric ozone formation, which is linked to climate warming and adverse health effects. Modeling studies have quantified the relative impact of aviation NO[subscript x] on ...

  17. Development of an income-based hedonic monetization model for the assessment of aviation-related noise impacts

    E-Print Network [OSTI]

    He, Qinxian, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    Aviation is an industry that has seen tremendous growth in the last several decades. With demand for aviation projected to rise at an annual rate of 5% over the next 20 to 25 years, it is important to consider technological, ...

  18. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    fuels consumed for international maritime shipping as wellby intrastate marine shipping. Distillate fuel use by ocean-residual fuel, 3.5% was used by interstate marine shipping,

  19. Roadmap: Aeronautics -Aviation Management -Bachelor of Science [AT-BS-AERN-AVMN

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Aeronautics - Aviation Management - Bachelor of Science [AT-BS-AERN-AVMN] College of 2 | Last Updated: 4-June-13/JS This roadmap is a recommended semester-by-semester plan of study (upper division) 3 #12;Roadmap: Aeronautics - Aviation Management - Bachelor of Science [AT

  20. A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme

    E-Print Network [OSTI]

    Watson, Andrew

    A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme Alice Bows-up analysis of including aviation within the EU's Emissions Trading Scheme Alice Bows & Kevin Anderson Tyndall's emissions trading scheme. Results indicate that unless the scheme adopts both an early baseline year

  1. Aviation, Space, and Environmental Medicine x Vol. 81, No. 8 x August 2010 735 RESEARCH ARTICLE

    E-Print Network [OSTI]

    Pennsylvania, University of

    Aviation, Space, and Environmental Medicine x Vol. 81, No. 8 x August 2010 735 RESEARCH ARTICLE performance during chronic sleep restriction. Aviat Space Environ Med 2010; 81:735­44. Introduction: Chronic, sleepi- ness, circadian rhythm, wake maintenance zone. AT LEAST TWO DISTINCT sleep/wake-related physi

  2. The Benefit of Alternative Position, Navigation, and Timing (APNT) to Aviation and Other User Communities for

    E-Print Network [OSTI]

    Stanford University

    The Benefit of Alternative Position, Navigation, and Timing (APNT) to Aviation and Other User). It is, therefore, extremely important that an alternative means of providing PNT services be implemented outage. The Federal Aviation Administration (FAA) has initiated an Alternative Position, Navigation

  3. Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure Keywords: Supercritical pressure Aviation kerosene Convective heat transfer Numerical study a b s t r a c convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    and diesel fuel, but not LPG, jet fuel, residual oil, orbaseline year, 2004 Fuel LPG Motor gasoline Jet fuel Dieseland diesel fuel, but not LPG, A Low Carbon Fuel Standard For

  5. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    and diesel fuel, but not LPG, jet fuel, residual oil, orbaseline year, 2004 Fuel LPG Motor gasoline Jet fuel Dieseland diesel fuel, but not LPG, A Low Carbon Fuel Standard For

  6. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

  7. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 441 Table A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon...

  8. Development of aircraft fuel burn modeling techniques with applications to global emissions modeling and assessment of the benefits of reduced vertical separation minimums

    E-Print Network [OSTI]

    Yoder, Tim (Tim Alan)

    2007-01-01

    Given the current level of concern over anthropogenic climate change and the role of commercial aviation in this process, the ability to adequately model and quantify fuel burn and emissions on a system wide scale is of ...

  9. Potential of biomass residue availability; The case of Thailand

    SciTech Connect (OSTI)

    Bhattacharya, S.C.; Shrestha, R.M.; Ngamkajornvivat, S. (Energy Technology Div., Asian Institute of Technology, Bangkok 10501 (TH))

    1989-01-01

    An acute shortage of fuel wood and charcoal prevails in many developing countries. A logical approach to the problem places emphasis on the development of alternative energy sources, including use of biomass residues. An assessment of the potential of biomass residues for energy and other uses calls for an estimation of their annual production. Also, because the residues are normally bulky they should be utilized near their place of origin whenever possible to avoid high transportation costs. Thus knowledge of the total national generation of residues per year does not provide enough information for planning residue utilization. This article illustrates a method of residue estimation that takes the case of Thailand as an example. It presents the annual generation of nine agricultural resides (paddy husk, paddy straw, bagasse, cotton stalk, corn cob, groundnut shell, cassava stalk and coconut husk and shell) and one forestry residue (sawdust) in different agroeconomic zones and regions of Thailand. The methodology used for the investigation of crop-to-residue ratios is outlined. The annual generation figures for the different residues along with observations about their traditional uses are presented.

  10. DOE Fuel Cell Technologies Office Record 14014: Fuel Cell System Cost - 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional Awards More14 Date: September

  11. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack Durability

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional Awards More14 Date:

  12. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional| Department ofEvaluation42014 |

  13. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    Well-to-tank: coal and transportation; recovery Figure 6in Fig.7. Coal extraction transportation Biosolid recoveryand recovery Recovery (MJ) Transportation (MJ) Total consumption (MJ) 92% coal

  14. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    s 2009 World Energy Outlook (WEO). This increasing rate isdecreases to depletion. The WEO 2010’s New Policies ScenarioInternational Energy Agency WEO: World Energy Outlook EISA:

  15. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    efficiency than conventional gasification technologies when1.2.3 Feedstock and gasification Coal, biomass and naturalin many different ways including gasification or natural gas

  16. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    to IEA’s 2009 World Energy Outlook (WEO). This increasingAgency (IEA), World Energy Outlook 2009, InternationalEnergy Agency WEO: World Energy Outlook EISA: Energy

  17. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    FTR: Fischer-Tropsch reactor LCA: life cycle analysis LCI:software. Life cycle analyses (LCA) using a modified GREETfor the process. Keywords: LCA, Fischer-Tropsch, avation

  18. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    predicts that oil usage will peak around 2035. Worldoil reserves are the two main factors that will affect the exact date of the peak.

  19. DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia

    E-Print Network [OSTI]

    to snow, cold (upgrade of Alpha System) SFO (Hybrid Unit), performance of Hybrid system Boeing (Washington and volume · Fast start, excellent durability · Uses pure H2 from storage system · Oxygen obtained from State), exposure to sleet, ice, rain and fog Kennedy Space Center (Florida), exposure to heat, humidity

  20. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    entering the reactor. The gasifier is operated at 750 o C,will be removed from the gasifier and char will be burned to

  1. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    s first jet using a turbine engine was built and tested byBritain developed a new turbine engine in 1941, and chose

  2. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oilOil Lubricants Naphtha Petroleum feedstocks Natural Gas Liquids Municipal Solid Waste

  3. Estimation of the global impacts of aviation-related noise using an income-based approach

    E-Print Network [OSTI]

    He, Qinxian

    Current practices for assessing the monetary impacts of aviation noise typically use hedonic pricing methods that estimate noise-induced property value depreciation. However, this approach requires detailed knowledge of ...

  4. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    and the Environment. Greenhouse Gas Emissions from AviationD17): 4560. EPA (2006). Greenhouse Gas Emissions from theEPA (2008a). Inventory of U.S. Greenhouse Gas Emissions and

  5. The impact of the European Union Emissions Trading Scheme on US aviation

    E-Print Network [OSTI]

    Malina, Robert

    We estimate the economic impacts on US airlines that may arise from the inclusion of aviation in the European Union Emissions Trading Scheme from 2012 to 2020. We find that the Scheme would only have a small impact on US ...

  6. Evaluation of primary flight display enhancements for improving general aviation safety

    E-Print Network [OSTI]

    Craig, Daniel R

    2005-01-01

    The information architecture of general aviation cockpits is shifting from one of independent mechanical instruments to one of digital sensors, common databuses, and liquid crystal displays. This integrated architecture ...

  7. Symbiotic strategies in enterprise ecology : modeling commercial aviation as an Enterprise of Enterprises

    E-Print Network [OSTI]

    Sgouridis, Sgouris P

    2007-01-01

    We investigate the effectiveness of strategic alternatives that are designed to dampen the cyclicality manifest in the commercial aviation (CA)-related industries. In this research we introduce the conceptual framework of ...

  8. AIAA Aviation Technology Integration, and Operations (ATIO) Conference, Belfast, Northern Ireland, 18-20 September 2007

    E-Print Network [OSTI]

    Poovendran, Radha

    AIAA Aviation Technology Integration, and Operations (ATIO) Conference, Belfast, Northern Ireland, 18-20 September 2007 Impact of Public Key Enabled Applications on the Operation and Maintenance the efficiency of aircraft manufacturing, operation and maintenance processes. Yet these benefits cannot

  9. Climate impact of aviation NOx? emissions : radiative forcing, temperature, and temporal heterogeneity

    E-Print Network [OSTI]

    Wong, Lawrence Man Kit

    2014-01-01

    Aviation NOx emissions are byproducts of combustion in the presence of molecular nitrogen. In the upper troposphere, NOx emissions result in the formation of O? but also reduce the lifetime of CH4 , causing an indirect ...

  10. 12/13Aviation Services provided by: Air Methods Corporation and Aero Air. Willapa Harbor

    E-Print Network [OSTI]

    Borenstein, Elhanan

    12/13Aviation Services provided by: Air Methods Corporation and Aero Air. Forks Aberdeen Willapa patients of all types. For short distance flights, or to smaller airports the Aero Commander 690 is our

  11. Assessing environmental benefits and economic costs of aviation environmental policy measures

    E-Print Network [OSTI]

    Mahashabde, Anuja (Anuja Anil)

    2009-01-01

    Despite the recent global economic downturn, longer term growth is anticipated for aviation with an increasing environmental impact, specifically in the areas of noise, air quality, and climate change. To ensure sustainable ...

  12. The impacts of aviation emissions on human health through changes in air quality and UV irradiance

    E-Print Network [OSTI]

    Brunelle-Yeung, Elza

    2009-01-01

    World-wide demand for air transportation is rising steadily. The air transportation network may be limited by aviation's growing environmental impacts. These impacts take the form of climate impacts, noise impacts, and ...

  13. Feedback Model of Air Transportation System Change: Implementation Challenges for Aviation Information Systems

    E-Print Network [OSTI]

    Mozdzanowska, Aleksandra L.

    The U.S. air transportation system faces substantial challenges in implementing new aviation information systems to meet future demand. These challenges need to be understood and addressed in order to successfully meet ...

  14. Greenhouse Gas Emissions from Aviation and Marine Transportation:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation, search

  15. FAQS Reference Guide - Aviation Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514ConstructionWeapon Quality Assurance FAQSFAQS

  16. Ferrin Moore, Senior Aviation Policy Officer - Bio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » ProgramPolicy andResearch &Fellowships

  17. Patricia Hagerty, Aviation Program Analyst - Bio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership for Energy SectorPat Adams About

  18. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  19. Implementation Guide - Aviation Management, Operations, Maintenance, Security, and Safety for Use with DOE O 440.2B Chg 1, Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-10-17

    This Guide provides detailed information to help all personnel, responsible for a part of the aviation program, understand and comply with the rules and regulations applicable to their assignments. Cancels DOE G 440.2B-2. Canceled by DOE N 251.110.

  20. Materials recovery from shredder residues

    SciTech Connect (OSTI)

    Daniels, E. J.; Jody, B. J.; Pomykala, J., Jr.

    2000-07-24

    Each year, about five (5) million ton of shredder residues are landfilled in the US. Similar quantities are landfilled in Europe and the Pacific Rim. Landfilling of these residues results in a cost to the existing recycling industry and also represents a loss of material resources that are otherwise recyclable. In this paper, the authors outline the resources recoverable from typical shredder residues and describe technology that they have developed to recover these resources.

  1. Residuals, Sludge, and Composting (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage,...

  2. Aviation Enterprises Ltd see Marine Current Turbines Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|LineMaine: EnergyAvanzit SA Jump

  3. BLM Fire and Aviation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado State Office Jump to:

  4. Aviation Management Professional Award Nomination for: | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer20Insulated CladdingAutomotiveEnergy

  5. DOE - Office of Legacy Management -- Bendix Aviation Corporation Kansas

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, South Dakota,You areFertilizerHill - NJ05City

  6. FAQS Reference Guide - Aviation Manager | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673, proposedJanuaryPartEnergyThis

  7. FAQS Reference Guide - Aviation Safety Officer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing22,673, proposedJanuaryPartEnergyThisOfficer

  8. Glen F. Wattman Director, Office of Aviation Management

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" |a,-Department ofGivey Kochanowski

  9. Prices of Refiner Aviation Gasoline Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet) Year Jan2.442 3.028

  10. Aviation Week Honors NSC Relocation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C | National NuclearLibrary /153 |4

  11. NNSA walks away with 3 Aviation Awards | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session | Nationalhits 21

  12. U.S. Aviation Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1Marcellus RegionProduct:

  13. Aviation Gasoline Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6 Macroeconomic88.04W W W W

  14. Method for cold stable biojet fuel

    DOE Patents [OSTI]

    Seames, Wayne S.; Aulich, Ted

    2015-12-08

    Plant or animal oils are processed to produce a fuel that operates at very cold temperatures and is suitable as an aviation turbine fuel, a diesel fuel, a fuel blendstock, or any fuel having a low cloud point, pour point or freeze point. The process is based on the cracking of plant or animal oils or their associated esters, known as biodiesel, to generate lighter chemical compounds that have substantially lower cloud, pour, and/or freeze points than the original oil or biodiesel. Cracked oil is processed using separation steps together with analysis to collect fractions with desired low temperature properties by removing undesirable compounds that do not possess the desired temperature properties.

  15. Alcohol fuels bibliography, 1901-March 1980

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    This annotated bibliography is subdivided by subjects, as follows: general; feedstocks-general; feedstocks-sugar; feedstocks-starch; feedstocks-cellulose crops and residues; production; coproducts; economics; use as vehicle fuel; government policies; and environmental effects and safety. (MHR)

  16. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    January 1983 forward; Form EIA-460, "Petroleum Industry Monthly Report for Product Prices," source for backcast estimates prior to January 1983. 36 Energy Information...

  17. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    58.7 46.2 46.3 39.3 49.5 42.9 February ... 54.6 43.7 41.8 35.4 45.2 39.3 March ... 49.3 39.8 37.6 33.9 40.3 35.8 April...

  18. A SKY-HIGH CHALLENGE: THE CARBON FOOTPRINT OF AVIATION IN BRITISH COLUMBIA, CANADA, AND MEASURES TO MITIGATE IT

    E-Print Network [OSTI]

    Pedersen, Tom

    A SKY-HIGH CHALLENGE: THE CARBON FOOTPRINT OF AVIATION IN BRITISH COLUMBIA, CANADA, AND MEASURES but not subnational scale. In this thesis, I present what seems to be the first detailed analysis of the carbon footprint (CF) of civil aviation at a subnational level together with an assessment of what key stakeholders

  19. Petroleum Coke: A Viable Fuel for Cogeneration 

    E-Print Network [OSTI]

    Dymond, R. E.

    1992-01-01

    VIABLE FUEL FOR COGENERATION RAYMOND E. DYMOND, DIRECTOR-PETROLEUM COKE, THE PACE CONSULTANTS, INC., HOUSTON, TEXAS OVERVIEW Petroleum coke is a by-product of the coking process which upgrades (converts) low-valued residual oils into higher...-product of the coking process which upgrades (converts) low-valued residual oils into higher-valued transportation, heating and industrial fuels. Within the petroleum refining industry there are three different types of coking processes-

  20. Modeling aviation's global emissions, uncertainty analysis, and applications to policy

    E-Print Network [OSTI]

    Lee, Joosung Joseph, 1974-

    2005-01-01

    (cont.) fuel burn results below 3000 ft. For emissions, the emissions indices were the most influential uncertainties for the variance in model outputs. By employing the model, this thesis examined three policy options for ...

  1. Roadmap: Aeronautics -Aviation Management -Bachelor of Science [AT-BS-AERN-AVMN

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Aeronautics - Aviation Management - Bachelor of Science [AT-BS-AERN-AVMN] College of 3 | Last Updated: 6-Dec-12/JS This roadmap is a recommended semester-by-semester plan of study on page 2 TECH 36620 Project Management in Engineering and Technology 3 #12;Roadmap: Aeronautics

  2. What Should Aviation Safety Incidents Teach Us? William S. Greenwell John C. Knight

    E-Print Network [OSTI]

    Huang, Wei

    involved the failure of a ground-based warn- ing system that contributed to an accident with extensive aviation incidents involving failures of safety-critical software systems. Based on our analysis, these systems are used both on board aircraft and at air traffic control facilities to assist pilots

  3. Evolving Neural Network Weights for Time-Series Prediction of General Aviation Flight Data

    E-Print Network [OSTI]

    Hu, Wen-Chen

    and predictive maintenance systems, reducing accident rates and saving lives. Keywords: Time-Series Prediction and lucrative industry, it has the highest accident rates within civil aviation [21]. For many years between 0.08% for altitude to 2% for roll. Cross validation of the best neural networks indicate

  4. SO2 as a proxy for volcanic ash in aviation hazard avoidance

    E-Print Network [OSTI]

    Oxford, University of

    SO2 as a proxy for volcanic ash in aviation hazard avoidance Infrared Atmospheric Sounding Interferometer - IASI ABSTRACT: Airborne volcanic ash poses a significant danger to aircraft but is difficult accurately. This paper looks at the reliability of using SO2 as a proxy for the location of volcanic ash

  5. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  6. Wood residuals find big uses in small pieces

    SciTech Connect (OSTI)

    Glenn, J.

    1996-12-01

    With a history of finding economic uses for leftovers, the wood industry explores sustainable options for creating higher value products. Years ago, companies saw the use - any use - of residues as a sound, economic business practice. Today, many companies are looking to go beyond low value products such as mulch, animal bedding and fuel, and market to higher value end users. Additionally, with so much material from the primary industries already accounted for, consumers of wood residue are in need of additional supply from sources such as secondary mills (furniture manufacturers, etc.), as wells as the C&D and MSW streams. This paper discusses these products and markets.

  7. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  9. Stabilized fuel with silica support structure

    SciTech Connect (OSTI)

    Poco, J.F.; Hrubesh, L.W.

    1991-12-31

    This report describes a stabilized fuel which is supported by a silica support structure. The silica support structure provides a low density, high porosity vehicle for safely carrying hydrocarbon fuels. The silica support structure for hydrocarbon fuel does not produce toxic material residues on combustion which would pose environmentally sensitive disposal problems. The silica stabilized fuel composition is useful as a low temperature, continuous burning fire starter for wood or charcoal.

  10. The examination of residual plots

    E-Print Network [OSTI]

    Tsai, Chih-Ling; Cai, Zongwu; Wu, Xizhi

    1998-01-01

    , then equations (14) and (18) indicate that the plot of eˆ(i) (or eˆi) versus yˆi might not reveal a nonlinear pattern even though the true mean function includes the nonlinear component, g(Z). Cook’s Example 7.1 (1994) illustrates this point. In practice...), Examples 7.1 and 7.2) has shown that this type of plot may provide misleading information when fitted values are used, we therefore suggest using the linear residual plot (residuals versus explanatory variables case) for the detection of nonlinearity...

  11. Sooting characteristics of surrogates for jet fuels

    SciTech Connect (OSTI)

    Mensch, Amy; Santoro, Robert J.; Litzinger, Thomas A. [Department of Mechanical and Nuclear Engineering, and The Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, S.-Y. [Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-06-15

    Currently, modeling the combustion of aviation fuels, such as JP-8 and JetA, is not feasible due to the complexity and compositional variation of these practical fuels. Surrogate fuel mixtures, composed of a few pure hydrocarbon compounds, are a key step toward modeling the combustion of practical aviation fuels. For the surrogate to simulate the practical fuel, the composition must be designed to reproduce certain pre-designated chemical parameters such as sooting tendency, H/C ratio, autoignition, as well as physical parameters such as boiling range and density. In this study, we focused only on the sooting characteristics based on the Threshold Soot Index (TSI). New measurements of TSI values derived from the smoke point along with other sooting tendency data from the literature have been combined to develop a set of recommended TSI values for pure compounds used to make surrogate mixtures. When formulating the surrogate fuel mixtures, the TSI values of the components are used to predict the TSI of the mixture. To verify the empirical mixture rule for TSI, the TSI values of several binary mixtures of candidate surrogate components were measured. Binary mixtures were also used to derive a TSI for iso-cetane, which had not previously been measured, and to verify the TSI for 1-methylnaphthalene, which had a low smoke point and large relative uncertainty as a pure compound. Lastly, surrogate mixtures containing three components were tested to see how well the measured TSI values matched the predicted values, and to demonstrate that a target value for TSI can be maintained using various components, while also holding the H/C ratio constant. (author)

  12. Competition and congestion in the National Aviation System : multi-agent, multi-stakeholder approaches for evaluation and mitigation

    E-Print Network [OSTI]

    Vaze, Vikrant (Vikrant Suhas)

    2011-01-01

    The US National Aviation System (NAS) is a complex system with multiple, interacting agents including airlines, passengers, and system operators, each with somewhat different objectives and incentives. These interactions ...

  13. Uncertainty analysis of an aviation climate model and an aircraft price model for assessment of environmental effects

    E-Print Network [OSTI]

    Jun, Mina

    2007-01-01

    Estimating, presenting, and assessing uncertainties are important parts in assessment of a complex system. This thesis focuses on the assessment of uncertainty in the price module and the climate module in the Aviation ...

  14. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea: PADD 1 to PADDFuelFuelFuel

  15. Intelligent system design with fixed-base simulation validation for general aviation 

    E-Print Network [OSTI]

    Rong, Jie; Ding, Yuanyuan; Valasek, J.; Painter, John H.

    2003-10-05

    agents, as illustrated in Fig. 5. The primary data fusion techniques used to develop the Assistant are Artificial Intelligence methods, including rule-based expert systems, fuzzy logic, and artificial neural network: I I Aircraft I Approach... Expert System The General Aviation Pilot Advisory Training System (GAPATS) is a computerized airbome expert system, which infers the flight mode of an aircraft from sensed flight parameters using fuzzy logic methods. The pilot?s flying performance...

  16. Simulated combined abnormal environment fire calculations for aviation impacts.

    SciTech Connect (OSTI)

    Brown, Alexander L.

    2010-08-01

    Aircraft impacts at flight speeds are relevant environments for aircraft safety studies. This type of environment pertains to normal environments such as wildlife impacts and rough landings, but also the abnormal environment that has more recently been evidenced in cases such as the Pentagon and World Trade Center events of September 11, 2001, and the FBI building impact in Austin. For more severe impacts, the environment is combined because it involves not just the structural mechanics, but also the release of the fuel and the subsequent fire. Impacts normally last on the order of milliseconds to seconds, whereas the fire dynamics may last for minutes to hours, or longer. This presents a serious challenge for physical models that employ discrete time stepping to model the dynamics with accuracy. Another challenge is that the capabilities to model the fire and structural impact are seldom found in a common simulation tool. Sandia National Labs maintains two codes under a common architecture that have been used to model the dynamics of aircraft impact and fire scenarios. Only recently have these codes been coupled directly to provide a fire prediction that is better informed on the basis of a detailed structural calculation. To enable this technology, several facilitating models are necessary, as is a methodology for determining and executing the transfer of information from the structural code to the fire code. A methodology has been developed and implemented. Previous test programs at the Sandia National Labs sled track provide unique data for the dynamic response of an aluminum tank of liquid water impacting a barricade at flight speeds. These data are used to validate the modeling effort, and suggest reasonable accuracy for the dispersion of a non-combustible fluid in an impact environment. The capability is also demonstrated with a notional impact of a fuel-filled container at flight speed. Both of these scenarios are used to evaluate numeric approximations, and help provide an understanding of the quantitative accuracy of the modeling methods.

  17. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  18. Evaluation of residue drum storage safety risks

    SciTech Connect (OSTI)

    Conner, W.V.

    1994-06-17

    A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

  19. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  20. Viscosity stabilization of SRC residual oil. Final technical report

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-05-01

    The use of SRC residual oils for No. 6 Fuel Oil substitutes has been proposed. The oils exhibit viscosity characteristics at elevated temperatures that allow this substitution with only minor modifications to the existing fuel oil infrastructure. However, loss of low-boiling materials causes an increase in the viscosity of the residual oils that is greater than expected from concentration changes. A process has been developed that minimizes the loss of volatiles and thus maintains the viscosity of these materials. The use of an additive (water, phenol, or an SRC light oil cut rich in low-boiling phenols in amounts up to 2.0 wt %) accomplishes this and hence stabilizes the pumping and atomizing characteristics for an extended period. During the course of the work, the components of the volatiles lost were identified and the viscosity change due to this loss was quantified. 3 references, 6 figures, 9 tables.

  1. Transforms for prediction residuals in video coding

    E-Print Network [OSTI]

    Kam??l?, Fatih

    2010-01-01

    Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

  2. Fuels Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping intoand DavidEnergyVirginiaEnergy|Fuels

  3. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  4. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1,200 C to 1,400 C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  5. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1995-09-01

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  6. Supplement Analysis ? Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    DOEEIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation U.S....

  7. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum

  8. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergyWind Energy Wind Energy Renewable

  9. fuel cells

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  10. Fuel injector

    DOE Patents [OSTI]

    Lambeth, Malcolm David Dick (Bromley, GB)

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  11. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  12. Fuel rail

    SciTech Connect (OSTI)

    Haigh, M.; Herbert, J.D.; O'Leary, J.J.

    1988-09-20

    This patent describes a fuel rail for a V-configuration automotive type internal combustion engine having a throttle body superimposed over an intake manifold. The throttle body has an air plenum above an induction channel aligned with a throttle bore passage in the manifold for flow or air to the engine cylinders. The rail includes a spacer body mounted sealingly between the throttle body and the manifold of the engine and having air induction passages therethrough to connect the throttle body channels and the manifold, the spacer body having at least on longitudinal bore defining a fuel passage extending through the spacer body, and a fuel injector receiving cups projecting from and communicating with the fuel passage. The spacer body consists of a number of separated spacer members, and rail member means through which the fuel passage runs joining the spacer members together.

  13. DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional| Department ofEvaluation4

  14. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  15. Panel Discussion: New Directions in Human Reliability Analysis for Oil & Gas, Cybersecurity, Nuclear, and Aviation

    SciTech Connect (OSTI)

    Harold S. Blackman; Ronald Boring; Julie L. Marble; Ali Mosleh; Najmedin Meshkati

    2014-10-01

    This panel will discuss what new directions are necessary to maximize the usefulness of HRA techniques across different areas of application. HRA has long been a part of Probabilistic Risk Assessment in the nuclear industry as it offers a superior standard for risk-based decision-making. These techniques are continuing to be adopted by other industries including oil & gas, cybersecurity, nuclear, and aviation. Each participant will present his or her ideas concerning industry needs followed by a discussion about what research is needed and the necessity to achieve cross industry collaboration.

  16. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  17. RESIDUAL STRESSES IN 3013 CONTAINERS

    SciTech Connect (OSTI)

    Mickalonis, J.; Dunn, K.

    2009-11-10

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  18. Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)

    SciTech Connect (OSTI)

    Tarud, J.; Phillips, S.

    2011-08-01

    This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

  19. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  20. The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080

    SciTech Connect (OSTI)

    Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)] [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)

    2013-07-01

    The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

  1. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  2. Particulate residue separators for harvesting devices

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  3. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  4. How refinery fuel indexes have varied

    SciTech Connect (OSTI)

    Farrar, G.

    1997-01-06

    Refinery fuels costs have endured a steady incline since 1993, except for a period in 1993. As shown in the accompanying table, these increases in cost have occurred for residual fuel oil costs in three of the five PADD districts. The cost for natural gas for refinery usage also dropped steadily during the 3-year study. These conclusions are based on costs of an average refinery fuel consisting of 1 bbl each of PADD Districts 1--5 and an average US cost of 4.4 MMscf natural gas (a 1 bbl equivalent on a BTU content basis). Raw residual fuel oil and natural gas prices come from publications put out by the US Department of Labor.

  5. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect (OSTI)

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  6. Thermal dissolution of solid fossil fuels

    SciTech Connect (OSTI)

    E.G. Gorlov

    2007-10-15

    The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

  7. A Benchmark Study on Casting Residual Stress

    SciTech Connect (OSTI)

    Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast components. This enables incorporation of the residual stresses at the design phase along with external loads for accurate predictions of fatigue and fracture performance of the cast components.

  8. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    fuels in place of Heavy Fuel Oil (HFO). A replacement of HFOGHG Emissions Change from Heavy Fuel Oil Marine Diesel Oil AEmissions Change from Heavy Fuel Oil At worst be CO 2

  9. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    NONE

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  10. Residual Toxicities of Insecticides to Cotton Insects. 

    E-Print Network [OSTI]

    Hightower, B. G.; Gaines, J. C.

    1960-01-01

    -ITHION. The residual toxicity of para- rliioti to the tumid spider mite was not affected by ~i1nul;ttetl rain when the spray was applied at a dosage c.cluiv;~lcnt to 0.3 pound of toxicant per acre. Kill5 or the cotton aphid on spray residues of 1),11;1thion were...

  11. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  12. The impact of the European Union Emissions Trading Scheme on US aviation Robert Malina a,c

    E-Print Network [OSTI]

    The impact of the European Union Emissions Trading Scheme on US aviation Robert Malina a, Germany Keywords: European air transport policy Carbon emissions trading US airline industry a b s t r a c in the European Union Emissions Trading Scheme from 2012 to 2020. We find that the Scheme would only have a small

  13. Catalyst deactivation in residue hydrocracking

    SciTech Connect (OSTI)

    Oballa, M.C.; Wong, C.; Krzywicki, A. [Novacor Research and Technology Corp., Calgary, Alberta (Canada)

    1994-12-31

    The existence of a computer-controlled bench scale hydrocracking units at the authors site has made cheaper the non-stop running of experiments for long periods of time. It was, therefore possible to show, at minimal costs, when three hydrocracking catalysts in service reach their maximum lifetime. Different parameters which are helpful for catalyst life and activity predictions were calculated, e.g., relative catalyst age and the effectiveness factor. Experimental results compared well with model, giving them the minimum and maximum catalyst lifetime, as well as the deactivation profile with regard to sulfur and metals removal. Reaction rate constants for demetallization and desulfurization were also determined. Six commercial catalysts were evaluated at short term runs and the three most active were used for long term runs. Out of three catalysts tested for deactivation at long term runs, it was possible to choose one whose useful life was higher than the others. All runs were carried out in a Robinson-Mahoney continuous flow stirred tank reactor, using 50/50 volumetric mixture of Cold Lake/Lloydminster atmospheric residue and NiMo/Al{sub 2}O{sub 3} catalyst.

  14. DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional| Department ofEvaluation4 Date:

  15. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  16. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  17. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    SciTech Connect (OSTI)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  18. Arabian crude-oil residues evaluated

    SciTech Connect (OSTI)

    Ali, M.F.; Bukhari, A.; Hasan, M.; Saleem, M.

    1985-08-12

    This article evaluates detailed physical and chemical characteristics for four important Saudi Arabian resids. Petroleum residues are composed of a mixture of large and complex hydrocarbon molecules along with one or more heteroatoms such as sulfur, oxygen, nitrogen, vanadium, and nickel. The amount of residue and its physical and chemical composition depend on the source of the crude oil and methods of processing. Residues from four Saudi Arabian crude oils produced by the Arabian American Oil Co. (Aramco) were evaluated. The crude oils are 38.5 degrees API Arabian Extra Light, 33.8 degrees API Arabian Light, 30.4 degrees Api Arabian Medium, and 28.03 degrees API Arabian Heavy. Results are presented and residue preparation, and physical and chemical characteristics are analyzed.

  19. Residual stress in nanocrystalline nickel tungsten electrodeposits

    E-Print Network [OSTI]

    Ziebell, Tiffany D. (Tiffany Dawn)

    2011-01-01

    Characterizing the residual stress of thick nanocrystalline electrodeposits poses several unique challenges due to their fine grain structure, thickness distribution, and matte surface. We employ a three-dimensional ...

  20. Harvesting Residuals-Economic Energy Link 

    E-Print Network [OSTI]

    Owens, E. T.; Curtis, D. B.

    1986-01-01

    A description of systems used in integrated harvesting of quality and unmerchantable trees is outlined for three areas in New Brunswick, Canada. The silvicultural benefits and the use of residues as an alternative to ...

  1. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  2. FINAL REPORT LGP Discrimination and Residual Risk Analysis on Standardized

    E-Print Network [OSTI]

    Fernandez, Thomas

    FINAL REPORT LGP Discrimination and Residual Risk Analysis on Standardized Test Sites ­ Camp Sibert............................................................................................................... 10 2.1.6 Residual Risk Analysis

  3. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  4. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    Vehicle Activity Network Efficiency GHG Emissions Operational Efficiency Alternative EnergyAlternative energy includes the substitution of fuels other than fossil fuels for vehicle

  5. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  6. Immobilization of Rocky Flats graphite fines residues

    SciTech Connect (OSTI)

    Rudisill, T.S.; Marra, J.C.; Peeler, D.K.

    1999-07-01

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF{sub 2}), and 12 wt% plutonium oxide (PuO{sub 2}). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO{sub 2} concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF{sub 2} dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO{sub 2}) as a surrogate for PuO{sub 2} and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF{sub 2} and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.

  7. ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-31

    This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  8. DOE-STD-1164-2003; Aviation Safety Officer Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODS DERIVATION MODULE 3: METHODS03 March4-2003

  9. DOE-STD-1165-2003; Aviation Manager Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODS DERIVATION MODULE 3: METHODS03

  10. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle Fuel

  11. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublicationsPlug-InBenefits

  12. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  13. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  14. Alternative Fuel Implementation Toolkit

    E-Print Network [OSTI]

    ? Alternative Fuels, the Smart Choice: Alternative fuels ­ biodiesel, electricity, ethanol (E85), natural gas

  15. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  16. System and method for measuring residual stress

    DOE Patents [OSTI]

    Prime, Michael B. (Los Alamos, NM)

    2002-01-01

    The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.

  17. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to

  18. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places toEthanol PrintableEthanol

  19. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places toEthanolVehicles Printable

  20. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNaturalDimethyl

  1. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanol Benefits and

  2. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    fossil fuels (e.g. , liquefied natural gas and marine dieseldiesel oil (MDO), Liquefied natural gas (LNG), Wind power (marine diesel oil or liquefied natural gas for heavy fuel

  3. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle FuelFueling Stations to

  4. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    criteria. Alternative fuels for aviation Kerosene is thefuel for civil aviation, but alternative fuels have beenBox 5.4 Alternative fuels for aviation The applicability of

  5. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  6. ,"Aviation Gasoline Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0.Volume (MMcf)" ,"Click worksheet name or tab at

  7. ,"U.S. Aviation Gasoline Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015" ,"ReleaseMonthly","10/2015"Net Receipts

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Reforming for Molten Carbonate Fuel Cells," Berichte derVan Dijkum, "The Molten Carbonate Fuel Cell Programme in thealkaline, molten carbonate, and solid oxide. (Fuel cells

  9. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    regenerative braking, as do Saving Fuel, Reducing Emissionsconditions, the expected savings in fuel costs are notis whether the fuel cost savings over the lifetime of the

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DNR) has defined. Eligible alternative fuels include natural gas, propane, hydrogen, coal-derived liquid fuels, fuels other than alcohol derived from biological materials, and...

  14. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

  15. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  16. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. Residual Stresses in Weldments by Neutron Diffraction

    E-Print Network [OSTI]

    Bandara, Arosha

    Residual Stresses in Weldments by Neutron Diffraction Shanmukha Rao M, Jon James, Shirley Northover :- The neutron diffraction is determined from Bragg's law. When neutron propagate through crystal sample, Coherent, Incoherent and Absorption Scattering phenomena take place Weld MaterialsPlate materials Stress

  18. The Significance of Disordered Residues in

    E-Print Network [OSTI]

    Poonen, Bjorn

    RFs are significant in causing drug resistance in bacteria. 2. Protein interactions with a. common b. MoRF c. NonThe Significance of Disordered Residues in: 1) Bacterial Drug Resistance and 2) SNP Interactions #12;Outline 1. Introduction 2. Bacteria Methods 3. Bacteria Results 4. Disease Association Methods 5

  19. Residual Energy Spectrum of Solar Wind Turbulence

    E-Print Network [OSTI]

    Chen, C H K; Salem, C S; Maruca, B A

    2013-01-01

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 years of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of sigma_r = -0.19 and mean Alfven ratio of r_A = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cros...

  20. Chemical Stabilization of Hanford Tank Residual Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  1. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    ;2 Abstract This thesis tackles the problem of data conversion in the Residue Number System (RNS). The RNS has the use of RNS at the applications. In this thesis, we aim at developing efficient schemes for the conversion from the conventional representation to the RNS representation and vice versa. The conventional

  2. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  3. OptFuels: Fuel Treatment Optimization

    E-Print Network [OSTI]

    OptFuels: Fuel Treatment Optimization Scientists a Rocky Mountain Research Station Missoula, MT, scientists at the University of Montana, are developing a tool to help forest managers prioritize forest fuel reduction treatments. Although several computer models analyz stand-level effects of fuel treatments

  4. Neutronic evaluation of coating and cladding materials for accident tolerant fuels

    E-Print Network [OSTI]

    Younker, I; Fratoni, M

    2016-01-01

    mechanical properties of hard coating TiAlN ?lm. J. Metals,properties of TiN-based coatings on zircaloy tubes inand residual stress of TiAlN coating on ZIRLO fuel cladding

  5. Immobilization of Rocky Flats Graphite Fines Residues

    SciTech Connect (OSTI)

    Rudisill, T. S.

    1998-11-06

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

  6. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California EnergyFuel Cell

  7. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanol Benefits andFueling Stations

  8. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogen PrintableFueling

  9. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    & Fuel Vehicles & Fuels Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles...

  10. (Fuel Cells)(Fuel Cells) William Grove

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    Fuel Cell #12; H2 O2 Power CH4 H2 Toyota H2 H2 #12; H2 ~253 #12; 2. 3. : 1. #12; #12;Fuel Cell #12; (Fuel Cells)(Fuel Cells) 1839 William Grove A H2O2 H2O2 2H; Fuel Cell #12;!! PEMFC DMFC SOFC (60~200) (60~100) (600~1000) #12; Proton

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNaturalFueling

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNaturalFuelingVehicle

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNaturalFuelingVehicleLoans

  14. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2 DOEFactory-Built

  15. Certification for DOE O 440.2C, Aviation Management and Safety - DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene Network Shaping ofStaff60053760 Site MapDirectives,

  16. DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer Div - IA

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, South Dakota,You areFertilizerHill - NJ05

  17. DOE - Office of Legacy Management -- Eclipse-Pioneer Div of Bendix Aviation

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratoryDiv - NYCorp - NJ 30

  18. DOE - Office of Legacy Management -- North American Aviation Inc - CA 07

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing -Nevada Test Site -New

  19. http://aviation-safety.net/database/record.php?id=20040316-0

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 34460/%2A en NNSA8/%2A

  20. Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures 

    E-Print Network [OSTI]

    O'Kelly, David Sean

    2000-01-01

    The conversion of plutonium from a nuclear weapon to nuclear reactor fuel requires an evaluation of the residual gallium as a potential corrosive material within an operating nuclear fuel element. Homogeneous trace levels of gallium may remain...

  1. Testing regression models with residuals as data by Xia Hua.

    E-Print Network [OSTI]

    Hua, Xia, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    Abstract In polynomial regression ... . In this thesis, I developed a residual based test, the turning point test for residuals, which tests the hypothesis that the kth order polynomial regression holds with ... while the ...

  2. Computer aided analysis for residual stress measurement using ultrasonic techniques 

    E-Print Network [OSTI]

    Kypa, Jagan Mohan

    1999-01-01

    Critically refracted longitudinal (Lcr) waves have been investigated with a computerized data acquisition and analysis technique to evaluate residual stresses present in a residual stress reference standard. This measurement ...

  3. In-situ method for treating residual sodium

    DOE Patents [OSTI]

    Sherman, Steven R. (Idaho Falls, ID); Henslee, S. Paul (Idaho Falls, ID)

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  4. FIXED PRICE RESIDUAL FUNDS POLICY Policy dated March 29, 1999

    E-Print Network [OSTI]

    Weston, Ken

    FIXED PRICE RESIDUAL FUNDS POLICY Policy dated March 29, 1999 After completion of all deliverables in this process. May 1, 1999 Amendment to Policy · The first $75,000 of the residual balance will be transferred

  5. 1-D Transforms for the Motion Compensation Residual

    E-Print Network [OSTI]

    Kamisli, Fatih

    Transforms used in image coding are also commonly used to compress prediction residuals in video coding. Prediction residuals have different spatial characteristics from images, and it is useful to develop transforms that ...

  6. In-Situ Method for Treating Residual Sodium

    DOE Patents [OSTI]

    Sherman, Steven R.; Henslee, S. Paul

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  7. Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Hydrogen from Post-Consumer Residues

    E-Print Network [OSTI]

    Bioenergy Center U.S. DOE Hydrogen and Fuel Cells Merit Review Meeting Berkeley, CA May 19-23, 2003 #12;Goal for producing 6 Mt/year of hydrogen (energy equivalent 0.8x1018J/year) ­ enough to fuel 15-20 million fuel cell Effort Construction of bench-scale circulating fluid bed reformer Bubbling and circulating bed tests

  9. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  10. Thin layer chromatography residue applicator sampler

    DOE Patents [OSTI]

    Nunes, Peter J. (Danville, CA); Kelly, Fredrick R. (Modesto, CA); Haas, Jeffrey S. (San Ramon, CA); Andresen, Brian D. (Livermore, CA)

    2007-07-24

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  11. Principle of Least Squares Regression Equations Residuals Correlation and Regression

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Principle of Least Squares Regression Equations Residuals Topic 3 Correlation and Regression Linear Regression I 1 / 15 #12;Principle of Least Squares Regression Equations Residuals Outline Principle of Least Squares Regression Equations Residuals 2 / 15 #12;Principle of Least Squares Regression Equations

  12. RESIDUAL STRESS EFFECTS IN FRACTURE OF COMPOSITES AND ADHESIVES

    E-Print Network [OSTI]

    Nairn, John A.

    RESIDUAL STRESS EFFECTS IN FRACTURE OF COMPOSITES AND ADHESIVES JOHN A. NAIRN ABSTRACT Because by including residual stresses in fracture mechanics models of failure. This chapter gives general results examples of including residual stresses in fracture mechanics interpretation of experimental results

  13. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuelMaterials

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure Tax

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure TaxSecond

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative FuelQualified

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative FuelQualifiedPropane

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative FuelQualifiedPropaneBiofuel

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNational Alternative Fuels

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean PortsRenewable Fuel

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA CleanAdvancedAlternative Fuel

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManualLiquefiedVehicleAlternative Fuel

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane RollsMississippiNaturalAlternative Fuel Vehicle

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane RollsMississippiNaturalAlternative Fuel

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropane School Bus Grants TheDieselFuel

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle (AFV) Definition

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle (AFV)

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle (AFV)Incentives

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel VehicleIncentives

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel VehicleIncentivesElectric

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural Gas and Propane

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural Gas and

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural Gas

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural GasEthanol

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesTheAlternative Fuel, Advanced Vehicle,