Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiological surveys of properties contaminated by residual radioactive materials from uranium processing sites  

Science Conference Proceedings (OSTI)

This report examines methods for determining the extent and nature of contamination on properties contaminated by residual radioactive materials from uranium processing sites. Methods are also examined for verifying the success of remedial actions in removing the residual radioactive materials. Using literature review and practical experiences from the Edgemont, South Dakota survey program a critical review is made of sampling programs, instrumentation, analytical procedures, data reporting format, and statistical analyses of data. Protocols are recommended for measuring indoor and outdoor gamma-ray exposure rates, surface and subsurface Radium-226 concentrations in soil, and radon daughter concentrations.

Young, J.A.; Jackson, P.O.; Thomas, V.W.

1983-06-01T23:59:59.000Z

2

Applications of RESRAD family of computer codes to sites contaminated with radioactive residues.  

Science Conference Proceedings (OSTI)

The RESIL4D family of computer codes was developed to provide a scientifically defensible answer to the question ''How clean is clean?'' and to provide useful tools for evaluating human health risk at sites contaminated with radioactive residues. The RESRAD codes include (1) RESRAD for soil contaminated with radionuclides; (2) RESRAD-BUILD for buildings contaminated with radionuclides; (3) RESRAD-CHEM for soil contaminated with hazardous chemicals; (4) RESRAD-BASELINE for baseline risk assessment with measured media concentrations of both radionuclides and chemicals; (5) RESRAD-ECORISK for ecological risk assessment; (6) RESRAD-RECYCLE for recycle and reuse of radiologically contaminated metals and equipment; and (7) RESRAD-OFFSITE for off-site receptor radiological dose assessment. Four of these seven codes (RESRAD, RESRAD-BUILD, RESRAD-RECYCLE, and RESRAD-OFFSITE) also have uncertainty analysis capabilities that allow the user to input distributions of parameters. RESRAD has been widely used in the United States and abroad and approved by many federal and state agencies. Experience has shown that the RESRAD codes are useful tools for evaluating sites contaminated with radioactive residues. The use of RESRAD codes has resulted in significant savings in cleanup cost. Analysis of 19 site-specific uranium guidelines is discussed in the paper.

Yu, C.; Kamboj, S.; Cheng, J.-J.; LePoire, D.; Gnanapragasam, E.; Zielen, A.; Williams, W. A.; Wallo, A.; Peterson, H.

1999-10-21T23:59:59.000Z

3

RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites  

Energy.gov (U.S. Department of Energy (DOE))

The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

4

Single-Pass Flow-Through Test Elucidation of Weathering Behavior and Evaluation of Contaminant Release Models for Hanford Tank Residual Radioactive Waste  

SciTech Connect

Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOE’s Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a single-pass flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.

Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.

2013-01-01T23:59:59.000Z

5

Process for reducing radioactive contamination in phosphogypsum  

Science Conference Proceedings (OSTI)

A process of two crystallization stages for reducing radioactive contamination of phosphogypsum is disclosed. In the process anhydrite crystals are obtained through dehydration of the radiation containing phosphogypsum in strong sulfuric acid; a portion of the anhydrite crystals containing the radioactive contamination is converted to substantially radiation free gypsum by crystallizing out on a large solids concentration of radiation free gypsum seed crystals; and coarse radiation free gypsum crystals are separated from small anhydrite crystal relics containing substantially all of the radioactive contamination.

Gaynor, J.C.; Palmer, J.W.

1983-06-14T23:59:59.000Z

6

Environmental geochemistry of radioactive contamination.  

Science Conference Proceedings (OSTI)

This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described.

Bryan, Charles R.; Siegel, Malcolm Dean

2003-09-01T23:59:59.000Z

7

RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployed Deployed Widely Used and Maintained Argonne National Laboratory, Environmental Science Division - RESRAD Program RESRAD codes are used at more than 300 sites since its first release in 1989. Page 1 of 2 Argonne National Laboratory Multiple States & Sites Illinois RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites Challenge The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989. The RESRAD code has been updated since then to improve the models within the codes, to operate on new computer platforms, to use new state of science radiation dose and risk factors, and to calculate cleanup criteria ("Authorized Limits") for radioactively contaminated sites. A series of similar codes have been developed to address radiation dose, risk, and cleanup criteria

8

CLEANING OF RADIOACTIVE CONTAMINATED OCCUPATIONAL CLOTHING  

SciTech Connect

The soiling and contamination of work clothing and ways of removing this contamination are discussed. Means of disinfection, washing tests with radioactive-contaminated cotton clothing, construction of the laundry, and cleaning protective clothing of plastic and other materials with the help of washing methods and polyphosphates are described. (M.C.G.)

Siewert, G.; Schikora, Th.

1963-11-01T23:59:59.000Z

9

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

Science Conference Proceedings (OSTI)

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27T23:59:59.000Z

10

DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE  

Office of Legacy Management (LM)

DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE FOR THE NFSS CENTRAL DRAINAGE DITCH DECEMBER 1986 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-81OR20722 By Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 I 1.0 INTRODUCTION AND SUMMARY 1.1 OBJECTIVE AND SCOPE The objective of this report is to describe the methodology used for establishing a supplemental residual contamination guideline for the NFSS vicinity property known as the Central Drainage Ditch (CDD). Supplemental guidelines may exceed authorized guidelines if the resultant dose will not exceed the DOE radiation protection standard of 100 mrem/yr (Ref. 1). This evaluation is based on realistic exposure pathways that were

11

THE DESIGN OF A RADIOACTIVITY CONTAMINATION METER  

SciTech Connect

A description is given of the design and performance of a portable instrument for measurement of radiation from small quantities of radioactive contamination. The device weighs 4 lb 2 oz, operates on a single flashlight battery for 200 hr, and operates at low temperatures with the proper battery. The most novel feature is a clockworkdriven chopper for a-c. The circuit includes cold cathode tubes and a halogen-quenched G-M tube. Reliability was emphasized in the design. (T.R.H.)

Goulding, F.S.

1954-04-27T23:59:59.000Z

12

Engineering assessment of radioactive sands and residues, Lowman Site, Lowman, Idaho  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Lowman site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive sands and residues at Lowman, Idaho. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of radioactive sands and residues and radiation exposure of individuals and nearby populations, and investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 191,000 tons of radioactive sands, residues, and contaminated soils at the Lowman site constitutes the most significant environmental impact, although windblown radioactive sands and external gamma radiation also are factors.

Not Available

1981-09-01T23:59:59.000Z

13

A manual for implementing residual radioactive material guidelines  

Science Conference Proceedings (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

1989-06-01T23:59:59.000Z

14

EA-1599: Disposition of Radioactively Contaminated Nickel Located at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

99: Disposition of Radioactively Contaminated Nickel Located 99: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications Summary This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold. Public Comment Opportunities No public comment opportunities at this time.

15

ORISE: Radiation and Radioactive Contamination FAQ  

NLE Websites -- All DOE Office Websites (Extended Search)

take potassium iodide, also known as KI? A: KI is a medication that blocks the thyroid gland from absorbing radioactive iodine. It works by providing all the iodine the gland...

16

Inhibited Release of Mobile Contaminants from Hanford Tank Residual Waste  

SciTech Connect

Investigations of contaminant release from Hanford Site tank residual waste have indicated that in some cases certain contaminants of interest (Tc and Cr) exhibit inhibited release. The percentage of Tc that dissolved from residual waste from tanks 241-C-103, 241-C-106, 241-C-202, and 241-C-203 ranged from approximately 6% to 10%. The percent leachable Cr from residual waste from tanks C-103, C 202, and C-203 ranged from approximately 1.1% to 44%. Solid phase characterization results indicate that the recalcitrant forms of these contaminants are associated with iron oxides. X-ray absorption near edge structure analysis of Tc and Cr in residual waste indicates that these contaminants occur in Fe oxide particles as their lower, less soluble oxidation states [Tc(IV) and Cr(III)]. The form of these contaminants is likely as oxides or hydroxides incorporated within the structure of the Fe oxide. Leaching behavior of U from tank residual waste was studied using deionized water, and CaCO3 and Ca(OH)2 saturated solutions as leachants. The release behavior of U from tank residual waste is complex. Initial U concentrations in water and CaCO3 leachants are high due to residual amounts of the highly soluble U mineral cejkaite. As leaching and dilution occur NaUO2PO4 {center_dot} xH2O, Na2U2O7(am) and schoepite (or a similar phase) become the solubility controlling phases for U. In the case of the Ca(OH)2 leachant, U release from tank residual waste is dramatically reduced. Thermodynamic modeling indicates that the solubility of CaUO4(c) controls release of U from residual waste in the Ca(OH)2 leachants. It is assumed the solubility controlling phase is actually a hydrated version of CaUO4 with a variable water content ranging from CaUO4 to CaUO4 {center_dot} (H2O). The critically reviewed value for CaUO4(c) (log KSP0 = 15.94) produced good agreement with our experimental data for the Ca(OH)2 leachates.

Cantrell, Kirk J.; Heald, Steve M.; Arey, Bruce W.; Lindberg, Michael J.

2011-03-03T23:59:59.000Z

17

Hanford tank residual waste – contaminant source terms and release models  

Science Conference Proceedings (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

18

Release of Residues from Melting NORM-Contaminated Steel Scrap - A German Approach  

Science Conference Proceedings (OSTI)

As many raw materials like crude oil, natural gas, mineral sands, phosphor ores and others are contaminated by radionuclides from the Uranium and/or Thorium decay chain (NORM), also plants for processing these materials became contaminated during operation. When plants are shut down, large quantities of pipes, valves, pumps and other components have to be scrapped. As scrap yards and steel mills are equipped by large detector systems to avoid an input of radioactivity into the steel cycle, decontamination is required before recycling. Siempelkamp is operating a melting plant for processing NORM and/or chemically/ toxically contaminated steel scrap. Beside the decontaminated steel as output, residues like slag and filter dust have to be managed within the range of licensed values. Based on the European Safety Standard the European member states have to implement radiation exposure from work activities with NORM in their Radiation Protection Ordinances (RPO). The German government revised the RPO in July 2001. Part 3 describes exposure limits for workers and for the public. Exposures from residues management have to meet 1 mSv/year. Brenk Systemplanung has performed calculations for assessing the radiation exposure from residues of the Siempelkamp melting plant. These calculations have been based on the input of metal from different origins and include all relevant exposure pathways in a number of scenarios. The calculations have been based on the dose criterion of 1 mSv/y as required by the German RPO. The methods and results will be presented.

Quade, U.; Thierfeldt, S.; Wvrlen, S.

2003-02-24T23:59:59.000Z

19

Control levels for residual contamination in materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support joint efforts by the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water and Radiation Division (DOE/EH-232); by the U.S. Environmental Protection Agency (EPA); and by the U.S. Nuclear Regulatory Commission (NRC) to develop radiological control criteria for the recycle and reuse of scrap materials and equipment that contain residual radioactive contamination. The initial radiological control levels are the concentrations in or on materials considered for recycle or reuse that meet the individual (human) or industrial (electronics/film) dose criteria. The analysis identifies relevant radionuclides, potential mechanisms of exposure, and methods to determine possible non-health-related impacts from residual radioactive contamination in materials considered for recycle or reuse. The generic methodology and scenarios described here provide a basic framework for numerically deriving radiological control criteria for recycle or reuse. These will be adequately conservative for most situations.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1993-09-01T23:59:59.000Z

20

Environmental review of options for managing radioactively contaminated carbon steel  

SciTech Connect

The U.S. Department of Energy (DOE) is proposing to develop a strategy for the management of radioactively contaminated carbon steel (RCCS). Currently, most of this material either is placed in special containers and disposed of by shallow land burial in facilities designed for low-level radioactive waste (LLW) or is stored indefinitely pending sufficient funding to support alternative disposition. The growing amount of RCCS with which DOE will have to deal in the foreseeable future, coupled with the continued need to protect the human and natural environment, has led the Department to evaluate other approaches for managing this material. This environmental review (ER) describes the options that could be used for RCCS management and examines the potential environmental consequences of implementing each. Because much of the analysis underlying this document is available from previous studies, wherever possible the ER relies on incorporating the conclusions of those studies as summaries or by reference.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radioactively Contaminated Scrap Metal An International Approach to Monitoring, Interception & Managing  

E-Print Network (OSTI)

of uncontrolled radioactive source incidents. Aside from radiation exposure to workers and the public development of a database where countries can report scrap radiation incidents. Training: InternationalRadioactively Contaminated Scrap Metal An International Approach to Monitoring, Interception

22

U.S. Department of Energy Guidelines for Residual Radioactive Material at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Guidelines for Residual Radioactive U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) More Documents & Publications

23

U.S. Department of Energy Guidelines for Residual Radioactive Material at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Guidelines for Residual Radioactive U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) More Documents & Publications

24

U.S. DEPARTMENT OF ENERGY GUIDELINES FOR RESIDUAL RADIOACTIVE MATERIAL AT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I U.S. DEPARTMENT OF ENERGY GUIDELINES FOR RESIDUAL RADIOACTIVE MATERIAL AT FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM AHD REMOTE SURPLUS FACILITIES MANAGEMENT PROGRAM SITES (Revision 2, March 1987) A. INTRODUCTION This document presents U.S. Department of Energy (DOE) radiological protection guidelines for cleanup of residual radioactive material and management of the resulting wastes and residues. It is applicable to si~es - "C-- identified by the Formerly Utilized Sites l{emedia1 Ac:tionProgram (FUSRAP) .and remote sites identified by the Surplus Facilities Management Program (SFMP).* The topics covered are basic dose limits, guidelines and authorized limits for allowable levels of residual radioactive material, and requirements for

25

POSSIBLE HEALTH HAZARDS ASSOCIATED WITH THE LAUNDERING OF RADIOACTIVELY CONTAMINATED PROTECTIVE CLOTHING  

SciTech Connect

An engineering study was made at the Brookhaven National Laboratory to evaluate the possible health hazards to laundry personnel and the public connected with the operation of a decontamination laundry. Laboratory clothing was separated into eight groups, ranging from only slight amounts to rather large amounts of contamination. The groups contained from nineteen to thirtyone coveralls each, with all of the garments in the same group containing about the same amount of radioactive contamination. Each group was washed as a separate batch. Air samples were taken at various breathing zones and at various times during the operation to determine the air-borne dust hazard. The waste water was assayed for actlvity, the dryer effluent was monitored and the equipment, building, etc., were checked for contamination during the laundry operation of the eight groups. The data show that the greatest hazard lies in the inhalation of airbonne radioactive dusts. Washwater, laundry equipment, surfaces and floors became contaminated. Clean clothes showed cross contamination if washed with even slightly contaminated clothing. The dryer effluent was invariably contaminated with radioactive lint. It was evident that below 1 to 2 mu c of contamination per garment, one could send radioactive clothing to a commercial laundry without hazard to the laundry operators or to the public. Higher levels can be handled safely by a commercial laundry if the loading and sorting operations are carefully managed. (auth)

Pearsall, S.G.; Gemmell, L.; Breslin, A.

1958-09-01T23:59:59.000Z

26

Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range  

SciTech Connect

A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

NONE

1997-06-01T23:59:59.000Z

27

T.G. Hinton: Remediation of Radioactively Contaminated Ecosystems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Knox and R. Sharitz. 2005. Phytoremediation potential of native trees in a uranium and thorium contaminated wetland. J. Radioanalytical and Nuclear Chem. 264:417-422. Whicker, F....

28

Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data  

SciTech Connect

This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

2010-06-18T23:59:59.000Z

29

Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995  

Science Conference Proceedings (OSTI)

A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil.

NONE

1996-07-01T23:59:59.000Z

30

Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels  

SciTech Connect

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

Miller Julianne J.,Mizell Steve A.,Nikolich George,Campbell Scott A.

2012-02-01T23:59:59.000Z

31

Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is located within the Valley and Ridge Physiographic Province of eastern Tennessee (USA). Wildlife populations have access to some radioactively contaminated sites at ORNL. Contaminated animals or animal nests within the Laboratory's boundaries have been found to contain {sup 90}Sr or {sup 137}Cs on the order of 10{sup -2}-10{sup 4} Bqg{sup -1} and trace amounts of other radionuclides (including transuranic elements). Animals that are capable of flight and animals with behavior patterns or developmental life stages involving contact with sediments in radioactive ponds, like benthic invertebrates, present the greatest potential for dispersal of radioactivity. The emigration of frogs and turtles from waste ponds also presents a potential for dispersal of radioactivity but over distances < 5 km. Mud-dauber wasps (Hymenoptera) and swallows (Hirundinidae) may transport radioactive mud for nest building, but also over relatively short distances (0.2-1 km). Movement by small mammals is limited by several factors, including physical barriers and smaller home ranges. Larger animals, like white-tailed deer (Odocoileus virginianus), are potential vectors of radioactivity due to their greater body size, longer life expectancy, and larger home range. Larger animals contain greater amounts of total radioactivity than smaller animals, but tissue concentrations of {sup 137}Cs generally decline with body size.

Garten Jr, Charles T [ORNL

1995-12-01T23:59:59.000Z

32

REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

SciTech Connect

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

XU, X. George; Zhang, X.C.

2002-05-10T23:59:59.000Z

33

Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials  

Science Conference Proceedings (OSTI)

This report recornmenrls instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two rnonth measurement rnethodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

Young,, J. A.; Thomas, V. W.; Jackson, P. 0.

1983-03-01T23:59:59.000Z

34

Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) is located within the Ridge and Valley physiographic province of eastern Tennessee (USA). This area is characterized by deciduous forests dominated by hardwood and mixed mesophytic tree species. Wildlife populations have access to some radioactively contaminated sites at ORNL, and contaminated animals or animal nests within the Laboratory's boundaries have been found to contain on the order of 10{sup {minus}12} to 10{sup {minus}6} Ci/g of {sup 90}Sr or {sup 137}Cs, and trace amounts of other radionuclides (including transuranic elements). Theoretical calculations indicate that nanocurie levels of {sup 90}Sr in bone can arise from relatively small amounts (1%) of contaminated browse vegetation in a deer's diet. Measures that have been undertaken at ORNL to curtail the dispersal of radioactivity by animals are briefly reviewed.

Garten, C.T. Jr.

1992-03-27T23:59:59.000Z

35

Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is located within the Ridge and Valley physiographic province of eastern Tennessee (USA). This area is characterized by deciduous forests dominated by hardwood and mixed mesophytic tree species. Wildlife populations have access to some radioactively contaminated sites at ORNL, and contaminated animals or animal nests within the Laboratory`s boundaries have been found to contain on the order of 10{sup {minus}12} to 10{sup {minus}6} Ci/g of {sup 90}Sr or {sup 137}Cs, and trace amounts of other radionuclides (including transuranic elements). Theoretical calculations indicate that nanocurie levels of {sup 90}Sr in bone can arise from relatively small amounts (1%) of contaminated browse vegetation in a deer`s diet. Measures that have been undertaken at ORNL to curtail the dispersal of radioactivity by animals are briefly reviewed.

Garten, C.T. Jr.

1992-03-27T23:59:59.000Z

36

Dose assessment for radioactive contamination of a child  

E-Print Network (OSTI)

Dose assessments produced using the computer code MCNP are important to simulate events that are difficult to recreate experimentally. An emergency scenario involving whole-body skin contamination is one example of such an event. For these scenarios, an anthropomorphic phantom of a 10-year-old male with uniform skin contamination was created and combined with MCNP for dose calculations. Activity on the skin was modeled with gamma-ray sources at energies of 50 keV, 100 keV, 250 keV, 500 keV, 750 keV, 1 MeV, 1.25 MeV, 1.5 MeV, and 2 MeV. The radionuclides 60Co, 137Cs, and 131I were also modeled. The effective dose to the body and major organs was calculated for each scenario. Exposure rate contour lines were also produced around the body. The activity required to result in a dose equal to the legal limit of 0.1 mSv for minors was calculated for each scenario. The highest activity required to produce this limit was from the 50 keV gamma-ray source. This activity was increased by an arbitrary value, approximately tenfold the current value, to represent an emergency scenario. This new activity concentration of 1 mCi per 100 cm2 was used to produce doses for each of the scenarios. The lowest effective dose for the body was 0.82 mSv, produced from the 50 keV source. The highest effective dose was 19.59 mSv, produced from the 2 MeV source. The exposure rates nearest the body were approximately 1.25 R/h, decreasing to100 mR/h approximately 60 cm from the body. The data points were found to be dependent on the energy of the gamma ray. These data can also be improved by deriving solutions previously assumed in this scenario. For example, the skin may be broken down into multiple regions to allow for independent calculations for regional contamination. The activity on the skin can also be derived from air concentration models, allowing for the use of other models to be used in conjunction with this research.

Kowalczik, Jeffrey Aaron

2008-05-01T23:59:59.000Z

37

Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0  

Science Conference Proceedings (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

Yu, C.; Zielen, A.J.; Cheng, J.J. [and others

1993-09-01T23:59:59.000Z

38

Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data  

SciTech Connect

As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

2007-09-13T23:59:59.000Z

39

FIVE YEAR REVIEW - MONTICELLO RADIOACTIVELY CONTAMINATED PROPERTIES - 06/11/2007  

Office of Legacy Management (LM)

Third Five-Year Review Report Third Five-Year Review Report for Monticello Radioactively Contaminated Properties Monticello, Utah San Juan County, Utah June 2007 Office of Legacy Management DOE M/1473 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy DOE-LM/1473-2007 Five-Year Review Report Third Five-Year Review Report For Monticello Radioactively Contaminated Properties Monticello, Utah San Juan County, Utah June 2007 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Approved by: Raymond M:'P' ness Deputy Director U.S. Department of Energy, Office of Legacy Management Brent H. Everett

40

Method of determining whether radioactive contaminants are inside or outside a structure  

DOE Patents (OSTI)

A measure is obtained of the relative quantities of radioactive material inside and outside a structure such as a pipe by obtaining two spectra of gamma radiation on a dummy structure of the same shape and composition. A first spectrum is obtained with a quantity of the radioactive element to be measured located inside the structure and a second spectrum is obtained with a quantity of the same contaminant located outside the structure. The two spectra are normalized to the same equivalent value in a portion of the spectrum that does not reflect the presence of gamma rays resulting from Compton scattering in the structure. Comparison of that portion of the spectra obtained where Compton scattering is a factor gives a measure of the relative amounts of contaminants inside and outside the structure on a spectrum obtained from a test structure. The invention may also be practiced by obtaining a plurality of spectra at varying known concentrations inside and outside the dummy structure.

Lattin, Kenneth R. (Richland, WA)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Helium leak testing of a radioactive contaminated vessel under high pressure in a contaminated environment  

Science Conference Proceedings (OSTI)

At ANL-W, with the shutdown of EBR-II, R&D has evolved from advanced reactor design to the safe handling, processing, packaging, and transporting spent nuclear fuel and nuclear waste. New methods of processing spent fuel rods and transforming contaminated material into acceptable waste forms are now in development. Storage of nuclear waste is a high interest item. ANL-W is participating in research of safe storage of nuclear waste, with the WIPP (Waste Isolation Pilot Plant) site in New Mexico the repository. The vessel under test simulates gas generated by contaminated materials stored underground at the WIPP site. The test vessel is 90% filled with a mixture of contaminated material and salt brine (from WIPP site) and pressurized with N2-1% He at 2500 psia. Test acceptance criteria is leakage jar method is used to determine leakage rate using a mass spectrometer leak detector (MSLD). The efficient MSLD and an Al bell jar replaced a costly, time consuming pressure decay test setup. Misinterpretation of test criterion data caused lengthy delays, resulting in the development of a unique procedure. Reevaluation of the initial intent of the test criteria resulted in leak tolerances being corrected and test efficiency improved.

Winter, M.E.

1996-10-01T23:59:59.000Z

42

Helium leak testing of a radioactive contaminated vessel under high pressure in a contaminated environment  

SciTech Connect

At ANL-W, with the shutdown of EBR-II, R&D has evolved from advanced reactor design to the safe handling, processing, packaging, and transporting spent nuclear fuel and nuclear waste. New methods of processing spent fuel rods and transforming contaminated material into acceptable waste forms are now in development. Storage of nuclear waste is a high interest item. ANL-W is participating in research of safe storage of nuclear waste, with the WIPP (Waste Isolation Pilot Plant) site in New Mexico the repository. The vessel under test simulates gas generated by contaminated materials stored underground at the WIPP site. The test vessel is 90% filled with a mixture of contaminated material and salt brine (from WIPP site) and pressurized with N2-1% He at 2500 psia. Test acceptance criteria is leakage < 10{sup -7} cc/seconds at 2500 psia. The bell jar method is used to determine leakage rate using a mass spectrometer leak detector (MSLD). The efficient MSLD and an Al bell jar replaced a costly, time consuming pressure decay test setup. Misinterpretation of test criterion data caused lengthy delays, resulting in the development of a unique procedure. Reevaluation of the initial intent of the test criteria resulted in leak tolerances being corrected and test efficiency improved.

Winter, M.E.

1996-10-01T23:59:59.000Z

43

Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data  

Science Conference Proceedings (OSTI)

CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2005-06-03T23:59:59.000Z

44

Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks  

Science Conference Proceedings (OSTI)

The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

2007-12-01T23:59:59.000Z

45

Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY 2012  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Management’s Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively. Field measurements at the T-4 Atmospheric Test Site, CAU 370, suggest that radioactive material may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Although DRI initially looked at the CAU 370 site, given that it could not be confirmed that migration of contamination into the channel was natural, an alternate study site was selected at CAU 550. Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radioactivity may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). Figure 1 shows the results of a low-elevation aerial survey (Colton, 1999) in Area 8. The numbered markers in Figure 1 identify ground zero for three safety experiments conducted in 1958 [Oberon (number 1), Ceres (number 2), and Titania (number 4)] and a weapons effects test conducted in 1964, Mudpack (number 3). This survey suggests contaminants may be migrating down the ephemeral channels that traverse CAU 550. Note particularly the lobe of higher concentration extending southeastward at the south end of the high concentration area marked as number 3 in Figure 1. CAU 550 in Area 8 of the NNSS was selected for the study because the aerial survey indicates that a channel mapped on the United States Geological Survey topographic map of the area traverses the south end of the area of surface contamination; this channel lies south of the point marked number 3 in Figure 1, and anecdotal information indicates that sediment has been deposited on the road bordering the southeast boundary of the CAU from an adjacent channel (Traynor, J, personal communication, 2011). Because contamination is particularly close to the boundary of CAU 550, Smoky CA, it is important to know if contaminants are moving, what meteorological conditions result in movement of contaminated soils, and what particle size fractions associated with contamination are involved. Closure plans are being developed for the CAUs on the NNSS. The closure plans may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and post-closure monitoring program.

Julianne J. Miller, Steve A. Mizell, Greg McCurdy, and Scott A. Campbell

2012-09-01T23:59:59.000Z

46

Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey  

SciTech Connect

Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1996-02-01T23:59:59.000Z

47

Evaluation of ultrafiltration membranes for treating low-level radioactive contaminated liquid waste  

SciTech Connect

A series of experiments were performed on Waste Disposal Facility (WD) influent using Romicon hollow fiber ultrafiltration modules with molecular weight cutoffs ranging from 2000 to 80,000. The rejection of conductivity was low in most cases. The rejection of radioactivity ranged from 90 to 98%, depending on the membrane type and on the feed concentration. Typical product activity ranged from 7 to 100 dis/min/ml of alpha radiation. Experiments were also performed on alpha-contaminated laundry wastewater. Results ranged from 98 to >99.8%, depending on the membrane type. This yielded a product concentration of less than 0.1 dis/min/ml of alpha radiation. Tests on PP-Building decontamination water yielded rejections of 85 to 88% alpha radiation depending on the membrane type. These experiments show that the ability to remove radioactivity by membrane is a function of the contents of the waste stream because the radioactivity in the wastewater is in various forms: ionic, polymeric, colloidal, and absorbed onto suspended solids. Although removal of suspended or colloidal material is very high, removal of ionic material is not as effective. Alpha-contaminated laundry wastewater proved to be the easiest to decontaminate, whereas the low-level PP-Building decontamination water proved to be the most difficult to decontaminate. Decontamination of the WD influent, a combined waste stream, varied considerably from day to day because of its constantly changing makeup. The WD influent was also treated with various substances, such as polyelectrolytes, complexing agents, and coagulants, to determine if these additives would aid in the removal of radioactive material from the various wastewaters by complexing the ionic species. At the present time, none of the additives evaluated has had much effect; but experiments are continuing.

Koenst, J.W.; Roberts, R.C.

1978-03-31T23:59:59.000Z

48

Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste  

Science Conference Proceedings (OSTI)

The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2006-09-01T23:59:59.000Z

49

Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site  

Science Conference Proceedings (OSTI)

The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.

Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

2007-11-01T23:59:59.000Z

50

A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask  

Science Conference Proceedings (OSTI)

This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

Sanders, T.L. (Sandia National Labs., Albuquerque, NM (United States)); Jordan, H. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Pasupathi, V. (Battelle, Columbus, OH (United States)); Mings, W.J. (USDOE Idaho Field Office, Idaho Falls, ID (United States)); Reardon, P.C. (GRAM, Inc., Albuquerque, NM (United States))

1991-09-01T23:59:59.000Z

51

IMPACT OF TARGET MATERIAL ACTIVATION ON PERSONNEL EXPOSURE AND RADIOACTIVE CONTAMINATION IN THE NATIONAL IGNITION FACILITY  

Science Conference Proceedings (OSTI)

Detailed activation analyses are performed for the different materials under consideration for use in the target capsules and hohlraums used during the ignition campaign on the National Ignition Facility. Results of the target material activation were additionally used to estimate the levels of contamination within the NIF target chamber and the workplace controls necessary for safe operation. The analysis examined the impact of using Be-Cu and Ge-doped CH capsules on the external dose received by workers during maintenance activities. Five days following a 20 MJ shot, dose rates inside the Target Chamber (TC) due to the two proposed capsule materials are small ({approx} 1 {micro}rem/h). Gold and depleted-uranium (DU) are considered as potential hohlraum materials. Following a shot, gold will most probably get deposited on the TC first wall. On the other hand, while noble-gas precursors from the DU are expected to stay in the TC, most of the noble gases are pumped out of the chamber and end up on the cryopumps. The dose rates inside the TC due to activated gold or DU, at 5 days following a 20 MJ shot, are about 1 mrem/h. Dose rates in the vicinity of the cryo-pumps (containing noble 'fission' gases) drop-off to about 1 mrem/h during the first 12 hours following the shot. Contamination from activation of NIF targets will result in the NIF target chamber exceeding DOE surface contamination limits. Objects removed from the TC will need to be managed as radioactive material. However, the results suggest that airborne contamination from resuspension of surface contamination will not be significant and is at levels that can be managed by negative ventilation when accessing the TC attachments.

Khater, H; Epperson, P; Thacker, R; Beale, R; Kohut, T; Brereton, S

2009-06-30T23:59:59.000Z

52

Packaging, Transportation, and Disposal Logistics for Large Radioactively Contaminated Reactor Decommissioning Components  

Science Conference Proceedings (OSTI)

The packaging, transportation and disposal of large, retired reactor components from operating or decommissioning nuclear plants pose unique challenges from a technical as well as regulatory compliance standpoint. In addition to the routine considerations associated with any radioactive waste disposition activity, such as characterization, ALARA, and manifesting, the technical challenges for large radioactively contaminated components, such as access, segmentation, removal, packaging, rigging, lifting, mode of transportation, conveyance compatibility, and load securing require significant planning and execution. In addition, the current regulatory framework, domestically in Titles 49 and 10 and internationally in TS-R-1, does not lend itself to the transport of these large radioactively contaminated components, such as reactor vessels, steam generators, reactor pressure vessel heads, and pressurizers, without application for a special permit or arrangement. This paper addresses the methods of overcoming the technical and regulatory challenges. The challenges and disposition decisions do differ during decommissioning versus component replacement during an outage at an operating plant. During decommissioning, there is less concern about critical path for restart and more concern about volume reduction and waste minimization. Segmentation on-site is an available option during decommissioning, since labor and equipment will be readily available and decontamination activities are routine. The reactor building removal path is also of less concern and there are more rigging/lifting options available. Radionuclide assessment is necessary for transportation and disposal characterization. Characterization will dictate the packaging methodology, transportation mode, need for intermediate processing, and the disposal location or availability. Characterization will also assist in determining if the large component can be transported in full compliance with the transportation and disposal regulations and criteria or if special authorizations must be granted to transport and/or dispose. The U.S. DOT routinely issues special permits for large components where compliance with regulatory or acceptance criteria is impractical or impossible to meet. Transportation and disposal safety must be maintained even under special permits or authorizations. For example, if transported un-packaged, performance analysis must still be performed to assess the ability of the large component's outer steel shell to contain the internal radioactive contamination under normal transportation conditions and possibly incidence normal to transportation. The dimensions and weight of a large component must be considered when determining the possible modes of transportation (rail, water, or highway). At some locations, rail and/or barge access is unavailable. Many locations that once had an active rail spur to deliver new construction materials and components have let the spur deteriorate to the point that repair and upgrade of the spur is no longer economically feasible. Barge slips that have not been used since new plant construction require significant repair and/or dredging. Short on-site haul routes must be assessed for surface and subsurface conditions, as well as longer off-site routes. Off-site routes require clearance approvals from the regulatory authorities or, in the case of rail transport, the rail lines. Significant engineering planning and analysis must be performed during the pre-mobilization. In conclusion, the packaging, transportation, and disposal of large, oversized radioactively contaminated components removed during plant decommissioning is complex. However, over the last 15 years, a 100 or more components have been safely and compliantly packaged and transported for processing and/or disposal.

Lewis, Mark S. [EnergySolutions: 140 Stoneridge Drive, Columbia, SC 29210 (United States)

2008-01-15T23:59:59.000Z

53

Past Radioactive Particle Contamination in the Columbia River at the Hanford Site, USA  

SciTech Connect

The Hanford Site was originally established in 1943 as part of the World War II Manhattan Project to produce a nuclear weapon. During the Site’s early history, eight single-pass reactors were constructed along the “Hanford Reach” of the Columbia River to produce plutonium. Reactor coolant effluent was held temporarily in retention basins so that short-lived activation products and temperature could dissipate before discharge to the river. Reactor components included valves and pumps constructed with Stellite, an alloy containing high levels of cobalt and other metals. Neutron activation of these components produced cobalt-60. As these components aged, they deteriorated and released radioactive particles into the liquid effluent. Over the 26 years of reactor operations, relatively small numbers of these particles were released to the Columbia River along with the liquid discharges, and the particles were deposited in sediment along the shoreline and on islands. In 1976, portions of the Hanford Reach were opened for public access and the presence of these radioactive cobalt-60 particles became a concern for public exposure. A survey conducted in 1979 determined that the particles were small, with a diameter of approximately 0.1 mm, and their activity level was estimated to be between 63 and 890 GBq. Dose rates from the particles ranged from 1 to 14 ?Gray/hr. Fourteen particles were collected during the 1979 survey and subsequent monitoring and particle clean-up campaigns continued during the 1980s and 1990s. The presence of radioactive particles in the river environment was a continuing concern as cleanup of the Hanford Site accelerated during the 1990s. Principal issues included: 1) Site management response to the presence of radioactive particles in the Columbia River, 2) methods to monitor this contamination, 3) stakeholder concerns, and 4) anti-nuclear activist intervention. Reducing ecological and human health risk caused by contamination is a major focus of Site cleanup. Because of the 5.3 year half-life of cobalt-60, the radiological risk from these particles is now negligible. Also, at locations where human access is limited, some scientists believe that the reduction in ecological risk gained by cleanup activities is overshadowed by the ecological damage caused by the clean-up activities. Suggestions have been made by scientists and regulatory agencies that it may be economically and environmentally more sound to manage isolated low-level waste sites until the activity decays (i.e., natural attenuation) to levels below health concerns, when the sites can be released.

Poston, Ted M.; Peterson, Robert E.; Cooper, Andrew T.

2007-08-24T23:59:59.000Z

54

Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data  

SciTech Connect

This report was revised in May 2007 to correct values in Section 3.4.1.7, second paragraph, last sentence; 90Sr values in Tables 3.22 and 3.32; and 99Tc values Table 4.3 and in Chapter 5. In addition, the tables in Appendix F were updated to reflect corrections to the 90Sr values. The rest of the text remains unchanged from the original report issued in May 2005. CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contam¬inants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2007-05-23T23:59:59.000Z

55

Decontamination and decommissioning of the Argonne National Laboratory East Area radioactively contaminated surplus facilities: Final report  

Science Conference Proceedings (OSTI)

ANL has decontaminated and decommissioned (D and D) seven radiologically contaminated surplus facilities at its Illinois site: a ''Hot'' Machine Shop (Building 17) and support facilities; Fan House No. 1 (Building 37), Fan House No. 2 (Building 38), the Pangborn Dust Collector (Building 41), and the Industrial Waste Treatment Plant (Building 34) for exhaust air from machining of radioactive materials. Also included were a Nuclear Materials Storage Vault (Building 16F) and a Nuclear Research Laboratory (Building 22). The D and D work involved dismantling of all process equipment and associated plumbing, ductwork, drain lines, etc. After radiation surveys, floor and wall coverings, suspended ceilings, room partitions, pipe, conduit and electrical gear were taken down as necessary. In addition, underground sewers were excavated. The grounds around each facility were also thoroughly surveyed. Contaminated materials and soil were packaged and shipped to a low-level waste burial site, while nonactive debris was buried in the ANL landfill. Clean, reusable items were saved, and clean metal scrap was sold for salvage. After the decommissioning work, each building was torn down and the site relandscaped. The project was completed in 1985, ahead of schedule, with substantial savings.

Kline, W.H.; Fassnacht, G.F.; Moe, H.J.

1987-07-01T23:59:59.000Z

56

RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment.  

Science Conference Proceedings (OSTI)

RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

Cheng, J. J.; Kassas, B.; Yu, C.; Arnish, J. J.; LePoire, D.; Chen, S.-Y.; Williams, W. A.; Wallo, A.; Peterson, H.; Environmental Assessment; DOE; Univ. of Texas

2004-11-01T23:59:59.000Z

57

Historical records of radioactive contamination in biota at the 200 Areas of the Hanford Site  

Science Conference Proceedings (OSTI)

This document summarizes and reports a literature search of 85 environmental monitoring records of wildlife and vegetation (biota) at the 200 East Area and the 200 West Area of the Hanford Site since 1965. These records were published annually and provided the majority of the data in this report. Additional sources of data have included records of specific facilities, such as site characterization documents and preoperational environmental surveys. These documents have been released for public use. Records before 1965 were still being researched and therefore not included in this document. The intent of compiling these data into a single source was to identify past and current concentrations of radionuclides in biota at specific facilities and waste sites within each operable unit that may be used to help guide cleanup activities in the 200 Areas to be completed under the Comprehensive Environmental Response and Liability Act (CERCLA). The 200 East Area and 200 West Area were the locations of the Hanford Site separation and process facilities and waste management units. For the purposes of this document, a sample was of interest if a Geiger-Mueller counter equipped with a pancake probe-indicated beta/gamma emitting radioactivity above 200 counts per minute (cpm), or if laboratory radioanalyses indicated a radionuclide concentration equaled or exceeded 10 picocuries per gram (pCi/g). About 4,500 individual cases of monitoring for radionuclide uptake or transport in biota in the 200 Areas environs were included in the documents reviewed. About 1,900 (i.e., 42%) of these biota had radionuclide concentrations in excess of 10 pCi/g. These radionuclide transport or uptake cases were distributed among 45 species of wildlife (primarily small mammals and feces) and 30 species of vegetation. The wildlife species most commonly associated with radioactive contamination were the house mouse and the deer mouse and of vegetation species, the Russian thistle.

Johnson, A.R.; Markes, B.M.; Schmidt, J.W.; Shah, A.N.; Weiss, S.G.; Wilson, K.J.

1994-06-01T23:59:59.000Z

58

Bioavailability of TNT residues in composts of TNT-contaminated soil  

SciTech Connect

Composting is being explored as a means to remediate 2,4,6-trinitrotoluene (TNT) contaminated soils. This process appears to modify TNT and to bind it to organic matter. The health hazards associated with dusts generated from such materials cannot be predicted without knowing if the association between TNT residues and compost particulate is stable in biological systems. To address this question, single doses of [{sup 14}C]-TNT, soil spiked with [{sup 14C]-TNT, or compost generated with [{sup 14}C]-TNT-spiked soils were administered to rats by intratracheal instillation. The appearance of {sup 14}C in urine and tissues was taken as an indication of the bioavailability of TNT residues from compost particles. In rats instilled with neat [{sup 14}C]-TNT, about 35% of the {sup 14}C dose appeared in urine within 3 d. The {sup 14}C excreted in urine by these rats decreased rapidly thereafter, and was undetectable by 4 wk after treatment. Similar results were obtained with soil-treated rats. In contrast, after treatment with [{sup 14}C]-TNT-labeled compost, only 2.3% of the total {sup 14}C dose appeared in urine during the first 3 d. Low levels of {sup 14}C continued to be excreted in urine from compost-treated rats for more than 6 mo, and the total amount of {sup 14}C in urine was comparable to that in TNT-treated animals. Determination of the radiolabel in tissues showed that {sup 14}C accumulated in the kidneys of rats treated with labeled compost but not in rats treated with [{sup 14}C]-TNT or [{sup 14}C]-TNT-spiked soil. These results indicate that the association between TNT and particulate matter in compost is not stable when introduced into the lungs. Accumulation of {sup 14}C in kidneys suggests the presence of a unique TNT residue in compost-treated rats. The rate of excretion and tissue disposition of {sup 14}}C in rats treated with TNT-spiked soil indicate that TNT in soil is freely available in the lungs. 12 refs., 4 figs., 1 tab.

Palmer, W.G. [Army Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, MD (United States); Beaman, J.R. [Geo-centers, Fort Detrick, Frederick, MD (United States); Walters, D.M.; Creasia, D.A. [Army Research Institute for Infectious Diseases, Frederick, MD (United States)

1997-10-01T23:59:59.000Z

59

Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement  

Science Conference Proceedings (OSTI)

Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01T23:59:59.000Z

60

Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee  

SciTech Connect

The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

SAIC

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES  

Science Conference Proceedings (OSTI)

The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU{reg_sign} reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition.

Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

2002-02-25T23:59:59.000Z

62

RESEARCH AND DEVELOPMENT ACTIVITIES FIXATION OF RADIOACTIVE RESIDUES, QUARTERLY PROGRESS REPORT, OCTOBER-DECEMBER 1961  

SciTech Connect

Resesrch and development activities in fixation of radioactive wastes are reported. Spray calcination, batch calcination, in-tank solidification, off- gas treatment, sorption snd extraction studies, low- and intermediate-level wastes, and high-level wastes are discussed. (M.C.G.)

Irish, E.R. ed.

1962-01-15T23:59:59.000Z

63

Derivation of residual radioactive material guidelines for uranium in soil at the Former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio  

SciTech Connect

Residual radioactive material guidelines for uranium in soil were derived for the former Associate Aircraft Tool and Manufacturing Company site in Fairfield, Ohio. This site has been identified for remedial action under the U.S. Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that, after remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed (1) 30 mrem/yr for the current-use and likely future-use scenarios or (2) 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material (RESRAD) computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation.

Faillace, E.R.; Nimmagadda, M.; Yu, C.

1995-01-01T23:59:59.000Z

64

Derivation of guidelines for uranium residual radioactive material in soil at the former Baker Brothers, Inc., Site, Toledo, Ohio  

SciTech Connect

Residual radioactive material guidelines for uranium in soil were derived for the former Baker Brothers, Inc., site in Toledo, Ohio. This site has been identified for remedial action under the U.S. Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluation indicates that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total combined uranium (uranium-234, uranium-235, and uranium-238) at the former Baker Brothers site did not exceed 710 pCi/g for Scenario A (industrial worker, current use) or 210 pCi/g for Scenario B (resident - municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 500 pCi/g for Scenario C (subsistence farmer - on-site well water, a plausible but unlikely future use).

Nimmagadda, M.; Kamboj, S.; Yu, C.

1995-04-01T23:59:59.000Z

65

Criteria determining the selection of slags for the melt decontamination of radioactively contaminated stainless steel by electroslag remelting  

Science Conference Proceedings (OSTI)

Electroslag remelting is an excellent process choice for the melt decontamination of radioactively contaminated metals. ESR furnaces are easily enclosed and do not make use of refractories which could complicate thermochemical interactions between molten metal and slag. A variety of cleaning mechanisms are active during melting; radionuclides may be partitioned to the slag by means of thermochemical reaction, electrochemical reaction, or mechanical entrapment. At the completion of melting, the slag is removed from the furnace in solid form. The electroslag process as a whole is greatly affected by the chemical and physical properties of the slag used. When used as a melt decontamination scheme, the ESR process may be optimized by selection of the slag. In this research, stainless steel bars were coated with non-radioactive surrogate elements in order to simulate surface contamination. These bars were electroslag remelted using slags of various chemistries. The slags investigated were ternary mixtures of calcium fluoride, calcium oxide, and alumina. The final chemistries of the stainless steel ingots were compared with those predicted by the use of a Free Energy Minimization Modeling technique. Modeling also provided insight into the chemical mechanisms by which certain elements are captured by a slag. Slag selection was also shown to have an impact on the electrical efficiency of the process as well as the surface quality of the ingots produced.

Buckentin, J.M.R.; Damkroger, B.K.; Shelmidine, G.J. [Sandia National Labs., Albuquerque, NM (United States); Atteridge, D.G. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)

1997-03-01T23:59:59.000Z

66

Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data  

SciTech Connect

This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

2007-05-23T23:59:59.000Z

67

Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System  

Science Conference Proceedings (OSTI)

A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

Marra, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Kormanyos, K.R.; Overcamp, T.J.

1996-10-01T23:59:59.000Z

68

Uranium-238, Thorium-230, and Radium-226 are the predominant radioactive contaminents on Formerly Utilized Sites Remedial Action Plan (FUSRAP) sites.  

E-Print Network (OSTI)

Uranium-238, Thorium-230, and Radium-226 are the predominant radioactive contaminents on Formerly radionuclide is unique to that radionuclide. Uranium-238, the most prevalent isotope in uranium ore, has a half of time. Uranium-238 decays by alpha emission into thorium-234, which itself decays by beta emission

US Army Corps of Engineers

69

In-situ determination of radionuclide levels in facilities to be decommissioned using the allowable residual contamination level method  

SciTech Connect

This feasibility study resulted in verification of a direct and two alternate indirect techniques for making in-situ determinations of {sup 90}Sr and other radionuclide levels in a Hanford facility to be decommissioned that was evaluated using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is used to determine the extent of decontamination that will be required before a facility can be decommissioned. A sump in the 1608F Building was chosen for the feasibility study. Hanford decommissioning personnel had previously taken 79 concrete and surface scale samples from the building to be analyzed by radiochemical analysis. The results of the radiochemical analyses compare favorably with the values derived by the in-situ methods presented in this report. Results obtained using a portable spectrometer and thermoluminescent dosimeters (TLDs) were both very close to the radiochemistry results. Surface {sup 90}Sr levels detected on the sump floor were 550 pCi/cm{sup 2} using the spectrometer system and 780 pCi/cm{sup 2} using the TLD data. This compares favorably with the levels determined by radiochemical analyses (i.e., 230 to 730 pCi/cm{sup 2}). Surface {sup 90}Sr levels detected on the sump wall ranged between 10 and 80 pCi/cm{sup 2} using the spectrometer system, compared with a conservative 200 pCi/cm{sup 2} using the TLD data. The radiochemical results ranged between 19 and 77 pCi/cm{sup 2} for the four samples taken from the wall at indeterminate locations. 17 refs., 15 figs., 2 tabs.

Arthur, R.J.; Haggard, D.L.

1989-07-01T23:59:59.000Z

70

Characterization of contaminants in oil shale residuals and the potential for their management to meet environmental quality standards. Final report  

SciTech Connect

Some general aspects of various oil shale processes developed for scale-up to commercial size modular units are described. The overall magnitude of an envisioned commercial shale oil operation and the magnitude of resulting potentially polluting residues in particular solid residues from retorting oil shale and associated operations and wastewater from retort streams and other sources are considered. The potential problems ensuing from self-oxidation of stockpiles of oil shale and from residual carbonaceous retorted oil shale disposed above ground and/or from in situ retorting operations are examined. Some methods for managing self-heating processes are suggested. The most plausible method of avoiding potential self-heating for retorted oil shale is to oxidize as much as possible of the organic carbon present by utilizing a process that will produce low carbon or carbon-free retorted oil shale residues. In the case of unretorted oil shale, the dimensions and shapes of the stockpiles should be designed such that heat build-up is eliminated or kept to a minimum.

Schmidt-Collerus, J.J.

1984-02-01T23:59:59.000Z

71

Management of alpha-contaminated wastes at the radioactive waste management complex at the Idaho National Engineering Laboratory  

SciTech Connect

Problems related to above ground storage of radioactive wastes at the Idaho National Engineering Laboratory and steps taken to resolve these difficulties are discussed. The quantity of wastes now in storage and the amount forecasted to be in place by 1985 are disclosed. The condition of containers placed for storage between 1954 and 1970 is described. Programs for retrieval and repackaging for shipment to federal repositories are discussed. (DC)

McCormack, M.A.

1980-01-01T23:59:59.000Z

72

EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications  

Energy.gov (U.S. Department of Energy (DOE))

This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold.

73

Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL  

SciTech Connect

A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

Spalding, B.P.; Jacobs, G.K.; Naney, M.T. (Oak Ridge National Lab., TN (United States)); Dunbar, N.W. (New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)); Tixier, J.S.; Powell, T.D. (Pacific Northwest Lab., Richland, WA (United States))

1992-11-01T23:59:59.000Z

74

Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL  

Science Conference Proceedings (OSTI)

A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were {sup 137}Cs and {sup 90}Sr, with lesser amounts of {sup 6O}Co, {sup 241}Am, and {sup 239,240}Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the {sup 137}Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of {sup 90}Sr, {sup 241}Am, or {sup 239,240}Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500{degrees}C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

Spalding, B.P.; Jacobs, G.K.; Naney, M.T. [Oak Ridge National Lab., TN (United States); Dunbar, N.W. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States); Tixier, J.S.; Powell, T.D. [Pacific Northwest Lab., Richland, WA (United States)

1992-11-01T23:59:59.000Z

75

A study of residual Cesium 137 contamination in southwestern Utah soil following the nuclear weapons tests at the Nevada Test Site in the 1950's and 1960's.  

E-Print Network (OSTI)

??The Nevada Test Site (NTS) was the location for at least 100 above ground Nuclear Weapons tests during the 1950's and early 1960's. Radioactive fallout… (more)

[No author

2008-01-01T23:59:59.000Z

76

‘Supergel’ System Cleans Radioactively Contaminated ...  

Reduce radiation levels to allow resumption of emergency operations; Decontaminate structures for unrestricted access;

77

Doffing Procedures for Firefighters' Contaminated Turnout Gear: Documentation for Videotape  

Science Conference Proceedings (OSTI)

Firefighting in an area contaminated by radioactive materials can result in contaminated clothing that requires careful handling. This report documents a videotape that provides simple how-to procedures for doffing contaminated or potentially contaminated firefighter turnout gear.

1992-07-01T23:59:59.000Z

78

Uses of ANSI/HPS N13.12-1999, "Surface and Volume Radioactivity Standards for Clearance" and Comparison with Existing Standards  

Science Conference Proceedings (OSTI)

In August of 1999, the American National Standards Institute (ANSI) approved a standard for clearance of materials contaminated with residual levels of radioactivity. "Clearance," as used in the standard, means the movement of material from the control of a regulatory agency to a use or disposition that has no further regulatory controls of any kind. The standard gives derived screening levels (DSLs) in Bq/g and Bq/cm2 for 50 radionuclides. Items or materials with residual surface and volume radioactivity levels below the DSLs can be cleared, that is, managed without regard to their residual radioactivity. Since federal agencies are to use voluntary, industry standards developed by the private sector whenever possible, the standard should play an important role in DOE's regulatory process. The thrust of this report is to explain the standard, make simple observations on its usefulness to DOE, and to explore uses of the standard within DOE facilities beyond the clearance of radioactive materials.

Stansbury, Paul S.; Strom, Daniel J.

2001-04-30T23:59:59.000Z

79

SURVEY OF LOS ALAMOS AND PUEBLO CANYON FOR RADIOACTIVE CONTAMINATION AND RADIOASSAY TESTS RUN ON SEWER-WATER SAMPLES AND WATER AND SOIL SAMPLES TAKEN FROM LOS ALAMOS AND PUEBLO CANYONS  

SciTech Connect

Chemical sewers and sanitary lines draining the Tech Area, D. P. Site, CMR-12 Laundry, and surrounding residential areas flow into Pueblo and Los Alamos Canyon streams. In order to determine the extent and sources of radioactive contamination in these localities, fluid samples from each of the sewers, soil samples from each of the sewers, soil samples from the ground surrounding the sewer exits, and water and soil samples from selected spots in or near each of the two canyon streams were collected and analyzed for polonium and . plutonium. (W.D.M.)

Kingsley, W.H.; Fox, A.; Tribby, J.F.

1947-02-20T23:59:59.000Z

80

Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2  

SciTech Connect

A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials  

Science Conference Proceedings (OSTI)

A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

Napier, Bruce A.

2012-03-26T23:59:59.000Z

82

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

83

Method for decontamination of radioactive metal surfaces  

DOE Patents (OSTI)

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, Lane A. (Richland, WA)

1996-01-01T23:59:59.000Z

84

Method for decontamination of radioactive metal surfaces  

DOE Patents (OSTI)

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, L.A.

1996-08-13T23:59:59.000Z

85

GROSS BETA RADIOACTIVITY OF THE ALGAE AT ENIWETOK ATOLL, 1954-1956  

SciTech Connect

A study was made to determine the amounts of radioactivity in marine algae, water, and lagoon bottom sand collected at Eniwetok Atoll during the period April 1954 to April 1956. The highest levels of beta radioactivity of algae collected after the detonation of a nuclear device (Nectar) were in algae from those islands closest to the site of detonation and in the downwind path of the fallout. With time after detonation, the decline of radioactivity in the algae at Belle Island was faster than can be accounted for on the basis of physical decay alone. In March 1955, algae and bottom sand collected in the deeper waters (20 to 140 feet) of the lagoon, one half to two miles offshore, contained as much or more radioactivity than samples collected in the shallow water near shore. The radioactive decay rates of algae samples collected from Leroy and Henry Islands were greater than those of algae from other islands, indicating that there was less residual contamination from previous detonations at these two islands. Study of the radioactive decay rates of the algae at Belle Island showed that the radioactivity was decaying at a relatively low rate, which became slower with samples collected late in the survey. These observations indicate that the longer-lived isotopes were being taken up by the algae. (auth)

Palumbo, R.F.

1959-08-31T23:59:59.000Z

86

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

87

Method for storing radioactive combustible waste  

DOE Patents (OSTI)

A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

Godbee, H.W.; Lovelace, R.C.

1973-10-01T23:59:59.000Z

88

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

89

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

90

Supergel System for Cleaning Radioactively Contaminated Structures  

in porous structures outdoors, such as buildings and monuments, using a spray-on, super-absorbent gel and engineered nanoparticles.. Such a system would

91

PIA - Radioactive Airborne Contamination Survey | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009...

92

Subsurface Contamination Control  

Science Conference Proceedings (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-12-12T23:59:59.000Z

93

Subsurface Contamination Control  

Science Conference Proceedings (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-11-16T23:59:59.000Z

94

CONTAMINATION CONTROL AT THE HANFORD LAUNDRY  

SciTech Connect

The laundry operation consists of a decontamination laundry, non- regulated laundry service, and a central mask cleaning station. Control of radioactive contamination is accomplished by presorting at the point of use, minimizing handling of contaminated articles, and the discharge of waste effluents under controlled conditions. Procedures are described in detail. (C.H.)

Linderoth, C.E.; Little, G.A.

1962-05-11T23:59:59.000Z

95

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

96

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

97

Modeling for Airborne Contamination  

SciTech Connect

The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

F.R. Faillace; Y. Yuan

2000-08-31T23:59:59.000Z

98

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

99

Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal  

Science Conference Proceedings (OSTI)

Thermodynamic sorption models (TSMs) offer the potential to improve the incorporation of sorption in environmental modelling of contaminant migration. One specific application is safety cases for radioactive waste repositories, in which radionuclide ... Keywords: Distribution coefficient, Modelling, Radioactive waste, Repository, Sorption

T. E. Payne; V. Brendler; M. Ochs; B. Baeyens; P. L. Brown; J. A. Davis; C. Ekberg; D. A. Kulik; J. Lutzenkirchen; T. Missana; Y. Tachi; L. R. Van Loon; S. Altmann

2013-04-01T23:59:59.000Z

100

Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA-regulated organic contaminants (other than incinerator residues), incineration or retorting (IMERC or RMERC) is the treatment standard. For wastes with mercury contaminant concentrations {ge}260 ppm that are inorganic, including incinerator and retort residues, RMERC is the treatment standard. Mercury hazardous waste contaminated with {ge}260 ppm mercury is the primary focus of this report.

Morris, M.I.

2002-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A radiological and chemical investigation of the 7500 Area Contamination Site at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

A radiological and chemical investigation of the 7500 Area Contamination Site at Oak Ridge National Laboratory (ORNL) was conducted intermittently from February 1992 through May 1992. The investigation was performed by the Measurement Applications and Development Group of the Health and Safety Research Division of ORNL at the request of the US Department of Energy`s Oak Ridge Operations Office and the ORNL Environmental Restoration Program. Results of this investigation indicate that the source of radioactive contamination at the point of the contamination incident is from one of the underground abandoned lines. The contamination in soil is likely the result of residual contamination from years of waste transport and maintenance operations (e.g., replacement of degraded joints, upgrading or replacement of entire pipelines, and associated landscaping activities). However, because (1) there is currently an active LLW line positioned in the same subsurface trench with the abandoned lines and (2) the physical condition of the abandoned lines may be brittle, this inquiry could not determine which abandoned line was responsible for the subsurface contamination. Soil sampling at the location of the contamination incident and along the pipeline route was performed in a manner so as not to damage the active LLW line and abandoned lines. Recommendations for corrective actions are included.

Williams, J.K.; Foley, R.D.; Tiner, P.F.; Hatmaker, T.L.; Uziel, M.S.; Swaja, R.E.

1993-05-01T23:59:59.000Z

102

Radioactivity and Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

103

Environmental impact of landfill disposal of selected geothermal residues  

Science Conference Proceedings (OSTI)

A solid waste is classified as hazardous if it contains sufficient leachable components to contaminate the groundwater and the environment if disposed in a landfill. Scale, sludge and drilling mud from three geothermal fields (Bulalo, Phlippines; Cerro Prieto, Mexico; and Dixie Valley, USA) containing regulated elements at levels above the earth‘s crustal abundance were studied for their leachability. Cr, As, Cu, Zn and Pb were detected at levels which could impair groundwater quality if leaching occurred. Several procedures were used to assess the likely risk posed by the residues : protocol leaching tests (Canadian LEP and US TCLP), toxicity testing, accelerated weathering test, and a preliminary acid mine drainage potential test. Whole rock analysis, X-ray diffraction, and radioactivity counting were also performed to characterize the samples. Toxi-chromotest and SOS-chromotest results were negative for all samples. Leachng tests indicated that all of them could be classified as nonhazardous wastes. Only one of the six showed a low-level radioactivity based on its high Pb-210 activity. Initial tests for acidification potential gave positive results for three out of six samples whle none of the regulated elements were found in the leachate after accelerated weathering experiment for three months.

Peralta, G.L.; Graydon, J.W.; Seyfried, P.L.; Kirk, D.W.

1996-01-24T23:59:59.000Z

104

Method of removing contaminants from plastic resins  

DOE Patents (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee' s Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-11-18T23:59:59.000Z

105

Method for removing contaminants from plastic resin  

Science Conference Proceedings (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-12-30T23:59:59.000Z

106

Method of removing contaminants from plastic resins  

Science Conference Proceedings (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee's Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

2007-08-07T23:59:59.000Z

107

NEURAL NETWORK RESIDUAL STOCHASTIC COSIMULATION FOR ENVIRONMENTAL DATA ANALYSIS  

E-Print Network (OSTI)

on radioactive soil contamination from the Chernobyl fallout. Introduction The problem of analysing environmental contamination case study with the data from the Chernobyl fallout. Accident at the Chernobyl Nuclear Power Plant) from the fallout are #12; the most important radionuclides influencing the humans

108

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

109

Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment  

Science Conference Proceedings (OSTI)

This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

2012-11-01T23:59:59.000Z

110

Radioactive waste systems and radioactive effluents  

SciTech Connect

Radioactive waste systems for handling gaseous, liquid, and solid wastes generated at light and pressurized water reactors are described. (TFD)

Row, T.H.

1973-01-01T23:59:59.000Z

111

10/2/2006 SLAC-I-760-2A08Z-001-R002 RADIOACTIVE MATERIAL DECLARATION FORM  

E-Print Network (OSTI)

Radiation exposure rate: Contact: _____________mR/h 30 cm: _____________mR/h Radioactive contamination: [ ] N/A (Activated only) Internal: _______________dpm/100cm2 [ ] Unknown (External contamination must

Wechsler, Risa H.

112

The development of radioactive sample surrogates for training and exercises  

Science Conference Proceedings (OSTI)

The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Members from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.

Martha Finck; Bevin Brush; Dick Jansen; David Chamberlain; Don Dry; George Brooks; Margaret Goldberg

2012-03-01T23:59:59.000Z

113

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

114

Recycle of radiologically contaminated austenitic stainless steels  

Science Conference Proceedings (OSTI)

The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides.

Imrich, K.J.; Leader, D.R.; Iyer, N.C.; Louthan, M.R. Jr.

1995-02-01T23:59:59.000Z

115

ICME for Residual Stress  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... Application of ICME to Weld Process Innovations and Residual Stress ... Incorporation of Residual Stresses into Design of Ni-Base Superalloy ...

116

Guide for Characterization of Sites Contaminated with Energetic Materials  

E-Print Network (OSTI)

for the remediation of federal facility sites contaminated with explosives or radioactive wastes. EPA/625/R-93 be contaminated by EM: · Firing ranges - Small-arms ranges - Artillery ranges - Anti-tank ranges - Tank/013. EPA Method (1994) Nitroaromatics and nitramines by HPLC. In Test Methods for Evaluating Solid Waste

117

Midwestern Radioactive Materials Transportation Committee Agenda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

118

Scrap metal management issues associated with naturally occurring radioactive material  

Science Conference Proceedings (OSTI)

Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

Smith, K.P.; Blunt, D.L.

1995-08-01T23:59:59.000Z

119

Method for removing contaminants from plastic resin  

Science Conference Proceedings (OSTI)

A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-12-09T23:59:59.000Z

120

RADIO-ACTIVE TRANSDUCER  

DOE Patents (OSTI)

ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

Wanetick, S.

1962-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

122

Radioactivity in consumer products  

SciTech Connect

Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

1978-08-01T23:59:59.000Z

123

Radioactive scrap metal decontamination technology assessment report  

SciTech Connect

Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

1996-04-01T23:59:59.000Z

124

Assessment of recycling or disposal alternatives for radioactive scrap metal  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

Murphie, W.E.; Lilly, M.J. III [US Dept. of Energy, Oak Ridge, TN (United States); Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

1993-11-01T23:59:59.000Z

125

Wide-range radioactive-gas-concentration detector  

DOE Patents (OSTI)

A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, D.F.

1981-11-16T23:59:59.000Z

126

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

When are they used? How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record A radioactive material (RAM) packaging is a container that is used to safely transport radioactive material from one location to another. In RAM transportation the container alone is called the Packaging. The packaging together with its contents is called the Package. Basic types of radioactive material packagings are: Excepted Packaging Industrial Packaging Type A Packaging Type B Packaging [EXCEPTED] Click to view picture [IP] Click to view picture [TYPE A] Click to view picture [TYPE B] Click to view picture Excepted Packagings are designed to survive normal conditions of transport. Excepted packagings are used for transportation of materials that are either Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) and that are limited quantity shipments, instruments or articles, articles manufactured from natural or depleted uranium or natural thorium; empty packagings are also excepted (49CFR 173.421-428).

127

RADIOACTIVITY IN RAIN WATER IN BANGKOK  

SciTech Connect

In order to check the effect of nuclear explosions on the atmosphere over Bangkok, rain water was evaporated and the radioactivity of the residue obtained was counted by a G. M. counter. The result shows that the radioactivity in the rain water began to rise from the normal level since 26 September 1961, reached the maximum on 10 November 1961, and then slowly declined. Because the level of radiation remained above that of the Maximum Permissible Concentration (MPC) for only a short time, it did not constitute a health hazard. Analysis of the residue of rain water indicates that the increase in radiation is caused by the fall-out from the Russian tests of nuclear weapons in the air from September to October 1961. (auth)

Sundara-vicharana, Y.; Bhodigen, S.; Hayodom, V.

1961-12-01T23:59:59.000Z

128

Engineering evaluation/cost analysis for the proposed removal of contaminated materials from Pad 1 at the Elza Gate site, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactively contaminated concrete and soil beneath a building on privately owned commercial property in Oak Ridge, Tennessee. The property, known as the Elza Gate site, became contaminated with uranium-238, radium-226, thorium-232, thorium-230, and decay products as a result of the Manhattan Engineer District storing uranium ore and ore processing residues at the site in the early 1940s. The US Department of Energy (DOE) has responsibility for cleanup of the property under its Formerly Utilized Sites Remedial Action Program (FUSRAP). The DOE plans to remove the cracked and worn concrete pad and contaminated subsoil beneath the pad, after which the property owner/tenant will provide clean backfill and new concrete. Portions of the pad and subsoil are contaminated and, if stored or disposed of improperly, may represent a potential threat to public health or welfare and the environment. The EE/CA report is the appropriate documentation for the proposed removal action, as identified in guidance from the US Environmental Protection Agency. the objective of the EE/CA report, in addition to identifying the planned removal action, is to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and minimize the related threats to public health or welfare and the environment. 7 refs., 2 figs., 3 tabs.

Not Available

1990-06-01T23:59:59.000Z

129

Engineering evaluation/cost analysis for the proposed removal of contaminated materials from pad 1 at the Elza Gate site, Oak Ridge, Tennessee  

SciTech Connect

This engineering evaluation/cost analysis (EE/CA) has been prepared in support of the proposed removal action for cleanup of radioactively contaminated concrete and soil beneath a building on privately owned commercial property in Oak Ridge, Tennessee. The property, known as the Elza Gate site, became contaminated with uranium-238, radium-226, thorium-232, thorium-230, and decay products as a result of the Manhattan Engineer District storing uranium ore and ore processing residues at the site in the early 1940s. The US Department of Energy (DOE) has responsibility for cleanup of the property under its Formerly Utilized Sites Remedial Action Program (FUSRAP). The DOE plans to remove the cracked and worn concrete pad and contaminated subsoil beneath the pad, after which the property owner/tenant will provide clean backfill and new concrete. Portions of the pad and subsoil are contaminated and, if stored or disposed of improperly, may represent a potential threat to public health or welfare and the environment. The EE/CA report is the appropriate documentation for the proposed removal action, as identified in guidance from the US Environmental Protection Agency. The objective of the EE/CA report, in addition to identifying the planned removal action, is to document the selection of response activities that will mitigate the potential for release of contaminants from the property into the environment and minimize the related threats to public health or welfare and the environment. 7 refs., 2 figs., 3 tabs.

Not Available

1990-09-01T23:59:59.000Z

130

RPP-PLAN-47325 Revision 0 Radioactive Waste Determination Process Plan for Waste Management Area C Tank  

E-Print Network (OSTI)

This plan describes the radioactive waste determination process that the U.S. Department of Energy (DOE) will use for Hanford Site Waste Management Area C (WMA C) tank waste residuals subject to DOE authority under DOE Order 435.1, Radioactive Waste Management. Preparation of this plan is a required component of actions the DOE-Office of River Protection (ORP) must take to fulfill proposed Hanford Federal Facility Agreement and Consent Order Milestone M-045-80. Waste Management Area C is comprised of various single-shell tanks, encased and direct-buried pipes, diversion boxes, pump pits, and unplanned release sites (sites contaminated as a result of spills of tank waste to the environment). Since operations began in the late 1940s, the tanks in WMA C have continuously stored waste managed as high-level waste (HLW) that was derived from defense-related nuclear research, development, and weapons production activities. Planning for the final closure of WMA C is underway. This radioactive waste determination process plan assumes that tank closure will follow retrieval of as much tank waste as technically and economically practical. It is also assumed for the purposes of this plan that after completion

Waste Residuals; J. R. Robertson

2010-01-01T23:59:59.000Z

131

Radioactive Nickel-63 - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Making Radioactive Nickel-63 Making Radioactive Nickel-63 ORNL-Supplied Nickel-63 Enables High-Sensitivity Explosives, Chemical Weapons, and Narcotics Detectors at Airports Explosives and narcotics detector. Detectors based on ion mobility spectrometry using ORNL 63Ni can now satisfy enhanced Homeland Security requirements at airports and other sensitive locations. When Transportation Security Administration (TSA) inspectors swipe a cloth over your luggage and then place it in an analyzer to check for explosives residue, they are using a device containing 63Ni, a radioactive isotope of nickel, made at ORNL. ORNL is the exclusive producer for 63Ni in North America and perhaps worldwide. "Our only competition would probably be Russia. They have high-flux research reactors and may well be supplying the material also,"

132

AN EVALUATION OF THE URANIUM CONTAMINATION ON THE SURFACES OF ALCLAD URANIUM-ALUMINUM ALLOY RESEARCH REACTOR FUEL PLATES  

SciTech Connect

Reported radioactivity in the Low-Intensity Test Reactor (LITR) water coolant traceable to uranium contamination on the surfaces of the alclad uranium-- aluminum plate-tyne fuel element led to an investigation to determine the sources of uranium contamination on the fuel plate surfaces. Two possible contributors to surface contamination are external sources such as rolling-mill equipment, the most obvious, and diffusion of uranium from the uranium-aluminum alloy fuel into the aluminum cladding. This diffusion is likely because of the 600 deg C heat treatments used in the conventional fabrication process. Uranium determinations based on neutron activation analysis of machined layers from fuel plate surfaces showed that rolling-mill equipment, contaminated with highly enriched uranium, was responsible for transferring as much as 180 ppm U to plate surfaces. By careful practice where cleanliness is emphasized, surface contamination can be reduced to 0.6 ppm U/sup 235/. The residue remaining on the plate surface may be accounted for by diffusion of uranium from the fuel alloy into and through the cladding of the fuel plate. Data obtained from preliminary diffusion studies permitted a good estimate to be made of the diffusion coefficient of uranium into aluminum at 600 deg C: 2.5 x 10/sup -8/ cm//sec. To minimize diffusion while the plate-type aluminum-base research reactor fuel element is being processed, heat treatments at 600 deg C should be limited to 2.5 hr. The uranium contamination on the surfaces of the finished fuel plates should then be less than 0.6 ppm U / sup 235/ . This investigation also revealed that the solubility limit of uranium in aluminum at 600 deg C is approx 60 ppm. (auth)

Beaver, R.J.; Erwin, J.H.; Mateer, R.S.

1962-03-19T23:59:59.000Z

133

Resources Process Contaminants  

Science Conference Proceedings (OSTI)

General Information on process contaminants(3-MCPD). Reference list included. Resources Process Contaminants 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certified chemists chloropropanediol contaminants dete

134

Process Contaminants (3-MCPD)  

Science Conference Proceedings (OSTI)

General information on process contaminants(3-MCPD). Reference list included. Process Contaminants (3-MCPD) 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certified chemists chloropropanediol contaminants deter

135

Assessment of potential radiation exposures by uncontrolled recycle or reuse of radioactive scrap metals  

Science Conference Proceedings (OSTI)

With current waste monitoring technology it is reasonable to assume that much of the material designated as low-level waste, generated within nuclear facilities, is in fact uncontaminated. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective dose of 10 {micro}Sv as a limit for the individual radiation dose and derived the initial control levels of residual radioactivity based on the Publication 30 of the International Commission on Radiological Protection (ICRP). In 1990, new recommendations on radiation protection standards were developed by ICRP to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30. This study summarizes the potential radiation exposure from valuable scrap metal considered for uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people were analyzed and concentrations leading to an individual dose of 10 {micro}Sv/year were calculated for 14 key radionuclides. These potential radiation doses are compared with the results of previous study.

Lee, S.Y.; Lee, K.J.

1999-07-01T23:59:59.000Z

136

UNDERWATER COATINGS FOR CONTAMINATION CONTROL  

SciTech Connect

The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

2004-02-01T23:59:59.000Z

137

ORNL radioactive waste operations  

SciTech Connect

Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

1982-01-01T23:59:59.000Z

138

Evaluation of Recent Trailer Contamination and Supersack Integrity Issues  

SciTech Connect

During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors’ Group (EFCOG) Waste Management Working Group (WMWG) conduct a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.

Gordon, S.

2012-09-17T23:59:59.000Z

139

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

140

WEB RESOURCE: Radioactive Waste  

Science Conference Proceedings (OSTI)

May 8, 2007 ... This resource offers a a very broad explanation of how the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Material ...

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SCAVENGING OF RADIOACTIVE AEROSOLS  

DOE Patents (OSTI)

A process of decontaminatinig an atmosphere from suspended radioactive particles by introducing silicon tetrafluoride whereby the particles precipitate and are removed, is described. (AEC)

Rosinski, J.; Werle, D.K.

1963-12-01T23:59:59.000Z

142

Contaminants in coals and coal residues. [10 refs  

SciTech Connect

Most of the major enviromental pollutants from coals originate as impurities in the coal structure. These include various organic compounds, minerals, and trace elements that are released into the air and water when coal is mined, processed and utilized. The use of coal preparation to produce cleaner burning fuels involves an environmental compromise, wherein reduced emissions and solid wastes from coal burning sources are achieved at the expense of greater environmental degradation from coal cleaning wastes.

Wewerka, E.M.; Williams, J.M.; Vanderborgh, N.E.

1976-01-01T23:59:59.000Z

143

In-Situ Remediation of Mixed Radioactive Tank Waste, Via Air Sparging and Poly-Acrylate Solidification  

SciTech Connect

This paper describes remediation activities performed in accordance with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) on an underground storage tank (UST) from the Idaho National Laboratory's Test Area North (TAN) complex. The UST had been used to collect radioactive liquid wastes from and for the TAN evaporator. Recent analyses had found that the residual waste in Tank V-14 had contained quantities of tetrachloroethylene (PCE) in excess of F001 treatment standards. In addition, the residual waste in Tank V-14 was not completely solidified. As a result, further remediation and solidification of the waste was required before the tank could be properly disposed of at the Idaho CERCLA Disposal Facility (ICDF). Remediation of the PCE-contaminated waste in Tank V-14 was performed by first adding sufficient water to fluidize the residual waste in the tank. This was followed by high-volume, in-situ air sparging of the fluidized waste, using air lances that were inserted to the bottom of V-14. The high-volume air sparging removed residual PCE from the fluidized waste, collecting it on granular activated carbon filters within the off-gas system. The sparged waste was then solidified by educting large-diameter crystals of an acrylic acrylate resin manufactured by WaterWorks America{sup TM} into the fluidized waste, via the air-sparging lances. To improve solidification, the air-sparging lances were rotated during the eduction step, while continuing to provide high-volume air flow into the waste. Eduction was continued until the waste had solidified sufficiently to not allow for further eduction of WaterWorks{sup TM} crystals into the waste. The tank was then disposed of at the ICDF, with the residual void volume in the tank filled with cement. (authors)

Farnsworth, R.K.; Edgett, S.M.; Eaton, D.L. [CH2M-WG Idaho, LLC, Idaho Cleanup Projecta, Idaho Falls, ID (United States)

2007-07-01T23:59:59.000Z

144

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

145

Multicomponent Transport of Contaminants Released into the Environment following the Application of Phosphogypsum.  

E-Print Network (OSTI)

??The fate of radioactive contaminants released from phosphogypsum, a by-product of the phosphate fertilizer industry, was studied using the multicomponent transport modeling program HP-1. HP-1… (more)

Ebbers, B.

2011-01-01T23:59:59.000Z

146

System to control contamination during retrieval of buried TRU waste  

DOE Patents (OSTI)

A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

Menkhaus, Daniel E. (Idaho Falls, ID); Loomis, Guy G. (Idaho Falls, ID); Mullen, Carlan K. (Idaho Falls, ID); Scott, Donald W. (Idaho Falls, ID); Feldman, Edgar M. (Idaho Falls, ID); Meyer, Leroy C. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

147

System to control contamination during retrieval of buried TRU waste  

DOE Patents (OSTI)

A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

1993-04-20T23:59:59.000Z

148

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

149

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

150

System for removing contaminants from plastic resin  

DOE Patents (OSTI)

A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee' s Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2010-11-23T23:59:59.000Z

151

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record Packagings are used to safely transport radioactive materials across the United States in over 1.6 million shipments per year. [Weiner et. al., 1991, Risk Analysis, Vol. 11, No. 4, p. 663] Most shipments are destined for hospitals and medical facilities. Other destinations include industrial, research and manufacturing plants, nuclear power plants and national defense facilities. The last comprehensive survey showed that less than 1 percent of these shipments involve high-level radioactive material. [Javitz et. al., 1985, SAND84-7174, Tables 4 and 8] The types of materials transported include: Surface Contaminated Object (SCO) Low Specific Activity (LSA) materials, Low-Level Waste (LLW),

152

Treatment of Radioactive Reactive Mixed Waste  

Science Conference Proceedings (OSTI)

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has developed a new feed system to ensure the safe containment of these radioactive reactive wastes during transfer to the gasification unit. The plasma gasification system safely processed the radioactively contaminated trimethyl-metal compounds into metal oxides. The waste stream came from LANL research operations, and had been in storage for seven years, pending treatment options. (authors)

Colby, S.; Turner, Z.; Utley, D. [Pacific EcoSolutions, Inc., 2025 Battelle Boulevard, Richland, Washington 99354 (United States); Duy, C. [Los Alamos National Laboratory - LA-UR-05-8410, Post Office Box 1663 MS J595, Los Alamos, New Mexico 97545 (United States)

2006-07-01T23:59:59.000Z

153

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network (OSTI)

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid scintillation vials must be collected separately. 5. Any "mixed waste" must be cleared with the RSO and labeled

154

Concepts for Environmental Radioactive Air Sampling and Monitoring  

SciTech Connect

Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

Barnett, J. M.

2011-11-04T23:59:59.000Z

155

Radioactivity in Nature  

NLE Websites -- All DOE Office Websites (Extended Search)

Fig. 3-8. The ratio of uranium to lead present on Earth today gives us an estimate of its age (4.5 billion years). Given Earths age, any much shorter lived radioactive nuclei...

156

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

157

Container for radioactive materials  

DOE Patents (OSTI)

A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

Fields, Stanley R. (Richland, WA)

1985-01-01T23:59:59.000Z

158

Dynamic radioactive particle source  

SciTech Connect

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

159

Resources for Process Contaminants  

Science Conference Proceedings (OSTI)

Detailed information regarding 3-MCPD esters and a reference list by topic. Resources for Process Contaminants 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certified chemists chloropropanediol contaminants de

160

BIOLOGICAL DECOMPOSITION OF RADIOACTIVE LAUNDRY WASTE  

SciTech Connect

A series of tests was conducted on a laundry waste containing radtoactive materials, using an activated sludge process, to determine whether the organic materials which would interfere with a process of flocculation and adsorption could be removed along with a substantial quantity of the radioactive material. A trickling filter was used to treat the waste over a long period of time. The filter removed nearly all of the activity and most of the organic compounds. However, sufficient residual activity remained in the effluent to require either two-stage operation or final processing by flocculation and adsorption. Recirculation was beneficial. A supplementary bacteria feed of ammonium nitrate was necessary. (auth)

Wiederhold, E.W.

1954-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Hospital Practices for Handling a Radiologically Contaminated Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Pre-Hospital Practices for Handling a Radiologically Contaminated Patient The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on key activities and duties at the scene. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT More Documents & Publications Emergency Response to a Transportation Accident Involving Radioactive Material Handling and Packaging a Potentially Radiologically Contaminated Patient

162

Fall 1998 200 East area biological vector contamination report  

Science Conference Proceedings (OSTI)

The purpose of this report is to document the investigation into the cause of the spread of radioactive contamination in September and October 1998 at the Hanford Site's 200 East Area and its subsequent spread to the City of Richland Landfill; identify the source of the contamination; and present corrective actions. The focus and thrust of managing the incident was based on the need to accomplish the following, listed in order of importance: (1) protect the health and safety of the Site workers and the public; (2) contain and control the spread of contamination; (3) identify the source of contamination and the pathways for its spread; and (4) identify the causal factors enabling the contamination.

CONNELL, D.J.

1999-03-17T23:59:59.000Z

163

PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional specific areas of competency or more hours of training

164

Radioactivity in food crops  

SciTech Connect

Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

1983-05-01T23:59:59.000Z

165

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

166

Agriculture Residues Recycling  

E-Print Network (OSTI)

Abstract: Saudi Arabia, as well as other countries in the Near East region, is characterized by erratic weather conditions, limited area of fertile arable lands, and with acute water shortage. Although agricultural residues (AGR) production in the region is huge (more than 440 million tons), most of these residues are either burned in the field or utilized in an inefficient way. Utilization of AGR as compost may contribute to expansion of arable lands through its use for reclamation of soil and reduce irrigation requirements. This study was conducted at Al Khalidiah farm, Riyadh, Saudi Arabia to assess compost production at large commercial scale using several types of agricultural and animal by-products with addition of a BZT®Compost Activator (based mainly on microorganism, enzymes and yeast). In this study, two types of compost piles were made at the farm. The first pile of compost was made of different agriculture residues, namely: animal wastes (quail, goat and sheep manure), brownian agricultural wastes (windbreaks residues, date trees, citrus and olive trees pruning) and green landscape grasses (50%, 25 % and 25%, respectively) and was treated with a tested compost activator. The same agriculture residues combination was also made for the second pile as traditional compost

M. W. Sadik; H. M. El Shaer; H. M. Yakot

2010-01-01T23:59:59.000Z

167

LAW Radioactive Coupon CO{sub 2} Decontamination Test  

SciTech Connect

The objective of this test is to confirm that CO{sub 2} blasting is capable of effectively removing smearable contamination from the external surface of the Immobilized Low Activity Waste(ILAW) stainless steel container after glass pouring. The smearable contamination level limits specified in the approved test specification are: (1) 367 Bq/m{sup 2} (220 dpm/100 cm{sup 2}) alpha and 3670 Bq/m{sup 2} (2202 dpm/100 cm{sup 2}) beta-gamma (qualification limits); and (2) 100 dpm/100 cm{sup 2} alpha and 1000 dpm/100 cm{sup 2} beta-gamma (design limits). The removal of smearable contamination from radioactively contaminated coupon was demonstrated by varying the following operating parameters: Nozzle standoff distance; Blast air pressure; Pellet rate; and Nozzle travel speed. Coupons were weighed before and after blasting to determine if the CO{sub 2} blasting process removed measurable amounts of surface material from the coupons. High-speed photography was used to capture images of the pellets exiting the blast nozzle as a means of estimating pellet shape and velocity at the blast nozzle. Bleeding tests were performed to determine if fixed contamination remaining on coupons after blasting ''bleeds out'' and measures as smearable contamination under typical storage conditions and times. The bleeding tests consisted of storing blasted coupons with no detectable smearable contamination for a period of 92 days at 95 F. Coupons were removed at 23-day intervals and re-evaluated for smearable contamination. The radioactive coupon blasting tests consisted of four main subtasks: (1) Coupon preparation; (2) CO{sub 2} blasting; (3) High-speed photography; and (4) Bleeding tests.

May, C.G.

2004-01-30T23:59:59.000Z

168

DETECTOR FOR RADIOACTIVE HYDROGEN  

SciTech Connect

A device of the Geiger-Mueller type is designed for detecting radioactive hydrogen in the presence of other radioactive substances. The device comprises an envelope with thin (1 to 5 mil thick) Ni or Pd windows at the ends, an anode and a cathode spaced apart in the envelope, and a counting gas within the envelope. In operation, the suspect atmosphere is blown against one of the windows, whereby only the hydrogen diffuses into the envelope for counting. Means is provided for heating the windows to the desired temperatures. (D.L.C.)

Christianson, C.; Gilman, M.; Maggio, R.C.

1963-12-10T23:59:59.000Z

169

Container for radioactive materials  

DOE Patents (OSTI)

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

170

TABLE OF RADIOACTIVE ELEMENTS.  

SciTech Connect

For those chemical elements which have no stable nuclides with a terrestrial isotopic composition, the data on radioactive half-lives and relative atomic masses for the nuclides of interest and importance have been evaluated and the recommended values and uncertainties are listed.

HOLDEN,N.E.

2001-06-29T23:59:59.000Z

171

RADIOACTIVITY (NATURAL) Synonyms Definition  

Science Conference Proceedings (OSTI)

rays to the natural dose of radioactivity is strongly depen- dent on altitude and ... a noble gas, and its migration in groundwater and soil gas is of ..... trometers available on the market. ... example, using an oil immersion objective (NA 1.4) with.

172

EOR: well logs sharpen focus on residual saturation. Part 2  

Science Conference Proceedings (OSTI)

Much of what the enhanced recovery specialist must know about the reservoir under consideration can be measured, calculated, or deduced from well logging data. Appropriate well logging procedures for this type of formation evaluation would include resistivity, radioactivity, dielectric constant, and acoustic well logs. This work describes the principles and procedures for assessing residual oil saturation of a subsurface formation using these methods. The study explains what is actually being measured and compared when well logging data are obtained and processed.

Frederick, R.O.

1983-01-01T23:59:59.000Z

173

RADIOACTIVITY STORED UP BY ALGAE  

SciTech Connect

A fast radiometric method of measuring radioactivity uptake by marine organisms is described. (R.V.J.)

Akamsin, A.D.; Parchevskii, V.P.; Polikarpov, G.G.

1960-02-01T23:59:59.000Z

174

Estimation of Radionuclide Content in Contaminated Laundry  

SciTech Connect

Radioactively contaminated laundry is normally sent off site for processing. Laundry is defined as radiologically contaminated anti-cs and respirators. This laundry is shipped as "limited quantity," in accordance with 49CFR173.421. This requires that 95% of the radionuclides shipped are characterized and quantified. In addition, the total quantity must be 10(-3) below the A2 limits specified in 49CFR173. In any facility evaluated, the most conservative (highest activity) waste stream was used as the source term. If a new waste stream is established for a facility, its normalized activity should be compared to the evaluated waste stream to ensure the limits are not exceeded. This article documents a method used for estimating the radionuclide content in contaminated laundry. The maximum values were compared to 49CFR173. Itwas determined that if the contaminated laundry/respirators are shipped in an Interstate Nuclear Services (INS), L-59, limited quantity shipping container and the highest contact radiation level on any side, as measured with an ion chamber, does not exceed 0.5 mR h(-1), the container complies with the requirements of 49CFR173 and could be shipped "limited quantity" from any of the facilities evaluated.

Schrader, Bradley J

2001-08-01T23:59:59.000Z

175

Method for calcining radioactive wastes  

DOE Patents (OSTI)

This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

Bjorklund, William J. (Richland, WA); McElroy, Jack L. (Richland, WA); Mendel, John E. (Kennewick, WA)

1979-01-01T23:59:59.000Z

176

Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems  

Science Conference Proceedings (OSTI)

Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

Bayrakal, S.

1993-09-30T23:59:59.000Z

177

Fusion of radioactive $^{132}$Sn with $^{64}$Ni  

E-Print Network (OSTI)

Evaporation residue and fission cross sections of radioactive $^{132}$Sn on $^{64}$Ni were measured near the Coulomb barrier. A large sub-barrier fusion enhancement was observed. Coupled-channel calculations including inelastic excitation of the projectile and target, and neutron transfer are in good agreement with the measured fusion excitation function. When the change in nuclear size and shift in barrier height are accounted for, there is no extra fusion enhancement in $^{132}$Sn+$^{64}$Ni with respect to stable Sn+$^{64}$Ni. A systematic comparison of evaporation residue cross sections for the fusion of even $^{112-124}$Sn and $^{132}$Sn with $^{64}$Ni is presented.

J. F. Liang; D. Shapira; J. R. Beene; C. J. Gross; R. L. Varner; A. Galindo-Uribarri; J. Gomez del Campo; P. A. Hausladen; P. E. Mueller; D. W. Stracener; H. Amro; J. J. Kolata; J. D. Bierman; A. L. Caraley; K. L. Jones; Y. Larochelle; W. Loveland; D. Peterson

2007-04-05T23:59:59.000Z

178

Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1  

SciTech Connect

This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

1995-04-14T23:59:59.000Z

179

Tritium Surface Contamination  

SciTech Connect

Glovebox wipe surveys were conducted to correlate surface tritium contamination with atmospheric tritium levels. Surface contamination was examined as a function of tritium concentration and of tritium form, HT/T2 and HTO. The relationship between atmospheric HTO concentration and cleanup time was also investigated.

Sienkiewicz, Charles J.

1985-04-01T23:59:59.000Z

180

Contamination Control Techniques  

SciTech Connect

Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

EBY, J.L.

2000-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RADIOACTIVE WASTE DISPOSAL AT KNOLLS ATOMIC POWER LABORATORY  

SciTech Connect

One of Its Monograph Series The Industrial Atom.'' Disposal of radioactive wastes from KAPL is considered with respect to the three physical categories of waste--solid, liquid, and airborne---and the three environmental recipients ---ground, surface water, and atmosphere. Solid waste-handling includes monitoring radiation levels, segregation, collection, processing, packaging, storing if necessary, and shipping to a remote burial ground at the Oak Ridge National Laboratory. Liquid waste is collected by controlled drain systems, monitored for radioactivity content, and stored if necessary or released to the Mohawk River. Exhaust air is cleaned before released and con tinuously monitored. rhe environment is monitored to assure safe and proper disposal of wastes. The cost of operations and the depreciation of facilities incurred by KAPL for disposing of radioactive contaminated waste is less than 0.7% per year of the tofal cost of the Laboratory. (auth)

Manieri, D.A.; Truran, W.H.

1958-03-01T23:59:59.000Z

182

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

183

Bioremediation of contaminated groundwater  

DOE Patents (OSTI)

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

184

Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel  

SciTech Connect

The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

Clark, E.A.

1995-04-03T23:59:59.000Z

185

Finding Aids: Radioactive Fallout  

NLE Websites -- All DOE Office Websites (Extended Search)

A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing Table of Contents INTRODUCTION Argonne National Laboratory Bancroft Library, University of California Boeing Aircraft Company Brookhaven National Laboratory Coordination and Information Center (CIC) Eastman Kodak EG&G, Energy Measurements Holmes and Narver Lawrence Livermore National Laboratory Los Alamos National Laboratory Manuscript Division, Library of Congress National Academy of Sciences Archives Oak Ridge National Laboratory Pacific Northwest Laboratory Sandia National Laboratories Scripps Institution of Oceanography Archives Smithsonian Institution Archives U.S. Air Force Brooks Air Force Base Kirtland Air Force Base USAF Historical Research Center U.S. Army Chemical Corps (Aberdeen Proving Ground)

186

NATURE OF RADIOACTIVE WASTES  

SciTech Connect

The integrated processes of nuclear industry are considered to define the nature of wastes. Processes for recovery and preparation of U and Th fuels produce wastes containing concentrated radioactive materials which present problems of confinement and dispersal. Fundamentals of waste treatment are considered from the standpoint of processes in which radioactive materials become a factor such as naturally occurring feed materials, fission products, and elements produced by parasitic neutron capture. In addition, the origin of concentrated fission product wastes is examined, as well as characteristics of present wastes and the level of fission products in wastes. Also, comments are included on high-level wastes from processes other than solvent extraction, active gaseous wastes, and low- to intermediate-level liquid wastes. (J.R.D.)

Culler, F.L. Jr.

1959-01-26T23:59:59.000Z

187

PROCESSING OF RADIOACTIVE WASTE  

DOE Patents (OSTI)

A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

Johnson, B.M. Jr.; Barton, G.B.

1961-11-14T23:59:59.000Z

188

Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project  

SciTech Connect

This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

Reynolds, T. D.; Easterling, S. D.

2010-10-01T23:59:59.000Z

189

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents (OSTI)

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

190

Residual Stresses and Numerical Simulation  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Advances in Hydroelectric Turbine Manufacturing and Repair: Residual Stresses and Numerical Simulation Sponsored by: Metallurgical ...

191

LCLS CDR Chapter 13 - Environment Safety and Health and QA  

NLE Websites -- All DOE Office Websites (Extended Search)

Items that show residual radioactivity or contamination would be stored on site in the Radioactive Material Storage Yard for future reuse or ultimate disposal. Any hazardous...

192

ASSESSMENT OF RADIONUCLIDE RELEASE FROM CONTAMINATED CONCRETE AT THE YANKEE NUCLEAR POWER STATION.  

Science Conference Proceedings (OSTI)

Yankee Atomic Energy Company (YAEC) is considering allowing portions of existing structures at the Yankee Nuclear Power Station (YNPS) to remain on site at the time of license termination. Accordingly, release of residual radioactive contaminants (i.e., H-3, C-14, Co-60, Ni-63, Sr-90, and Cs-137) from remaining subsurface concrete structures (Darman, 2004) and dose due to that release must be evaluated. Analyses were performed using DUST-MS to assess the rate of release for each radionuclide from the concrete, based upon an assumed concentration of 1 pCi/g and a concrete density of 2.5 g/cm{sup 3}. Using the same assumptions that were applied to the soil DCGL calculation (and where appropriate, the same input parameters), RESRAD was used to calculate the dose from water pathways. Values for selected RESRAD input parameters were chosen to match the release rate calculated by DUST-MS. The results indicated that Cs-137 yielded the highest dose.

SULLIVAN, T.

2004-03-01T23:59:59.000Z

193

Submersible purification system for radioactive water  

DOE Patents (OSTI)

A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

Abbott, Michael L. (Fort Collins, CO); Lewis, Donald R. (Pocatello, ID)

1989-01-01T23:59:59.000Z

194

Fusion fuel cycle solid radioactive wastes  

SciTech Connect

Eight conceptual deuterium-tritium fueled fusion power plant designs have been analyzed to identify waste sources, materials and quantities. All plant designs include the entire D-T fuel cycle within each plant. Wastes identified include radiation-damaged structural, moderating, and fertile materials; getter materials for removing corrosion products and other impurities from coolants; absorbents for removing tritium from ventilation air; getter materials for tritium recovery from fertile materials; vacuum pump oil and mercury sludge; failed equipment; decontamination wastes; and laundry waste. Radioactivity in these materials results primarily from neutron activation and from tritium contamination. For the designs analyzed annual radwaste volume was estimated to be 150 to 600 m/sup 3//GWe. This may be compared to 500 to 1300 m/sup 3//GWe estimated for the LMFBR fuel cycle. Major waste sources are replaced reactor structures and decontamination waste.

Gore, B.F.; Kaser, J.D.; Kabele, T.J.

1978-06-01T23:59:59.000Z

195

Exact method for determining subsurface radioactivity depth profiles from gamma spectroscopy measurements  

E-Print Network (OSTI)

Subsurface radioactivity may be due to transport of radionuclides from a contaminated surface into the solid volume, as occurs for radioactive fallout deposited on soil, or from fast neutron activation of a solid volume, as occurs in concrete blocks used for radiation shielding. For purposes including fate and transport studies of radionuclides in the environment, decommissioning and decontamination of radiation facilities, and nuclear forensics, an in situ, nondestructive method for ascertaining the subsurface distribution of radioactivity is desired. The method developed here obtains a polynomial expression for the radioactivity depth profile, using a small set of gamma-ray count rates measured by a collimated detector directed towards the surface at a variety of angles with respect to the surface normal. To demonstrate its capabilities, this polynomial method is applied to the simple case where the radioactivity is maximal at the surface and decreases exponentially with depth below the surface, and to the ...

Van Siclen, Clinton DeW

2011-01-01T23:59:59.000Z

196

Bioremediation of contaminated groundwater  

DOE Patents (OSTI)

The present invention relates to a method for in situ bioremediation of contaminated soil and groundwater. In particular, the invention relates to remediation of contaminated soil and groundwater by the injection of nutrients to stimulate growth of pollutant-degrading microorganisms. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Hazen, T.C.; Fliermans, C.B.

1992-12-31T23:59:59.000Z

197

Bacteria eats radioactive waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Bacteria eats radioactive waste Bacteria eats radioactive waste Name: deenaharper Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: In my studies, I have found that everything in this world is balanced. When something dies it is converted into life. Is there anything out there that could convert radioactive material into a harmless substance? Some sort of bacteria that consumes radiation? Replies: The reason why radiation is so harmful is that is produces free radicals in living tissue, that is, it de-stabilizes molecules by tearing off electrons due to intense energies. These free radicals start a chain reaction of destruction, de-stabilizing neighboring molecules. If this continues unchecked, cells die, genetic material are mutated, and tissue aging accelerates. It is somewhat like being burned. Fire oxidizes by a similar free radical reaction. (Hence the term "sun burn.") The natural defenses against free radical reactions in biological systems are antioxidants, which are enzymes, nutrients, and other chemicals, which quench free radical reactions. Without them, life would very quickly cease. To my knowledge, no microorganism has an antioxidant capacity great enough to withstand even minimal exposure to any type of radiation. Microorganisms are actually very susceptible to radiation, which is why heat and gamma irradiation are used to sterilize food, instruments, etc. However, you raise an interesting possibility in that perhaps one can be genetically engineered to have super- antioxidant capacity, but that may be beyond current technology. Plus, if any got loose, given the exponential rate of reproduction, they may become an uncontrollable health hazard, as it would be very difficult to destroy them!

198

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

199

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

200

Protocols for implementing DOE authorized release of radioactive scrap metals  

SciTech Connect

A process to implement the US Department of Energy`s (DOE) policy for authorized release of radioactive materials from DOE facilities is provided in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material, published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. A computerized management tool--P2Pro(RSM)--has been developed to aid in carrying out the release process for radioactive metals. It contains protocols for the authorized release process and relevant information to facilitate the evaluation of scrap metals for reuse and recycle. The P2Pro(RSM) protocols provide DOE and its contractors with an effective, user-friendly tool for managing authorized release activities P2Pro(RSM) is designed to be used in the Windows{sup {trademark}} environment. The protocols incorporate a relational database coupled with a graphic-user interface to guide the user through the appropriate steps so authorized release limits can be developed. With the information provided in the database, an as-low-as-reasonably-achievable (ALARA) optimization process can be easily set up and run for up to 10 alternatives for disposition of radioactive scrap metals. The results of the ALARA optimization process can be printed in a series of reports and submitted as part of the application for the authorized release of the radioactive scrap metals.

Chen, S.Y.; Arnish, J.; Kamboj, S.; Nieves, L.A. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS  

DOE Patents (OSTI)

This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

Sutton, J.B.

1958-02-18T23:59:59.000Z

202

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

203

HTO Contamination on Polymeric Materials  

Science Conference Proceedings (OSTI)

Contamination and Waste / Proceedings of the Ninth International Conference on Tritium Science and Technology

Yasunori Iwai; Kazuhiro Kobayashi; Toshihiko Yamanishi

204

Engineering feasibility analysis for in-situ stabilization of Burrell Township site residues. [UMTRA  

SciTech Connect

The Burrell Township site, located in western Pennsylvania, received approximately 11,600 tons of radioactively-contaminated material in late 1956 and early 1957 from the Vitro Manufacturing Company's operations in Canonsburg, Pennsylvania. WESTON was requested to conduct an engineering study to determine the feasibility of stabilizing the site in accordance with the US Environmental Protection Agency's (EPA) interim and proposed standards (45 FR 27366--27368, April 22, 1980, and 46 FR 2556--2563, January 9, 1981). The scope of this study is limited to those alternatives that can be implemented on the site and will not require removal and offsite disposal of radioactively-contaminated material. Four alternatives for control of the radioactive material at the Burrell site were considered and evaluated, as follows: 1. Site stabilization and closure. 2. Site control and containment. 3. Waste excavation and encapsulation. 4. Waste excavation, incineration, and encapsulation. 2 refs., 32 figs., 12 tabs.

Not Available

1982-11-01T23:59:59.000Z

205

JV Task 99-Integrated Risk Analysis and Contaminant Reduction, Watford City, North Dakota  

SciTech Connect

The Energy & Environmental Research Center (EERC) conducted a limited site investigation and risk analyses for hydrocarbon-contaminated soils and groundwater at a Construction Services, Inc., site in Watford City, North Dakota. Site investigation confirmed the presence of free product and high concentrations of residual gasoline-based contaminants in several wells, the presence of 1,2-dichloroethane, and extremely high levels of electrical conductivity indicative of brine residuals in the tank area south of the facility. The risk analysis was based on compilation of information from the site-specific geotechnical investigation, including multiphase extraction pilot test, laser induced fluorescence probing, evaluation of contaminant properties, receptor survey, capture zone analysis and evaluation of well head protection area for municipal well field. The project results indicate that the risks associated with contaminant occurrence at the Construction Services, Inc. site are low and, under current conditions, there is no direct or indirect exposure pathway between the contaminated groundwater and soils and potential receptors.

Jaroslav Solc; Barry W. Botnen

2007-05-31T23:59:59.000Z

206

SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS  

DOE Green Energy (OSTI)

The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

Duff, M; Keisha Martin, K; S Crump, S

2007-03-23T23:59:59.000Z

207

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

208

FAQ 5-Is uranium radioactive?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

209

BT8 Residual Stress Diffractometer  

Science Conference Proceedings (OSTI)

... 5) T. Gnaupel-Herold, HJ Prask, AV Clark, CS Hehman, TN Nguyen, A Comparison of Neutron and Ultrasonic Determinations of Residual Stress ...

210

BT8 Residual Stress Diffractometer  

Science Conference Proceedings (OSTI)

... Residual Stresses and Mechanical Damage in Gas Pipelines. ... Pressure in a pipeline superimposes a stress on ... are exceeded in pipelines with low ...

211

Techniques for Measuring Residual Stresses  

Science Conference Proceedings (OSTI)

Table 1   Classification of techniques for measuring residual stress...stress A-1 Stress-relaxation techniques using electric

212

Techniques for Measuring Residual Stresses  

Science Conference Proceedings (OSTI)

Table 1   Classification of techniques for measuring residual stress...stress A-1 Stress relaxation techniques using electric

213

Threshold Levels for Nonstochastic Skin Effects From Low Energy Discrete Radioactive Particles  

Science Conference Proceedings (OSTI)

Assessment of risk from skin contamination by low-energy discrete radioactive particles (DRPs) is difficult because the particles produce nonuniform external radiation exposures. This study, which provides data on the relationship between DRP dose to the skin and biological skin response, can form the technical basis for developing regulations for controlling exposures.

1992-04-01T23:59:59.000Z

214

Low Radioactivity in CANDLES  

SciTech Connect

CANDLES is the project to search for double beta decay of 48Ca by using CaF2 crystals. Double beta decay of 48Ca has the highest Q value among all nuclei whose double beta decay is energetically allowed. This feature makes the study almost background free and becomes important once the study is limited by the backgrounds. We studied double beta decays of 48Ca by using ELEGANTS VI detector system which features CaF2(Eu) crystals. We gave the best limit on the lifetime of neutrino-less double beta decay of 48Ca although further development is vital to reach the neutrino mass of current interest for which CANDLES is designed. In this article we present how CANDLES can achieve low radioactivity, which is the key for the future double beta decay experiment.

Kishimoto, T.; Ogawa, I.; Hazama, R.; Yoshida, S.; Umehara, S.; Matsuoka, K.; Sakai, H.; Yokoyama, D.; Mukaida, K.; Ichihara, K.; Tatewaki, Y.; Kishimoto, K.; Hirano, Y.; Yanagisawa, A.; Ajimura, S. [Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043 (Japan)

2005-09-08T23:59:59.000Z

215

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30T23:59:59.000Z

216

Areawide chemical contamination  

SciTech Connect

Nine case histories illustrate the mounting problems owing to chemical contamination that often extends beyond the workplace into the community. The effects include not only carcinogenesis and teratogenesis, so much in the public's mind, but also severe neurological and gonadal disabilities immediately after exposure. Recognition of causal relationships is often made by astute clinicians. The experience of the Atomic Bomb Casualty Commission in studying Japanese survivors in Hiroshima and Nagasaki serves as a model for future studies of communities exposed to unusual environmental contamination.

Miller, R.W.

1981-04-17T23:59:59.000Z

217

Hanford Tank 241-S-112 Residual Waste Composition and Leach Test Data  

SciTech Connect

This report presents the results of laboratory characterization and testing of two samples (designated 20406 and 20407) of residual waste collected from tank S-112 after final waste retrieval. These studies were completed to characterize the residual waste and assess the leachability of contami¬nants from the solids. This is the first report from this PNNL project to describe the composition and leach test data for residual waste from a salt cake tank. All previous PNNL reports (Cantrell et al. 2008; Deutsch et al. 2006, 2007a, 2007b, 2007c) describing contaminant release models, and characterization and testing results for residual waste in single-shell tanks were based on samples from sludge tanks.

Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Lindberg, Michael J.; Arey, Bruce W.; Schaef, Herbert T.

2008-08-29T23:59:59.000Z

218

Introduction to naturally occurring radioactive material  

SciTech Connect

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

Egidi, P.

1997-08-01T23:59:59.000Z

219

Transport of radioactive droplet moisture from a source in a nuclear power plant spray pond  

Science Conference Proceedings (OSTI)

In addition to a change in the microclimate in the region surrounding a nuclear power plant resulting from the emission of vapor form a cooling tower, evaporation of water from the water surface of a cooling pond or a spray pond, in the latter case direct radioactive contamination of the underlying surface around the nuclear power plant can also occur due to discharge of process water (radioactive) into the pond and its transport in the air over a certain distance in the form of droplet moisture. A typical example may be the situation at the Zaporozhe nuclear power plant in 1986 when accidental discharge of process water into the cooling pond occurred. Below we present a solution for the problem of transport of droplet moisture taking into account its evaporation, which may be used to estimate the scale of radioactive contamination of the locality.

Elokhin, A.P.

1995-11-01T23:59:59.000Z

220

Method for removal of beryllium contamination from an article  

DOE Patents (OSTI)

A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

Simandl, Ronald F.; Hollenbeck, Scott M.

2012-12-25T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Materials Sustainability: Digital Resource Center - Radioactivity in ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This video introduces terms and concepts associated with radioactivity and shows how to identify radioactive substances that might enter a ...

222

FAQ 4-What is radioactivity and radiation?  

NLE Websites -- All DOE Office Websites (Extended Search)

and radiation? What is radioactivity and radiation? Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both...

223

i TP?TT<$wft Environmental Radioactivity  

E-Print Network (OSTI)

Abstract. Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands FALLOUT; GREENLAND; MAN; MILK; PLANTS; PLUTONIUM 239; PLU- TONIUM 240; RADIOACTIVITY; SEAWATER; SEAWEEDS

224

Environmental Radioactivity in the North Atlantic Region.  

E-Print Network (OSTI)

Radioactivity, Monaco Abstract. Measurements of fallout radioactivity in the North Atlantic region including ISLANDS; FOOD CHAINS; GLOBAL FALLOUT GREENLAND; LEAD 210; MAN; MILK; MOLLUSCS; POLONIUM 210; PLANTS

225

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

226

Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completion of the Five-Year Reviews for the Monticello, Utah, Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site October 16, 2012 - 2:58pm Addthis DOE will continue monitoring excavations in Monticello's streets and will dispose of tailings that are found that had been used for fill around utility lines. Monitoring of groundwater at the former mill site and treatment of contaminated water east of the mill site will also continue. DOE will continue monitoring excavations in Monticello's streets and will dispose of tailings that are found that had been used for fill around

227

Process for Removing Radioactive Wastes from Liquid Streams  

SciTech Connect

The process is under development at Mound Laboratory to remove radioactive waste (principally plutonium-238) from process water prior to discharge of the water to the Miami river. The contaminated water, as normally received, is at a pH between 6 and 90. Under these conditions, plutonium in all its oxidation states is hydrolyzed; however, the level of the radioactive solids varies from about 50ppm down to about 50 ppb and the plutonium remains in a colloidal or subcolloidal condition. The permissible concentration for discharge to the river is about 50 parts per trillion. Pilot plant test show that 95-99% of the radioactive material is removed by adsorption on diatomaceous earth. The remainder is removed by passage through a bed of either dibasic or tribasic calcium phosphate. Ground phosphate rock is equally effective in removing the radioactive material if the flow rate is controlled to permit sufficient contact time. Parameters for optimizing the process are now under study. Future plans include application of the process to wastes from reactor fuels reprocessing.

Kirby, H. W.; Blane, D. E.; Smolin, R. I.

1972-10-01T23:59:59.000Z

228

Transport Models for Radioactive Carbon Dioxide at RWMC  

SciTech Connect

Radioactive carbon dioxide (formed by oxidation of carbon-14) is a highly mobile, radioactive contaminant released from solid wastes buried at the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Radioactive CO2 is chemically active in the environment, volatile, water soluble, and subject to adsorption on solids. For this reason, its fate must be understood and controlled to meet radiological requirements (protection of the atmosphere, aquifer, vadose zones, plants and animals). In the present work, the migration of carbon-14 as dissolved bicarbonate was studied using miscible displacement experiments in water-saturated columns containing sediments from RWMC. Dissolved carbon-14 was retarded relative to the movement of water by a factor of about 3.6, which translates to a partition coefficient (Kd) of 0.8 ml/g. Two different adsorption sites were identified, with one site possibly having a nonlinear adsorption isotherm. A conservative tracer gas, sulfur hexafluoride, was used to measure the tortuosity of sedimentary material for gaseous diffusion. The tortuosity of the RWMC sediment (Spreading Area B sediment) was determined to be 3.2, which is slightly greater than predicted by the commonly used Millington-Quirk equation. In terms of affecting the migration of carbon-14 to the aquifer, the relative importance of the parameters studied is: (1) natural moisture content of the sediments, (2) sediment tortuosity to gas-phase diffusion, and (3) adsorption onto solid phases.

Hull, Laurence Charles; Hohorst, Frederick August

2001-12-01T23:59:59.000Z

229

SELF SINTERING OF RADIOACTIVE WASTES  

DOE Patents (OSTI)

A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

1959-12-29T23:59:59.000Z

230

Radioactive decay data tables  

SciTech Connect

The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

Kocher, D.C.

1981-01-01T23:59:59.000Z

231

The largest radioactive waste glassification  

NLE Websites -- All DOE Office Websites (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

232

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

233

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

234

Radioactivity of the Cooling Water  

DOE R&D Accomplishments (OSTI)

The most important source of radioactivity at the exit manifold of the pile will be due to O{sup 19}, formed by neutron absorption of O{sup 18}. A recent measurement of Fermi and Weil permits to estimate that it will be safe to stay about 80 minutes daily close to the exit manifolds without any shield. Estimates are given for the radioactivities from other sources both in the neighborhood and farther away from the pile.

Wigner, E. P.

1943-03-01T23:59:59.000Z

235

Purifying contaminated water  

DOE Patents (OSTI)

Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

Daughton, Christian G. (San Pablo, CA)

1983-01-01T23:59:59.000Z

236

Kinetics of Cd Release from Some Contaminated Calcareous Soils  

SciTech Connect

Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

237

Storage depot for radioactive material  

Science Conference Proceedings (OSTI)

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

238

Storage depot for radioactive material  

SciTech Connect

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, M.J.

1983-10-18T23:59:59.000Z

239

Contamination control device  

DOE Patents (OSTI)

A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

Clark, Robert M. (Ligonier, PA); Cronin, John C. (Greensburg, PA)

1977-01-01T23:59:59.000Z

240

Feasibility analysis of recycling radioactive scrap steel  

SciTech Connect

The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

Nichols, F. [Manufacturing Sciences Corp., Woodland, WA (United States); Balhiser, B. [MSE, Inc., Butte, MT (United States); Cignetti, N. [Cignetti Associates, North Canton, OH (United States)] [and others

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for {alpha}, {beta} and {gamma} emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for {gamma} and {alpha}/{beta} monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in {alpha}/{beta} liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure {sup 241}Am produced from {sup 241}Pu by {beta} decay. Because {sup 241}Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., {sup 137}Cs).

Rego, J.H.; Smith, D.K.; Friensehner, A.V.

1995-05-26T23:59:59.000Z

242

Emergency Responder Radioactive Material Quick Reference Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet...

243

Emergency Tests Focus on Lab Radioactivity Analyses  

Science Conference Proceedings (OSTI)

Emergency Tests Focus on Lab Radioactivity Analyses. For Immediate ... Berne. Radioanalytical emergency response exercise. Journal ...

2013-09-05T23:59:59.000Z

244

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

245

ASSESSMENT OF RADIONUCLIDE RELEASE FROM INTACT STRUCTURES BACKFILLED WITH CONTAMINATED CONCRETE AT THE YANKEE NUCLEAR POWER STATION.  

SciTech Connect

This calculation determines the release of residual radioactivity (including H-3, C-14, Co-60, Ni-63, Sr-90, and Cs-137), from subsurface structures filled with concrete debris at the Yankee Nuclear Power Station. Analyses were performed to assess the rate of release from the source of contamination and the resulting dose in the groundwater pathway. Two mechanisms were considered, diffusive release from the concrete structures (walls and floors) that remain intact and sorption onto concrete backfill placed within these structures. RESRAD was used to calculate the predicted maximum dose assuming a unit loading of 1 pCi/g on the intact structures. To the extent possible, the same assumptions in the soil DCGL calculations performed for Yankee Atomic were used in the calculation. However, modifications to some input parameter values were needed to represent the geometry of the subsurface facilities, flow through these facilities, and releases from the backfill and intact structures. Input parameters specific to these calculations included the leach rate, disposal geometry, pumping rate, porosity and bulk density. The dose results for a unit loading of 1 pCi/g on intact structures showed that Sr-90 had the highest dose (3.67E-02 mrem/yr).

SULLIVAN, T.

2004-09-30T23:59:59.000Z

246

Residual Circulation and Tropopause Structure  

Science Conference Proceedings (OSTI)

The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied ...

Thomas Birner

2010-08-01T23:59:59.000Z

247

System for chemically digesting low level radioactive, solid waste material  

DOE Patents (OSTI)

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

248

Crop residues as feedstock for renewable fuels  

Science Conference Proceedings (OSTI)

Nutrient removal and net costs weigh on decisions to use crop residues as biofuel feedstocks. Crop residues as feedstock for renewable fuels Inform Magazine Biofuels and Bioproducts and Biodiesel Inform Archives Crop residues as feedstock for rene

249

Radioactive air emissions notice of construction HEPA filtered vacuum radioactive air emission units  

Science Conference Proceedings (OSTI)

This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health for the use of vacuums on the Hanford Site. These previous agreement/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex (routine technical meeting 12/10/96) and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant (routine technical meeting 06/25/96). Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year.

JOHNSON, R.E.

1999-09-01T23:59:59.000Z

250

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

Science Conference Proceedings (OSTI)

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

251

Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge  

Science Conference Proceedings (OSTI)

The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

James E. Saiers

2012-09-20T23:59:59.000Z

252

Aqueous recovery of plutonium from pyrochemical processing residues  

Science Conference Proceedings (OSTI)

Pyrochemical processes provide rapid methods to reclaim plutonium from scrap residues. Frequently, however, these processes yield an impure plutonium product and waste residues that are contaminated with actinides and are therefore nondiscardable. The Savannah River Laboratory and Plant and the Rocky Flats Plant are jointly developing new processes using both pyrochemistry and aqueous chemistry to generate pure product and discardable waste. An example of residue being treated is that from the molten salt extraction (MSE), a mixture of NaCl, KCl, MgCl/sub 2/, PuCl/sub 3/, AmCl/sub 3/, PuO/sub 2/, and Pu/sup 0/. This mixture is scrubbed with molten aluminum containing a small amount of magnesium to produce a nonhomogeneous Al-Pu-Am-Mg alloy. This process, which rejects most of the NaCl-KCl-MgCl/sub 2/ salts, results in a product easily dissolved in 6M HNO/sub 3/ -0.1M HF. Any residual chloride in the product is removed by precipitation with Hg(I) followed by centrifuging. Plutonium and americium are then separated by the standard Purex process. The americium, initially diverted to the solvent extraction waste stream, can either be recovered or sent to waste.

Gray, L.W.; Gray, J.H.

1984-01-01T23:59:59.000Z

253

Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey  

SciTech Connect

In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities.

Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-04-01T23:59:59.000Z

254

Contaminated nickel scrap processing  

Science Conference Proceedings (OSTI)

The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

1994-12-01T23:59:59.000Z

255

Storage containers for radioactive material  

DOE Patents (OSTI)

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

256

Chemistry of combined residual chlorination  

DOE Green Energy (OSTI)

The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

Leao, S.F.; Selleck, R.E.

1982-01-01T23:59:59.000Z

257

INSPECTION OF THE ACCOUNTABILITY AND CONTROL OF SEALED RADIOACTIVE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF THE ACCOUNTABILITY AND CONTROL OF SEALED RADIOACTIVE SOURCES AT SELECTED DEPARTMENT OF ENERGY SITES, IG-0544 Sealed radioactive sources consist of radioactive material either...

258

Emission Standards for Contaminants (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

259

Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results  

Science Conference Proceedings (OSTI)

An analytical procedure was established in order to obtain selective fractions containing radium isotopes ({sup 228}Ra), thorium ({sup 232}Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of {sup 228}Ra, {sup 226}Ra, {sup 238}U, {sup 210}Pb, and {sup 40}K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

Alves de Freitas, Antonio; Abrao, Alcidio [Centro de Quimica e do Meio Ambiente (Brazil); Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu [Centro de Metrologia das Radiacoes Instituto de Pesquisas Energeticas e Nucleares Av. Prof. Lineu Prestes, 2242-Cidade Universitaria-Zip Code 05508-000 Sao Paulo-SP (Brazil)

2008-08-07T23:59:59.000Z

260

Environmental Radioactivity in the Faroes  

E-Print Network (OSTI)

IN THE FAROES IN 1979 A. Aarkroo and J. Lippert Abstract. Measurements of fallout radioactivity in the Faroes Descriptors [0] DIET, ENVIRONMENT, EXPERIMENTAL DATA, FAROE ISLANDS, FISHES, FOOD, FOOD CHAINS, GLOBAL FALLOUT 62°N #12;- 7 - 1. INTRODUCTION 1*1*. The fallout programme for the Faroes, which was initiated

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Identification of contaminants of concern Columbia River Comprehensive Impact Assessment  

SciTech Connect

The Columbia River Comprehensive Impact Assessment (CRCIA) Project at the Pacific Northwest Laboratory (PNL) is evaluating the current human and ecological risks from contaminants in the Columbia River. The risks to be studied are those attributable to past and present activities on the Hanford Site. The Hanford Site is located in southcentral Washington State near the town of Richland. Human risk from exposure to radioactive and hazardous materials will be addressed for a range of river use options. Ecological risk will be evaluated relative to the health of the current river ecosystem. The overall purpose of the project is to determine if enough contamination exists in the Columbia River to warrant cleanup actions under applicable environmental regulations. This report documents an initial review, from a risk perspective, of the wealth of historical data concerning current or potential contamination in the Columbia River. Sampling data were examined for over 600 contaminants. A screening analysis was performed to identify those substances present in such quantities that they may pose a significant human or ecological risk. These substances will require a more detailed analysis to assess their impact on humans or the river ecosystem.

Napier, B.A.; Batishko, N.C.; Heise-Craff, D.A.; Jarvis, M.F.; Snyder, S.F.

1995-01-01T23:59:59.000Z

262

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

Science Conference Proceedings (OSTI)

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21T23:59:59.000Z

263

The Radioactive Beam Program at Argonne  

E-Print Network (OSTI)

In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

B. B. Back

2006-06-06T23:59:59.000Z

264

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

265

Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory  

SciTech Connect

Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ``legacy`` wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL`s strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies.

Kendrick, C.M.

1994-03-01T23:59:59.000Z

266

UK Radioactive Waste: Classification, Sources and Management ...  

Science Conference Proceedings (OSTI)

Paper contents outlook: Introduction; Radioactive waste classification; Sources of waste (Nuclear power plant operation/decommissioning, Reprocessing and ...

267

NNSA: Securing Domestic Radioactive Material | National Nuclear...  

National Nuclear Security Administration (NNSA)

Securing Domestic Radioactive Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

268

Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

Robinson, Sharon M [ORNL; Jubin, Robert Thomas [ORNL; Patton, Bradley D [ORNL; Sullivan, Nicholas M [ORNL; Bugbee, Kathy P [ORNL

2009-09-01T23:59:59.000Z

269

Rail assembly for use in a radioactive environment  

SciTech Connect

An improved rail assembly and method of construction thereof is disclosed herein that is particularly adapted for use with a crane trolley in a hot cell environment which is exposed to airborne and liquidborne radioactive contaminants. The rail assembly is generally comprised of a support wall having an elongated, rail-housing recess having a floor, side wall and ceiling. The floor of the recess is defined at least in part by the load-bearing surface of a rail, and is substantially flat, level and crevice-free to facilitate the drainage of liquids out of the recess. The ceiling of the recess overhangs and thereby captures trolley wheels within the recess to prevent them from becoming dislodged from the recess during a seismic disturbance. Finally, the interior of the recess includes a power track having a slot for receiving a sliding electrical connector from the crane trolley. The power track is mounted in an upper corner of the recess with its connector-receiving groove oriented downwardly to facilitate the drainage of liquidborne contaminants and to discourage the collection of airborne contaminants within the track.

Watts, Ralph E. (Harrison, OH)

1989-01-01T23:59:59.000Z

270

4. Nuclei and Radioactivity Paradoxes and Puzzles  

E-Print Network (OSTI)

radioactivity, it may not be legally sold in the United States. 4. Of those killed by the Hiroshima atomic bomb anecdotes and say, "Of course." Radioactivity Radioactivity is the explosion of the nucleus of the atom nucleus of one atom is about million times greater than in a chemical explosion of a single atom

Browder, Tom

271

CLOTHING PROBLEMS POSED BY THE OPERATION OF RADIOACTIVE INSTALLATIONS AND THEIR SOLUTIONS  

SciTech Connect

The various methods used for preventing the contamination of the work clothes of persons in radioactive installations are discussed. The problems connected with the clothing and its decontamination and laundering in large nuclear energy plants are considered in some detail, The German countercurrent method (Sulzman system) permits the rapid washing of clothes and produces very little liquid wastes. Dry cleaning is a possible future economic tech nique. The Marcoule laundry installation is described as an example. (tr-auth)

Rodier, J.; Bouzigues, H.; Boutot, P.

1962-01-01T23:59:59.000Z

272

In-Situ Characterization of Underwater Radioactive Sludge  

Science Conference Proceedings (OSTI)

A fundamental requirement underpinning safe clean-up technologies for legacy spent nuclear fuel (SNF) ponds, pools and wet silos is the ability to characterize the radioactive waste form prior to retrieval. The corrosion products resulting from the long term underwater storage of spent nuclear fuel, reactor components and reprocessing debris present a major hazard to facility decontamination and decommissioning in terms of their radioactive content and physical / chemical reactivity. The ability to perform in-situ underwater non-destructive characterization of sludge and debris in a safe and cost-effective manner offers significant benefits over traditional destructive sampling methods. Several techniques are available for underwater measurements including (i) Gross gamma counting, (ii) Low-, Medium- and High- Resolution Gamma Spectroscopy, (iii) Passive neutron counting and (iv) Active Neutron Interrogation. The optimum technique depends on (i) the radioactive inventory (ii) mechanical access restrictions for deployment of the detection equipment, interrogation sources etc. (iii) the integrity of plant records and (iv) the extent to which Acceptable Knowledge which may be used for 'fingerprinting' the radioactive contents to a marker nuclide. Prior deployments of underwater SNF characterization equipment around the world have been reviewed with respect to recent developments in gamma and neutron detection technologies, digital electronics advancements, data transfer techniques, remote operation capabilities and improved field ruggedization. Modeling and experimental work has been performed to determine the capabilities, performance envelope and operational limitations of the future generation of non-destructive underwater sludge characterization techniques. Recommendations are given on the optimal design of systems and procedures to provide an acceptable level of confidence in the characterization of residual sludge content of legacy wet storage facilities such that retrieval and repackaging of SNF sludges may proceed safely and efficiently with support of the regulators and the public. (author)

Simpson, A.P.; Clapham, M.J.; Swinson, B. [Pajarito Scientific Corp., Santa Fe, NM (United States)

2008-07-01T23:59:59.000Z

273

HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE  

SciTech Connect

This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Various thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.

Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.; Kobelev, A.P.; Popkov, V.N.; Polkanov, M.A.; Savkin, A.E.; Varlakov, A.P.; Karlin, S.V.; Stefanovsky, S.V.; Karlina, O.K.; Semenov, K.N.

2003-02-27T23:59:59.000Z

274

Vitrification of NAC process residue  

Science Conference Proceedings (OSTI)

Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

Merrill, R.A.; Whittington, K.F.; Peters, R.D.

1995-09-01T23:59:59.000Z

275

Data collection handbook to support modeling the impacts of radioactive material in soil  

SciTech Connect

A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Loureiro, C. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia; Chia, Y.P. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Geology

1993-04-01T23:59:59.000Z

276

Radioactive Waste Management BasisApril 2006  

Science Conference Proceedings (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2011-08-31T23:59:59.000Z

277

RESEARCH AND DEVELOPMENT ACTIVITIES FIXATION OF RADIOACTIVE RESIDUES QUARTERLY PROGRESS REPORT, JULY-SEPTEMBER 1961  

SciTech Connect

Progress is reported on research and development work in pot calcination and radiant-heat spray calcination studies of synthetic Purex high-level wastes; and sorption studies using synthetic minerals and resins as well as natural minerals. The calcination studies are discussed in terms of batch calcination, melting of pot calcination products, spray calcination, and off-gas treatment; and sorption studies in terms of mineral reactions, fixation chemistry, and condensate wastes. (B.O.G.)

Irish, E.R. ed.

1961-10-13T23:59:59.000Z

278

Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies.

Bell, J.T.; Haas, P.A.; Rudolph, J.C.

1993-12-01T23:59:59.000Z

279

Data Center Economizer Contamination and Humidity Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts Data Center Economizer Contamination and Humidity Study Title Data Center Economizer Contamination and Humidity Study Publication Type...

280

Concerns Regarding Lead Contamination and Radiological Controls...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Concerns Regarding Lead Contamination and Radiological Controls at the Nevada Test Site, INS-O-06-02 Concerns Regarding Lead Contamination and Radiological Controls at...

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof  

DOE Patents (OSTI)

Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

282

Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof  

DOE Patents (OSTI)

Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

283

Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof  

DOE Patents (OSTI)

Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

Funsten, H.O.; McComas, D.J.

1999-06-15T23:59:59.000Z

284

Transforms for prediction residuals in video coding  

E-Print Network (OSTI)

Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

Kam??l?, Fatih

2010-01-01T23:59:59.000Z

285

Improvement of modelling capabilities for assessing urban contamination : The EMRAS Urban Remediation Working Group.  

SciTech Connect

The Urban Remediation Working Group of the International Atomic Energy Agency's Environmental Modeling for Radiation Safety (EMRAS) programme was established to improve modeling and assessment capabilities for radioactively contaminated urban situations, including the effects of countermeasures. An example of the Working Group's activities is an exercise based on Chernobyl fallout data in Ukraine, which has provided an opportunity to compare predictions among several models and with available measurements, to discuss reasons for discrepancies, and to identify areas where additional information would be helpful.

Thiessen, K. M.; Batandjieva, B.; Andersson, K. G.; Arkhipov, A.; Charnock, T. W.; Gallay, F.; Gaschak, S.; Golikov, V.; Hwang, W. T.; Kaiser, J. C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.; Ziemer, R. L.; Zlobenko, B.; Environmental Science Division; SENES Oak Ridge; IAEA; Riso National Lab.; Chernobyl Center for Nuclear Safety; Health Protection Agency; IRSN; Inst. of Radiation Hygene of the Ministry of Public Health, Russian Federation; KAERI, Republic of Korea; GSF, Germany; BfS, Germany; CPHR, Cuba; State Office for Radiation Protection, Croatia; AECL, Canada; National Academy of Science, Ukraine

2008-01-01T23:59:59.000Z

286

Management of radioactive waste from nuclear power plants  

SciTech Connect

Even thought risk assessment is an essential consideration in all projects involving radioactive or hazardous waste, its public role is often unclear, and it is not fully utilized in the decision-making process for public acceptance of such facilities. Risk assessment should be an integral part of such projects and should play an important role from beginning to end, i.e., from planning stages to the closing of a disposal facility. A conceptual model that incorporates all potential pathways of exposure and is based on site-specific conditions is key to a successful risk assessment. A baseline comparison with existing standards determines, along with other factors, whether the disposal site is safe. Risk assessment also plays a role in setting priorities between sites during cleanup actions and in setting cleanup standards for certain contaminants at a site. The applicable technologies and waste disposal designs can be screened through risk assessment.

Not Available

1993-09-01T23:59:59.000Z

287

Radioactivity  

Science Conference Proceedings (OSTI)

... Mixed-alpha-emitting sources may be calibrated using the 2 ? proportional counter and the percentage per radionuclide is determined using a ...

2013-07-27T23:59:59.000Z

288

Radioactivity  

NLE Websites -- All DOE Office Websites (Extended Search)

and allows the nucleus to achieve a more stable, lower energy configuration. Spontaneous fission of a large-mass nucleus into smaller-mass products is also a form of...

289

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

290

Melt processing of radioactive waste: A technical overview  

Science Conference Proceedings (OSTI)

Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

1997-04-01T23:59:59.000Z

291

Radioactive Waste Management BasisSept 2001  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

292

RESIDUAL STRESSES IN 3013 CONTAINERS  

SciTech Connect

The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

Mickalonis, J.; Dunn, K.

2009-11-10T23:59:59.000Z

293

Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse  

Science Conference Proceedings (OSTI)

The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals.

Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

1994-03-01T23:59:59.000Z

294

Sub-barrier fusion enhancement with radioactive 134Te  

E-Print Network (OSTI)

The fusion cross sections of radioactive $^{134}$Te + $^{40}$Ca were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficiency for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn+Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of $^{130}$Te + $^{58,64}$Ni, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases.

Z. Kohley; J. F. Liang; D. Shapira; C. J. Gross; R. L. Varner; J. M. Allmond; J. J. Kolata; P. E. Mueller; A. Roberts

2013-06-28T23:59:59.000Z

295

Sub-barrier fusion enhancement with radioactive 134Te  

Science Conference Proceedings (OSTI)

The fusion cross sections of radioactive 134Te + 40Ca were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficiency for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn + Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of 130Te + 58,64Ni, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases.

Kohley, Zachary W [ORNL; Liang, J Felix [ORNL; Shapira, Dan [ORNL; Gross, Carl J [ORNL; Varner Jr, Robert L [ORNL; Allmond, James M [ORNL; Kolata, Jim J [University of Notre Dame, IN; Mueller, Paul Edward [ORNL; Roberts, Amy [University of Notre Dame, IN

2013-01-01T23:59:59.000Z

296

U.S. Residual Fuel Oil Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

297

Enhanced removal of radioactive particles by fluorocarbon surfactant solutions  

Science Conference Proceedings (OSTI)

The proposed research addressed the application of ESI`s particle removal process to the non-destructive decontamination of nuclear equipment. The cleaning medium used in this process is a solution of a high molecular weight fluorocarbon surfactant in an inert perfluorinated liquid which results in enhanced particle removal. The perfluorinated liquids of interest, which are recycled in the process, are nontoxic, nonflammable, and environmentally compatible, and do not present a hazard to the ozone layer. The information obtained in the Phase 1 program indicated that the proposed ESI process is technically effective and economically attractive. The fluorocarbon surfactant solutions used as working media in the ESI process survived exposure of up to 10 Mrad doses of gamma rays, and are considered sufficiently radiation resistant for the proposed process. Ultrasonic cleaning in perfluorinated surfactant solutions was found to be an effective method of removing radioactive iron (Fe 59) oxide particles from contaminated test pieces. Radioactive particles suspended in the process liquids could be quantitatively removed by filtration through a 0.1 um membrane filter. Projected economics indicate a pre-tax pay back time of 1 month for a commercial scale system.

Kaiser, R.; Harling, O.K. [Entropic Systems, Inc., Winchester, MA (United States)

1993-08-01T23:59:59.000Z

298

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30T23:59:59.000Z

299

DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES  

Science Conference Proceedings (OSTI)

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

Jantzen, C.

2010-03-18T23:59:59.000Z

300

WEB RESOURCE: Radioactive Waste Management in Australia  

Science Conference Proceedings (OSTI)

May 8, 2007 ... A glossary of terms and public discussion papers on current and past projects are included. Citation: "Radioactive Waste Management in ...

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Uranium Compounds and Other Natural Radioactivities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division XSD Groups Industry Argonne Home Advanced Photon Source Uranium Compounds and Other Natural Radioactivities Uranium containing compounds and other...

302

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

of radioactive material are determined by the Nuclear Regulatory Commission (NRC), Department of Transportation (DOT), Department of Energy (DOE), and U.S. Postal...

303

Radioactive Material or Multiple Hazardous Materials Decontamination  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

304

Radiation Machines and Radioactive Materials (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

305

Radiation Sources and Radioactive Materials (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

306

Riso-R-489LK Environmental Radioactivity  

E-Print Network (OSTI)

Abstract. Measurements of fallout radioactivity in Greenland in 1982 are reported. Strontium-90 (and Cesium Descriptors [0] DEER, DIET, ENVIRONMENT, EXPERIMENTAL DATA, FISHES, POOD CHAINS, GLOBAL FALLOUT, GRAPHS

307

'^^ Ris-R-449 Environmental Radioactivity  

E-Print Network (OSTI)

, Sweden Abstract. Measurements of fallout radioactivity in Greenland in 1980 are reported. Strontium-90. INIS Descriptors [O] DEER, DIET, ENVIRONMENT, EXPERIMENTAL DATA, PISHES, POOD CHAINS, GLOBAL FALLOUT

308

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEMA 358, 0510 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q...

309

Advances in Geochemical Testing of Key Contaminants in Residual Hanford Tank Waste  

Science Conference Proceedings (OSTI)

This report describes the advances that have been made over the past two years in testing and characterizing waste material in Hanford tanks.

Deutsch, William J.; Krupka, Kenneth M.; Cantrell, Kirk J.; Brown, Christopher F.; Lindberg, Michael J.; Schaef, Herbert T.; Heald, Steve M.; Arey, Bruce W.; Kukkadapu, Ravi K.

2005-11-04T23:59:59.000Z

310

New Waste Calcining Facility Non-radioactive Process Decontamination  

Science Conference Proceedings (OSTI)

This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

Swenson, Michael Clair

2001-09-01T23:59:59.000Z

311

New Waste Calcining Facility Non-Radioactive Process Decontamination  

SciTech Connect

This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

Swenson, Michael C.

2001-09-30T23:59:59.000Z

312

Assessment of recycling or disposal alternatives for radioactive scrap metal  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development (OECD) is an evaluation of management alternatives for radioactive scarp metals. For this purpose, Argonne National Laboratory is assessing alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives (with metal replacement). Findings will be presented in a report from the OECD Task Group. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A ``tiered`` concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conversatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

Murphie, W.E.; Lilly, M.J. III [USDOE Assistant Secretary for Environmental Restoration and Waste Management, Washington, DC (United States). Office of Environmental Restoration; Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

1993-10-01T23:59:59.000Z

313

Dose assessment for management alternatives for NORM-contaminated equipment within the petroleum industry  

Science Conference Proceedings (OSTI)

The contamination of drilling and production equipment by naturally occurring radioactive material (NORM) is a growing concern for the petroleum industry and regulators. Large volumes of NORM-contaminated scrap metal are generated by the industry each year. The contamination generally occurs as surface contamination on the interior of water-handling equipment. The source of this contamination is accumulation of by-product wastes, in the form of scale and sludge contaminated with NORM that are generated by extraction processes. The primary radionuclides of concern in petroleum industry NORM-wastes are radium-226 (Ra-226), and radium-228 (Ra-228). These isotopes are members of the uranium-238 and thorium-232 decay series, respectively. The uranium and thorium isotopes, which are naturally present in the subsurface formations from which hydrocarbons are extracted, are largely immobile and remain in the subsurface. The more soluble radium can become mobilized in the formation water and be transported to the surface in the produced water waste stream. The radium either remains in solution or precipitates in scale or sludge deposits, depending on water salinity and on temperature and pressure phase changes. NORM-containing scale consists of radium that has coprecipitated with barium, calcium, or strontium sulfates, and sludge typically consists of radium-containing silicates and carbonates. This assessment is limited to the evaluation of potential radiological doses from management options that specifically involve recycle and reuse of contaminated metal. Doses from disposal of contaminated equipment are not addressed. Radiological doses were estimated for workers and the general public for equipment decontamination and smelting. Results of this assessment can be used to examine policy issues concerning the regulation and management of NORM-contaminated wastes generated by the petroleum industry.

Blunt, D.L.; Smith, K.P.

1995-08-01T23:59:59.000Z

314

JGI - Why Sequence Contaminated Groundwater?  

NLE Websites -- All DOE Office Websites (Extended Search)

Contaminated Groundwater? Contaminated Groundwater? Because the majority of microorganisms in nature have never been cultured, little is known about their genetic properties, biochemical functions, and metabolic characteristics. Although the sequence of the microbial community "genome" can now be determined with high-throughput sequencing technology, the complexity and magnitude of most microbial communities make meaningful data acquisition and interpretation difficult. Thus, the sequence determination of a groundwater microbial community with manageable diversity and complexity (~20 phylotypes) is a timely challenge. The samples for this project come from the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Well FW-010. The overall objective is to provide a fundamental and comprehensive

315

Paducah DUF6 Conversion Final EIS - Chapter 6: Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility at the appropriate time. Approval to Release Materials Containing Residual Radioactive Contamination: Required before releasing (1) nonuranium products from the DUF...

316

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

because of its greater size, residual transuranic contamination, greater internal gamma radioactivity, and the past use of railroad tunnels on one end of the facility for...

317

Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal  

SciTech Connect

From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

NONE

1997-02-01T23:59:59.000Z

318

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14T23:59:59.000Z

319

Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah  

Science Conference Proceedings (OSTI)

This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

320

CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect

This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

2007-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Diverter assembly for radioactive material  

DOE Patents (OSTI)

A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

Andrews, K.M.; Starenchak, R.W.

1988-04-11T23:59:59.000Z

322

Method for immobilizing radioactive iodine  

DOE Patents (OSTI)

Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

Babad, Harry (Richland, WA); Strachan, Denis M. (Richland, WA)

1980-01-01T23:59:59.000Z

323

Spatial Data Analysis and Modeling of Radioactively-Contaminated Territories: Lessons Learned from Chernobyl  

E-Print Network (OSTI)

catastrophes in the history of nuclear power. A test designed to assess the reactor's safety margins ­ geostatistics, machine learning algorithms, statistical learning theory, and to discuss some generic problems nuclear power plant in Ukraine on April 26, 1986. This accident appeared to be one of the most serious

324

Radioactive Samples / Materials at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radioactive Samples / Materials at the APS Using Radioactive Samples / Materials at the APS The use of radioactive samples requires additional information for review and approval. All proposed experiments involving radioactive samples will be reviewed by the APS Radioactive Sample Safety Review Committee (RSSRC). The review will be on a graded basis. Hence, the experimenters are strongly advised to send in the experiment proposal in detail at least 2 months before the expected scheduled date of the experiment. Previously approved containment, isotopes and weights can be submitted as late as 2 weeks in advance. If your ESAF was submitted less than seven (7) days in advance of its scheduled start date you may be delayed to allow time for a safety review. The following guidelines are to be followed for all experiments with

325

APS Radioactive Sample Safety Review Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Sample Safety Review Committee Radioactive Sample Safety Review Committee March 6, 2012 1. Purpose The APS Safety Radioactive Sample Safety Review Committee (RSSRC) advises the AES Division Director on the radioactive samples to be used at the APS and the adequacy of controls in place for the duration of their use. The RSSRC reviews the radioactive material samples proposed to be run at the APS to ensure that they fall within established safety envelopes of the APS. 2. Membership The RSSRC members are appointed by the AES Division Director. The current members of the RSRC are: B. Glagola AES - Chair S. Davey AES G. Pile AES L. Soderholm CHM J. Vacca RSO W. VanWingeren AES M. Beno XSD E. Alp XSD M. Rivers PUC 3. Method The AES User Safety Coordinator will notify the RSSRC of any samples

326

Apparatus and method for radioactive waste screening  

DOE Patents (OSTI)

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04T23:59:59.000Z

327

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

SAFE are radioactive material transportations packages? SAFE are radioactive material transportations packages? RAM PACKAGES TESTING & CERTIFICATION REGULATIONS & GUIDANCE SITE MAP This graphic was generated from a computer analysis and shows the results from a regulatory puncture test of a stainless steel packaging dropping 40 inches (10 MPH) onto a 6 inch diameter steel spike. U.S. DOE | Office of Civilian Radioactive Waste Management (OCRWM) Sandia National Laboratories | Nuclear Energy & Fuel Cucle Programs © Sandia Corporation | Site Contact | Sandia Site Map | Privacy and Security An internationally recognized web-site from PATRAM 2001 - the 13th International Symposium on the Packaging and Transportation of Radioactive Material. Recipient of the AOKI AWARD. PATRAM, sponsored by the U.S. Department of Energy in cooperation with the International Atomic Energy Agency brings government and industry leaders together to share information on innovations, developments, and lessons learned about radioactive materials packaging and transportation.

328

Magnetic separation as a plutonium residue enrichment process  

Science Conference Proceedings (OSTI)

We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

1989-01-01T23:59:59.000Z

329

Methods of separating particulate residue streams  

SciTech Connect

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

330

Residual stresses in IN 718 Turbine Disks  

Science Conference Proceedings (OSTI)

the thermally induced residual stresses in plate-like components during cooling. The plate is. 527 ... cooled down symmetrically with respect to its middle plane.

331

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

332

Sidelobe Contamination in Bistatic Radars  

Science Conference Proceedings (OSTI)

The problem of sidelobe contamination in a bistatic network is explored. The McGill bistatic network consists of one S-band Doppler radar and two low-gain passive receivers at remote sites. Operational experience with the bistatic network ...

Ramón de Elía; Isztar Zawadzki

2000-10-01T23:59:59.000Z

333

Method for refining contaminated iridium  

DOE Patents (OSTI)

Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

Heshmatpour, Bahman (Waltham, MA); Heestand, Richard L. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

334

Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks  

SciTech Connect

Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

Cochran, J.R. Shyr, L.J.

1998-10-05T23:59:59.000Z

335

ESTIMATING FATE AND TRANSPORT OF MULTIPLE CONTAMINANTS IN THE VADOSE ZONE USING A MULTI-LAYERED SOIL COLUMN AND THREE-PHASE EQUILIBRIUM PARTITIONING MODEL  

SciTech Connect

Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and contaminate drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminates. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: contaminant decay, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.

Rucker, G

2007-05-01T23:59:59.000Z

336

Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport  

SciTech Connect

Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

Jon Chorover, University of Arizona; Peggy O' €  ™ Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

2012-10-01T23:59:59.000Z

337

A Benchmark Study on Casting Residual Stress  

Science Conference Proceedings (OSTI)

Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast components. This enables incorporation of the residual stresses at the design phase along with external loads for accurate predictions of fatigue and fracture performance of the cast components.

Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

2012-01-01T23:59:59.000Z

338

Enhancements to System for Tracking Radioactive Waste Shipments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users...

339

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site,...

340

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year...

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Information-Sharing Protocol for the Transportation of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Draft for Review Only Information-Sharing for Transportation of Radioactive Waste to Yucca Mountain Office of Logistics Management Office of Civilian Radioactive Waste...

342

Southeast Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Eligibility...

343

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

344

Atlantic Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Eligibility...

345

Public Preferences Related to Consent-Based Siting of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal Public Preferences Related to Consent-Based Siting of Radioactive Waste...

346

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste...

347

European experience in transport / storage cask for vitrified residues  

Science Conference Proceedings (OSTI)

Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN{sup TM}81 casks currently in use in Switzerland and the TN{sup TM}85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN{sup TM}81 and TN{sup TM}85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN{sup TM}81 and the TN{sup TM}85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN{sup TM}28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. In addition, years of feedback and experience in design and operations - together with ever improved materials - have allowed finding further optimization of this type of cask design. In order to increase the loading capacity in terms of radioactive source terms and heat load by 40%, the cask design relies on innovative solutions and benchmarks from the current shipping campaigns. Currently, TN{sup TM}81 and TN{sup TM}85 are the only licensed casks that can transport and store 28 canisters with a total decay heat of 56 kW. It contributes to optimise the number of required transports to bring back high level waste residues to their producers. Three units have already been loaded and transported to ZWILAG (Zwischenlager Wuerenlingen AG) in Switzerland where they are stored for 40 years. Based on the same design but integrating the German Authorities and German users specificities, the TN{sup TM}85 cask is dedicated to the transport and storage of vitrified residues to Germany. It is presently at the final licensing stage. The transport cask approval expertise has now been granted, and the storage expertise is in the final steps. The first transport with TN{sup TM}85 cask is scheduled up to now in 2007 and the commissioning operations are under preparation. These two casks are key elements for the whole reprocessing system of AREVA as they enable the transport and the storage of the vitrified residues. (authors)

Blachet, L.; Otton, C.; Sicard, D. [AREVA TN International (France)

2007-07-01T23:59:59.000Z

348

Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues  

Science Conference Proceedings (OSTI)

This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

Murray, A.M.

1999-02-10T23:59:59.000Z

349

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

350

RECOVERY OF URANIUM VALUES FROM RESIDUES  

DOE Patents (OSTI)

A process is described for the recovery of uranium from insoluble oxide residues resistant to repeated leaching with mineral acids. The residue is treated with gaseous hydrogen fluoride, then with hydrogen and again with hydrogen fluoride, preferably at 500 to 700 deg C, prior to the mineral acid leaching.

Schaap, W.B.

1959-08-18T23:59:59.000Z

351

Costing forest residue recovery through simulation  

Science Conference Proceedings (OSTI)

The search for alternative energy sources has renewed interest in the energy potential of wood. Supplies of wood residue seem to be a likely source of material and the greatest volumes of residue are located in the forest. Methods are needed to more ...

Leonard R. Johnson; Edward L. Fisher

1978-12-01T23:59:59.000Z

352

Analytical Requirements for Petroleum Contaminated Soils  

E-Print Network (OSTI)

Analytical Requirements for Petroleum Contaminated Soils According to 20 NMAC 9.1.704 704. REQUIRED), or other applicable statutes. Page 1 of 1Analytical Requirements for Petroleum Contaminated Soils 4

353

Regulatory Resources for Process Contaminants (3-MCPD)  

Science Conference Proceedings (OSTI)

Regulatory information and references for 3-MCPD(3-Monochloropropane-1,2-diol )process contaminants. Regulatory Resources for Process Contaminants (3-MCPD) 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certifi

354

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

355

Process for treatment of residual gas  

SciTech Connect

A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

Nolden, K.

1980-01-01T23:59:59.000Z

356

Radioactive anomaly discrimination from spectral ratios  

DOE Patents (OSTI)

A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

2013-08-20T23:59:59.000Z

357

Simplified scheme or radioactive plume calculations  

SciTech Connect

A simplified mathematical scheme to estimate external whole-body $gamma$ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and $gamma$ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred. (auth)

Gibson, T.A.; Montan, D.N.

1976-11-21T23:59:59.000Z

358

Natural Contamination from the Mancos Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale Natural Contamination from the Mancos...

359

Measurements and Standards for Contaminants in ...  

Science Conference Proceedings (OSTI)

Measurements and Standards for Contaminants in Environmental Samples. ... Kelly, WR, Long, SE, and Seiber, JR, Standard Reference Materials ...

2013-07-23T23:59:59.000Z

360

Google Earth Tour: How Contaminants Got There  

NLE Websites -- All DOE Office Websites (Extended Search)

Google Earth Tour: How Contaminants Got There Click here to load the tour...then click the play button below...

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

362

Contaminated Outdoor High Voltage Insulators  

Science Conference Proceedings (OSTI)

The external insulation of power lines and outdoor substations is a weak point in transmission systems. The insulation is particularly susceptible to failure if proper attention has not been given to its design, condition monitoring, and maintenance. In regions with high contamination levels, regular maintenance and the application of palliative measures can be critical to ensure that the system meets its outage performance targets. This can involve pure maintenance measures such as cleaning the insulato...

2009-12-22T23:59:59.000Z

363

Geochemistry of the Dakota Formation of Northwestern New Mexico: Relevance to Radioactive Waste Studies  

Science Conference Proceedings (OSTI)

Technical Paper / The Backfill as an Engineered Barrier for Radioactive Waste Management / Radioactive Waste Management

Douglas G. Brookins

364

Enforcement Guidance Supplement 00-01: Enforcement Position Relative to the Discovery/Control of Legacy Contamination  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Appendix E - Operational Procedures for Enforcement May 4, 2000 MEMORANDUM FOR DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 00-01: Enforcement Position Relative to the Discovery/Control of Legacy Contamination Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH-Enforcement) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. On November 24, 1999, I issued a memorandum providing interim clarification on the EH-Enforcement position on legacy radioactive contamination. That memorandum was

365

Hydrogeological influences on radionuclide migration from the major radioactive waste burial sites at Chernobyl (A review)  

Science Conference Proceedings (OSTI)

This paper summarizes the recent hydrogeological investigations of several research organizations on waste confinement at the major radioactive waste (RW) burial sites immediately adjacent to the Chernobyl Nuclear Power Plant (Ch. NPP). Hydrogeological conditions and radiologic ground-water contamination levels are described. Ongoing ground-water monitoring practices are evaluated. The chemical and physical characteristics of the radionuclides within the burial sites are considered. Ground water and radionuclide transport modeling studies related to problems of the RW disposal sites are also reviewed. Current concerns on future impacts of the RW burial sites on the hydrological environment and water resources of the Ch.NPP area are discussed.

Dgepo, S.P.; Skalsky, A.S.; Bugai, D.A.; Marchuk, V.V. [Inst. of Geological Sciences, Kiev (Ukraine); Waters, R.D. [Sandia National Labs., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

366

Using Neutrons to Study Radioactive Materials  

Science Conference Proceedings (OSTI)

Symposium, Applied Neutron Scattering in Engineering and Materials Science Research ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive ...

367

Radioactive materials shipping cask anticontamination enclosure  

DOE Patents (OSTI)

An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

368

Environmental Radioactivity in Greenland in 1981  

E-Print Network (OSTI)

. Measurements of fallout radioactivity in Greenland in 1981 are reported. Strontium-90 (and Cesium-137 in most. INIS Descriptors [0] DEER, DIET, ENVIRONMENT, EXPERIMENTAL DATA, FISHES, POOD CHAINS, GLOBAL FALLOUT

369

Categorical Exclusion Determinations: Civilian Radioactive Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B5.1 Date: 04052011 Location(s): Hot Springs, Arkansas Office(s): Civilian Radioactive Waste Management, Energy Efficiency and Renewable Energy March 25, 2011 CX-005570:...

370

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

371

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record Radioactive materials are carried by road, rail, water, and air. There are strict regulations that originate from the International Atomic Energy Agency (IAEA) which cover the packaging and transportation of radioactive materials. Road Rail Water Air [Road transport] Click to view picture [Rail transport] Click to view picture [Sea transport] Click to view picture [Air transport] Click to view picture 1998 DOE Radioactive Shipments in the United States Out of the 3 million hazardous material shipments are made each year, DOE accounts for less than 1% of all radioactive materials shipments and 75% of the total curies shipped in the United States Ship 0 Train 308

372

Underwater Coatings for Contamination Control  

Science Conference Proceedings (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: · Be easy to apply · Adhere well to the four surfaces of interest · Not change or have a negative impact on water chemistry or clarity · Not be hazardous in final applied form · Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to be applied by divers after scrubbing loose contamination off the basin walls and floors using a ship hull scrubber and vacuuming up the sludge. A special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pool with no airborne contamination problems.

Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

2004-02-01T23:59:59.000Z

373

Vitrification of hazardous and radioactive wastes  

SciTech Connect

Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

Bickford, D.F.; Schumacher, R.

1995-12-31T23:59:59.000Z

374

In situ removal of contamination from soil  

DOE Patents (OSTI)

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

375

Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect

This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

376

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

377

The IAEA and Control of Radioactive SourcesThe  

SciTech Connect

This presentation discusses the International Atomic Energy Agency (IAEA) and the control of radioactive sources.

Dodd, B.

2004-10-03T23:59:59.000Z

378

How to deal with laboratory waste Radioactive waste  

E-Print Network (OSTI)

How to deal with laboratory waste Radioactive waste: Any laboratory waste, whether chemical or biological, containing radioactive material, should be disposed as radioactive waste. Radioactive waste should be removed from the laboratory to the departmental waste area, soon after finishing the experiment

Maoz, Shahar

379

SRP RADIOACTIVE WASTE RELEASES S  

Office of Scientific and Technical Information (OSTI)

. . . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 _- R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e , W i l n i 1 4 W. P. 3ebbii 3 H. Worthington, Wilm 16 C. $?. P~.t-Lei-s~:; - 5 J. D. E l l e t t - 17 E. C. Morris 6 F. H. Endorf 19 3 . L. &tier 7 K. W. F r e n c h 20 bi. C . 3 e i n i g 8 J. K. Lower 2 1 2. 3 . 3 G : - x r 9 K. W. M i l l e t t 22 R . FJ . V 2 x 7 : W ~ ~ C k 1 c - 2 J. B. Tinker, W i h L-, i . c . E?-ens 4 W F i l e P. 3 . K t B U ? & J. A. Monier, Jr. 13. : . A. KcClesrer. 1 0 M. 2 . Wahl . - 23 C. Ashley C. W. J. Wende 24 T I S F i l e 11 J. W. Morris - 2s T'pC File D. E. Waters 26 P3D F i l e , 736-C R. B. Fenninger 33 V l ~ a l Records F i l e 12 W. P. Overbeck - 27 -23 P3D % x : r a Czpies P33 2e:ol.d C ~ p l *iB+ ' / - - & OF THIS DQCUMENT I S UNuMITEI) E. 1. ciu /'(I,\ 7' d

380

RESULTS FOR THE THIRD QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS  

Science Conference Proceedings (OSTI)

The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Third Quarter samples collected from Tank 50 on July 7, 2011 and discusses those results in further detail than the previously issued results report.

Reigel, M.

2011-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RESULTS FOR THE FOURTH QUARTER 2011 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS  

Science Conference Proceedings (OSTI)

The Saltstone Facility is designed and permitted to immobilize and dispose of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site. Low-level waste (LLW) streams from the Effluent Treatment Project (ETP), H-Canyon, and the decontaminated salt solution product from the Actinide Removal Process/Modular Caustic Side Solvent Extraction (CSSX) Unit (ARP/MCU) process are stored in Tank 50 until the LLW can be transferred to the Saltstone Facility for treatment and disposal. The LLW must meet the specified waste acceptance criteria (WAC) before it is processed into saltstone. The specific chemical and radionuclide contaminants and their respective WAC limits are in the current Saltstone WAC. Waste Solidification Engineering (WSE) requested that Savannah River National Laboratory (SRNL) perform quarterly analysis on saltstone samples. The concentrations of chemical and radionuclide contaminants are measured to ensure the saltstone produced during each quarter is in compliance with the current WAC. This report documents the concentrations of chemical and radionuclide contaminants for the 2011 Fourth Quarter samples collected from Tank 50 on October 12, 2011 and discusses those results in further detail than the previously issued results report.

Bannochie, C.

2012-01-31T23:59:59.000Z

382

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

NONE

1996-02-01T23:59:59.000Z

383

Characterization of Pu-contaminated soils from Nuclear Site 201 at the Nevada Test Site  

SciTech Connect

Distribution and characteristics of Pu-bearing radioactive particles throughout five soil profiles from Nuclear Site (NS) 201 were investigated. Concentrations of /sup 239/ /sup 240/Pu and /sup 241/Am decreased with depth and most of the contamination was contained in the top 5 cm except in profile 4 where it extended to 10 cm. The mean activity ratio of /sup 239/ /sup 240/Pu to /sup 241/Am and its standard error were 5.8 +- 0.3 (N=42). Most of the total radioactivity of the soils was contributed by 0.25 to 2 mm sand size fraction which comprised 20 to 50% by weight of the soils. The radioactive particles in the 0.25 to 2 mm size fraction occurred as spherical glass particles or as glass coatings on sand particles. The glass coatings had gas voids in the matrix but were not as porous as the radioactive particles from NS 219. After impact grinding the >0.25-mm size fractions for one hour, 85% of the initial activity in a NS 201 sample remained with the particles on the 0.25 mm sieve, whereas in the NS 219 sample only 10% remained. The results show that the radioactive particles from NS 201 were much more stable against the impact grinding force than those from NS 219. Therefore, the NS 201 soils would be expected to have a lower probability of producing respirable-size radioactive particles by saltation during wind erosion. 19 references, 3 figures, 3 tables.

Lee, S.Y.; Tamura, T.; Larsen, I.L.

1983-01-01T23:59:59.000Z

384

Seismic Imaging of UXO-Contaminated Underwater Sites (Interim Report)  

E-Print Network (OSTI)

Imaging of UXO-Contaminated Underwater Sites” Roland GrittoImaging of UXO-Contaminated Underwater Sites” over the first

Gritto, Roland; Korneev, Valeri; Nihei, Kurt; Johnson, Lane

2004-01-01T23:59:59.000Z

385

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

NONE

1995-09-01T23:59:59.000Z

386

SAR impulse response with residual chirps.  

SciTech Connect

A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

Doerry, Armin Walter

2009-06-01T23:59:59.000Z

387

Gasification of in-Forest Biomass Residues.  

E-Print Network (OSTI)

??Described is a laboratory-scale continuous-feed supercritical water gasification (SCWG) system. The system is operated using real-world Ponderosa Pine sawmill residues at high biomass loadings, short… (more)

Faires, Kenneth B.

2013-01-01T23:59:59.000Z

388

Desiccant contamination research: Report on the desiccant contamination test facility  

DOE Green Energy (OSTI)

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

389

Desiccant contamination research: Report on the desiccant contamination test facility  

SciTech Connect

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01T23:59:59.000Z

390

All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.  

SciTech Connect

A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways to reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the manufacturing company and location. Each category of vehicles was processed individually through the shredder plant and the resulting shredder residue was analyzed for its materials composition and presence of PCBs and leachable metals. The results show that shredder residue from all vehicle categories tested are not significant contributors of PCBs and leachable metals. It was evident that leachable cadmium levels have decreased in newer vehicles. The composition of the shredder residue from each of the four categories is similar to the others. In addition, these compositions are approximately equal to the composition of typical shredder residues, not limited to automotive materials.

Duranceau, C. M.; Spangenberger, J. S. (Energy Systems); (Vehicle Recycling Partnership, LLC); (American Chemistry Counsel, Plastics Division)

2011-09-26T23:59:59.000Z

391

RADIOACTIVE WASTE CONDITIONING, IMMOBILISATION, AND ENCAPSULATION PROCESSES AND TECHNOLOGIES: OVERVIEW AND ADVANCES (CHAPTER 7)  

SciTech Connect

The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

Jantzen, C.

2012-10-19T23:59:59.000Z

392

Hydrogen Contamination of Niobium Surfaces  

DOE Green Energy (OSTI)

The presence of hydrogen is blamed for dramatic reductions in cavity Q's. Hydrogen concentration is difficult to measure, so there is a great deal of Fear, Uncertainty, and Doubt (FUD) associated with the problem. This paper presents measurements of hydrogen concentration depth profiles, commenting on the pitfalls of the methods used and exploring how material handling can change the amount of hydrogen in pieces of niobium. Hydrogen analysis was performed by a forward scattering experiment with Helium used as the primary beam. This technique is variously known as FRES (Forward Recoil Elastic Scattering), FRS, HFS (Hydrogen Forward Scattering), and HRA (Hydrogen Recoil Analysis). Some measurements were also made using SIMS (Secondary Ion Mass Spectrometry). Both HFS and SIMS are capable of measuring a depth profile of Hydrogen. The primary difficulty in interpreting the results from these techniques is the presence of a surface peak which is due (at least in part) to contamination with either water or hydrocarbons. With HFS, the depth resolution is about 30 nm, and the maximum depth profiled is about 300 nm. (This 10-1 ratio is unusually low for ion beam techniques, and is a consequence of the compromises that must be made in the geometry of the experiment, surface roughness, and energy straggling in the absorber foil that must be used to filter out the forward scattered helium.) All the observed HFS spectra include a surface peak which includes both surface contamination and any real hydrogen uptake by the niobium surface. Some contamination occurs during the analysis. The vacuum in the analysis chamber is typically a few times 10{sup -6} torr, and some of the contamination is in the form of hydrocarbons from the pumping system. Hydrocarbons normally form a very thin (less than a monolayer) film which is in equilibrium between arrival rate and the evaporation rate. In the presence of the incoming ion beam, however, these hydrocarbons crack on the surface into non-volatile components. Equilibrium is lost, and the surface builds up a layer of carbon-based gunk.

Viet Nguyen-Tuong; Lawrence Doolittle

1993-10-01T23:59:59.000Z

393

Public involvement in radioactive waste management decisions  

SciTech Connect

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

394

CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect

The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

Marra, J.

2010-05-05T23:59:59.000Z

395

Residual Circulations Due to Bottom Roughness Variability under Tidal Flows  

Science Conference Proceedings (OSTI)

Tidal flows over irregular bathymetry are known to produce residual circulation flows due to nonlinear interaction with gradients of depth. Using the depth-averaged vorticity equations, the generation of residual vorticity and residual flows due ...

Thomas F. Gross; Francisco E. Werner

1994-07-01T23:59:59.000Z

396

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day...

397

The Neutron Residual Stress Mapping Facility at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Residual Stress Mapping Facility at HFIR Neutron Residual Stress Mapping Facility (HB-2B) Neutron Residual Stress Mapping Facility (HB-2B). The HB-2B beam port is optimized...

398

Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory  

SciTech Connect

INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program.

Shaw, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Anderson, B. [General Atomics, San Diego, CA (United States). NRT Div.; Davis, D. [Envitco Inc., Toledo, OH (United States)

1993-07-01T23:59:59.000Z

399

Situ treatment of contaminated groundwater  

DOE Green Energy (OSTI)

A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

2001-01-01T23:59:59.000Z

400

Project Rio Blanco radioactivity and the environment  

SciTech Connect

Data are presented on radiological measurements of the environment and on documenting the transfer to a subsurface disposal well of radioactive water separated from the produced gas stream. Analysis of gas and water through the drilling well control unit revealed the presence of $sup 3$H and $sup 85$Kr in the gas and $sup 3$H, $sup 137$Cs, and $sup 90$Sr in the water. The production test, disposal system, and radiological monitoring system are described. Data on effluents are presented under the headings: gas and water production, radioactivity concentrations in gas, radioactivity concentrations in separator water samples, radioactivity concentrations in injected water volumes, and disposition of radioactivity. Tritium, $sup 39$Ar, $sup 14$C, $sup 85$Kr, and $sup 222$Rn were present in gas. Tritium, $sup 134$CCs, $sup 137$Cs, $sup 90$Sr, $sup 75$Se, and $sup 106$Ru were present in separator water samples. Data on environmental monitoring and RB-AR-2 drilling and testing are presented under the headings air sampling, air moisture and precipitation sampling, soil sampling, water sampling, Fawn Creek sediments and algae/moss samples, bioassays, aerial surveillance, and potential environmental radiation doses. (HLW)

1975-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EA-1120: Solid Residues Treatment, Repackaging and Storage at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado EA-1120: Solid Residues Treatment, Repackaging and Storage...

402

EIS-0277: Management of Certain Plutonium Residues and Scrub...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site EIS-0277: Management of Certain Plutonium Residues and Scrub...

403

Animal Performance and Diet Quality While Grazing Corn Residue.  

E-Print Network (OSTI)

??Grazing cattle on corn residue as a winter feed source has become an integral part of many Nebraska producers’ management plans. Utilizing corn residues extends… (more)

Gigax, Jennifer A

2011-01-01T23:59:59.000Z

404

Potential for biogas production fromslaughter houses residues in Bolivia.  

E-Print Network (OSTI)

?? Residues from slaughter houses offer an abundant resource in Bolivia. The residues can beused for biogas production with biofertilizer as a bi-product. These resources… (more)

Tesfaye Tefera, Tadious

2011-01-01T23:59:59.000Z

405

Method for removing oxide contamination from silicon carbide powders  

DOE Patents (OSTI)

The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

Brynestad, J.; Bamberger, C.E.

1984-08-01T23:59:59.000Z

406

Contamination monitors for nuclear power plants; Plastic scintillators vs. proportional detectors  

SciTech Connect

This paper reports on trends in monitoring for radioactive material (contamination) on or in waste, tools, laundry and personnel at nuclear power stations which have been towards the increased use of large-area gas-flow proportional detectors and large plastic scintillators. Solid plastic scintillators can be made sensitive primarily to beta, gamma only, or both beta and gamma radiation. Proportional detectors can be made sensitive to alpha, beta, or alpha plus beta. They also can detect gamma radiation but with less efficiency than plastic scintillators. Both types of detectors have certain advantages, and the proper choice of detector depends on the application.

Geiger, E.; Phyfe, L. (Eberline Instrument Corp., Santa Fe, NM (US)); Fisher, W. (National Nuclear Corp., Mountain View, CA (US))

1985-07-01T23:59:59.000Z

407

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are the requirements? Safety Record The Agencies that Generate Rules that Promulgate the Transport of Radioactive Materials: Regulations to control the transport of radioactive material were initiated about 1935 by the Postal Service. Over the years, the Interstate Commerce Commission (ICC) became involved and in 1948 promulgated regulations as Title 49 of the Code of Federal Regulations. In 1966, DOT received hazardous materials regulatory authority that had been exercised by the ICC, Federal Aviation Administration (FAA) and United States Costal Guard (USCG). Currently, five groups generate rules governing the transport of radioactive material -- the DOT, NRC, USPS, DOE, and various State agencies. Among these, DOT and NRC are the primary agencies issuing regulations based on the model regulations developed by the International Atomic Energy Agency (IAEA).

408

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are the requirements? What are the requirements? Safety Record Radioactive material has been shipped in the U. S. for more than 50 years with no occurrences of death or serious injury from exposure of the contents of these shipments. Hazardous Material Shipments for 1 Year Internationally 300 million United States 3 million DOE <1% or 5,000 (out of 3 million) [U.S. DOE NTP, 1999, Transporting Radioactive Materials] All radioactive shipments are regulated by the Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC). Since transport accidents cannot be prevented, the regulations are primarily designed to: Insure safety in routine handling situations for minimally hazardous material Insure integrity under all circumstances for highly dangerous materials

409

Excellence in radioactive waste volume reduction  

SciTech Connect

The Brunswick plant is a two-unit boiling water reactor located at the mouth of the Cape Fear River near Wilmington, North Carolina. The plant has a once-through cooling system with highly brackish water. The operations subunit is responsible for liquid radwaste processing. The radiation control subunit is responsible for dry active waste processing and the transportation of all radioactive wast off-site. For the Brunswick plant, the development of an effective radioactive waste volume reduction program was a process involving a tremendous amount of grass-roots worker participation. With radioactive waste responsibilities divided between two separate groups, this process took place on a somewhat different schedule for liquid process waste and dry active waste. However, this development process did not begin until dedicated personnel were assigned to manage radwaste independently of other plant duties.

Henderson, J.

1987-01-01T23:59:59.000Z

410

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

411

Evaluation of the total petroleum hydrocarbon standard for cleanup of petroleum contaminated sites. Master's thesis  

Science Conference Proceedings (OSTI)

This study evaluated the TPH (total petroleum hydrocarbon) cleanup standard for petroleum contaminated soils (PCS). A survey of 13 state regulators was performed to characterize current standards and regulatory viewpoints on the use of a TPH versus a BTEX cleanup standard. The regulatory community considers the BTEX constituents the greatest threat to groundwater, yet expressed concern that the use of a compound specific standard, without an accompanying analysis for TPH, might result in residual soil contamination that may present risk. This study also evaluated the ratio of BTEX TPH in soil over time. Based on JP-4 contaminated site soil data, this study demonstrated that the ratio of BTEX to TPH declines with time. The results indicate that the constant ratio of BTEX to TPH assumed by the California LUFT manual and Stokman and Dime's research is not valid for soils contaminated with JP-4. Lastly, this research identifies the cost savings potential that would result if a BTEX based standard, versus a TPH standard, were required at all Air Force sites. The research shows that only 13% of sites which would require cleanup under a TPH standard would require cleanup under a BTEX based standard. Soil cleanup standards, Petroleum hydrocarbons, Total petroleum hydrocarbons, TPH, Bezene, Toluene, Ethylbenzene, Ethyl-benzene, Xylene, BTEX, Petroleum contamination, JP-4.

Blaisdell, R.A.; Smallwood, M.E.

1993-09-01T23:59:59.000Z

412

Radiological Worker Training - Radiological Contamination Control...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C....

413

Accident Investigation Report Plutonium Contamination in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Investigation Report Plutonium Contamination in the Zero Power Physics Reactor Facility at the Idaho National Laboratory, November 8, 2011 January 2012 Disclaimer...

414

Reclamation of plutonium from pyrochemical processing residues  

Science Conference Proceedings (OSTI)

Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) have jointly developed a process to recover plutonium from molten salt extraction residues. These NaCl, KCL, and MgCl/sub 2/ residues, which are generated in the pyrochemical extraction of /sup 241/Am from aged plutonium metal, contain up to 25 wt % dissolved plutonium and up to 2 wt % americium. The overall objective was to develop a process to convert these residues to a pure plutonium metal product and discardable waste. To meet this objective a combination of pyrochemical and aqueous unit operations was used. The first step was to scrub the salt residue with a molten metal (aluminum and magnesium) to form a heterogeneous ''scrub alloy'' containing nominally 25 wt % plutonium. This unit operation, performed at RFP, effectively separated the actinides from the bulk of the chloride salts. After packaging in aluminum cans, the ''scrub alloy'' was then dissolved in a nitric acid - hydrofluoric acid - mercuric nitrate solution at SRP. Residual chloride was separated from the dissolver solution by precipitation with Hg/sub 2/(NO/sub 3/)/sub 2/ followed by centrifuging. Plutonium was then separated from the aluminum, americium and magnesium using the Purex solvent extraction system. The /sup 241/Am was diverted to the waste tank farm, but could be recovered if desired.

Gray, L.W.; Gray, J.H.; Holcomb, H.P.; Chostner, D.F.

1987-04-01T23:59:59.000Z

415

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Response Effects of Radiation History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Agencies U. S. Department of Transportation (DOT), U. S. Nuclear Regulatory Commission (NRC) Postal Services (USPS) U. S. Department of Energy (DOE), National Conference of State Legislatures - Environment, Energy and Transportation Program, Hazardous and Radioactive Materials International Atomic Energy Agency (IAEA) U. S. Environmental Protection Agency (EPA) Regulations Code of Federal Regulations: Title 10 - Energy Code of Federal Regulations: Title 10, PART 71 - Packaging and Transportation of Radioactive Material Code of Federal Regulations: Title 49 - Transportation Code of Federal Regulations: Title 49, PART 173 - Shippers - General

416

ORISE: University Radioactive Ion Beam Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

UNIRIB UNIRIB Research Overview Physics Topics Equipment Development Education and Training People Publications Overview 2009 Bibliography 2008 Bibliography 2007 Bibliography 2006 Bibliography How to Work With Us Contact Us Oak Ridge Institute for Science Education University Radioactive Ion Beam Consortium The University Radioactive Ion Beam (UNIRIB) consortium is a division of the Oak Ridge Institute for Science and Education (ORISE) focused on cutting-edge nuclear physics research. UNIRIB is a collaborative partnership involving Oak Ridge National Laboratory (ORNL) and nine member universities that leverages national laboratory and university resources to effectively accomplish the U.S. Department of Energy's (DOE) strategic goals in the fundamental structure of nuclei.

417

1969 audit of SRP radioactive waste  

SciTech Connect

This report summarizes releases of radioactive waste to the environs of the Savannah River Plant during the calendar year 1969. Total quantities of radioactive waste released from plant startup through 1969 are also reported. Accuracy is not always implied to the degree indicated by the number of significant figures reported. Values were not rounded off, since data will be used in future cumulative summaries. No explanations are given for unusual releases; this information may be found in the Radiological Sciences Division Monthly Reports and in the Semi-annual and Annual Environmental Monitoring Reports for 1969.

Ashley, C.

1970-04-01T23:59:59.000Z

418

1965 audit of SRP radioactive waste  

SciTech Connect

This report summarizes releases of radioactive waste to the environs of the Savannah River Plant during the calendar year 1965. Total quantities of radioactive waste released from plant startup through 1965 are also reported. Accuracy is not always implied to the degree indicated by the number of significant figures reported. Values were not rounded off, since data will be used in future cumulative summaries. No explanations are given for unusual releases; this information may be found in the Radiological and Environmental Sciences Division Monthly Reports and in the Semi- annual and Annual Environmental Monitoring Reports for 1965.

Ashley, C.

1966-05-01T23:59:59.000Z

419

CRAD, Radioactive Waste Management - June 22, 2009 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Waste Management - June 22, 2009 Radioactive Waste Management - June 22, 2009 CRAD, Radioactive Waste Management - June 22, 2009 June 22, 2009 Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0) The following provides an overview of the typical activities that will be performed to collect information to evaluate the management of radioactive wastes and implementation of integrated safety management. The following Inspection Activities apply to all Inspection Criteria listed below: Review radioactive waste management and control processes and implementing procedures. Interview personnel including waste management supervision, staff, and subject matter experts. Review project policies, procedures, and corresponding documentation related to ISM core function

420

EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emer Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional

Note: This page contains sample records for the topic "residual radioactive contamination" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Radioactive waste management complex low-level waste radiological composite analysis  

Science Conference Proceedings (OSTI)

The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

1998-05-01T23:59:59.000Z

422

Transport of Explosive Residue Surrogates in Saturated Porous Media  

Science Conference Proceedings (OSTI)

Department of Defense operational ranges may become contaminated by particles of explosives residues (ER) as a result of low-order detonations of munitions. The goal of this study was to determine the extent to which particles of ER could migrate through columns of sandy sediment, representing model aquifer materials. Transport experiments were conducted in saturated columns (2 x 20 cm) packed with different grain sizes of clean sand or glass beads. Fine particles (approximately 2 to 50 {mu}m) of 2,6-dinitrotoluene (DNT) were used as a surrogate for ER. DNT particles were applied to the top 1 cm of sand or beads in the columns, and the columns were subsequently leached with artificial groundwater solutions. DNT migration occurred as both dissolved and particulate phases. Concentration differences between unfiltered and filtered samples indicate that particulate DNT accounted for up to 41% of the mass recovered in effluent samples. Proportionally, more particulate than dissolved DNT was recovered in effluent solutions from columns with larger grain sizes, while total concentrations of DNT in effluent were inversely related to grain size. Of the total DNT mass applied to the uppermost layer of the column, <3% was recovered in the effluent with the bulk remaining in the top 2 cm of the column. Our results suggest there is some potential for subsurface migration of ER particles and that most of the particles will be retained over relatively short transport distances.

Lavoie, Bethsheba [ORNL; Mayes, Melanie [ORNL; McKay, Larry Donald [ORNL

2011-01-01T23:59:59.000Z

423

System and method for measuring residual stress  

DOE Patents (OSTI)

The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.

Prime, Michael B. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

424

In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing  

E-Print Network (OSTI)

This thesis addresses the problem of removal of Naturally Occurring Radioactive Materials, NORM, and describes an effective alternative to the current treatment method for their removal. High-pen-meability fracturing, recently established in the petroleum industry, is the recommended technique. NORM are found throughout subterranean formations. Whenever fluids from petroleum or water reservoirs are produced NORM are present in varying quantities. NORM can only be sensed with radiation detectors. However, they have proven carcinogens, and the US Environmental Protection Agency has set a limit on the maximum contaminated level of any stream. Until now, the preferred method of treatment was to remove NORM from contaminated waters with specially designed filters, which in turn create a new problem. The same filters that are used to treat the water themselves become highly radioactive with a considerable disposal problem. In the petroleum industry, NORM become concentrated in the scale that is deposited inside the well or surface pipes. When scale is removed, it can be so radioactive that it can only be stored in toxic sites. Additionally, as water is produced along with oil, so are NORM. Until now, for the Gulf of Mexico at least, produced water has been released into the ocean, but the Environmental Protection Agency (EPA) is threatening to change this. In the North Sea the regulations are already stricter. There is then a compelling motivation to remove NORM before they are produced, and thus, eliminate the disposal problem. A high-permeability fracture design is presented which modifies existing petroleum practices by introducing within the proppant pack highly selective radionuclide sorbents. These sorbents, at calculated concentrations, can remove NORM readily for several years from typical flow rates containing typical NORM concentrations.

Demarchos, Andronikos Stavros

1998-01-01T23:59:59.000Z

425

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

426

Reactive transport modelling of the interaction of fission product ground contamination with alkaline and cementitious leachates  

Science Conference Proceedings (OSTI)

The fission products Cs-137 and Sr-90 are amongst the most common radionuclides occurring in ground contamination at the UK civil nuclear sites. Such contamination is often associated with alkaline liquids and the mobility of these fission products may be affected by these chemical conditions. Similar geochemical effects may also result from cementitious leachate associated with building foundations and the use of grouts to remediate ground contamination. The behaviour of fission products in these scenarios is a complex interaction of hydrogeological and geochemical processes. A suite of modelling tools have been developed to investigate the behaviour of a radioactive plume containing Cs and Sr. Firstly the effects of sorption due to cementitious groundwater is modelled using PHREEQC. This chemical model is then incorporated into PHAST for the 3-D reactive solute transport modeling. Results are presented for a generic scenario including features and processes that are likely to be relevant to a number of civil UK nuclear sites. Initial results show that modelling can be a very cost-effective means to study the complex hydrogeological and geochemical processes involved. Modelling can help predict the mobility of contaminants in a range of site end point scenarios, and in assessing the consequences of decommissioning activities. (authors)

Kwong, S.; Small, J. [Nexia Solutions Ltd, The British Technology Centre, Sellafield, Seascale, CA20 1PG (United Kingdom)

2007-07-01T23:59:59.000Z

427

Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport  

Science Conference Proceedings (OSTI)

Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; Oà ƒ  ¢Ã ‚  € à ‚  ™ Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

2012-11-05T23:59:59.000Z

428

Radiological engineering services for the design of special contamination containments. Final report  

SciTech Connect

The purpose of this study was to provide radiological engineering services for the design of special contamination containments. These containments were to be used during the replacement of leaking and damaged gaskets on the glove boxes in Technical Area-55 (TA-55). The damaged gaskets involved 18 windows and 5 interconnecting spool pieces in fuel processing glove boxes. The work scope included the design and manufacture of special contamination containment enclosures (containments), the preparation of procedures and tool lists to support gasket replacement while using the containments, and the training of appropriate TA-55 personnel in the proper installation, operation and removal of the containments. It was originally anticipated that two basic containment designs would be required, one for the windows and one for spool pieces. Upon examination of the glove boxes it was evident that the individual space envelopes and interferences associated with each glove box would require uniquely designed containments for effective gasket replacement. This resulted in 13 individual containment designs that accommodated the interferences and allowed gasket replacement within the containment. Successful use of the containments for glove box gasket replacement was a significant accomplishment. The operation has proven that a properly managed containment program can enhance routine maintenance of the glove boxes while preventing a contamination release. The ability to perform these operations in containments reduces costs by preventing a contaminant release and eliminating the associated cleanup expenses, reduced radioactive waste and fuel processing down time.

NONE

1996-12-31T23:59:59.000Z

429

A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL  

SciTech Connect

This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

Arrenholz, D.A.; Knight, J.L.

1991-08-01T23:59:59.000Z

430

Development of the Flow Sheet for Incinerating Contaminated Combustible Waste  

SciTech Connect

One of the major problems inherent in any work associated with radioactivity is the disposal of material comtaminated with activity by such work. Biological investigations have shown that this material, unless contaminated to an insignificant degree, cannot be indiscriminately discharged to the plant environment without some hazard to humans, either directly or indirectly. These materials may be in the liquid, solid, or gas form. No radioactive material of gaseous nature has been encountered at Mound Laboratory. In regard to liquid wastes, a process has been in service here for several years which satisfactorily decontaminated these wastes at this laboratory and concentrates the activity originally contained therein to a very small percentage of the original volume. Solid wastes, however, accumulate daily in large amount throughout this site, and these, along with the liquid waste concentrates (in solid form), are package and shipped several hundred miles to a national burial ground. Because the amounts of solid waste sent to burial represent large volumes (thousands of cubic feet annually), research was initiated to determine methods for concentrating this material to reduce the quantity requiring burial. The largest percentage of this material by far is combustible, and for this reason an incineration process was fully investigated in this connection. This process involves the incineration of the waste, the decontamination of the flue gas by a wet process, and the transfer of the contaminated incinerator ash, fly-ash, and soot particles in water, to the liquid waste process for further concentration. This investigation and its outcome is covered by this report; the small percentage of noncombustible solid waste presents a separate problem and is not discussed here. This report serves as a recommendation that a full-scale incineration process be installed at Mound Laboratory and provides a complete flow sheet for this process and recommended designs for the critical parts of the processing equipment. It contains a justification for the process, a history of the investigation including early work and pilot plant results, and explanation of the values and information given in the flow sheet, and the reasons for the recommended design features.

McEwen, M.; Schauer, P. J.; Aponyi, T.

1951-05-15T23:59:59.000Z

431

Alternatives for the disposal of NORM (naturally occurring radioactive materials) wastes in Texas  

SciTech Connect

Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios.

Nielson, K.K.; Rogers, V.C. (Rogers Associates Engineering Corporation, Salt Lake City, UT (USA)); Pollard, C.G. (Texas Low-Level Radioactive Waste Disposal Authority, Austin (USA))

1989-11-01T23:59:59.000Z

432

Study on Residual Current Protective Strategy Based on Network  

Science Conference Proceedings (OSTI)

Residual current protective devices play an important role in electrical safety engineering. When dangerous residual current occurs, automatic disconnection of power supply can prevent dangerous residual currents which may cause burns, fires and electrocution. ... Keywords: residual current device, discrimination protection, fieldbus, protective strategy

Yue Dawei; Li Kui; Wang Yao; Wang Jibo

2009-11-01T23:59:59.000Z

433

Dismantling an alpha-contaminated facility  

SciTech Connect

The difficult task of removing large pieces of highly contaminated equipment from an obsolete plutonium-239 facility was completed in a seven-month operation that included structural alteration of the process building. Detailed job planning, job execution and contamination control were major factors in accomplishing the task. (auth)

Caldwell, R.D.; Harper, R.M.

1975-09-01T23:59:59.000Z

434

Method of removing oxidized contaminants from water  

DOE Patents (OSTI)

The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

1998-07-21T23:59:59.000Z

435

Method of removing oxidized contaminants from water  

DOE Patents (OSTI)

The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-b