Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Liquefied Gas Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Gas Tax to Liquefied Gas Tax to someone by E-mail Share Alternative Fuels Data Center: Liquefied Gas Tax on Facebook Tweet about Alternative Fuels Data Center: Liquefied Gas Tax on Twitter Bookmark Alternative Fuels Data Center: Liquefied Gas Tax on Google Bookmark Alternative Fuels Data Center: Liquefied Gas Tax on Delicious Rank Alternative Fuels Data Center: Liquefied Gas Tax on Digg Find More places to share Alternative Fuels Data Center: Liquefied Gas Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Gas Tax A use tax of $0.14 per gallon is imposed on liquefied gas used for operating motor vehicles on public highways in addition to a pre-paid annual vehicle tax according to the following: Maximum Gross Vehicle Weight Rating Tax

2

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) License to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Petroleum Gas (Propane) License

3

Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas (LNG) Measurement to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Natural Gas (LNG) Measurement LNG is taxed based on the gasoline gallon equivalent, or 6.6 pounds of LNG

4

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

5

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on

6

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

7

Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas (LNG) and Propane Tax and User Permit to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on AddThis.com...

8

Compressed natural gas and liquefied petroleum gas as alternative fuels  

Science Conference Proceedings (OSTI)

The use of alternative fuels in the transportation industry has gained a strong support in recent years. In this paper an attempt was made to evaluate the use of liquefied petroleum gas (LPG) and compressed natural gas (NG) by 25 LPG-bifuel and 14 NG-bifuel vehicles that are operated by 33 transit systems throughout Nebraska. A set of performance measures such as average fuel efficiency in kilometers per liter, average fuel cost per kilometer, average oil consumption, and average operation and maintenance cost for alternatively fueled vehicles were calculated and compared with similar performance measures of gasoline powered vehicles. The results of the study showed that the average fuel efficiency of gasoline is greater than those of LPG and NG, and the average fuel costs (dollars per kilometer) for LPG and NG are smaller than those for gasoline for most of the vehicles under this study.

Moussavi, M.; Al-Turk, M. (Univ. of Nebraska, Omaha, NE (United States). Civil Engineering Dept.)

1993-12-01T23:59:59.000Z

9

Alternative Fuels Data Center: Liquefied Natural Gas Allows for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

its entire diesel refuse-hauler fleet to clean-burning liquefied natural gas (LNG). The fleet worked with Sacramento Clean Cities, the local air district, and other...

10

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

11

Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities  

SciTech Connect

The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy`s Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques.

Gray, H.E.

1993-09-01T23:59:59.000Z

12

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

DOE Green Energy (OSTI)

The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

Not Available

1980-10-01T23:59:59.000Z

13

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect

This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

1980-10-01T23:59:59.000Z

14

Impact of Liquefied Natural Gas usage and payload size on Hybrid Wing Body aircraft fuel efficiency  

E-Print Network (OSTI)

This work assessed Hybrid Wing Body (HWB) aircraft in the context of Liquefied Natural Gas (LNG) fuel usage and payload/range scalability at three scales: H1 (B737), H2 (B787) and H3 (B777). The aircraft were optimized for ...

Mody, Pritesh (Pritesh Chetan)

2010-01-01T23:59:59.000Z

15

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

DOE Green Energy (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

16

Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report  

DOE Green Energy (OSTI)

Alternative fuels may be an effective means for decreasing America's dependence on imported oil; creating new jobs; and reducing emissions of greenhouse gases, exhaust toxics, and ozone-forming hydrocarbons. However, data regarding in-use fuel economy and maintenance characteristics of alternative fuel vehicles (AFVs) have been limited in availability. This study was undertaken to compare the operating and maintenance characteristics of bi-fuel vehicles (which use liquefied petroleum gas, or propane, as the primary fuel) to those of nominally identical gasoline vehicles. In Texas, liquefied petroleum gas is one of the most widely used alternative fuels. The largest fleet in Texas, operated by the Texas Department of Transportation (TxDOT), has hundred of bi-fuel (LPG and gasoline) vehicles operating in normal daily service. The project was conducted over a 2-year period, including 18 months (April 1997-September 1998) of data collection on operations, maintenance, and fuel consumption of the vehicles under study. This report summarizes the project and its results.

Huang, Y.; Matthews, R. D.; Popova, E. T.

1999-05-24T23:59:59.000Z

17

Operation of an aircraft engine using liquefied methane fuel  

SciTech Connect

The operation of a reciprocating aircraft engine on methane fuel is demonstrated. Since storage of the methane fuel in the gaseous state would impractical for a flight fuel system, a liquid storage system was used. System valving was configured to deliver only liquid methane to the engine supply line. The equipment description includes photo and diagram illustrations of the liquid methane storage dewar, and photos of the methane heat exchanger, pressure regulator and air-fuel mixer. The engine test results are presented for gasoline and methane in terms of RPM, horsepower, fuel flow, specific energy consumption and standard conditions horsepower. Conclusions include the finding that conversion of an aircraft reciprocating engine to operate on liquified methane is possible with very satisfactory results.

Raymer, J.A.

1982-01-01T23:59:59.000Z

18

Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996  

SciTech Connect

This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

Atallah, S.; Janardhan, A.

1996-02-01T23:59:59.000Z

19

Crop residues as feedstock for renewable fuels  

Science Conference Proceedings (OSTI)

Nutrient removal and net costs weigh on decisions to use crop residues as biofuel feedstocks. Crop residues as feedstock for renewable fuels Inform Magazine Biofuels and Bioproducts and Biodiesel Inform Archives Crop residues as feedstock for rene

20

Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; Hathaway, W.T.; Kangas, R.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Liquefied gaseous fuels safety and environmental control assessment program: third status report  

Science Conference Proceedings (OSTI)

This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

Not Available

1982-03-01T23:59:59.000Z

22

U.S. Residual Fuel Oil Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

23

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

24

State of California BOARD OF EQUALIZATION USE FUEL TAX REGULATIONS Regulation 1322. CONSUMPTION OF LIQUEFIED PETROLEUM GAS IN VEHICLES FUELED  

E-Print Network (OSTI)

Users who operate motor vehicles powered by liquefied petroleum gas supplied directly to the engine from the cargo tank of the motor vehicle are authorized for the purpose of making tax returns to compute the gallons used on a mileper-gallon basis. The mile-per-gallon basis will be determined by tests. The tests will be made by the user and will be subject to review by the Board. All detail and test data should be retained for inspection by the Board. This method of computing use is authorized only for the purpose of making tax returns. Determinations may be imposed or refunds granted, if the Board upon audit of the user’s accounts and records, or upon the basis of tests made or other information determines that the return did not disclose the proper amount of tax due. See Regulation 1332 with respect to records on those motor vehicles powered by fuel not supplied directly to the

unknown authors

1963-01-01T23:59:59.000Z

25

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources of energy are conventional fuels such as oil, natural gas and coal. The most apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated at landfills can serve as a source of cleaner energy. LFG has substantial energy generation potential and, if cleaned of certain impurities, can be used for several applications such as electricity generation and conversion to high Btu gas. This thesis considers another application of LFG, which consists of using it as a vehicular fuel for refuse trucks. Currently, limited research has been performed on the development of such a methodology to evaluate the application of LFG as a vehicular fuel for refuse truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas generation process at a landfill by using standard models developed by the Environmental Protection Agency. The operations of a refuse truck fleet are replicated by using generic drive cycles developed as part of this research. The economic feasibility is evaluated by estimating the costs required for cleaning the LFG and converting the truck fleet from diesel to LNG as well as quantifying the benefits obtained due to change in fuel consumption and emission generation by the refuse trucks. The methodology was applied to a potential landfill in Texas. The results show that the methodology offers an innovative tool that allows the stakeholders to evaluate the economic feasibility of using LFG for refuse truck operations. The methodology also provides a flexible framework wherein each component can be changed or tailored to meet the specific needs of the stakeholders.

Gokhale, Bhushan

2006-12-01T23:59:59.000Z

26

Natural gas liquefier for vehicle fuel. Interim report, January-December 1994  

SciTech Connect

This project was a continuation and refinement of a feasibility prototype natural gas liquefier that had been designed, fabricated, and tested under a U.S. Department of Energy (DoE) Small Business Innovation Research (SBIR) contract. Extensive performance testing was conducted to characterize the natural gas liquefier refrigeration capability and to collect data for diagnostic purposes. Analysis of the effectiveness of the regenerator concluded that the current design would require substantial empirical iterations. The final prototype with a design target of 1,000 Watts (W) refrigeration was able to achieve only 400 W of refrigeration, projected to 550 W at a higher charge pressure. Recommendations are made for further testing, analysis, and correlation to achieve a better optimized regenerator design for a second generation prototype natural gas liquefier.

Owens, E.C.; Kohuth, K.R.

1995-03-01T23:59:59.000Z

27

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

28

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day...

29

Residual Fuel Demand - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In the 1986 to 1991 period, residual fuel oil demand declined only slightly both in absolute and as a percent of total product demand. While not shown, residual fuel ...

30

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

31

Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

represent selected fuel economy data.) ...11 Figure 4. Monthly purchase prices of gasoline and LPG (Note: the price of LPG was higher in the Corpus district than...

32

liquefied natural gas LNG | OpenEI  

Open Energy Info (EERE)

liquefied natural gas LNG liquefied natural gas LNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

33

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

34

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

35

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

36

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

37

REACTOR FUEL WASTE DISPOSAL PROJECT PRESSURE-TEMPERATURE EFFECT ON SALT CAVITIES AND SURVEY OF LIQUEFIED PETROLEUM GAS STORAGE  

SciTech Connect

It is deemed feasible to store reactor fuel wastes in a salt dome cavity to a depth where the differential in pressure between the soil over-burden pressure and pressure of the fluid inside the cavity does not exceed 3000 psi, and the temperature is less than 400 deg F. Tests at pressure increments of 1000 psi were conducted on a 2" cylindrical cavity contained in a 6-in. long by 6-in. cylindrical salt core. Tests indicate that the cavity exhibited complete stability under pressures to 3000 psi and temperatures to 300 deg F. At temperatures of 100 to 400 deg F and pressures to 5000 psi continuous deformation of the cavity resulted. Initial movement of the salt was observed at all pressures. This was evidenced by vertical deformation and cavity size reduction. It was noted that a point of structural equilibrium was reached at lower temperatures when the pressure did not exceed 5000 psi. A literature study reveals that the most common type of cavity utilized in liquefied petroleum gas storage is either cylindrical or ellipsoidal. A few are pear or inverted cone shaped. There was no indication of leakage for cavities when pressure tested for as long as 72 hr. This indicates that the salt mass is not permeable under conditions of prevailing underground temperature and pressure. Salt specimens tested under atmospheric Pressure and temperature exhibited permeabilities of 0.1 to 0.2 millidarcys. The cost of completing underground storage cavities in salt masses is expected to be approximately 05 per barrel of storage space. (auth)

Brown, K.E.; Jessen, F.W.; Gloyna, E.F.

1959-01-15T23:59:59.000Z

38

Liquefied Natural Gas (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Public Safety This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling,

39

Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search...

40

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

42

Ohio Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Imports of Residual Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2000: 0: 0: 0: 0: 0: 108: 0: 0: 0: 0: 0: 27: 2001: 0: 44 ...

43

Case Study - Liquefied Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Environmental Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of incinerator waste with two fills per day. This is a workable fit for the limited range LNG trucks. Reduction of fuel costs and harmful emissions relative to the replaced trucks are significant. Introduction The American Recovery and Reinvestment Act legislation

44

Residual fuel outlook - 1981 through 1995. Final report  

SciTech Connect

This report forecasts the future availability of residual fuel and its implications to the marine industry. The results are based on the completion of three separate tasks. The first examines past trends and recent developments in worldwide supply and demand markets for residual and other fuels, while the second investigates upgrading and expansion activities by the refining industry. The combination of these efforts produces an overview of the worldwide residual market and a complete understanding of refiners' economic and technical decision factors determining final product mix production. The last task utilizes information gained in previous tasks to review available longterm forecasts and their underlying assumptions. The forecasts completed by the National Petroleum Council (NPC) were utilized for a depiction of residual availability in 1985, while the Department of Energy's (DOE) Midterm Energy Forecasting System (MEFS) was utilized and adjusted to provide estimates of residual availability in 1990 and 1995.

Varndell, T.B.

1982-03-01T23:59:59.000Z

45

Crop residues as a fuel for power generation  

DOE Green Energy (OSTI)

Crop residues could serve as an alternative energy source for producing electric power and heat in agricultural regions of the United States. Nearly 2 quads of residues are estimated to be available as a sustainable annual yield. These can substitute for up to one quad of conventional fuels used to generate electricity and up to an additional quad of petroleum and natural gas currently used for producing heat. The most promising routes to residue conversion appear to be regional generators sized in the megawatt range, and the mixing of residues with coal for burning in coal power plants. Costing farmers from $0.70 to $1.25 per million Btu, to harvest and prepare for use as a fuel, residues can be a competitive renewable energy supply.

Bhagat, N.; Davitian, H.; Pouder, R.

1979-07-01T23:59:59.000Z

46

Diesel engine lubrication with poor quality residual fuel  

Science Conference Proceedings (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

47

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

48

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

49

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network (OSTI)

hydrogen, LPG = liquefied petroleum gases. 1) The gasolinegas; LPG = liquefied petroleum gases; cell. = cellulosic; EV177 Other petroleum fuel sulfur

Delucchi, Mark

2005-01-01T23:59:59.000Z

50

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

hydrogen, LPG = liquefied petroleum gases. 1) The gasolinegas; LPG = liquefied petroleum gases; cell. = cellulosic; EV177 Other petroleum fuel sulfur

Delucchi, Mark

2005-01-01T23:59:59.000Z

51

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

2,393.2 702.7 3,804.5 3,037.5 W 134.0 See footnotes at end of table. 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District 352 Energy Information Administration ...

52

Residual fuel consumption in the U.S. continues to decline - Today ...  

U.S. Energy Information Administration (EIA)

Crude oil , gasoline, heating ... in the late 1970s, demand for residual fuel oil in the United ... Changes on both the residual fuel supply and demand side of the ...

53

Performance and emission studies on biodiesel-liquefied petroleum gas dual fuel engine with exhaust gas recirculation  

Science Conference Proceedings (OSTI)

Biodiesel is an alternative fuel to diesel derived from vegetable oils by transesterification process. It can be used in diesel engines with/without any modification in the engine system. Biodiesel engines emit slightly higher NO x emissions

A. S. Ramadhas; S. Jayaraj; C. Muraleedharan

2010-01-01T23:59:59.000Z

54

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Gasoline and Diesel Fuel Update (EIA)

Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History Residual Fuel Oil 11,012.1 9,799.5 9,875.4 10,018.0 9,930.4 9,430.3 1983-2013 Sulfur Less Than or Equal to 1% 3,072.6 2,251.1...

55

Magnetic liquefier for hydrogen  

DOE Green Energy (OSTI)

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31T23:59:59.000Z

56

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

57

Federal Tax Credits for Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

of the following alternative fuels: Compressed natural gas (CNG) Liquefied natural gas (LNG) Liquefied petroleum gas (LPG) Hydrogen Any liquid at least 85% methanol by volume...

58

Fuel gas production from animal residue. Dynatech report No. 1551  

DOE Green Energy (OSTI)

A comprehensive mathematical model description of anaerobic digestion of animal residues was developed, taking into account material and energy balances, kinetics, and economics of the process. The model has the flexibility to be applicable to residues from any size or type of animal husbandry operation. A computer program was written for this model and includes a routine for optimization to minimum unit gas cost, with the optimization variables being digester temperature, retention time, and influent volatile solids concentration. The computer program was used to determine the optimum base-line process conditions and economics for fuel gas production via anaerobic digestion of residues from a 10,000 head environmental beef feedlot. This feedlot at the conditions for minimum unit gas cost will produce 300 MCF/day of methane at a cost of $5.17/MCF (CH/sub 4/), with a total capital requirement of $1,165,000, a total capital investment of $694,000, and an annual average net operating cost of $370,000. The major contributions to this unit gas cost are due to labor (37 percent), raw manure (11 percent), power for gas compression (10 percent), and digester cost (13 percent). A conceptual design of an anaerobic digestion process for the baseline conditions is presented. A sensitivity analysis of the unit gas cost to changes in the major contributions to unit gas cost was performed, and the results of this analysis indicate areas in the anaerobic digestion system design where reasonable improvements could be expected so as to produce gas at an economically feasible cost. This sensitivity analysis includes the effects on unit gas cost of feedlot size and type, digester type, digester operating conditions, and economic input data.

Ashare, E.; Wise, D.L.; Wentworth, R.L.

1977-01-14T23:59:59.000Z

59

liquefied petroleum gas | OpenEI  

Open Energy Info (EERE)

3 3 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288523 Varnish cache server liquefied petroleum gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

60

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

62

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

63

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

64

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

65

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

66

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

67

Ohio Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

68

Wisconsin Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

69

Michigan Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

70

Vermont Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

71

Midwest (PADD 2) Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

72

Thermoacoustic natural gas liquefier  

SciTech Connect

In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

Swift, G.W. [Los Alamos National Lab., NM (United States)

1995-06-01T23:59:59.000Z

73

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

74

Wood Residues as Fuel Source for Lime Kilns  

E-Print Network (OSTI)

One of the main obstacles to total energy self sufficiency of kraft mills appears to be the fossil fuel requirements of the lime kilns. If an economical technology can be developed which allows fossil fuel to be replaced in whole or in part by wood-based fuel, the savings in fossil fuel by the pulp and paper industry would be very substantial. Our study focuses around the direct in-situ combustion of hog fuel fed from the cold feed end in order to substantially reduce the fossil fuel fired from the hot product discharge end of the lime kiln. Thus far we have carried out two series of tests using two different pilot-scale kilns and dry limestone in the first test series and mill produced lime mud in the second test series. Mill scale trials have just been completed and the preliminary results indicate that our approach is potentially a very cost-effective and simple option to substantially reduce or possibly eliminate fossil-fuel usage in lime kilns.

Azarniouch, M. K.; Philp, R. J.

1984-01-01T23:59:59.000Z

75

Liquefied Natural Gas Safety Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

| May 2012 | May 2012 Liquefied Natural Gas (LNG) Safety Research | Page 1 Liquefied Natural Gas Safety Research Report to Congress May 2012 United States Department of Energy Washington, DC 20585 Department of Energy | May 2012 Liquefied Natural Gas (LNG) Safety Research | Page i Message from the Assistant Secretary for Fossil Energy The Explanatory Statement accompanying the Consolidated Appropriations Act, 2008 1 and the House Report on the House of Representatives version of the related bill 2 requested the Department of Energy to submit a report to Congress addressing several key liquefied natural gas (LNG) research priorities. These issues are identified in the February 2007 Government Accountability Office Report (GAO Report 07-316), Public Safety Consequences of a Terrorist

76

Liquefied Natural Gas: Understanding the Basic Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts More Documents &...

77

Liquefied Petroleum Gases  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

78

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

79

Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania)...  

Open Energy Info (EERE)

motor fuels and fuel systems are compressed and liquefied natural gas, ethanol (E85), methanol (M85), hydrogen, hythane, electricity, fuels from biological materials or...

80

Methods for assessing the stability and compatibility of residual fuel oils  

SciTech Connect

The declining quality of residual fuel oil is of significant concern to residual fuel oil users in the electric utility industry. This project was concerned with the specific problems of instability (sediment formation or viscosity increases) and incompatibility (formation of sediment on blending with another fuel or cutter stock) which can adversely affect the fuel storage and handling systems. These problems became more severe in the late 70's and early 80's with the decline in quality of refinery feedstocks and an increase in severity of processing for conversion of resid to distillate products. Current specifications and quality control tests are inadequate to prevent or even predict problems due to instability or incompatibility. The objective of this project was to evaluate/develop rapid simple tests which utilities can use to anticipate and prevent problems from instability/incompatibility. 22 refs., 23 figs., 23 tabs.

Anderson, R.P.; Reynolds, J.W. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Molecular gas in early-type galaxies: Fuel for residual star formation  

E-Print Network (OSTI)

Abstract: Molecular gas in early-type galaxies: Fuel for residual star formation Timothy A. Davis Survey 2. The ATLAS3D CARMA Survey 3. Kinematic Misalignments 4. Origin of the molecular gas The ATLAS3D results: - 23% of early-type galaxies have significant molecular gas reservoirs - Detection rate

Bureau, Martin

82

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

Not available. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

83

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

No data reported. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

84

Measuring Devices: Liquefied Petroleum Gas Liquid ...  

Science Conference Proceedings (OSTI)

Liquefied Petroleum Gas Liquid-Measuring Devices. Intro about it. EPOs, Field Manual, Training Materials & Presentaions, Newsletter Articles, Other ...

2010-10-05T23:59:59.000Z

85

Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes  

SciTech Connect

A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs.

Forsberg, C.W.

1997-03-01T23:59:59.000Z

86

Liquefied natural gas. [177 Citations  

SciTech Connect

The bibliography on liquefied natural gas contains 177 citations under the following headings: thermodynamic and other properties of methane; phase equilibria of methane; other properties of methane mixtures; liquefaction, separation, and regasification; peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transportation; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; patents; energy, and SNG.

1978-01-01T23:59:59.000Z

87

Modernizing helium liquefier G-3  

SciTech Connect

The authors describe the process for modernizing the existing liquefier with minimum alteration of its cooling block, that liquefier being helium expansion-type liquefier G-3, made at the Institute of Physical Problems, Academy of Sciences of the USSR, which operates at a stable output of 40 liters/h. A nitrogen tank and a pistontype expander in the preliminary cooling stages and a throttle in the liquefaction stages are used in G-3. Improving the efficiency of such a cooling cycle is limited by the fact that the optimal parameters of throttle stage of liquefaction do not match with the optimal parameters of the expander in the preliminary cooling stages. Thus, for improving cycle efficiency the pressure in the preliminary stages must be increased but reduced in the liquefaction stage. This paper also presents the solution to this problem. It is further demonstrated that the use of vapor-liquid expander in the liquefaction stage of helium cooling cycle helps increase the output of the unit by 40% in a relatively simple way.

Golikov, G.E.; Danilov, I.B.

1985-02-01T23:59:59.000Z

88

Microstructure, residual stress, and mechanical properties of thin film materials for a microfabricated solid oxide fuel cell  

E-Print Network (OSTI)

The microstructure and residual stress of sputter-deposited films for use in microfabricated solid oxide fuel cells are presented. Much of the work focuses on the characterization of a candidate solid electrolyte: Yttria ...

Quinn, David John, Sc. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

89

Process for preparing a liquid fuel composition  

SciTech Connect

A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

Singerman, Gary M. (Monroeville, PA)

1982-03-16T23:59:59.000Z

90

Liquefied Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6 Tcf by 2035. Currently, most of the demand for natural gas in the United States is met with domestic production and imports via pipeline from Canada. A small percentage of gas supplies are imported and received as liquefied natural gas. A significant portion of the world's natural gas resources are

91

U.S. Liquefied Natural Gas Outlook  

Reports and Publications (EIA)

Presented by: Mark RodekohrPresented to: 14th International Conference on Liquefied Natural GasDoha, QatarMarch 23, 2004

Information Center

2004-03-24T23:59:59.000Z

92

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Annual Energy Outlook 2012 (EIA)

3,173.3 2,917.4 2,860.6 2,583.8 3,410.3 2,073.8 1983-2012 Sulfur Greater Than 1% 5,046.1 6,554.0 6,931.4 8,130.3 8,790.3 6,759.3 1983-2012 No. 4 Fuel Oil 260.4 152.5 121.3 W 103.7...

93

,"U.S. Residual Fuel Oil Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_c_nus_eppr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_c_nus_eppr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

94

Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

95

San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet)...

96

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

97

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

98

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

99

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

100

Price of Lake Charles, LA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

102

Price of Elba Island, GA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet)...

103

Energy Department Approves Gulf Coast Exports of Liquefied Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas May 20, 2011 - 1:00pm Addthis...

104

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

105

DOE Initiates Series of Liquefied Natural Gas Public Education...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Initiates Series of Liquefied Natural Gas Public Education Forums DOE Initiates Series of Liquefied Natural Gas Public Education Forums February 15, 2006 - 11:52am Addthis...

106

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

107

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

108

Energy Department Approves Gulf Coast Exports of Liquefied Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas May 20, 2011 - 12:00am Addthis...

109

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade...

110

Buffalo, NY Liquefied Natural Gas Exports to Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Buffalo, NY Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Buffalo, NY Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Decade...

111

2011 Summer Transportation Fuels Outlook  

U.S. Energy Information Administration (EIA)

Key factors driving the short-term outlook. 2011 Summer Transportation Fuels Outlook. 2 • Disruption of crude oil and liquefied natural gas supply from

112

Addendum to methods for assessing the stability and compatibility of residual fuel oils  

Science Conference Proceedings (OSTI)

An improved method for predicting the compatibility or incompatibility which will result on the blending of two or more residual fuel oils is presented. Incompatability (formation of sludge on blending of two fuels) results when the solvency power of a blend is inadequate to keep asphaltenes in solution. Prediction and thereby prevention of incompatibility requires the use of two fuel parameters. One is a measure of solvency power (i.e.,aromaticity); an adequate measure is the Bureau of Mines Correlation Index (BMCI). The second parameter required is a measure of solvency required to completely dissolve the asphaltenes. This parameter is the toluene equivalence which is expressed as the minimum percent of toluene which is required in a toluene/heptane blend to completely dissolve the asphaltene. In earlier work, complete solubility was determined by a spot test. That method was a tedious trial and error procedure but a more important problem was that it was not possible to obtain reproducible results with a number of fuels. A new method which appears to have overcome both of these problems has been developed. The new procedure is a titration method in which the fuel is dissolved in toluene and titrated in the endpoint,''i.e., the point at which precipitation of asphaltenes occurs. Precipitation of asphaltenes is detected by examination of a drop of solution under a microscope. Polarized light is used to distinguish between waxes and precipitated asphaltenes. The entire procedure can be completed in 30 minutes and does not require expensive equipment. 6 refs., 6 figs., 2 tabs.

Anderson, R.P.; Pearson, C.D. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1991-06-01T23:59:59.000Z

113

G. Uniform Engine Fuels, Petroleum Products, and Automotive ...  

Science Conference Proceedings (OSTI)

... 1.33. Liquefied Natural Gas (LNG). ... LNG automotive fuel shall be labeled with its automotive fuel rating in accordance with 16 CFR Part 306. ...

2011-08-30T23:59:59.000Z

114

Alternative Fuels Data Center: Colorado Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

alternative fuel is defined as propane, liquefied natural gas, compressed natural gas, or electricity. (Reference Colorado Revised Statutes 40-1-101-104) Alternative Fuel...

115

Economics of biomass fuels for electricity production: a case study with crop residues  

E-Print Network (OSTI)

In the United Sates and around the world, electric power plants are among the biggest sources of greenhouse gas emissions which the Intergovernmental Panel on Climate Change argued was the main cause of climate change and global warming. This dissertation explores the factors which may induce electricity producers to use biomass fuels for power generation and thereby mitigate the impact of greenhouse gas emissions. Analyses in this dissertation suggest that there are two important factors which will play a major role in determining the future degree of bioelectricity production: the price of coal and the future price of carbon emissions. Using The Forest and Agricultural Sector Optimization Model—Green House Gas version (FASOMGHG) in a case study examining the competitiveness of crop residues, this dissertation finds that crop residues currently cost much more than coal as an electricity generation feedstock because they have lower heat content and higher production /hauling costs. For them to become cost competitive with coal, the combined costs of production and hauling must be cut by more than half or the coal price needs to rise. In particular, for crop residues to have any role in electricity generation either the price of coal has to increase to about $43 per ton or the carbon equivalent price must rise to about $15 per ton. The simulation results also show that crop residues with higher heat content such as wheat residues will have greater opportunities in bioelectricity production than the residues with lower heat content. In addition, the analysis shows that improvements in crop yield do not have much impact on bioelectricity production. However, the energy recovery efficiency does have significant positive impact on the bioelectricity desirability but again only if the carbon equivalent price rises substantially. The analysis also shows the desirability of cofiring biomass as opposed to 100% replacement because this reduces haling costs and increases the efficiency of heat recovery. In terms of policy implications, imposing carbon emission restrictions could be an important step in inducing electric power producers to include biofuels in their fuelmix power generation portfolios and achieve significant greenhouse gas emission reductions.

Maung, Thein Aye

2008-08-01T23:59:59.000Z

116

Price Liquefied Sabine Pass, LA Natural Gas Exports Price ...  

U.S. Energy Information Administration (EIA)

Price Liquefied Sabine Pass, LA Natural Gas Exports Price to Brazil (Dollars per Thousand Cubic Feet)

117

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

118

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

119

Development of a thermoacoustic natural gas liquefier.  

SciTech Connect

Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor

Wollan, J. J. (John J.); Swift, G. W. (Gregory W.); Backhaus, S. N. (Scott N.); Gardner, D. L. (David L.)

2002-01-01T23:59:59.000Z

120

Development of a thermoacoustic natural gas liquefier.  

Science Conference Proceedings (OSTI)

Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor

Wollan, J. J. (John J.); Swift, G. W. (Gregory W.); Backhaus, S. N. (Scott N.); Gardner, D. L. (David L.)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

122

Ruling on Liquefied Natural Gas (LNG) Tax Rate Sparks Debate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

IRS Ruling IRS Ruling On August 7, 1995, the Federal Register reported the Internal Revenue Service (IRS) ruling that liquefied natural gas (LNG) is a liquid fuel and will thus be taxed as a "special motor fuel," effective October 1, 1995. This definition covers all liquids that substitute for gasoline and diesel. The ruling refuted the claim of petitioners, such as the Natural Gas Vehicle (NGV) Coalition, that LNG is the same as compressed natural gas (CNG) and should be taxed at the equivalent excise tax rate. The IRS also rejected the Coalition's proposal that the NGV tax rate be expressed as gasoline gallon equivalent (GGE) rather than in thousand cubic feet (mcf) as provided in the Internal Revenue Code, but stated that no restrictions exist on taxpayers engaged in fuel sales based on

123

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

124

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

125

A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask  

Science Conference Proceedings (OSTI)

This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

Sanders, T.L. (Sandia National Labs., Albuquerque, NM (United States)); Jordan, H. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Pasupathi, V. (Battelle, Columbus, OH (United States)); Mings, W.J. (USDOE Idaho Field Office, Idaho Falls, ID (United States)); Reardon, P.C. (GRAM, Inc., Albuquerque, NM (United States))

1991-09-01T23:59:59.000Z

126

GREET 1.5 - transportation fuel-cycle model - Vol. 1 : methodology, development, use, and results.  

DOE Green Energy (OSTI)

This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy associated with various transportation fuels and advanced vehicle technologies for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with diameters of 10 micrometers or less, and sulfur oxides) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates total energy consumption, fossil fuel consumption, and petroleum consumption when various transportation fuels are used. The GREET model includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, dimethyl ether, and Fischer-Tropsch diesel; and landfill gases to methanol. This report also presents the results of the analysis of fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies to be applied to passenger cars and light-duty trucks.

Wang, M. Q.

1999-10-06T23:59:59.000Z

127

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

128

Fermilab Central Helium Liquefier Operations  

SciTech Connect

The Central Helium Liquefier (CHL), in conjunction with 24 satellite refrigerators, supplies refrigeration for the Fermilab superconducting accelerator. Liquid from the CHL is transported in a six kilometer circular transfer line and each satellite withdraws the amount required to boost its refrigeration capacity to the necessary level. Unused liquid is presently returned to compressor suction through a 250 kW calorimeter-heater. A helium gas flow of 1.1 kg/s is supplied to the cold box at 15 bars pressure. The gas flows through a demister and an oil adsorgber before it enters the cold box. In the cold box, manufactured by Koch Process Systems and Sulzer Brothers, Ltd., the gas is first cooled by liquid nitrogen and then the flow is split. Three quarters of the flow is further cooled by a series/parallel combination of three oil bearing turbines and then returned to the low pressure side of the heat exchangers. The return gas is used to cool the remaining high pressure gas which is then expanded to 3.5 bars in a 900 L receiver. From there the fluid is transferred into a distribution box, and then routed to either a collection dewar, directly to the ring, or to a heater. The liquid helium, which is utilized by the satellites to increase their cooling capacity, is warmed to near ambient temperature in the satellite heat exchangers. The satellite compressors return the excess inventory to the CHL via a 20 bar gas header. This gas is injected into the high pressure supply to the cold box. The system is shown.

Hodge, G.A.; Rihel, R.K.; Stone, M.E.; Walker, R.J.; /Fermilab

1983-01-01T23:59:59.000Z

129

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

130

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

131

Figure HL1. U.S. Sales of Distillate and Residual Fuel Oils by ...  

U.S. Energy Information Administration (EIA)

Sales of Fuel Oil and Kerosene in 2009 . ... the need for electric utilities to consume distillate fuel to meet peak summer generation loads remained ...

132

EPA's Liquefied Natural Gas Regulatory Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquefied Natural Gas Liquefied Natural Gas Regulatory Roadmap July 2006 EPA230-B-06-001 About this Roadmap Natural gas continues to play an important role in meeting our nation's growing energy needs. In 2005, natural gas accounted for 23% of our nation's total energy consumption. 1 The Department of Energy's Energy Information Administration (EIA) projects that domestic consumption of natural gas will continue to increase and that imports of liquefied natural gas (LNG) will meet much of the increased demand. 2 LNG, created when natural gas is converted into a liquid state by cooling it to a temperature close to negative 260°F, presents an efficient way to transport natural gas via ship from foreign production areas to the United States. The cooling process reduces the

133

Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Japan Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Japan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

134

Everett, MA Liquefied Natural Gas Imports From Yemen (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Everett, MA Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

135

Sabine Pass, LA Exports to Portugal Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Portugal Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

136

Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Spain Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Spain Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

137

Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

United kingdom Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

138

Freeport, TX Exports to India Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to India Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to India Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

139

Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

140

Sabine Pass, LA Liquefied Natural Gas Imports From Peru (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

142

Lake Charles, LA Liquefied Natural Gas Total Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Total Imports (Million Cubic Feet) Lake Charles, LA Liquefied Natural Gas Total Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

143

Elba Island, GA Liquefied Natural Gas Total Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Total Imports (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

144

,"U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

2014 1:45:46 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)" "Sourcekey","N9103ID2" "Date","U.S. Liquefied Natural Gas Imports From...

145

,"U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

2014 1:45:47 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)" "Sourcekey","N9103ID2" "Date","U.S. Liquefied Natural Gas Imports From...

146

Sabine Pass, LA Exports to Brazil Liquefied Natural Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Brazil Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Brazil Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

147

3 , LNG (Liquefied Natural Gas) -165oC  

E-Print Network (OSTI)

C / . Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage , , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20o

Hong, Deog Ki

148

Sabine Pass, LA Exports to Korea Liquefied Natural Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Korea Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to Korea Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

149

,"Alaska Liquefied Natural Gas Exports to China (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

2014 2:06:59 PM" "Back to Contents","Data 1: Alaska Liquefied Natural Gas Exports to China (Million Cubic Feet)" "Sourcekey","NGMEPG0ENGSAK-NCHMMCF" "Date","Alaska Liquefied...

150

Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

151

Everett, MA Liquefied Natural Gas Total Imports (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Total Imports (Million Cubic Feet) Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

152

The safe use of low temperature liquefied gases 1. Introduction  

E-Print Network (OSTI)

(5-10%) but the others are odourless. Liquefied gases ­ oxygen, nitrogen, argon, helium and carbonCare with cryogenics The safe use of low temperature liquefied gases #12;Index 1. Introduction 1.1 Objective 1.2 Gases considered and typical uses 2. Properties of low temperature liquefied atmospheric gases

Martin, Ralph R.

153

Dynamic Simulation of a Helium Liquefier  

SciTech Connect

Dynamic behavior of a helium liquefier has been studied in detail with a Cryogenic Process REal-time SimulaTor (C-PREST) at the National Institute for Fusion Science (NIFS). The C-PREST is being developed to integrate large-scale helium cryogenic plant design, operation and maintenance for optimum process establishment. As a first step of simulations of cooldown to 4.5 K with the helium liquefier model is conducted, which provides a plant-process validation platform. The helium liquefier consists of seven heat exchangers, a liquid-nitrogen (LN2) precooler, two expansion turbines and a liquid-helium (LHe) reservoir. Process simulations are fulfilled with sequence programs, which were implemented with C-PREST based on an existing liquefier operation. The interactions of a JT valve, a JT-bypass valve and a reservoir-return valve have been dynamically simulated. The paper discusses various aspects of refrigeration process simulation, including its difficulties such as a balance between complexity of the adopted models and CPU time.

Maekawa, R.; Ooba, K.; Mito, T. [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan); Nobutoki, M. [Nippon Sanso Co., Kawasaki, Kanagawa, 210-0861 (Japan)

2004-06-23T23:59:59.000Z

154

Effect of residual stress on the life prediction of dry storage canisters for used nuclear fuel  

E-Print Network (OSTI)

Used nuclear fuel dry storage canisters will likely be tasked with holding used nuclear fuel for a period longer than originally intended. Originally designed for 20 years, the storage time will likely approach 100 years. ...

Black, Bradley P. (Bradley Patrick)

2013-01-01T23:59:59.000Z

155

New England (PADD 1A) Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

156

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network (OSTI)

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio Committee Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported

Victoria, University of

157

Evaporative Testing Requirements for Dual-Fuel Compressed Natural Gas (CNG)/Gasoline and Liquefied Petroleum Gas (LPG)/Gasoline Vehicles – Revision of MAC #99-01 To Allow Subtraction of Methane Emissions from  

E-Print Network (OSTI)

The attached MAC clarifies the Air Resources Board's procedures regarding evaporative emission testing of dual-fuel CNG/gasoline vehicles. This MAC revises and supersedes MAC #99-01 by allowing manufacturers to determine, report, and subtract methane emissions when a dual-fuel CNG/gasoline vehicle is tested for evaporative emissions. A related revision clarifies that for dual-fuel CNG/gasoline medium-duty vehicles, the applicable “LEV I ” evaporative emission standards, which are dependent on the fuel tank capacity of the medium-duty vehicles, are determined solely on the fuel tank capacity of the gasoline fuel system. If you have any questions or comments, please contact Mr. Steven Hada, Air

Alan C. Lloyd, Ph.D.; Arnold Schwarzenegger; All Heavy-duty Vehicle Manufacturers

2004-01-01T23:59:59.000Z

158

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

159

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

160

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... 3.6. Fuel Oils. 3.6.1. Labeling of Grade Required. – Fuel Oil shall be identified by the grades of No. ... 3.10. Liquefied Petroleum Gas (LPG). ...

2013-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GREET 1.0 -- Transportation fuel cycles model: Methodology and use  

DOE Green Energy (OSTI)

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-06-01T23:59:59.000Z

162

Vertical Structures in the Global Liquefied Natural Gas Market.  

E-Print Network (OSTI)

??During the last decade, the global liquefied natural gas (LNG) market altered substantially. Significant investments have been realized, traded volumes increased and contracting structures gained… (more)

Rüster, Sophia

2010-01-01T23:59:59.000Z

163

,"U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

164

Australia world's largest coal exporter, fourth-largest liquefied ...  

U.S. Energy Information Administration (EIA)

In addition to coal, Australia is one of the world's leading exporters of liquefied natural gas (LNG). Australia produced 1.6 trillion cubic feet (Tcf) ...

165

Kuwait, a leading oil exporter, relies on imports of liquefied ...  

U.S. Energy Information Administration (EIA)

Kuwait, a leading oil exporter, relies on imports of liquefied natural gas. Source: U.S. Energy Information Administration Note: 2010 data estimated.

166

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

Gasoline and Diesel Fuel Update (EIA)

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

167

Liquefied natural gas meets a quarter of New England's average ...  

U.S. Energy Information Administration (EIA)

tags: Canada demand imports LNG (liquefied natural gas) natural gas New England states. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

168

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

(Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade...

169

,"U.S. Liquefied Natural Gas Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Canada (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

170

,"U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

171

,"U.S. Liquefied Natural Gas Imports From Brunei (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Brunei (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

172

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Yemen (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Yemen (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

173

NETL: News Release - Storing Liquefied Natural Gas in Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 22, 2003 Storing Liquefied Natural Gas in Underground Salt Caverns Could Boost Global LNG Trade Novel Process May be Half the Cost of Conventional Liquid Tank Terminals...

174

,"U.S. Liquefied Natural Gas Imports From Australia (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Australia (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013"...

175

,"U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

176

,"U.S. Liquefied Natural Gas Imports From Norway (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Norway (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

177

,"U.S. Liquefied Natural Gas Imports From Algeria (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Algeria (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

178

,"U.S. Liquefied Natural Gas Imports From Yemen (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Yemen (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

179

,"U.S. Liquefied Natural Gas Imports From Equatorial Guinea ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Equatorial Guinea (MMcf)",1,"Monthly","92013" ,"Release Date:","1212...

180

,"U.S. Liquefied Natural Gas Imports From Peru (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Peru (MMcf)",1,"Monthly","42011" ,"Release Date:","12122013" ,"Next...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"U.S. Liquefied Natural Gas Imports From Qatar (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Qatar (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

182

,"U.S. Liquefied Natural Gas Imports From Oman (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Oman (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

183

,"U.S. Liquefied Natural Gas Imports From Egypt (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Egypt (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013" ,"Next...

184

Clean air program: Liquefied natural gas safety in transit operations. Final report  

SciTech Connect

The report examines the safety issues relating to the use of Liquefied natural Gas (LNG) in transit service. The surveys consisted of: (1) extensive interviews; (2) review of recrods, procedures, and plans relating to safety; (3) examination of facilities and equipment; (4) observations of operations including fueling, maintenance, morning start-up, and revenue service; (5) measurement of methane concentrations in the air where the buses are being fueled or stored. Interviews included all job categories associated with management, operations, safety, maintenance, acquisition, and support. The surveys also included an examination of the occupational hygiene aspects of LNG use.

Friedman, D.M.; Malcosky, N.D.

1996-03-01T23:59:59.000Z

185

Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Accurate prediction of groundwater contamination from solid-waste disposal sites requires leaching rates for fossil fuel combustion waste chemicals. In a wide-ranging literature review, this study obtained data on 28 inorganic constituents and identified the need for new data to improve leachate composition prediction models.

1987-08-01T23:59:59.000Z

186

Simulation program for central helium liquefier  

SciTech Connect

The computer program described here analyzes the performance of Fermilab Central Helium Liquefier (CHL) and predicts the values of the plant thermodynamic variables at all process points in the plant. To simulate CHL, this program is modified from the prototype program which was developed by Hitachi Ltd. a couple of years ago. This program takes care of only the steady state simulation and takes account of the change of the turbine efficiency, the pressure drops and the UA values of the heat exchangers. How to use the program is shown.

Kawamura, S.

1984-02-20T23:59:59.000Z

187

Table 3.9 Value of Fossil Fuel Net Imports, 1949-2011 (Billion ...  

U.S. Energy Information Administration (EIA)

1 Includes petroleum preparations, liquefied propane and butane, and, beginning in 1997, other mineral fuels. R=Revised. P=Preliminary. E=Estimate.

188

Nogales, AZ Liquefied Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

250 282 2006-2012 Pipeline Prices 6.79 7.88 4.04 4.86 4.47 3.31 2006-2012 Liquefied Natural Gas Volumes 16 0 0 0 0 34 1998-2012 Liquefied Natural Gas Prices 15.27 -- -- -- --...

189

The Department of Energy's Role in Liquefied Natural Gas Export  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Role in Liquefied Natural Gas Export The Department of Energy's Role in Liquefied Natural Gas Export Applications The Department of Energy's Role in Liquefied Natural Gas Export Applications November 8, 2011 - 11:34am Addthis Statement of Christopher Smith, Deputy Assistant Secretary for Oil and Natural Gas, Office of Fossil Energy before the Senate Committee on Energy and Natural Resources on DOE's Role in Liquefied Natural Gas Export Applications. Thank you Chairman Bingaman, Ranking Member Murkowski, and members of the Committee; I appreciate the opportunity to be here today to discuss the Department of Energy's (DOE) program regulating the export of natural gas, including liquefied natural gas (LNG). DOE's Statutory Authority DOE's authority to regulate the export of natural gas arises under

190

Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas May 30, 2013 - 2:52pm Addthis Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program

191

DOE Initiates Series of Liquefied Natural Gas Public Education Forums |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Series of Liquefied Natural Gas Public Education Series of Liquefied Natural Gas Public Education Forums DOE Initiates Series of Liquefied Natural Gas Public Education Forums February 15, 2006 - 11:52am Addthis First Forum Set in Boston, Massachusetts WASHINGTON, D.C. - The first in a series of Department of Energy (DOE)-sponsored public education forums on liquefied natural gas (LNG) has been scheduled for Friday, March 10, 2006, at the John B. Hynes Veterans Memorial Convention Center in Boston, Massachusetts. This series of forums aims to maintain open lines of communication between government officials and interested citizens, and is scheduled in compliance with the National Energy Policy Act of 2005, enacted by President Bush in August 2005. "The Department of Energy's Liquefied Natural Gas forums will initiate

192

BADGER, a Probe for Nondestructive Testing of Residual Boron-10 Absorber Density in Spent-Fuel Storage Racks: Development and Demons tration  

Science Conference Proceedings (OSTI)

The in-service degradation of Boraflex -- a neutron absorber material used in spent-fuel racks for criticality control -- is a problem at some 50 U.S. nuclear plants. EPRI has developed the BADGER probe to nondestructively measure the residual boron-10 areal density in Boraflex. The probe has been demonstrated in BWR and PWR spent-fuel pools. BADGER measurements can be used to monitor the loss of boron-10 and confirm the integrity of the remaining Boraflex.

1997-12-09T23:59:59.000Z

193

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

194

Evolution of the Standard Helium Liquefier and Refrigerator Range designed by Air Liquide DTA, France  

E-Print Network (OSTI)

Evolution of the Standard Helium Liquefier and Refrigerator Range designed by Air Liquide DTA, France

Crispel, S; Caillaud, A; Delcayre, F; Grabie, V

2008-01-01T23:59:59.000Z

195

Safety audit of refrigerated liquefied gas facilities  

SciTech Connect

An Exxon Research and Engineering Co. comprehensive review of engineering practices and application of safety requirements at Exxon's world-wide refrigerated liquefied hydrocarbon gas storage and handling installations, which included a field audit of about 90 tanks at 30 locations, showed that catastrophic tank failure was not a credible event with properly operated and maintained tanks designed, constructed, and tested in accordance with API Standard 620, Design and Construction of Large Welded Low-Pressure Storage Tanks, although supplemental requirements were suggested to further enhance safety. The review also showed that any meaningful safety audit should be comprehensive and must include all facilities with careful attention to detail. The review embraces products of -1 to -167C and included LNG, ethylene, LPG, and LPG olefins. Recent and proposed LNG safety legislation; some field audit results; and recommendations as to design, construction, and operation of LNG and LPG storage facilities, marine terminals, and tankers, are also discussed.

Feely, F.J.; Sommer, E.C.; Marshall, B.T.; Palmer, A.J.

1980-01-01T23:59:59.000Z

196

Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report  

SciTech Connect

This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

Lede, N.W.

1997-09-01T23:59:59.000Z

197

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

198

Combustion of EDS mid-distillate and refined shale-oil residual fuel in a gas turbine with large single-combustion chamber  

DOE Green Energy (OSTI)

The test fuels included a coal derived mid distillate recycle liquid from the EDS coal liquefaction process, produced by Exxon, and a hydroprocessed residual Paraho shale oil fraction originating from a US Government sponsored program. A BBC (Brown Boveri Co.) type 9 fully equipped 35 MW capacity gas turbine, located at BBC's test facilities near Basel, Switzerland, was utilized. The objective of the combustion test was to establish whether these alternate fuels can be fired in large single combustor turbines without deleterious effects to the turbine or environment. Nitrogen in the shale oil was on the order of 0.4 wt% while the EDS distillate contained slightly less than 10 wt% hydrogen. The test program entailed the firing of 600 barrels of each test fuel at varying turbine loads and a comparison of the results with those from a base case petroleum diesel fuel. Fuel bound nitrogen was not found to contribute significantly to NO/sub x/ emissions in contrast to other work reported earlier in subscale gas turbine tests. Water injection at 0.6 to 0.7 water-fo-fuel mass ratios was effective in meeting EPA requirements for NO/sub x/ emissions from the diesel, shale and coal derived fuels at full turbine load. Low fuel hydrogen content did not cause any operational or emission problems. Combustor wall temperature, the major problem with low hydrogen fuels, rose only slightly within acceptable limits.

Not Available

1983-01-01T23:59:59.000Z

199

Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Spain (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Spain (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,911 - No Data...

200

Sabine Pass, LA Liquefied Natural Gas Exports to India (Million...  

Annual Energy Outlook 2012 (EIA)

India (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to India (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,477 3,072 - No...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 7312013 Next Release Date: 8302013 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit Otay Mesa, CA Natural Gas Exports to...

202

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

from Qatar (Million Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011...

203

Sabine Pass, LA Liquefied Natural Gas Exports to Chile (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Chile (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to Chile (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,910 - No Data...

204

Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 7312013 Next Release Date: 8302013 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit Otay Mesa, CA Natural Gas Imports by Pipeline from...

205

Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Japan (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,741 - No Data...

206

DOE's Program Regulating Liquefied Natural Gas Export Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Regulating Liquefied Natural Gas Export Applications Program Regulating Liquefied Natural Gas Export Applications DOE's Program Regulating Liquefied Natural Gas Export Applications March 19, 2013 - 2:52pm Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on Oversight and Government Reform, Subcommittee on Energy Policy, Health Care, and Entitlements View the archived Congressional Hearing on YouTube Thank you Chairman Lankford, Ranking Member Speier, and members of the Committee; I appreciate the opportunity to be here today to discuss the Department of Energy's (DOE) program regulating the export of natural gas, including liquefied natural gas (LNG). Recent Developments in LNG Exports The boom in domestic shale gas provides unprecedented opportunities for the

207

Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approves Gulf Coast Exports of Liquefied Natural Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas May 20, 2011 - 12:00am Addthis Washington, D.C. - The U.S. Department of Energy today issued a conditional authorization approving an application to export liquefied natural gas (LNG) from the Sabine Pass LNG Terminal in Louisiana, paving the way for thousands of new construction and domestic natural gas production jobs in Louisiana, Texas, and several other states. Subject to final environmental and regulatory approval, Sabine Pass Liquefaction, LLC will retrofit an existing LNG import terminal in Louisiana so that it can also be used for exports. This is the first long-term authorization to export natural gas from the lower 48 states as LNG to all U.S. trading partners.

208

DOE's Program Regulating Liquefied Natural Gas Export Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Program Regulating Liquefied Natural Gas Export DOE's Program Regulating Liquefied Natural Gas Export Applications DOE's Program Regulating Liquefied Natural Gas Export Applications June 18, 2013 - 10:15am Addthis Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy before the House Committee on Energy and Commerce Subcommittees on Energy and Power. Thank you Chairman Whitfield, Ranking Member Rush, and members of the Subcommittee; I appreciate the opportunity to be here today to discuss the Department of Energy's (DOE) program regulating the export of natural gas, including liquefied natural gas (LNG). Recent Developments in LNG Exports The boom in domestic shale gas provides unprecedented opportunities for the United States. Over the last several years, domestic natural gas production

209

Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - ...

210

Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad...  

U.S. Energy Information Administration (EIA) Indexed Site

Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

211

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Trinidad and Tobago (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

212

Cameron, LA Liquefied Natural Gas Imports from Egypt (Million...  

Gasoline and Diesel Fuel Update (EIA)

Egypt (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,971 - No Data...

213

Sabine Pass, LA Liquefied Natural Gas Imports From Yemen (Million...  

Annual Energy Outlook 2012 (EIA)

Yemen (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,115 3,122 3,106...

214

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Trinidad and Tobago (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

215

Sabine Pass, LA Liquefied Natural Gas Imports From Norway (Million...  

Annual Energy Outlook 2012 (EIA)

Norway (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Imports From Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,556 2012...

216

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Norway (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Norway (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011...

217

Freeport, TX Liquefied Natural Gas Imports from Yemen (Million...  

Annual Energy Outlook 2012 (EIA)

from Yemen (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,869 3,108...

218

Freeport, TX Liquefied Natural Gas Imports From Peru (Million...  

Annual Energy Outlook 2012 (EIA)

From Peru (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Imports From Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,175 3,338 3,262...

219

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Nigeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011...

220

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt...  

Gasoline and Diesel Fuel Update (EIA)

Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 -...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Trinidad and Tobago (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

222

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Egypt (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,780...

223

Cameron, LA Liquefied Natural Gas Imports from Peru (Million...  

Gasoline and Diesel Fuel Update (EIA)

Peru (Million Cubic Feet) Cameron, LA Liquefied Natural Gas Imports from Peru (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,477 3,368 - No Data...

224

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

Gasoline and Diesel Fuel Update (EIA)

(Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

225

Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...  

Gasoline and Diesel Fuel Update (EIA)

Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

226

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2012 2,601...

227

,"U.S. Liquefied Natural Gas Exports To Brazil "  

U.S. Energy Information Administration (EIA) Indexed Site

To Brazil " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas...

228

Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

to China (Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,127 - No Data...

229

Sabine Pass, LA Liquefied Natural Gas Exports to China (Million...  

Annual Energy Outlook 2012 (EIA)

China (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,354 2,848 - No...

230

Freeport, TX Liquefied Natural Gas Exports to South Korea (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

South Korea (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to South Korea (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,157...

231

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Malaysia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Malaysia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

232

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Oman (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Oman (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

233

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Qatar...  

U.S. Energy Information Administration (EIA) Indexed Site

from Qatar (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

234

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

235

Everett, MA Natural Gas Liquefied Natural Gas Imports from Algeria...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Algeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

236

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Algeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

237

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Equatorial Guinea (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Equatorial Guinea (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

238

U.S. Liquefied Natural Gas Imports (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 23,659: ...

239

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Trinidad and Tobago (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

240

Northeast Gateway Natural Gas Liquefied Natural Gas Imports ...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Northeast Gateway Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

242

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Brunei (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Brunei (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

243

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Qatar (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

244

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Qatar (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

245

Northeast Gateway Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

from Trinidad and Tobago (Million Cubic Feet) Northeast Gateway Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

246

Cameron, LA Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

247

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Malaysia (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Malaysia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

248

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Equatorial Guinea (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Equatorial Guinea (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

249

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Algeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Algeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

250

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

251

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Indonesia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Indonesia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

252

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Yemen (Million Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports from Yemen (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

253

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

254

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

United Arab Emirates (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from United Arab Emirates (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

255

Everett, MA Natural Gas Liquefied Natural Gas Imports from Egypt...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

256

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Other Countries (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Other Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

257

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

258

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Australia (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Australia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

259

Cove Point, MD Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

260

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Trinidad and Tobago (Million Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

262

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

from Nigeria (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

263

Everett, MA Natural Gas Liquefied Natural Gas Imports from Australia...  

U.S. Energy Information Administration (EIA) Indexed Site

Australia (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Australia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

264

Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9...

265

alternative fuels | OpenEI  

Open Energy Info (EERE)

fuels fuels Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

266

Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell  

SciTech Connect

A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

Borole, Abhijeet P [ORNL; Hamilton, Choo Yieng [ORNL; Schell, Daniel J [National Renewable Energy Laboratory (NREL)

2012-01-01T23:59:59.000Z

267

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,328 Natural Gas 5,725 Net Electricity 2,437 Purchases 2,510 Transfers In 33 Onsite Generation from Noncombustible Renewable Energy 7 Sales and Transfers Offsite 113 Coke and Breeze 374 Residual Fuel Oil 170 Distillate Fuel Oil 135 Liquefied Petroleum Gases and Natural Gas Liquids 2,057 Other 7,381 Asphalt and Road Oil (a) 946 Lubricants (a) 386

268

Levels of financial responsibility for liquefied-natural-gas and liquefied-petroleum-gas facilities  

SciTech Connect

Pursuant to Section 7(a) of the Pipeline Safety Act of 1979, a study was conducted of the risks associated with liquefied natural gas (LNG) and liquefied petroleum gas (LPG) facilities, and of methods of assuring adequate levels of financial responsibility for those who own and/or operate facilities. The main purpose of the study is to provide a basis for determining general levels of financial responsibility for LNG and LPG facilities, as measured by the risk they represent to the public. It must be emphasized that the quantification of risk is a complicated subject. As used in this study, risk is defined as the occurrence of a maximum credible accident and the consequences that would result from such an accident. Part I of the study describes in detail the methodology used in the report to estimate the magnitude of the financial responsibility requirements associated with nine major facility types - e.g., tankships, pipelines, barges, rail tank car, tank truck, etc. - used to store and transport LNG and LPG under 48 separate operational and storage containment modes. Parts II and III of the study, in addition to providing estimates of the risks and corresponding levels of financial responsibility, contain information on the historical safety record and structure of the LNG facilities and LPG facilities.

1981-05-30T23:59:59.000Z

269

Simulation and integration of liquefied natural gas (lng) processes  

E-Print Network (OSTI)

The global use of natural gas is growing quickly. This is primarily attributed to its favorable characteristics and to the environmental advantages it enjoys over other fossil fuels such as oil and coal. One of the key challenges in supplying natural gas is the form (phase) at which it should be delivered. Natural gas may be supplied to the consumers as a compressed gas through pipelines. Another common form is to be compressed, refrigerated and supplied as a liquid known as liquefied natural gas (LNG). When there is a considerable distance involved in transporting natural gas, LNG is becoming the preferred method of supply because of technical, economic, and political reasons. Thus, LNG is expected to play a major role in meeting the global energy demands. This work addresses the simulation and optimization of an LNG plant. First, the process flowsheet is constructed based on a common process configuration. Then, the key units are simulated using ASPEN Plus to determine the characteristics of the various pieces of equipment and streams in the plant. Next, process integration techniques are used to optimize the process. Particular emphasis is given to energy objectives through three activities. First, the synthesis and retrofitting of a heat-exchange network are considered to reduce heating and cooling utilities. Second, the turbo-expander system is analyzed to reduce the refrigeration consumption in the process. Third, the process cogeneration is introduced to optimize the combined heat and power of the plant. These activities are carried out using a combination of graphical, computeraided, and mathematical programming techniques. A case study on typical LNG facilities is solved to examine the benefits of simulation and integration of the process. The technical, economic, and environmental impact of the process modifications are also discussed.

Al-Sobhi, Saad Ali

2007-12-01T23:59:59.000Z

270

Residual Fuel Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

271

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

272

Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

he introduction in 1992 of an he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford has produced 1600 units and ordered 600 more, for a total of 2200 units. That's triple the number of LPG units produced and ordered at the same time last year. In addition, the possibility of applying federal and state tax credits is being investigated. Cummins B 5.9G Natural Gas

273

Energy Department Authorizes Third Proposed Facility to Export Liquefied  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Proposed Facility to Export Third Proposed Facility to Export Liquefied Natural Gas Energy Department Authorizes Third Proposed Facility to Export Liquefied Natural Gas August 7, 2013 - 12:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Lake Charles Exports, LLC (Lake Charles) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from the Lake Charles Terminal in Lake Charles, Louisiana. Lake Charles previously received approval to export LNG from this facility to FTA countries on July 22, 2011. Subject to environmental review and final regulatory approval, the facility is conditionally authorized to export at a rate of up to 2.0

274

Energy Department Authorizes Second Proposed Facility to Export Liquefied  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Proposed Facility to Export Second Proposed Facility to Export Liquefied Natural Gas Energy Department Authorizes Second Proposed Facility to Export Liquefied Natural Gas May 17, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from the Freeport LNG Terminal on Quintana Island, Texas. Freeport previously received approval to export LNG from this facility to FTA countries on February 10, 2011. Subject to environmental review and final regulatory approval, the facility is conditionally authorized to export at a rate of up to 1.4 billion cubic

275

U.S. Liquefied Natural Gas Imports From Malaysia (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) U.S. Liquefied Natural Gas Imports From Malaysia (Million Cubic Feet) U.S. Liquefied Natural Gas Imports From Malaysia (Million Cubic...

276

Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Download Data (XLS File) Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet) Price of U.S. Liquefied Natural Gas Imports From...

277

Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

U.S. Liquefied Natural Gas Imports From Canada (Dollars per Thousand Cubic Feet) Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars per Thousand Cubic Feet) Year Jan...

278

U.S. Liquefied Natural Gas Imports From Canada (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports From Canada (Million Cubic Feet) U.S. Liquefied Natural Gas Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

279

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13T23:59:59.000Z

280

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

alternative fuels stations | OpenEI  

Open Energy Info (EERE)

fuels stations fuels stations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

282

Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

283

Liquefied U.S. Natural Gas Exports (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Liquefied U.S. Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1997: 5,604: 5,596: 5,675: 5,660: 3,812: 3,786: 3,756 ...

284

Nogales, AZ Liquefied Natural Gas Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Nogales, AZ Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 8.938 8.916 5.241 3.570 4.280...

285

Effect of parasitic refrigeration on the efficiency of magnetic liquefiers  

SciTech Connect

Our studies have shown that magnetic refrigerators have the potential to liquefy cryogens very efficiently. High efficiency is especially important for liquid hydrogen and natural gas applications where the liquefaction costs are a significant fraction of the total liquid cost. One of the characteristics of magnetic refrigerators is the requirement for a high-field superconducting magnet. Providing a 4.2-K bath for this magnet will require a small amount of parasitic refrigeration at 4.2 K even though the rest of the liquefier may be at 110 K (liquid natural gas) or higher. For several different refrigeration power levels at 4.2 K, we have calculated the efficiency of the magnetic liquefier as a function of power, temperature and the 4.2-K refrigerator efficiency. The results show that if the ratio of the thermal load at 4.2 K to the main refrigerator power is 0.001 or less, the effect on the efficiency of the liquefier is negligible at all temperatures below room temperature provided the 4.2-K refrigerator efficiency is high.

Barclay, J.A.; Stewart, W.F.

1982-01-01T23:59:59.000Z

286

U.S. Liquefied Natural Gas Imports (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1997: 9,977: 7,667: 2,530: 2,557: 5,007: 5,059: 5,026 ...

287

Valuation of Storage at a Liquefied Natural Gas Terminal  

Science Conference Proceedings (OSTI)

The valuation of the real option to store liquefied natural gas (LNG) at the downstream terminal of an LNG value chain is an important problem in practice. Because the exact valuation of this real option is computationally intractable, we develop a novel ... Keywords: Markov, asset pricing, dynamic programming, finance, heuristics, industries, petroleum/natural gas, real options, storage valuation, upper bounds

Guoming Lai; Mulan X. Wang; Sunder Kekre; Alan Scheller-Wolf; Nicola Secomandi

2011-05-01T23:59:59.000Z

288

Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals  

E-Print Network (OSTI)

Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals in a Decision-Making Context1, Berkeley. 3/ Liquified Natural Gas Act Stats, 1977, Chap. 855, Page 2506 (effective Sept. 17, 1977 potential offshore Liquified Natural Gas (LNG) sites and the types of terminals that might occupy those

Standiford, Richard B.

289

Alternative Fuel Vehicles: Real-World Perspectives from the Federal...  

NLE Websites -- All DOE Office Websites (Extended Search)

by the alternative fuel used: ethanol (E85), methanol (M85), and compressed natural gas (CNG). Because there are very few federal fleet vehicles that run on liquefied petroleum gas...

290

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Tax All licensed on-road vehicles fueled by compressed natural gas or liquefied

291

Alternative Fuels Data Center: Alternative Fuel Excise Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Excise Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Excise Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Excise Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Excise Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Excise Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Excise Tax Liquefied natural gas, liquid fuel derived from coal, and liquid hydrocarbons derived from biomass are subject to a federal excise tax of

292

Alternative Fuels Data Center: Alternative Fuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Exemption Propane, compressed natural gas, liquefied natural gas, and electricity used to operate motor vehicles are exempt from state fuel taxes. The Utah

293

REQUEST FOR PROPOSALS LIQUEFIED NATURAL GAS VEHICLE  

E-Print Network (OSTI)

fueled truck fleet of more than 100 refuse hauling vehicles and plans to add more will include exhaust from on-road vehicles and from materials handling equipment, dust from refuse renewable natural gas. CR&R plans to add 100 CNG/LNG vehicles to its fleet over the next

294

Alternative Fuels Data Center: Reduced Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Propane Fuel Reduced Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Reduced Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline,

295

Alternative Fuels Data Center: Alternative Fuel Excise Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Excise Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Excise Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Excise Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Excise Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Excise Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Excise Tax An excise tax of $0.075 per gallon or gasoline gallon equivalent (GGE) is imposed on all compressed natural gas (CNG), liquefied natural gas (LNG),

296

Alternative Fuels Data Center: Alternative Fuel Tax Rates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax Rates to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Rates on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Rates on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Rates on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Rates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Rates A special excise tax rate of 2% is imposed on the sale of propane (liquefied petroleum gas) and a tax of $0.04 per gallon is imposed on all

297

Characterization of liquefied natural gas tanker steel from cryogenic to fire temperatures.  

SciTech Connect

The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.

Dempsey, J. Franklin (Sandia National Laboratories, Albuquerque, NM); Wellman, Gerald William (Sandia National Laboratories, Albuquerque, NM); Antoun, Bonnie R.; Connelly, Kevin; Kalan, Robert J. (Sandia National Laboratories, Albuquerque, NM)

2010-03-01T23:59:59.000Z

298

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

299

Alternative Fuels Data Center: Hydrogen Fuel Excise Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Excise Excise Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Excise Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Excise Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Excise Tax Credit on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Excise Tax Credit on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Excise Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Excise Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Excise Tax Credit A tax credit of $0.50 per gallon is available for liquefied hydrogen that is sold for use or used as a fuel to operate a motor vehicle. For an entity

300

Design features and availability of liquefied gas carriers  

SciTech Connect

A discussion covers the growth of seaborne LPG trade, various designs of liquefied gas carriers (independent tank, of semimembrane, and integral tank) for the transportation of LPG within the framework of the Intergovernmental Maritime Consultative Organization (IMCO) code as well as U.S. Coast Guard regulations including insulation systems, ballast storage between the cargo tank and the hull, and methods by which the cargo tank either supports the weight of the cargo or transfers it to the hull; the development of the world liquefied gas carrier fleet including pressurized ships, combination ships (which can carry cargo either partially or fully pressurized and/or fully refrigerated) and the fully refrigerated ships; new design developments; tanker availability; and their economic impact on the transportation costs of seaborne LPG.

Rasch, J.M.B.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Operations aspects of the Fermilab Central Helium Liquefier Facility  

SciTech Connect

The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6{degrees}K and LN{sub 2} for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed.

Geynisman, M.G.; Makara, J.N.

1995-03-01T23:59:59.000Z

302

Operations aspects of the Fermilab Central Helium Liquefier facility  

SciTech Connect

The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 K and LN{sub 2} for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed.

Geynisman, M.G.; Makara, J.N.

1996-09-01T23:59:59.000Z

303

HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site  

SciTech Connect

This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered residue were also important for material control and accountability purposes. In summary, the results of the holdup assays were essential for determining compliance with the Waste Acceptance Criteria, Material Control & Accountability, and to ensure that administrative criticality safety controls were not exceeded. This paper discusses the {gamma}-ray assay measurements conducted and the modeling of the acquired data to obtain measured holdup in process equipment, exhaust components, and fixed geometry scrap cans. It also presents development work required to model new acquisition configurations and to adapt available instrumentation to perform the assays.

DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

2005-03-11T23:59:59.000Z

304

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel » Laws & Incentives Biodiesel » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Biodiesel The list below contains summaries of all Federal laws and incentives related to Biodiesel. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

305

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity » Laws & Incentives Electricity » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for EVs The list below contains summaries of all Federal laws and incentives related to EVs. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

306

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane » Laws & Incentives Propane » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Propane (LPG) The list below contains summaries of all Federal laws and incentives related to Propane (LPG). Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

307

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives related to Ethanol. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

308

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas » Laws & Incentives Natural Gas » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Natural Gas The list below contains summaries of all Federal laws and incentives related to Natural Gas. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

309

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

310

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: North America 622.131

311

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: World 22,069.0 5,219.8

312

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: United States 141.822

313

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: United States 9,252.5

314

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: United States 412.649

315

Alternative Fueling Station Locations | OpenEI  

Open Energy Info (EERE)

Alternative Fueling Station Locations Alternative Fueling Station Locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, view U.S. maps, and more. Access up-to-date fuel station data here: http://www.afdc.energy.gov/afdc/data_download The dataset available for download here provides a "snapshot" of the alternative fueling station information for: compressed natural gas (CNG), E85 (85% ethanol, 15% gasoline), propane/liquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas

316

Evaluation of Fire Dynamics Simulator for Liquefied Natural Gas Vapor Dispersion Hazards.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC) and Pipeline and Hazardous Material Administration (PHMSA) require vapor dispersion modeling as part of a siting analysis for liquefied… (more)

Kohout, Andrew Joseph

2011-01-01T23:59:59.000Z

317

,"Price of U.S. Liquefied Natural Gas Imports From Malaysia ...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

318

Numerical simulation on dense gas dispersion and fire characteristics after liquefied natural gas release.  

E-Print Network (OSTI)

??This PhD dissertation mainly studies the prediction, simulation and mitigation methods of the two main hazards in LNG (Liquefied Natural Gas) industry, LNG vapor dense… (more)

Sun, Biao

2012-01-01T23:59:59.000Z

319

,"U.S. Liquefied Natural Gas Imports From The United Arab Emirates...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From The United Arab Emirates (MMcf)",1,"Monthly","92013" ,"Release...

320

,"U.S. Liquefied Natural Gas Imports From Trinidad and Tobago...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Trinidad and Tobago (MMcf)",1,"Monthly","92013" ,"Release Date:","1212...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

,"U.S. Liquefied Natural Gas Imports From Other Countries (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Other Countries (MMcf)",1,"Monthly","92013" ,"Release Date:","12122013"...

322

Alternative Fuels Data Center: Natural Gas Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Delicious Rank Alternative Fuels Data Center: Natural Gas Benefits on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Benefits on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Benefits and Considerations Compressed and liquefied natural gas are clean, domestically produced alternative fuels. Using these fuels in natural gas vehicles increases

323

Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

Motta, R.C.; Kelly, K.J.; Warnock, W.W.

1996-04-01T23:59:59.000Z

324

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

325

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

326

Vessel routing and scheduling under uncertainty in the liquefied natural gas business  

Science Conference Proceedings (OSTI)

Liquefied natural gas (LNG) is natural gas transformed into liquid state for the purpose of transportation mainly by specially built LNG vessels. This paper considers a real-life LNG ship routing and scheduling problem where a producer is responsible ... Keywords: Liquefied natural gas, Maritime transportation, Ship routing and scheduling, Simulation, Uncertainty

Elin E. Halvorsen-Weare; Kjetil Fagerholt; Mikael RöNnqvist

2013-01-01T23:59:59.000Z

327

Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 NA NA 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- -- -- -- -- -- -- -- -- -- -- 2012 -- -- -- -- -- -- -- -- -- -- -- --

328

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

329

Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Salt Lake City Fuels Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on AddThis.com... May 14, 2011 Salt Lake City Fuels Vehicles With Natural Gas W atch how Salt Lake City fuels vehicles with liquefied and compressed

330

Alternative Fuels Data Center: Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Prices Find propane fuel prices and trends. Propane, also known as liquefied petroleum gas (LPG) or autogas, has been used worldwide as a vehicle fuel for decades. It is stored as a liquid, and

331

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network (OSTI)

and R. Regdon, Compressed Natural Gas Vehicle PerformanceTwo Vehicles to Compressed Natural Gas Fuel, EnvironmentalNOx H2O CFCs CNG = compressed natural gas; LNG = liquefied

Delucchi, Mark

1997-01-01T23:59:59.000Z

332

Manufacture of bonded-particle nuclear fuel composites  

DOE Patents (OSTI)

A preselected volume of nuclear fuel particles are placed in a cylindrical mold cavity followed by a solid pellet of resin--carbon matrix material of preselected volume. The mold is heated to liquefy the pellet and the liquefied matrix forced throughout the interstices of the fuel particles by advancing a piston into the mold cavity. Excess matrix is permitted to escape through a vent hole in the end of the mold opposite to that end where the pellet was originally disposed. After the matrix is resolidified by cooling, the resultant fuel composite is removed from the mold and the resin component of the matrix carbonized. (Official Gazette)

Stradley, J.G.; Sease, J.D.

1973-10-01T23:59:59.000Z

333

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

334

U.S. Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels, Except Where Noted) Barrels, Except Where Noted) Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View History Crude Oil 0 0 0 0 0 0 1986-2012 Liquefied Petroleum Gases 2,663 2,930 2,866 2,404 1,291 1,521 1986-2012 Distillate Fuel Oil 420 472 339 440 483 539 1986-2012 Residual Fuel Oil 1,844 1,390 1,249 980 759 540 1986-2012 Still Gas 247,106 237,161 220,191 219,890 217,716 220,094 1986-2012 Petroleum Coke 88,015 81,811 82,516 82,971 84,053 85,190 1986-2012 Marketable Petroleum Coke

335

Legal nature of LPG (liquefied petroleum gas) regulation  

SciTech Connect

The commercial exploitation of Liquefied Petroleum Gas (LPG) in New Zealand has occurred without a particular and comprehensive concern for any legal implications. The paper in Part I examines definitional questions, assesses in Part II the ability of courts and quasi-courts to evaluate risks associated with the product, examines in Part III the utility of common law remedies for injuries or associated with or arising from LPG, analyzes in Part IV the statutory regulation of LPG, concentrating particularly on the Dangerous Goods (Class 2 - Gases) Regulations 1980, discusses in Part V recent planning case-law concerning LPG development, and concludes that some reform is necessary to produce a more-coherent and precise regulatory regime that takes into account both the needs of developers and those affected by the development of LPG.

Liddell, G.

1986-08-01T23:59:59.000Z

336

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

337

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

338

alt fuel | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288369 Varnish cache server alt fuel Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG

339

NREL: Fleet Test and Evaluation - Alternative Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Alternative Fuels NREL's Fleet Test and Evaluation Team works with industry partners to evaluate the use of alternative fuels in delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in medium- and heavy-duty diesel vehicles, compressed and liquefied natural gas and Fischer-Tropsch diesel are also viable options for trucking companies. Learn more about the team's evaluations of alternative fuels in fleet operations: Biodiesel Compressed Natural Gas Fischer-Tropsch Diesel Liquefied Natural Gas Printable Version Fleet Test and Evaluation Home Research & Development Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric & Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification

340

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Imports of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

342

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

343

Residual Fuel Oil Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

344

Delaware Imports of Residual Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

345

Stocks of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

All stock levels are as of the end of the period. Data may not add to total due to independent rounding. Weekly data for RBOB with Ether, RBOB with Alcohol, ...

346

U.S. Liquefied Natural Gas Imports From Qatar (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Liquefied Natural Gas Imports From Qatar (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 0: 0: 19,697 ...

347

Price of Liquefied U.S. Natural Gas Exports to Japan (Dollars per ...  

U.S. Energy Information Administration (EIA)

Release Date: 7/31/2013: Next Release Date: 8/30/2013: Referring Pages: U.S. Natural Gas Exports by Country; U.S. Price of Liquefied Natural Gas Exports by Point of Exit

348

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network (OSTI)

4: Modeling Emissions from Natural Gas-Related Sources 4.1Penetration of Liquefied Natural Gas Table ES2: Impacts ontypical summer demand of natural gas in the South Coast Air

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

349

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network (OSTI)

2-1 U.S. Natural Gas Imports, 2006–2030. 2 Net Importsliquefied natural gas (LNG) imports. The imported gas willdemands for natural gas , net imports of liquefied natural

Lekov, Alex

2010-01-01T23:59:59.000Z

350

,"Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:23:01 PM" "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars per Thousand Cubic Feet)"...

351

Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Indonesia (Dollars per Thousand Cubic Feet) Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

352

,"Price of U.S. Liquefied Natural Gas Imports From Algeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:21:44 PM" "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From Algeria (Dollars per Thousand Cubic Feet)"...

353

,"Price of U.S. Liquefied Natural Gas Imports From Indonesia...  

U.S. Energy Information Administration (EIA) Indexed Site

PM" "Back to Contents","Data 1: Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103ID3" "Date","Price of U.S....

354

Method and apparatus for transfer of liquefied gas. [hydrogen, LPG, or LNG  

SciTech Connect

A method and apparatus for transferring a liquefied gas (hydrogen, LPG, or LNG) from a first container into a second container without removal of vapor from the second container is disclosed.

Gee, D.E.; Worboys, R.V.

1976-06-15T23:59:59.000Z

355

Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

Release Date: 7/31/2013: Next Release Date: 8/30/2013: Referring Pages: U.S. Natural Gas Exports by Country; U.S. Price of Liquefied Natural Gas Exports by Point of Exit

356

U.S. Liquefied Natural Gas Imports From Nigeria (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Liquefied Natural Gas Imports From Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 0: 0: 0 ...

357

Price of Liquefied U.S. Natural Gas Exports to China (Dollars per ...  

U.S. Energy Information Administration (EIA)

Price of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011-----10.61-----11.98 ...

358

U.S. Liquefied Natural Gas Imports From Trinidad and Tobago ...  

U.S. Energy Information Administration (EIA)

U.S. Liquefied Natural Gas Imports From Trinidad and Tobago (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

359

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Colorado Incentives and Laws Colorado Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuels Tax and Vehicle Decal Repealed: 05/15/2013 Fuel tax exemptions are granted for natural gas and liquefied petroleum gas (propane) vehicle owners. Owners of natural gas and propane vehicles must purchase an annual tax decal from the Colorado Department of Revenue or a decal vendor as follows: Gross Vehicle Weight Rating Annual License Tax Fee 1-10,000 pounds (lbs.) $70 10,001-16,000 lbs. $100 Over 16,000 lbs. $125 All natural gas and propane vehicles must display a current fuel tax decal. Non-profit transit agencies are exempt from the fuel tax.

360

Mathematical modeling of a Fermilab helium liquefier coldbox  

SciTech Connect

Fermilab Central Helium Liquefier (CHL) facility is operated 24 hours-a-day to supply 4.6{degrees}K for the Fermilab Tevatron superconducting proton-antiproton collider Ring and to recover warm return gases. The centerpieces of the CHL are two independent cold boxes rated at 4000 and 5400 liters/hour with LN{sub 2} precool. These coldboxes are Claude cycle and have identical heat exchangers trains, but different turbo-expanders. The Tevatron cryogenics demand for higher helium supply from CHL was the driving force to investigate an installation of an expansion engine in place of the Joule-Thompson valve. A mathematical model was developed to describe the thermo- and gas-dynamic processes for the equipment included in the helium coldbox. The model is based on a finite element approach, opposite to a global variables approach, thus providing for higher accuracy and conversion stability. Though the coefficients used in thermo- and gas-dynamic equations are unique for a given coldbox, the general approach, the equations, the methods of computations, and most of the subroutines written in FORTRAN can be readily applied to different coldboxes. The simulation results are compared against actual operating data to demonstrate applicability of the model.

Geynisman, M.G.; Walker, R.J.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait  

E-Print Network (OSTI)

This research study investigated a new conceptual design for a modular structural configuration incorporating storage for Liquefied Natural Gas (LNG) within the base of the platform structure. The structure, referred to as a modified gravity base concrete structure (MGBCS), was envisioned specifically to be constructed at a suitable site off the coast of Kuwait. Coastal offshore bathometric information, environmental data and existing data on onshore facilities were examined in the site selection portion of the study. A finite element model of the MGBCS was developed using an industry standard finite element code that allows preliminary sizes of structural models to meet appropriate design codes. A variety of parametric and design load scenarios were investigated. This research tackles some preliminary issues that are adequate for an initial evaluation of the proposed design concept. The proposed design concept needs a lot more scrutiny in order to be sufficiently developed as a concept where it can be confirmed as a truly viable concept and investment. It was confirmed that quartering sea conditions, waves approaching at a 45 degree angle, are the most critical scenarios for the terminal based on maximum values and ranges of shears and moments. In addition, there are several interesting issues in this concept that should be further looked at for this design to be further developed. The limitations of our study must be mitigated in future designs if the proposed design concept is to be carried to the implementation stage.

Aljeeran, Fares

2005-05-01T23:59:59.000Z

362

Control method for mixed refrigerant based natural gas liquefier  

DOE Patents (OSTI)

In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

2003-01-01T23:59:59.000Z

363

Opportunities in Liquefied Natural Gas - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural gas burns more cleanly than petroleum fuels or coal, and new gas-fired combined-cycle turbine power plants can turn heat into electricity more efficiently ...

364

Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF  

SciTech Connect

A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different fuel injection strategies. Finally, mixture distributions for late injection obtained using quantitative PLIF are compared to predictions of computational fluid dynamics calculations. (author)

Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

2010-10-15T23:59:59.000Z

365

Proceedings of the 1995 SAE alternative fuels conference. P-294  

Science Conference Proceedings (OSTI)

This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

NONE

1995-12-31T23:59:59.000Z

366

Alternative Fuels Data Center: Natural Gas and Propane Retailer License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retailer License to someone by E-mail Retailer License to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Retailer License Compressed natural gas, liquefied natural gas, or liquefied petroleum gas

367

Alternative Fuels Data Center: Natural Gas and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Tax Effective January 1, 2019, liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas will be subject to an excise tax at

368

Alternative Fuels in Trucking Volume 5, Number 4  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

N N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac- tion are spread * The numbers of vehicles being fueled at a given refueling site. Vehicles using natural gas also cost more than comparable gasoline and diesel vehicles because the fuel tanks are inherently more expensive, whether the gas is compressed (CNG) or liquefied (LNG). At this

369

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

DOE Green Energy (OSTI)

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

370

Confined boiling rates of liquefied petroleum gas on water  

SciTech Connect

Results of a program to measure the rate of boiling of liquefied petroleum gas (LPG) on water surface and to develop an analytical model to describe the phenomena involved are reported. Primary emphasis was placed on liquid propane or LPG mixtures containing small quantities of ethane or butane or both. A few exploratory tests were, however, made with pure liquid ethane, ethylene, and n-butane. The investigation was conducted to provide quantitative data and analytical models to delineate the rate of vaporization, the spread rate and the degree of fractionation, should an LPG tanker suffer an accident leading to a major spill on water. For propane or LPG spills on water, immediately following the contact, violent boiling commenced. Ice quickly formed; in most cases, ice was even thrown onto the sidewalls of the vessel. In some instances sprays of water/ice and propane were ejected from the calorimeter. Within a few seconds, however, the interaction quieted and the surface was covered by a rough ice sheet. The LPG boiled on the surface of this ice, but large gas bubbles occasionally appeared under the ice shield and were trapped. The boiling rate decreased with time with a concomitant increase in the thickness of the ice shield. In the first second or two, very high boiling heat fluxes were experienced. The mass of LPG lost was approximately half that spilled originally. It is estimated that only 5 to 15% could have been ejected as liquid if the water loss is used as a reference. However, since the water surface is very agitated during this period, it is not possible to obtain reliable quantitative values of the boiling flux. Also, as noted, the mass lost in the very early time period was approximately proportional to the original mass of LPG used. It may be inferred that larger spills lead to more mixing and boiling before the ice shield prevents a direct contact between the LPG and the water.

Reid, R.C.; Smith, K.A.

1978-05-01T23:59:59.000Z

371

Cellular glass insulation keeps liquefied gas from vaporizing  

SciTech Connect

The North West Shelf Project, located on the Burrup Peninsula in Western Australia, supplies much of that vast state with natural gas for domestic and industrial applications. Some of the gas is also exported to Japan as liquefied natural gas (LNG). While awaiting shipment to Japan, the LNG is stored at {minus}322 F in four storage tanks, each with a capacity of 2.5 million ft{sup 3}. When Woodside Offshore Petroleum Pty Ltd., operator of the LNG facility, selected insulation material for the storage tanks, it went in search of a material with more than just insulating value. Since the insulation is installed inside the tanks, it must be able to resist wicking or absorbing the LNG. Also, it had to have sufficient strength to withstand the weight of the 2.5 million ft{sup 3} of LNG without being crushed or losing its insulting properties. And, as a safety precaution, the selected materials should neither burn nor support combustion. Ultimately, Woodside selected a cellular glass insulation called Foamglas, from Pittsburgh Corning Corp., that met all the performance criteria and was cost competitive with the lesser-performing alternatives. Foamglas is produced from strong, inert borosilicate glass. Its insulating capability is provided by the tiny, closed cells of air encapsulated within the foam-like structure of the glass. Since the cells are closed,neither liquid nor vapor can enter the structure of the insulation. The inert glass itself will not absorb or react with LNG, nor will it burn or support a fire. The cellular structure provides effective insulation in both not and cold applications, and offers a fire barrier.

NONE

1995-11-01T23:59:59.000Z

372

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

Table F9: Residual Fuel Oil Consumption Estimates, 2011 State Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total...

373

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is… (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

374

The Intelligent Study on Diesel-LNG Dual Fuel Marine Diesel Engine  

Science Conference Proceedings (OSTI)

In this article, a diesel engine named "X6170ZC" has been converted into a dual-fuel engine of diesel and liquefied natural gas (LNG). The principle, composition and characteristics of electronic control system for the engine have been introduced. An ... Keywords: engine, dual-fuel, intelligent

Zhang Liang

2012-03-01T23:59:59.000Z

375

The Fuel Control System and Performance Optimization of a Spark-Ignition LPG Engine  

Science Conference Proceedings (OSTI)

This paper presents an approach to control air fuel ratio of a Liquefied Petroleum Gas (LPG) automotive engine. The optimization of compression ratio is also described in this paper. HC, CO & NOx emissions of LPG engines can be reduced after the application ... Keywords: control, LPG engine, air fuel ratio, optimization

Hongwei Cui

2009-04-01T23:59:59.000Z

376

Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results  

DOE Green Energy (OSTI)

In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

2000-11-07T23:59:59.000Z

377

Alternative Fuels Data Center: Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close More Search Options...

378

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

379

A construction and improvement heuristic for a liquefied natural gas inventory routing problem  

Science Conference Proceedings (OSTI)

We present a large scale ship routing and inventory management problem for a producer and distributor of liquefied natural gas (LNG). The problem contains multiple products, inventory and berth capacity at the loading port and a heterogeneous fleet of ... Keywords: Heuristics, Inventory routing, Maritime transportation

Magnus Stålhane; Jørgen Glomvik Rakke; Christian Rørholt Moe; Henrik Andersson; Marielle Christiansen; Kjetil Fagerholt

2012-02-01T23:59:59.000Z

380

Fault-tree analysis for liquefied natural gas terminal emergency shutdown system  

Science Conference Proceedings (OSTI)

Natural gas, one of the cleanest, most efficient and useful of all energy sources, is a vital component of the world's supply of energy. To make natural gas more convenient for storage and transportation, it is refined and condensed into a liquid called ... Keywords: Emergency shutdown system, Fault-tree analysis, Intuitionistic fuzzy sets theory, Liquefied natural gas, Probability

Shuen-Ren Cheng; Binshan Lin; Bi-Min Hsu; Ming-Hung Shu

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Branch-and-Price Method for a Liquefied Natural Gas Inventory Routing Problem  

Science Conference Proceedings (OSTI)

We consider a maritime inventory routing problem in the liquefied natural gas (LNG) business, called the LNG inventory routing problem (LNG-IRP). Here, an actor is responsible for the routing of the fleet of special purpose ships, and the inventories ... Keywords: branch-and-price, column generation, maritime transportation

Roar Grønhaug; Marielle Christiansen; Guy Desaulniers; Jacques Desrosiers

2010-08-01T23:59:59.000Z

382

Everett, MA Natural Gas Liquefied Natural Gas Imports from Trinidad and  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Everett, MA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 10,240 11,488 7,086 8,271 8,126 8,150 7,731 7,870 5,199 5,520 9,264 4,691 2012 9,482 8,458 7,661 1,447 4,940 5,465 6,646 10,377 5,634 4,748 2,553 2,581 2013 5,126 5,003 4,629 5,171 5,626 5,173 8,023 5,961 2,995 2,674 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Everett, MA LNG Imports from Trinidad/Tobago

383

Analysis and Optimization of the Power Cycle Based on the Cold Energy of Liquefied Natural Gas  

Science Conference Proceedings (OSTI)

Liquid natural gas (LNG) delivered by sea-ships contains considerable cryogenic energy which can be used for power generation before its evaporation and introduction into the system of pipe line. Electric power generation utilizing LNG cold energy is ... Keywords: liquefied natural gast, cold energy recovery, pinch analysis, exergy, optimization

Lu Yuanwei; Yang Hongchang; Ma Chongfang

2011-01-01T23:59:59.000Z

384

TABLE28.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

8. Exports of Crude Oil and Petroleum Products by Destination, (Thousand Barrels) Destination Liquefied Finished Crude Pentanes Petroleum Motor Distillate Fuel Residual Oil a Plus...

385

Alternative Fuels Data Center: Propane Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Benefits and Considerations Also known as liquefied petroleum gas (LPG), propane is a domestically produced, well-established, clean-burning fuel. Using propane as a vehicle fuel increases energy security, provides convenience and performance

386

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

387

Alternative gaseous-fuels safety assessment  

DOE Green Energy (OSTI)

A relative safety assessment of alternative gaseous and reference liquid fuels utilized for light automotive transportation in the public sector was completed. The specific fuels considered were compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), and the liquid fuels, gasoline and diesel. The assessment methodology describes and develops the relative hazards of these fuels from an integrated generic physicochemical property and accident scenario point of view. A technique involving a method of eliciting expert judgment combined with a comparative scoring methodology was applied in establishing fuel relative safety rankings. Limitations of this type of assessment are discussed. Selected accident scenarios included fuel leakage in both residential and public garages; fueling line rupture at a refueling station in the presence of user vehicles or delivery vehicles; and vehicle collisions under rural, urban, and vehicular tunnel conditions. Overall, the results obtained demonstrate dependency upon the specific application or scenario. Gaseous fuels have increased relative risks in certain situations and are relatively safe in others. The results suggest that alternative gaseous fuels are not disqualified for public usage. The assessment also provides rationale for the development of selected safe handling criteria and recommendations.

Krupka, M.C.; Peaslee, A.T. Jr.; Laquer, H.L.

1983-01-01T23:59:59.000Z

388

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

389

Alternative Fuels Data Center: Propane Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemption Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Exemption Liquefied petroleum gas (propane) is exempt from the state fuel excise tax when sold from a licensed propane vendor to a licensed propane user or a propane vehicle owner if it is delivered into a bulk storage tank that can

390

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax For taxation purposes, liquefied petroleum gas (propane) used as a motor vehicle fuel must be converted to gasoline gallon equivalents (GGE) using the conversion factor of 4.24 pounds per gallon of liquid at 60 degrees Fahrenheit per GGE. Propane is taxed at a rate of $0.20 per GGE. (Reference

391

Imported LNG (liquid natural gas) as an alternative fuel  

SciTech Connect

Imports of liquefied natural gas (LNG) first arrived in the United States in 1972 at the rate of one billion cubic feet (Bcf) per year. By 1979, they had reached 252 Bcf/year. However, as US as demand declined and domestic deliverability grew, inflexible LNG prices led to the complete collapse of trade during the 1980s. In 1987, all four US import terminals were idle and no LNG was imported. The situation bean to change with renegotiation of Distrigas' contract to import LNG from Algeria's Sonatrach. In 1988, the company imported 19 Bcf of gas to its Everett, Massachusetts terminal, with greater volumes in 1989. Panhandle Eastern has also renegotiated its Algerian supply contract and reactivated the company's Trunkline LNG terminal at Lake Charles, Louisiana. It received its first cargo in December 1989. Moves are also being made to bring the other two US import terminals, at Cove Point, Maryland and Elba Island, Georgia, back into service. On the supply side too, there are major new developments. Not only is Algeria seeking to expand its existing exports, but new LNG projects in Nigeria, Norway and Venezuela in particular are aimed at the US market. The purpose of this report is to describe the current status and potential development of LNG imports to the US with a view to identifying those circumstances in which an electric utility might consider LNG as an alternate back-up fuel to distillate or residual oil, in gas-fired generating facilities. 9 figs., 10 tabs.

Kelly, M. (Jensen Associates, Inc., Boston, MA (USA))

1990-11-01T23:59:59.000Z

392

A new methodology for analyzing and predicting U.S. liquefied natural gas imports using neural networks.  

E-Print Network (OSTI)

??Liquefied Natural Gas (LNG) is becoming an increasing factor in the U.S. natural gas market. For 30 years LNG imports into the U.S. have remained… (more)

Bolen, Matthew Scott

2005-01-01T23:59:59.000Z

393

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Go Generated_thumb20130810-31804-12g76v6 Incentive and Law Additions by Targeted Agent Generated_thumb20130810-31804-12g76v6 Trend of state incentive and law enactments listed by the targeted agent from 2002-2010 Last update March 2013 View Graph Graph Download Data Natural-gas-stations Natural Gas Fueling Stations by State Natural-gas-stations View Map Graph Map_thumbnail Workplace Charging Challenge Partner Stations Map_thumbnail View Graph Graph Lng-stations Liquefied Natural Gas Fueling Stations by State Lng-stations View Map Graph L_i-electric Electric Vehicle Incentives and Laws, by State L_i-electric View Map Graph Propane_li_by_state Propane Incentives and Laws, by State Propane_li_by_state View Map Graph Generated_thumb20130810-31804-1f4rg7 On-Road AFVs Made Available by Year

394

Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application  

E-Print Network (OSTI)

There has been, and will continue to be, tremendous growth in the use and distribution of liquefied natural gas (LNG). As LNG poses the hazard of flammable vapor cloud formation from a release, which may result in a massive fire, increased public concerns have been expressed regarding the safety of this fuel. In addition, regulatory authorities in the U.S. as well as all over the world expect the implementation of consequence mitigation measures for LNG spills. For the effective and safer use any safety measure to prevent and mitigate an accidental release of LNG, it is critical to understand thoroughly the action mechanisms. Water spray curtains are generally used by petro-chemical industries to prevent and mitigate heavier-than-air toxic or flammable vapors. It is also used to cool and protect equipment from heat radiation of fuel fires. Currently, water spray curtains are recognized as one of the economic and promising techniques to enhance the dispersion of the LNG vapor cloud formed from a spill. Usually, water curtains are considered to absorb, dilute, disperse and warm a heavier-than-air vapor cloud. Dispersion of cryogenic LNG vapor behaves differently from other dense gases because of low molecular weight and extremely low temperature. So the interaction between water curtain and LNG vapor is different than other heavier vapor clouds. Only two major experimental investigations with water curtains in dispersing LNG vapor clouds were undertaken during the 1970s and 1980s. Studies showed that water spray curtains enhanced LNG vapor dispersion from small spills. However, the dominant phenomena to apply the water curtain most effectively in controlling LNG vapor were not clearly demonstrated. The main objective of this research is to investigate the effectiveness of water spray curtains in controlling the LNG vapor clouds from outdoor experiments. A research methodology has been developed to study the dispersion phenomena of LNG vapor by the action of different water curtains experimentally. This dissertation details the research and experiment development. Small scale outdoor LNG spill experiments have been performed at the Brayton Fire Training Field at Texas A&M University. Field test results regarding important phenomena are presented and discussed. Results have determined that the water curtains are able to reduce the concentration of the LNG vapor cloud, push the vapor cloud upward and transfer heat to the cloud. These are being identified due to the water curtain mechanisms of entrainment of air, dilution of vapor with entrained air, transfer of momentum and heat to the gas cloud. Some of the dominant actions required to control and disperse LNG vapor cloud are also identified from the experimental tests. The gaps are presented as the future work and recommendation on how to improve the experiments in the future. This will benefit LNG industries to enhance its safety system and to make LNG facilities safer.

Rana, Morshed A.

2009-12-01T23:59:59.000Z

395

Check Out the New Alternative Fuel Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator November 19, 2012 - 2:29pm Addthis Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles

396

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

May, R.L.; Snow, N.J. Jr.

1983-12-06T23:59:59.000Z

397

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

398

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

399

Risk assessment of storage and transport of liquefied natural gas and LP-gas. Final report  

SciTech Connect

A method for assessing the societal risk of transporting liquefied petroleum gas (LPG) and liquefied natural gas (LNG) is described, and is illustrated by application to the transport of LPG by tank truck and LNG by tanker ship in the U.S. Data on past experience and projected future handling of these liquefied gases are used with analysis of flammable plume formation and ignition, and population distributions, to estimate the risks of fatalities from tank truck and tanker ship accidents. From an estimated 52 significant accidents per year with LPG tank trucks at the present truck-associated transportation rate of 20 billion gallons of LPG per year, a fatality rate of 1.2 per year is calculated. For the projected 1980 importation of 33 billion gallons by tanker ship, a fatality rate of 0.4 per year is calculated, using a conservatively high one chance in 20,000 of a significant accident per trip. Comparison with fires and explosions from all causes in the U.S. and Canada leading to 10 or more fatalities shows that these are 100 times more frequent than the predicted frequency of comparable LPG and LNG accidents. Tabulations of experience with spills of flammable volatile liquids are included. (GRA)

Simmons, J.A.

1974-11-25T23:59:59.000Z

400

Alternative Fuels Data Center: Natural Gas Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Tax Effective September 1, 2013, compressed natural gas and liquefied natural gas dispensed into a motor vehicle will be taxed at a rate of $0.15 per gasoline gallon equivalent (GGE) or diesel gallon equivalent (DGE),

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Propane Supplier Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Supplier Propane Supplier Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Supplier Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Supplier Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Google Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Delicious Rank Alternative Fuels Data Center: Propane Supplier Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Supplier Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Supplier Requirements A retail supplier may only distribute liquefied petroleum gas (LPG or propane) if the supplier holds a license from the Wisconsin Department of

402

Alternative Fuels Data Center: Natural Gas Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Tax to Natural Gas Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Tax Operators of motor vehicles capable of using compressed or liquefied natural gas must pay an annual flat rate privilege tax if the vehicle has a gross vehicle weight rating (GVWR) of 10,000 pounds (lbs.) or less. Natural

403

Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)  

SciTech Connect

Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2006-10-15T23:59:59.000Z

404

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

405

The origin of organic pollutants from the combustion of alternative fuels: Phase 5/6 report  

DOE Green Energy (OSTI)

As part of the US Department of Energy National Renewable Energy Laboratory program on alternative automotive fuels, the subcontractor has been conducting studies on the origin and fate of organic pollutants from the combustion of alternative fuels. Laboratory experiments were conducted simulating cold start of four alterative fuels (compressed natural gas, liquefied petroleum gas, methanol-gasoline mix, and ethanol-gasoline mix) using a commercial three-way catalyst under fuel-lean conditions. This report summarizes the results of these experiments. It appears that temperature of the catalyst is a more important parameter for fuel conversion and pollutant formation than oxygen concentration or fuel composition.

Sidhu, S.; Graham, J.; Taylor, P.; Dellinger, B. [Univ. of Dayton, OH (United States). Research Inst.

1998-05-01T23:59:59.000Z

406

International LNG trade : the emergence of a short-term market; International liquefied natural gas trade : the emergence of a short-term market.  

E-Print Network (OSTI)

??Natural gas is estimated to be the fastest growing component of world primary energy consumption. Liquefied natural gas (LNG) supply chain is a way of… (more)

Athanasopoulos, Panagiotis G

2006-01-01T23:59:59.000Z

407

Fuel Composition Impacts on Combustion Turbine Operability  

Science Conference Proceedings (OSTI)

Most new CT plants today area permitted at low emission limits for NOx and CO, leading to greater use of lean, pre-mix combustion of natural gas in dry, low-NOx (DLN) combustors. These combustors are typically fine-tuned for a narrow range of fuel properties. At the same time, the increasing variability of natural gas supplies, deregulation of the gas industry, and increasing use of liquefied natural gas (LNG) has led to more variability in fuel properties and a need for greater flexibility in firing gas...

2006-03-20T23:59:59.000Z

408

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

409

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

410

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

411

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane ...  

U.S. Energy Information Administration (EIA)

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) Geographic Area

412

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

413

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

414

Fuel Efficient Vehicle Tax Incentives Information Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Credits AFVs include vehicles using compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), hydrogen, or any liquid at least 85% methanol by...

415

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close More Search Options Include private stations Include...

416

Gaseous-fuel safety assessment. Status report  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory, in support of studies sponsored by the Office of Vehicle and Engine Research and Development in the US Department of Energy, has undertaken a safety assessment of selected gaseous fuels for use in light automotive transportation. The purpose is to put into perspective the hazards of these fuels relative to present day fuels and delineated criteria for their safe handling. Fuels include compressed and liquified natural gas (CNG and LNG), liquefied petroleum gas (LPG), and for reference gasoline and diesel. This paper is a program status report. To date, physicochemical property data and general petroleum and transportation information were compiled; basic hazards defined; alternative fuels were safety-ranked based on technical properties alone; safety data and vehicle accident statistics reviewed; and accident scenarios selected for further analysis. Methodology for such analysis is presently under consideration.

Krupka, M.C.; Edeskuty, F.J.; Bartlit, J.R.; Williamson, K.D. Jr.

1982-01-01T23:59:59.000Z

417

The Effect of Higher Hydrocarbons on the Ignition Delay of Natural Gas Fuels at Gas Turbine Conditions  

Science Conference Proceedings (OSTI)

This investigation focuses on studying autoignition of fuels primarily used for stationary gas turbine operation today and others that are garnering interest for future use. Most stationary gas turbine engines operate today on natural gas. Natural gas can either come from domestic or foreign sources. Natural gas from foreign sources is typically imported as a chilled liquid, so it is commonly referred to as liquefied natural gas (LNG). Variations in fuel characteristics at the source, coupled with fuel q...

2009-12-11T23:59:59.000Z

418

Breach and safety analysis of spills over water from large liquefied natural gas carriers.  

SciTech Connect

In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

2008-05-01T23:59:59.000Z

419

On the application of computational fluid dynamics codes for liquefied natural gas dispersion.  

SciTech Connect

Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

Luketa-Hanlin, Anay Josephine; Koopman, Ronald P. (Lawrence Livermore National Laboratory, Livermore, CA); Ermak, Donald (Lawrence Livermore National Laboratory, Livermore, CA)

2006-02-01T23:59:59.000Z

420

Development of a Small-Scale Natural Gas Liquefier. Final Report  

Science Conference Proceedings (OSTI)

This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

2003-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality  

Science Conference Proceedings (OSTI)

Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

Blake, D.R.; Rowland, F.S. [Univ. of California, Irvine, CA (United States)

1995-08-18T23:59:59.000Z

422

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Incentives and Laws Florida Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Freight Transportation Plan Development Archived: 06/01/2013 By July 1, 2013, the Florida Department of Transportation must develop a Freight Mobility and Trade Plan (Plan) that identifies freight mobility assessments that contribute to economic development and enhance the integration and connectivity of the transportation system across modes. The Plan should include policies and investments that promote compressed natural gas, liquefied natural gas, and propane energy policies that reduce transportation costs for businesses and residents. (Reference House Bill

423

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network (OSTI)

of fuels through use at refinery Energy: other industrialas a process fuel by refineries) (see discussion above); i)residual fuel produced by refineries that produce mainly

Delucchi, Mark

2005-01-01T23:59:59.000Z

424

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network (OSTI)

of fuels through use at refinery Energy: other industrialas a process fuel by refineries) (see discussion above); i)residual fuel produced by refineries that produce mainly

Delucchi, Mark

2005-01-01T23:59:59.000Z

425

ICME for Residual Stress  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... Application of ICME to Weld Process Innovations and Residual Stress ... Incorporation of Residual Stresses into Design of Ni-Base Superalloy ...

426

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

May, R.L.; Sinclair, B.W.

1984-07-31T23:59:59.000Z

427

Refinery Net Production of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

428

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

429

Residual Fuel Oil Sales for Military Use  

Gasoline and Diesel Fuel Update (EIA)

17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 East Coast (PADD 1) 15,618 8,626 14,049 9,344 14,362 9,408 1984-2012 New England (PADD 1A) 1,880 729 767 693 574 174 1984-2012 Connecticut 599 729 767 693 574 174 1984-2012 Maine 0 0 0 0 0 0 1984-2012 Massachusetts 1,280 0 0 0 0 0 1984-2012 New Hampshire 0 0 0 0 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 7,518 7,012 11,744 7,200 12,458 8,922 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 6,638 6,291 6,479 7,200 6,022 5,754 1984-2012 New Jersey 0 0 1,740 0 1,539 585 1984-2012 New York 0 0 3,518 0 4,897 2,583 1984-2012 Pennsylvania

430

Residual Fuel Oil Imports from Kazakhstan  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

431

Residual Fuel Oil Imports from Syria  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

432

Residual Fuel Oil Imports from Peru  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

433

Residual Fuel Oil Imports from Chile  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

434

Blender Net Production of Residual Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

435

Total Adjusted Sales of Residual Fuel Oil  

Annual Energy Outlook 2012 (EIA)

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions,...

436

Residual Fuel Oil Imports from Spratly Islands  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

437

Residual Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

438

Residual Fuel Oil Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

439

Overview of fuel processing options for polymer electrolyte fuel cell systems  

DOE Green Energy (OSTI)

The polymer electrolyte fuel cell (PEFC) is being developed for use in heavy- and light-duty transportation applications. While this fuel cell has been used successfully in buses and vans with compressed hydrogen as the on-board fuel [1,2], the fuel cell system must incorporate fuel processing (reforming) for any other on-board fuel to produce the hydrogen or hydrogen-rich fuel gas to be fed to the fuel cell stack. This is true even for alternative methods of storing hydrogen, such as use of a metal hydride or liquefied hydrogen. The ``fuel processing`` needed to recover the hydrogen includes providing the heat of dissociation of the hydride and cooling the hydrogen to the temperature of the fuel cell stack. Discussed below are some of the options being considered for processing of on-board fuels (other than compressed hydrogen) to generate the fuel cell anode gas, and the effects of fuel processing on system design, efficiency, steady-state and dynamic performance, and other factors.

Kumar, R.

1995-12-31T23:59:59.000Z

440

Impacts of alternative fuels on air quality  

DOE Green Energy (OSTI)

The objective of this project was to determine the impact of alternative fuels on air quality, particularly ozone formation. The alternative fuels of interest are methanol, ethanol, liquefied petroleum gas, and natural gas. During the first year of study, researchers obtained qualitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol and ethanol. The thermal degradation of ethanol produced a substantially larger number of intermediate organic by-products than the similar thermal degradation of methanol, and the organic intermediate by-products lacked stability. Also, a qualitative comparison of the UDRI flow reactor data with previous engine test showed that, for methanol, formaldehyde and acetone were the organic by-products observed in both types of tests; for ethanol, only very limited data were located.

Taylor, P.H.; Dellinger, B. [Dayton Univ., OH (United States). Research Inst.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

442

Alternatives to traditional transportation fuels 1994. Volume 1  

DOE Green Energy (OSTI)

In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

NONE

1996-02-01T23:59:59.000Z

443

Fossil Fuel Prices to Electric Utilities  

U.S. Energy Information Administration (EIA)

Natural gas for power generation is projected to yield its apparent average price advantage over residual fuel oil by the fourth quarter of this year.

444

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

SciTech Connect

An increasing share of natural gas supplies distributed to residential appliances in the U.S. may come from liquefied natural gas (LNG) imports. The imported gas will be of a higher Wobbe number than domestic gas, and there is concern that it could produce more pollutant emissions at the point of use. This report will review recently undertaken studies, some of which have observed substantial effects on various appliances when operated on different mixtures of imported LNG. While we will summarize findings of major studies, we will not try to characterize broad effects of LNG, but describe how different components of the appliance itself will be affected by imported LNG. This paper considers how the operation of each major component of the gas appliances may be impacted by a switch to LNG, and how this local impact may affect overall safety, performance and pollutant emissions.

Lekov, Alex; Sturges, Andy; Wong-Parodi, Gabrielle

2009-12-09T23:59:59.000Z

445

Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process  

SciTech Connect

The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

1989-04-28T23:59:59.000Z

446

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

447

Alternative Fuels Data Center: Propane Education and Research Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Education and Propane Education and Research Program to someone by E-mail Share Alternative Fuels Data Center: Propane Education and Research Program on Facebook Tweet about Alternative Fuels Data Center: Propane Education and Research Program on Twitter Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Google Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Delicious Rank Alternative Fuels Data Center: Propane Education and Research Program on Digg Find More places to share Alternative Fuels Data Center: Propane Education and Research Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Education and Research Program The State Liquefied Compressed Gas Board (Board), operated through the

448

Alternative Fuels Data Center: Propane Safety and Liability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Safety and Propane Safety and Liability to someone by E-mail Share Alternative Fuels Data Center: Propane Safety and Liability on Facebook Tweet about Alternative Fuels Data Center: Propane Safety and Liability on Twitter Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Google Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Delicious Rank Alternative Fuels Data Center: Propane Safety and Liability on Digg Find More places to share Alternative Fuels Data Center: Propane Safety and Liability on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Safety and Liability An individual involved in installing liquefied petroleum gas (propane) systems or manufacturing, distributing, selling, storing, or transporting

449

Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicles Natural Gas Vehicles Safety Regulations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicles Safety Regulations Vehicles converted to operate on compressed natural gas (CNG), liquefied

450

Alternative Fuels Data Center: Propane Board and Dealer Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Board and Propane Board and Dealer Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Board and Dealer Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Board and Dealer Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Google Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Delicious Rank Alternative Fuels Data Center: Propane Board and Dealer Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Board and Dealer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Board and Dealer Requirements The Idaho Liquefied Petroleum Gas (LPG) Public Safety Act established the

451

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

452

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

453

Emissions of greenhouse gases from the use of transportation fuels and electricity  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. (California Univ., Davis, CA (United States))

1991-11-01T23:59:59.000Z

454

Experience with Bi-Fuel LPG Pickups in Texas  

DOE Green Energy (OSTI)

The State of Texas requires state agencies to purchase alternative fuel vehicles (AFVs). In 1996, Texas Department of Transportation (TxDOT) representatives added about 400 bi-fuel liquefied petroleum gas (LPG) pickup trucks to their fleet. The fleet managers were willing to share information about their fleets and the operation of these vehicles, so a study was launched to collect operations, maintenance, and cost data for selected LPG and gasoline vehicles (as controls) throughout 18 months of vehicle operation. This case study presents the results of that data collection and its subsequent analysis.

Whalen, P.

1999-05-12T23:59:59.000Z

455

Determination of alternative fuels combustion products: Phase 1 report  

DOE Green Energy (OSTI)

This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1997-09-01T23:59:59.000Z

456

California's program converts biomass residues to energy  

SciTech Connect

This paper provides a brief introduction to the emerging biomass fuel industry in California and includes descriptions of California's biomass potential, California's biomass development program, and legislation that expands the state's developmental efforts in biomass commercialization. California's agriculture and forest industries residues were discussed. These residues can be converted to energy, and now, through California's aggressive development program, more residues will be converted. (DP)

Ward, P.F.

1980-01-01T23:59:59.000Z

457

Crop, forestry, and manure residue inventory: continental United States. Volume 3. West North-Central, including: Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota  

SciTech Connect

Tabulated data are compiled on the generation and utilization of crop, forestry, and manure residues. The utilization categories are defined as selling the residue for use other than as a fuel, feeding the residues to animals, use as fuel, return of the residue to the soil, and wastage. The tabulations are by state and by county within the state. (JSR)

1976-06-01T23:59:59.000Z

458

Table 7.4b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coala Petroleum Natural Gasf Other Gasesg Biomass Otherj Distillate Fuel Oilb Residual Fuel Oilc

459

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

460

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze...

462

Clean-Burning Motor Fuel or Electric Vehicle Personal Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

463

Clean-Burning Motor Fuel or Electric Vehicle Corporate Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

464

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

465

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

466

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Alternative Fueling Station Locator App Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

467

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

468

GE, Clean Energy Fuels Partner to Expand Natural Gas Highway | OpenEI  

Open Energy Info (EERE)

GE, Clean Energy Fuels Partner to Expand Natural Gas Highway GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Home > Groups > Clean and Renewable Energy Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking GE, Clean Energy Fuels Partner to Expand 'Natural Gas Highway' GE and Clean Energy Fuels announced a collaboration to expand the infrastructure for natural gas transportation in the United States. The agreement supports Clean Energy's efforts in developing America's Natural Gas Highway, a fueling network that will enable trucks to operate on liquefied natural gas coast to coast and border to border. Clean Energy Fuels will initially purchase two ecomagination-qualified

469

New concept: deepwater NGL/LPG plant. [Natural gas liquids and liquefied petroleum gas  

SciTech Connect

Floating platforms for processing natural gas liquids and liquefied petroleum gas (NGL/LPG) need to be stable for the processing and transfer of the products. Floating platforms are economically more attractive for producing marginal fields in deeper waters. Most of the proposed designs for crude oil and natural gas production have been tension-leg platforms, but 3 Norwegian companies are offering a converted ship as an alternative. The 3 companies will used a ship fitted with pontoons that can be raised and lowered to increase the vessel's stability. The NGL/LPG system was designed for a North Sea oil field. The feasibility study which the 3 companies completed was for a liquefaction and storage ship with a capacity of 75,000 cu m. The joint venture feels a ship has several advantages: large payload capacity; large storage capacity; ample deck space for equipment; easy to maintain; can be drydocked if necessary; and has a lower building cost. The 2 key elements to the system are the stabilization system and the turret platform.

1978-12-01T23:59:59.000Z

470

Assessment of potential radiological population health effects from radon in liquefied petroleum gas  

SciTech Connect

Liquefied petroleum gas (LPG) contains varying amounts of radon-222 which becomes dispersed within homes when LPG is used in unvented appliances. Radon-222 decays to alpha-emitting daughter products which are associated with increased lung cancer when inhaled and deposited in the respiratory system. The average dose equivalents to the bronchial epithelium from the use of LPG in unvented kitchen ranges and space heaters are estimated to be about 0.9 and 4.0 mrem/year, respectively. When extrapolated to the United States population at risk, the estimated tracheobronchial dose equivalents are about 20,000 and 10,000 person-rems/year for these appliances, or a total of about 30,000 person-rems/year. These doses are very small compared to other natural and man-made sources of ionizing radiation. It is estimated that these low doses would result in less than one lung cancer a year for the total U.S. population. Consequently, the use of LPG containing radon-222 does not contribute significantly to the incidence of lung cancer in the United States.

Gesell, T.F.; Johnson, R.H. Jr; Bernhardt, D.E.

1977-02-01T23:59:59.000Z

471

Implications of the US-Algerian liquefied natural gas price dispute and LNG imports  

Science Conference Proceedings (OSTI)

In early 1980 Algeria demanded a 200% increase in the price of its liquefied natural gas. When the US company involved refused to pay this price, Algeria stopped LNG deliveries. The Energy Department, which is now the primary US negotiator with Algeria, says it will not agree to the price demand. If it did Canada and Mexico, at least in the long run, would probably request equivalent prices for their gas. If their price requests were met, US natural gas import bills, at present import levels, would increase by about 79%, or $3.5 billion. However, as the prices increased, demand for imported gas would probably drop substantially. GAO does not believe importing large amounts of LNG from OPEC countries is in the national interest. LNG imports generally trade oil dependence for gas dependence. It makes little sense to increase US dependence on gas at a time when extraordinary steps are being taken to reduce dependence on oil. Current indications are, however, that not many more proposals for LNG from OPEC countries will be forthcoming in the next few years.

Staats, E.B.

1980-12-16T23:59:59.000Z

472

Liquid fuel reformer development.  

DOE Green Energy (OSTI)

At Argonne National Laboratory we are developing a process to convert hydrocarbon fuels to a clean hydrogen feed for a fuel cell. The process incorporates a partial oxidation/steam reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. We have tested the catalyst with three diesel-type fuels: hexadecane, low-sulfur diesel fuel, and a regular diesel fuel. We achieved complete conversion of the feed to products. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 800 C. For the two diesel fuels, higher temperatures, >850 C, were required to approach similar levels of hydrogen in the product stream. At 800 C, hydrogen yield of the low sulfur diesel was 32%, while that of the regular diesel was 52%. Residual products in both cases included CO, CO{sub 2}, ethane, ethylene, and methane.

Ahmed, S.; Krumpelt, M.; Pereira, C.; Wilkenhoener, R.

1999-07-30T23:59:59.000Z

473

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

474

Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0  

SciTech Connect

This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H. [and others

1994-02-01T23:59:59.000Z

475

Liquid natural gas as a transportation fuel in the heavy trucking industry. Second quarterly progress report, [October 1, 1994-- December 30, 1994  

DOE Green Energy (OSTI)

Emphasis of this project focuses on LNG research issues in use of liquefied natural as a transportation fuel in heavy trucking industry. These issues maybe categorized as: task 1--direct diesel replacement with LNG fuel; and task 2--short and long term storage. Accomplishments for these tasks are discussed. Task 1 consists of atomization, fundamentals of direct replacement, and distribution of emissions. Task 2 includes modified adsorbents, vent gas, and LNG storage at moderate conditions.

Sutton, W.H.

1994-12-01T23:59:59.000Z

476

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

SciTech Connect

The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

2011-07-01T23:59:59.000Z

477

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

478

MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPRESSED NATURAL GAS VEHICLES ... 5 LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES ...... 5 DIESEL VEHICLES ......

479

,"Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Indonesia (Dollars per Thousand Cubic Feet)" Indonesia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103id3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103id3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

480

,"Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Dollars per Thousand Cubic Feet)" Egypt (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103eg3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103eg3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "residual fuels liquefied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Dollars per Thousand Cubic Feet)" Nigeria (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103ng3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103ng3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

482

Commissioning and Operational Experience with 1 kW Class Helium Refrigerator/Liquefier for SST?1  

Science Conference Proceedings (OSTI)

The helium refrigerator/liquefier (R/L) for the Steady State Super conducting Tokamak (SST?1) has been developed with very stringent specifications for the different operational modes. The total refrigeration capacity is 650 W at 4.5 K and liquefaction capacity of 200 l/h. A cold circulation pump is used for the forced flow cooling of 300 g/s supercritical helium (SHe) for the magnet system (SCMS). The R/L has been designed also to absorb a 200 W transient heat load of the SCMS. The plant consists of a compressor station

C. P. Dhard; B. Sarkar; Ruchi Misra; A. K. Sahu; V. L. Tanna; J. Tank; P. Panchal; J. C. Patel; G. D. Phadke; Y. C. Saxena

2004-01-01T23:59:59.000Z

483

,"Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Malaysia (Dollars per Thousand Cubic Feet)" Malaysia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103my3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103my3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

484

,"Price of U.S. Liquefied Natural Gas Imports From Australia (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Australia (Dollars per Thousand Cubic Feet)" Australia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Australia (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103au3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103au3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

485

,"Price of U.S. Liquefied Natural Gas Imports From Qatar (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Qatar (Dollars per Thousand Cubic Feet)" Qatar (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Qatar (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103qr3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103qr3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

486

,"Price of U.S. Liquefied Natural Gas Imports From Brunei (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Brunei (Dollars per Thousand Cubic Feet)" Brunei (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Brunei (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103bx3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103bx3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

487

,"Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Oman (Dollars per Thousand Cubic Feet)" Oman (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103mu3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103mu3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

488

Liquefied Petroleum Gas (LPG) storage facility study Fort Gordon, Georgia. Final report  

SciTech Connect

Fort Gordon currently purchases natural gas from Atlanta Gas Light Company under a rate schedule for Large Commercial Interruptible Service. This offers a very favorable rate for `interruptible` gas service, however, Fort Gordon must maintain a base level of `firm gas`, purchased at a significantly higher cost, to assure adequate natural gas supplies during periods of curtailment to support family housing requirements and other single fuel users. It is desirable to provide a standby fuel source to meet the needs of family housing and other single fuel users and eliminate the extra costs for the firm gas commitment to Atlanta Gas Light Company. Therefore, a propane-air standby fuel system is proposed to be installed at Fort Gordon.

NONE

1992-09-01T23:59:59.000Z

489

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

DOE Green Energy (OSTI)

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

490

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

SciTech Connect

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

491

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

492

Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam  

E-Print Network (OSTI)

Liquefied Natural Gas (LNG) is flammable when it forms a 5 – 15 percent volumetric concentration mixture with air at atmospheric conditions. When the LNG vapor comes in contact with an ignition source, it may result in fire and/or explosion. Because of flammable characteristics and dense gas behaviors, expansion foam has been recommended as one of the safety provisions for mitigating accidental LNG releases. However, the effectiveness of foam in achieving this objective has not been sufficiently reported in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG, this study aimed to obtain key parameters, such as the temperature changes of methane and foam and the extent reduction of vapor concentration. This study also focused on identifying the effectiveness of foam and thermal exclusion zone by investigating temperature changes of foam and fire, profiles of radiant heat flux, and fire height changes by foam. Additionally, a schematic model of LNG-foam system for theoretical modeling and better understanding of underlying mechanism of foam was developed. Results showed that expansion foam was effective in increasing the buoyancy of LNG vapor by raising the temperature of the vapor permeated through the foam layer and ultimately decreasing the methane concentrations in the downwind direction. It was also found that expansion foam has positive effects on reducing fire height and radiant heat fluxes by decreasing fire heat feedback to the LNG pool, thus resulting in reduction in the safe separation distance. Through the extensive data analysis, several key parameters, such as minimum effective foam depth and mass evaporation rate of LNG with foam, were identified. However, caution must be taken to ensure that foam application can result in initial adverse effects on vapor and fire control. Finally, based on these findings, several recommendations were made for improving foam delivery methods which can be used for controlling the hazard of spilled LNG.

Yun, Geun Woong

2010-08-01T23:59:59.000Z

493

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes  

E-Print Network (OSTI)

Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical process of dispersion of LNG release can be simply divided into two stages: source term and atmospheric dispersion. The former stage occurs immediately following the release where the behavior of fluids (LNG and its vapor) is mainly controlled by release conditions. After this initial stage, the atmosphere would increasingly dominate the vapor dispersion behavior until it completely dissipates. In this work, these two stages are modeled separately by a source term model and a dispersion model due to the different parameters used to describe the physical process at each stage. The principal focus of the source term study was on LNG underwater release, since there has been far less research conducted in developing and testing models for the source of LNG release underwater compared to that for LNG release onto land or water. An underwater LNG release test was carried out to understand the phenomena that occur when LNG is released underwater and to determine the characteristics of pool formation and the vapor cloud generated by the vaporization of LNG underwater. A mathematical model was used and validated against test data to calculate the temperature of the vapor emanating from the water surface. This work used the ANSYS CFX, a general-purpose computational fluid dynamics (CFD) package, to model LNG vapor dispersion in the atmosphere. The main advantages of CFD codes are that they have the capability of defining flow physics and allowing for the representation of complex geometry and its effects on vapor dispersion. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the mesh size and shape, atmospheric conditions, turbulence from the source term, ground surface roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate the impact of key parameters on the accuracy of simulation results. In addition, a series of medium-scale LNG spill tests have been performed at the Brayton Fire Training Field (BFTF), College Station, TX. The objectives of these tests were to study key parameters of modeling the physical process of LNG vapor dispersion and collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX described the physical behavior of LNG vapor dispersion well, and its prediction results of distances to the half lower flammable limit were in good agreement with the test data.

Qi, Ruifeng

2011-08-01T23:59:59.000Z

494

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

495

Agriculture Residues Recycling  

E-Print Network (OSTI)

Abstract: Saudi Arabia, as well as other countries in the Near East region, is characterized by erratic weather conditions, limited area of fertile arable lands, and with acute water shortage. Although agricultural residues (AGR) production in the region is huge (more than 440 million tons), most of these residues are either burned in the field or utilized in an inefficient way. Utilization of AGR as compost may contribute to expansion of arable lands through its use for reclamation of soil and reduce irrigation requirements. This study was conducted at Al Khalidiah farm, Riyadh, Saudi Arabia to assess compost production at large commercial scale using several types of agricultural and animal by-products with addition of a BZT®Compost Activator (based mainly on microorganism, enzymes and yeast). In this study, two types of compost piles were made at the farm. The first pile of compost was made of different agriculture residues, namely: animal wastes (quail, goat and sheep manure), brownian agricultural wastes (windbreaks residues, date trees, citrus and olive trees pruning) and green landscape grasses (50%, 25 % and 25%, respectively) and was treated with a tested compost activator. The same agriculture residues combination was also made for the second pile as traditional compost

M. W. Sadik; H. M. El Shaer; H. M. Yakot

2010-01-01T23:59:59.000Z

496

Alternative fueled vehicle fleet safety experience. Summary report. Report for September 1994-March 1995  

SciTech Connect

The study was initiated to gather information on the safety performance of alternative fueled vehicles from fleet operators experienced in the day to day operation of these vehicles. Eight fleets and one compressed natural gas (CNG) vehicle converter were visited during the course of the study. The types of fleets visited consisted of these with vehicles fueled with CNG, liquefied natural gas (LNG), liquefied petroleum gas (LPG), and electric vehicles (EVs). Three CNG fleets, two LNG fleets, one EV fleet, and two LPG fleets were visitied in addition to one CNG converter. Items discussed with the fleet operators included fuel system performance in the crash environment as well as safety related problems encountered during the refueling operation and when maintaining the vehicles. The fleets visited have experienced no accidents where the fuel system has been jeopardized and no injury to personnel that can be attributed to the alternative fuel system. However, the accident experience of the fleets visited is very limited. Many of the problems with alternative fueled vehicles experienced in the past have been corrected by advances in the state of the art and improvements in system components. Improvements continue to be made.

Morris, J.B.

1995-03-01T23:59:59.000Z

497

Alternative fueled vehicle fleet safety experience. Final report, September 1994-March 1995  

SciTech Connect

The study was initiated to gather information on the safety performance of alternative fueled vehicles from fleet operators experienced in the day to day operation of these vehicles. Eight fleets and one compressed natural gas (CNG) vehicle converter were visitied during the course of the study. The types of fleets visited consisted of these with vehicles fueled with CNG, liquefied natural gas (LNG), liquefied petroleum gas (LPG), and electric vehicles (EVs). Three CNG fleets, two LNG fleets, one EV fleet, and two LPG fleets were visitied in addition to one CNG converter. Items discussed with the fleet operators included fuel system performance in the crash environment as well as safety related problems encountered during the refueling operation and when maintaining the vehicles. The fleets visited have experienced no accidents where the fuel system has been jeopardized and no injury to personnel that can be attributed to the alternative fuel system. However, the accident experience of the fleets visited is very limited. Many of the problems with alternative fueled vehicles experienced in the past have been corrected by advances in the state of the art and improvements in system components. Improvements continue to be made.

Morris, J.B.

1995-03-01T23:59:59.000Z

498

Stabilized fuel with silica support structure  

DOE Patents (OSTI)

This report describes a stabilized fuel which is supported by a silica support structure. The silica support structure provides a low density, high porosity vehicle for safely carrying hydrocarbon fuels. The silica support structure for hydrocarbon fuel does not produce toxic material residues on combustion which would pose environmentally sensitive disposal problems. The silica stabilized fuel composition is useful as a low temperature, continuous burning fire starter for wood or charcoal.

Poco, J.F.; Hrubesh, L.W.

1991-12-31T23:59:59.000Z

499

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

500

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z