National Library of Energy BETA

Sample records for residential wood consumption

  1. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  2. Energy Intensity Indicators: Residential Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: ...

  3. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WV2" "Date","West Virginia Natural Gas Residential Consumption ...

  4. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  5. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents comprising a Household Transportation Panel and is reported separately. * Wood used for heating. Although wood consumption data...

  6. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:56:45 AM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New Mexico Natural Gas Residential Consumption (MMcf)" ...

  7. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  8. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA has conducted the Residential Energy Consumption Survey (RECS) since 1978 to provide data on home energy characteristics, end uses of energy, and expenses for the four Census ...

  9. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow comparison of ...

  10. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from ...

  11. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  12. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a ...

  13. Residential Lighting End-Use Consumption

    Broader source: Energy.gov [DOE]

    The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications.

  14. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    | Previous Housing characteristics Consumption & expenditures Microdata Methodology ... Special tabulations: wood characteristics and consumption Release date: February 21, 2014 ...

  15. Residential energy consumption survey: consumption and expenditures, April 1982-March 1983. Part 1, national data

    SciTech Connect (OSTI)

    Thompson, W.

    1984-11-01

    This report presents data on the US consumption and expenditures for residential use of natural gas, electricity, fuel oil or kerosene, and liquefied petroleum gas (LPG) from April 1982 through March 1983. Data on the consumption of wood for this period are also presented. The consumption and expenditures data are based on actual household bills, obtained, with the permission of the household. from the companies supplying energy to the household. Data on wood consumption are based on respondent recall of the amount of wood burned during the winter and are subject to memory errors and other reporting errors described in the report. These data come from the 1982 Residential Energy Consumption Survey (RECS), the fifth in a series of comparable surveys beginning in 1978. The 1982 survey is the first survey to include, as part of its sample, a portion of the same households interviewed in the 1980 survey. A separate report is planned to report these longitudinal data. This summary gives the highlights of a comparison of the findings for the 5 years of RECS data. The data cover all types of housing units in the 50 states and the District of Columbia including single-family units, apartments, and mobile homes. For households with indirect energy costs, such as costs that are included in the rent or paid by third parties, the sonsumption and expenditures data are estimated and included in the figures reported here. The average household consumption of natural gas, electricity, fuel oil or kerosene, and LPG dropped in 1982 from the previous year, hitting a 5-year low since the first Residential Energy Consumption Survey (RECS) was conducted in 1978. The average consumption was 103 (+-3) million Btu per household in 1982, down from 114 (+-) million Btu in 1981. The weather was the main contributing factor. 8 figures, 46 tables.

  16. PIA - Form EIA-475 A/G Residential Energy Consumption Survey...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PDF ...

  17. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect (OSTI)

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  18. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  19. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    HC7 Home Office Equipment, Million U.S. Households PDF PDF Household Energy Usage The 1997 Residential Energy Consumption Survey (RECS) collected household energy data for the ...

  20. Trends in U.S. Residential Natural Gas Consumption

    Reports and Publications (EIA)

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

  1. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  2. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  3. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECS data show decreased energy consumption per household RECS 2009 - Release date: June 6, 2012 Total United States energy consumption in homes has remained relatively stable for ...

  4. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to ...

  5. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy ...

  6. Manufacturing Energy Consumption Survey (MECS) - Residential...

    Gasoline and Diesel Fuel Update (EIA)

    Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 ...

  7. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption. According to ...

  8. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  9. Residential Energy Consumption Survey (RECS) - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  10. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary › FAQS › Overview Data 2009 2005 2001 1997 1993 Previous Analysis & Projections RECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are "Commercial," "Industrial,"

  11. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  12. Sample design for the residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  13. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) Air conditioning in nearly 100 million U.S. homes RECS 2009 - Release date: August 19, 2011 line chart:air conditioning in U.S. figure dataExcept in the temperate climate regions along the West coast, air conditioners (AC) are now standard equipment in most U.S. homes (Figure 1). As recently as 1993, only 68% of all occupied housing units had AC. The latest results from the 2009 Residential Energy Consumption Survey (RECS) show that 87 percent of

  14. An analysis of residential energy consumption in a temperate climate

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  15. Improving combustion in residential size wood chip fireboxes

    SciTech Connect (OSTI)

    Huff, E.R.

    1982-12-01

    In a small experimental wood chip firebox with separate control of grate and overfire air, combustion intensity was increased with reduction in flyash and carbon monoxide by reducing air through the grate to a small fraction of stoichiometric air.

  16. Building and occupant characteristics as determinants of residential energy consumption

    SciTech Connect (OSTI)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  17. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1

  18. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Gasoline and Diesel Fuel Update (EIA)

    Housing characteristics Consumption & expenditures Microdata Housing Characteristics Tables + EXPAND ALL Floorspace - Housing Characteristics PDF (all tables) Total Floorspace All, ...

  19. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Housing characteristics Consumption & expenditures Microdata Methodology Housing Characteristics Tables + EXPAND ALL Tables HC1: Housing Unit Characteristics, Million U.S. ...

  20. Analysis of changes in residential energy consumption, 1973-1980

    SciTech Connect (OSTI)

    King, M.J.; Belzer, D.B.; Callaway, J.M.; Adams, R.C.

    1982-09-01

    The progress of energy conservation in the residential sector since the 1973 to 1974 Arab oil embargo is assessed. To accomplish this goal, the reduction in residential energy use per household since 1973 is disaggregated into six possible factors. The factors considered were: (1) building shell efficiencies, (2) geographic distribution of households, (3) appliance efficiency, (4) size of dwelling units, (5) fuel switching, and (6) consumer attitudes. The most important factor identified was improved building shell efficiency, although the impact of appliance efficiency is growing rapidly. Due to data limitations, PNL was not able to quantify the effects of two factors (size of dwelling units and fuel switching) within the framework of this study. The total amount of the energy reduction explained ranged from 18 to 46% over the years 1974 to 1980.

  1. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) State fact sheets on household energy use RECS 2009 - Release date: August 13, 2013 (Correction) The RECS gathers information through personal interviews with a nationwide sample of homes and energy suppliers. The 2009 survey was the largest RECS to date and the larger sample size allowed for the release of data for 16 individual states, in addition to national, regional, and division-level estimates. See a closer look at residential energy

  2. ,"New Hampshire Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  3. ,"New Jersey Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  4. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  5. ,"New York Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  6. ,"North Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  7. ,"Rhode Island Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. ,"South Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  9. ,"South Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  11. Residential Energy Consumption Survey (RECS) - U.S. Energy Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy ...

  12. Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1951 111 81 68 27 10 105 78 374 90 90 1952 103 89 70 27 10 108 85 385 84 84 1953 92 93 71 26 11 108 94 387 78 78 1954 82 104 79 27 12 118 99 404 75 75

  13. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Renewable Reports

  14. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  15. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    20 Site Consumption Primary Consumption Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 5% 28% 8% 56% | 8% 31% 56% 34.2 1981 5% 26% 7% 59% | 7% 29% 59% 31.9 1982 5% 26% 5% 61% | 6% 28% 61% 30.2 1983 4% 25% 5% 62% | 6% 27% 62% 30.1 1984 5% 26% 4% 61% | 6% 27% 61% 31.1 1985 5% 25% 4% 63% | 6% 26% 63% 30.9 1986 5% 24% 5% 63% | 6% 26% 63% 32.2 1987 5% 25% 4% 63% | 6% 26% 63% 32.9 1988 5% 24% 5% 63% | 6% 26% 63% 34.2 1989 5% 24% 5% 63% | 7% 25%

  16. User-needs study for the 1993 residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1993-09-24

    During 1992, the Energy Information Administration (EIA) conducted a user-needs study for the 1993 Residential Energy Consumption Survey (RECS). Every 3 years, the RECS collects information on energy consumption and expenditures for various classes of households and residential buildings. The RECS is the only source of such information within EIA, and one of only a few sources of such information anywhere. EIA sent letters to more than 750 persons, received responses from 56, and held 15 meetings with users. Written responses were also solicited by notices published in the April 14, 1992 Federal Register and in several energy-related publications. To ensure that the 1993 RECS meets current information needs, EIA made a specific effort to get input from policy makers and persons needing data for forecasting efforts. These particular needs relate mainly to development of the National Energy Modeling System and new energy legislation being considered at the time of the user needs survey.

  17. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  18. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished

  19. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  20. Table 8 U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Diioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " LPG",,22.21,23.85,23.299,24.571,24.199,24.901,29.564,28.685,26.735,33.175,34.998,33.156,33.879,34.341,32.277,32.346,28.1,30.505,34.861,36.5 " Distillate

  1. An analysis of residential energy consumption in a temperate climate. Volume 2

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  2. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  3. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average

  4. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  5. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    SciTech Connect (OSTI)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  6. Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 = 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55 1992 0.77 2002 0.92 1983 0.58 1993 0.78 2003 0.94 1984 0.60 1994 0.80 2004 0.97 1985 0.62 1995 0.82 2005 1.00 1986 0.63 1996 0.83 2006 1.03 1987 0.65 1997 0.85 2007 1.06 1988 0.67 1998 0.86 2008 1.09 1989 0.70 1999 0.87 2009 1.10 2010 1.11 Source(s): EIA, Annual Energy Review 2010, August 2011, Appendix D, p. 353.

  7. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    8 2009 Annual Natural Gas Consumption per Appliance by Census Division Census Division New England Middle Atlantic East North Central West North Central South Atlantic East South Central West South Central Mountain Pacific United States Average Total Source(s): 515,657 208,173 43,648 42,723 90,171 American Gas Association, Residential Natural Gas Market Survey, Jan. 2011, Table 10-1. 61,928 23,005 5,238 5,135 10,270 44,675 20,232 3,286 3,286 29,064 33,891 24,648 3,595 3,081 5,135 58,334 26,702

  8. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Northeast Midwest South West National Space Heating 70.3 56.6 20.4 23.8 38.7 Space Cooling 3.6 5.6 13.9 4.0 7.9 Water Heating 21.1 20.4 15.8 21.2 19.0 Refrigerator 5.4 7.0 6.6 5.7 6.3 Other Appliances & Lighting 23.0 25.9 25.0 24.1 24.7 Total (1) 79.9 77.4 95.0 Note(s): Source(s): 2005 Delivered Energy End-Uses for an Average Household, by Region (Million Btu per Household) 122.2 113.5 1) Due to rounding, sums do not add up to totals. EIA, 2005 Residential Energy Consumption Survey, Oct.

  9. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.31,10.36,10.36,10.37,10.38,10.4,10.4,10.41,10.43,10.43,10.44,10.45,10.46,10.49,10.51,10.53,10.56,10.6 "AEO 1995",,10.96,10.8,10.81,10.81,10.79,10.77,10.75,10.73,10.72,10.7,10.7,10.69,10.7,10.72,10.75,10.8,10.85 "AEO

  10. Review and analysis of emissions data for residential wood-fired central furnaces

    SciTech Connect (OSTI)

    McCrillis, R.C.

    1998-12-31

    The paper reviews data published over the past 10--15 years on domestic wood-fired central heaters. Emphasis is on stick-fired units, the most common type used in the US, but also presented are data on chip- and pellet-fired units, showing that they are capable of achieving lower emissions.

  11. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per

  12. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  13. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA,

  14. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    SciTech Connect (OSTI)

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.

  15. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 24% 41% 19% 3% | 30% 49% 3% 20.22 1981 23% 42% 19% 3% | 30% 49% 3% 19.74 1982 26% 39% 18% 3% | 32% 45% 3% 18.36 1983 26% 39% 17% 3% | 32% 46% 3% 17.20 1984 25% 40% 17% 3% | 31% 47% 3% 18.38 1985 25% 40% 18% 3% | 32% 46% 3% 17.70 1986 26% 40% 16% 3% | 32% 46% 3% 16.59 1987 25% 41% 17% 3% | 31% 47% 3% 17.63 1988 26% 42% 15% 3% | 31% 47% 3% 18.44 1989 25% 41% 16% 3% | 30% 47% 3% 19.56 1990 23%

  16. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 ...

  17. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Residential Water Use by Source (Million Gallons per Day) Year 1980 3,400 1985 3,320 1990 3,390 1995 3,390 2000 (3) (3) 3,590 2005 3,830 Note(s): Source(s): 29,430 25,600 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not provide

  18. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    6 Residential Water Billing Rate Structures for Community Water Systems Rate Structure Uniform Rates Declining Block Rate Increasing Block Rate Peak Period or Seasonal Rate Separate Flat Fee Annual Connection Fee Combined Flat Fee Other Rate Structures Note(s): Source(s): 3.0% 9.0% 1) Systems serving more than 10,000 users provide service to 82% of the population served by community water systems. Columns do not sum to 100% because some systems use more than one rate structure. 2) Uniform rates

  19. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  20. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    5 Load (quads) and Percent of Total Load Component Heating Cooling Roof -0.65 12% 0.16 14% Walls -1.00 19% 0.11 10% Foundation -0.76 15% -0.07 - Infiltration -1.47 28% 0.19 16% Windows (conduction) -1.34 26% 0.01 1% Windows (solar gain) 0.43 - 0.37 32% Internal Gains 0.79 - 0.31 27% Net Load -3.99 100% 1.08 100% Note(s): Source(s): Aggregate Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy losses/gains that when combined will be offset by a

  1. Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.; Henderson, L.

    1998-05-01

    Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

  2. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Growth Rate Wood Solar Thermal Solar PV GSHP Total 2010-Year 1980 0.846 0.000 N.A. 0.000 0.846 - 1981 0.873 0.000 N.A. 0.000 0.873 - 1982 0.971 0.000 N.A. 0.000 0.971 - 1983 0.970 0.000 N.A. 0.000 0.970 - 1984 0.980 0.000 N.A. 0.000 0.980 - 1985 1.010 0.000 N.A. 0.000 1.010 - 1986 0.920 0.000 N.A. 0.000 0.920 - 1987 0.853 0.000 N.A. 0.000 0.853 - 1988 0.910 0.000 N.A. 0.000 0.910 - 1989 0.920 0.052 N.A. 0.005 0.977 - 1990 0.582 0.056 N.A. 0.006 0.643 - 1991 0.610 0.057 N.A. 0.006 0.673 - 1992

  3. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Delivered Energy Consumption Intensities of Public Multi-Family Buildings, by Fuel and Region (Thousand Btu/SF) Region Electricity Natural Gas Fuel Oil Total Northeast 27.7 45.9 39.9 71.5 Midwest 22.5 49.9 N.A. 70.3 South 53.5 27.9 N.A. 65.9 West 22.0 25.3 N.A. 46.2 National Average 33.0 43.4 68.3

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  4. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    2 1999 Single-Family Home Daily Water Consumption by End Use (Gallons per Capita) (1) Fixture/End Use Toilet 18.5 18.3% Clothes Washer 15 14.9% Shower 11.6 11.5% Faucet 10.9 10.8% Other Domestic 1.6 1.6% Bath 1.2 1.2% Dishwasher 1 1.0% Leaks 9.5 9.4% Outdoor Use (2) 31.7 31.4% Total (2) 101 100% Note(s): Source(s): Average gallons Total Use per capita per day Percent 1) Based analysis of 1,188 single-family homes at 12 study locations. 2) Total Water use derived from USGS. Outdoor use is the

  5. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    0 Region (1) Northeast 73.5 122.2 47.7 24% New England 77.0 129.4 55.3 7% Middle Atlantic 72.2 119.7 45.3 17% Midwest 58.9 113.5 46.0 28% East North Central 61.1 117.7 47.3 20% West North Central 54.0 104.1 42.9 8% South 51.5 79.8 31.6 31% South Atlantic 47.4 76.1 30.4 16% East South Central 56.6 87.3 36.1 6% West South Central 56.6 82.4 31.4 9% West 56.6 77.4 28.1 18% Mountain 54.4 89.8 33.7 6% Pacific 58.0 71.8 25.7 11% U.S. Average 58.7 94.9 37.0 100% Note(s): Source(s): 1) Energy consumption

  6. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Primary Energy Consumption Total Per Household 1980 79.6 N.A. 123.5 15.72 197.4 1981 82.8 N.A. 114.2 15.23 184.0 1982 83.7 N.A. 114.6 15.48 184.9 1983 84.6 N.A. 110.6 15.38 181.9 1984 86.3 N.A. 113.9 15.90 184.2 1985 87.9 N.A. 111.7 16.02 182.3 1986 89.1 N.A. 108.4 15.94 178.8 1987 90.5 N.A. 108.2 16.21 179.1 1988 92.0 N.A. 112.7 17.12 186.0 1989 93.5 N.A. 113.7 17.76 190.0 1990 94.2 N.A. 102.7 16.92 179.5 1991 95.3 N.A. 104.6 17.38 182.4 1992 96.4 N.A. 104.7 17.31 179.6 1993 97.7 N.A. 107.5

  7. Residential Building Activities

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  9. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  10. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  11. Residential Transportation Historical Publications reports, data...

    U.S. Energy Information Administration (EIA) Indexed Site

    May 2008 The Energy Information Administration conducts several core consumption surveys. Among them was the Residential Transportation Energy Consumption Survey (RTECS)....

  12. Residential | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  13. Household energy consumption and expenditures 1987

    SciTech Connect (OSTI)

    Not Available

    1990-01-22

    This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

  14. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  15. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  16. OTEC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

  17. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  18. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

  19. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square...

  20. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    Street Address Contractor's City, State, and ZIP Code Or you may FAX the completed ... and to the Office of Information and Regulatory Affairs, Office of Management and ...

  1. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    ... foot at a pressure base of 14.73 pounds standard per square inch absolute and a temperature base of 60 degrees Fahrenheit; Cubic meter is a unit of measure which equals 35.314 ...

  2. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under ...

  3. 2005 Residential Energy Consumption Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist.. This report is mandatory under ...

  4. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  5. Residential Central Wood Pellet Heating Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, Eversource, Unitil, and municipal light plants that have agreed to pay int...

  6. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    This is the U.S. Energy Information Administration's second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in ...

  7. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  8. Household Vehicles Energy Consumption 1994 - Appendix C

    U.S. Energy Information Administration (EIA) Indexed Site

    discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on...

  9. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  10. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) MissionVision The Residential Buildings ...

  11. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  12. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  13. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2, 2013 Residential Buildings Integration Program Building Technologies Office ... Overview of the Residential Integration Program Research Implementation tools ...

  14. Household energy consumption and expenditures, 1987

    SciTech Connect (OSTI)

    Not Available

    1989-10-10

    Household Energy Consumption and Expenditures 1987, Part 1: National Data is the second publication in a series from the 1987 Residential Energy Consumption Survey (RECS). It is prepared by the Energy End Use Division (EEUD) of the Office of Energy Markets and End Use (EMEU), Energy Information Administration (EIA). The EIA collects and publishes comprehensive data on energy consumption in occupied housing units in the residential sector through the RECS. 15 figs., 50 tabs.

  15. Residential Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  16. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  17. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  18. Minnesota Natural Gas Residential Consumption (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 89,020 90,410 95,580 1970's 101,764 102,325 107,119 102,671 112,922 114,416 105,760 100,483 ...

  19. Residential Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    4,782,412 4,713,777 4,149,519 4,897,372 5,087,314 4,612,455 1930-2015 Alabama 42,215 36,582 27,580 35,059 38,971 31,794 1967-2015 Alaska 18,714 20,262 21,380 19,215 17,734 18,468 1967-2015 Arizona 37,812 38,592 34,974 39,692 32,397 34,215 1967-2015 Arkansas 36,240 33,737 26,191 34,989 38,127 30,803 1967-2015 California 494,890 512,565 477,931 481,773 397,489 404,869 1967-2015 Colorado 131,224 130,116 115,695 134,936 132,106 125,433 1967-2015 Connecticut 42,729 44,719 41,050 46,802 51,193 51,857

  20. Residential Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    107,571 200,678 399,624 588,560 890,710 707,013 1973-2016 Alabama 671 934 2,031 3,411 7,352 5,694 1989-2016 Alaska 1,033 1,422 2,306 2,670 2,347 2,057 1989-2016 Arizona 1,072 1,334 3,107 6,609 8,619 5,746 1989-2016 Arkansas 546 731 2,155 3,933 7,500 5,665 1989-2016 California 17,188 19,412 44,802 73,730 69,466 43,542 1989-2016 Colorado 3,036 5,976 16,679 23,229 22,390 17,313 1989-2016 Connecticut 975 2,158 3,952 4,884 8,578 7,942 1989-2016 Delaware 157 378 720 978 2,084 1,879 1989-2016 District

  1. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    39187,835 39217,350 39248,208 39278,190 39309,163 39340,258 39370,575 39401,1193 39431,1917 39462,2034 39493,1839 39522,1382 39553,821 39583,474 39614,345 39644,192 39675,169...

  2. Connecticut Natural Gas Residential Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 26,177 26,437 29,048 1970's 31,187 31,878 32,879 30,261 33,417 32,143 32,310 31,069 31,800...

  3. California Natural Gas Residential Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 522,122 517,636 562,127 1970's 552,544 630,998 637,289 615,719 580,009 631,398 599,631 541,728 ...

  4. Louisiana Natural Gas Residential Consumption (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    58,129 61,377 59,707 57,705 1990's 53,392 54,593 55,221 56,609 52,981 52,603 56,626 52,709 47,574 45,104 2000's 49,744 49,003 49,147 47,330 42,736 41,155 33,435 37,150 37,225...

  5. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    U.S. Energy Information Administration (EIA) Indexed Site

    Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy ... 2015, followed by natural gas and solar March 23, 2016 All 68 related ...

  6. Washington Natural Gas Residential Consumption (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,160 26,342 30,479 1970's 31,929 33,934 38,631 36,468 35,525 34,349 32,348 30,533 27,437...

  7. Residential Energy Consumption Survey: Housing Characteristics...

    Gasoline and Diesel Fuel Update (EIA)

    either air or liquid as the working fluid. It does not refer :<: passive collection of solar thermal energy. Fuel Oil Paid by Household: The household paid directly to the fuel...

  8. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  9. Average Residential Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Average Residential Price Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local Distribution Companies Commerical Price - Marketers Commercial % Sold by Local Distribution Companies Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011

  10. Household and environmental characteristics related to household energy-consumption change: A human ecological approach

    SciTech Connect (OSTI)

    Guerin, D.A.

    1988-01-01

    This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = <.05) relationship between the dependent-variable energy-consumption change and the predictor variables heating degree days, addition of insulation, addition of a wood-burning stove, year the housing unit was built, and weighted number of appliances. A significant (p = <.05) relationship was found between the criterion variable energy-consumption change and the discriminating variables of age of the head of the household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

  11. Wood chips: an exploration of problems and opportunities. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report evaluates the current use of and potential market for wood chips as a fuel in the Northeast. This study covers the residential, commercial, and light industrial sectors and addresses cost, reliability, marketing systems, and technology improvements. A review of the available equipment for wood chip harvesting, processing, handling, drying, and transport is included. Three representative strategic business guides for different chip suppliers are presented. There is also a recommended action plan for future programs with initiatives that could facilitate the development of the wood chip market. 25 refs., 8 figs., 11 tabs.

  12. Consumption & Efficiency - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey data Commercial Energy Consumption Survey data Manufacturing Energy Consumption Survey data Vehicle Energy Consumption Survey data Energy intensity Consumption summaries Average cost of fossil-fuels for electricity generation All consumption & efficiency data reports Analysis & Projections Major Topics Most popular All sectors Commercial buildings Efficiency Manufacturing Projections

  13. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  14. U.S. Energy Information Administration | State Energy Data 2013...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4: Wood and Biomass Waste Consumption Estimates, 2013 State Wood Wood and Biomass Waste a Residential Commercial Industrial Electric Power Total b Thousand Cords Trillion Btu...

  15. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  16. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  17. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey ...

  18. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  19. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2015 Residential propane price increases The average retail price for propane is 1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel ...

  20. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel ...

  1. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel ...

  2. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey ...

  3. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel ...

  4. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel ...

  5. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2015 Residential propane price increases The average retail price for propane is 2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey ...

  6. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  7. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price increases The average retail price for propane is 1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the ...

  8. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the ...

  9. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price increases The average retail price for propane is 1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  10. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane virtually unchanged The average retail price for propane is 2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey ...

  11. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price virtually unchanged The average retail price for propane is 2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel ...

  12. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel ...

  13. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2015 Residential propane price increases The average retail price for propane is 1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  14. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.01 per gallon, down 8-tenths of a cent from last week, based on the residential heating fuel survey ...

  15. Residential propane prices decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating ...

  16. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price decreases The average retail price for propane is 2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by ...

  17. Better Buildings Residential

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Better Buildings Residential programs  work with residential energy efficiency programs and their partners to improve homeowners' lives, the economy, and the...

  18. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional ...

  19. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential InstallersContractors Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Equipment Insulation Water Heaters...

  20. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  1. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  2. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  3. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  4. Household energy consumption and expenditures, 1990

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  5. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    6 Residential Heated Floorspace, as of 2005 (Percent of Total Households) Floorspace (SF) Fewer than 500 6% 500 to 999 26% 1,000 to 1,499 24% 1,500 to 1,999 16% 2,000 to 2,499 9% 2,500 to 2,999 7% 3,000 or more 11% Total 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC1-3.

  6. New Energy Efficiency Standards for Residential Clothes Washers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dishwashers to Save Consumers Billions on Energy Bills | Department of Energy Residential Clothes Washers and Dishwashers to Save Consumers Billions on Energy Bills New Energy Efficiency Standards for Residential Clothes Washers and Dishwashers to Save Consumers Billions on Energy Bills May 16, 2012 - 1:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's focus on taking sensible steps to save families money while also reducing energy consumption,

  7. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Office of Environmental Management (EM)

    for Wood Heat * Non-Profit Consortium of Ten Tribal Governments within the Yukon Flats. * ... Chalkyitsik * 80% of homes in Fort Yukon are heated by wood. Most use wood and fuel heat. ...

  8. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  9. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Residential Buildings Integration Zero Energy Ready Home Zero Energy Ready Home Zero Energy Ready Homes are so efficient that a renewable energy system can offset all or most of its annual energy consumption. Read more Home Performance with ENERGY STAR Home Performance with ENERGY STAR The Home Performance with ENERGY STAR (HPwES) program provides resources to identify contractors that can explain homes' energy use, as well as identify home improvements for energy performance and

  10. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  11. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  12. 2014 Average Monthly Bill- Residential

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 6,243,013 630 17.82 112.31 Connecticut 1,459,239 730 19.75 144.10 Maine 706,952 549 15.27 83.91 Massachusetts 2,720,128 615 17.39 106.94 New Hampshire 606,883 619 17.53 108.57 Rhode Island 438,879 583 17.17 100.09 Vermont 310,932 569 17.47 99.34 Middle Atlantic 15,806,914 696 16.39

  13. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  14. U.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy Consumption Estimate Final Report

    SciTech Connect (OSTI)

    None, None

    2002-09-01

    Multiyear study to evaluate light sources and identify opportunities for saving energy. This report estimates energy consumption for residential, commercial, industrial, and outdoor stationary.

  15. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  16. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect (OSTI)

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  17. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to the solar ...

  18. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

  19. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices available The average retail price for propane is 2.30 per gallon, based ... residential heating fuel survey. Propane prices in the Midwest region, which has the most ...

  20. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.11 per gallon, up ...

  1. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  2. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 2.84 per gallon, down 5.4 cents from last week

  3. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.98 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  4. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.02 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  5. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  6. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 2.5 cents from a week ago to 2.83 per gallon. That's up 56 cents from a year ago, based on the residential ...

  7. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.96 per gallon, up 1.8 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  8. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.96 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  9. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.29 per gallon, down 3.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  10. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.00 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  11. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.39 per gallon, down 2.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  12. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  13. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices available The average retail price for propane is 1.94 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. ...

  14. Residential propane prices stable

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  15. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.97 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  16. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  17. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.01 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  18. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.37 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  19. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy ...

  20. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 3.2 cents from a week ago to 2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential ...

  1. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.99 per gallon, up 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  2. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose to 2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy ...

  3. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.39 per gallon, up 3.9 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  4. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 9.1 cents from a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential ...

  5. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decrease The average retail price for propane is 2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  6. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.32 per gallon, down 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  7. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.01 per gallon, up 1.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  8. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.03 per gallon, up 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy ...

  9. Residential propane price

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  10. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.36 per gallon, down 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  11. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.38 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  12. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.98 per gallon, up 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  13. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 3.9 cents from a week ago to 2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential ...

  14. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 4.8 cents from a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential ...

  15. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 10.3 cents from a week ago to 2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential ...

  16. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases The average retail price for propane is 2.35 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  17. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  18. Residential propane prices surges

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices surges The average retail price for propane rose to an all-time high of 4.01 a gallon, that's up 1.05 from a week ago, based on the residential heating fuel survey ...

  19. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes two levels that can be achieved by completing various energy efficiency measures: Base Level and High Performance Level. Projects meeting the req...

  20. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  1. Fact Sheet: Better Buildings Residential Network | Department...

    Energy Savers [EERE]

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

  2. Benefits of Better Buildings Residential Network Reporting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Better Buildings Residential Network Reporting Benefits of Better Buildings Residential Network Reporting Better Buildings Residential Network All-Member Peer Exchange ...

  3. James F. Wood

    Broader source: Energy.gov [DOE]

    James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's...

  4. STEO October 2012 - wood

    U.S. Energy Information Administration (EIA) Indexed Site

    that households across the U.S. use as a supplemental heating source. Almost half of all rural households use wood this way, in addition to using it for cooking or water heating

  5. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  6. National Residential Efficiency Measures Database Webinar Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies ...

  7. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview ...

  8. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Residential Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management ...

  9. Behavioral Assumptions Underlying California Residential Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy ...

  10. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2014. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation...

  11. Designing Effective Incentives to Drive Residential Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incentives to Drive Residential Retrofit Program Participation Designing Effective Incentives to Drive Residential Retrofit Program Participation This webinar covered retrofit ...

  12. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  13. Shark Tank: Residential Energy Efficiency Edition

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, call slides and discussion summary.

  14. Thermal Profiling of Residential Energy Use

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  15. Residential propane price is unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    13, 2014 Residential propane price is unchanged The average retail price for propane is 2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating ...

  16. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  17. Precision wood particle feedstocks

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  18. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Reports and Publications (EIA)

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administrations second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  19. Residential lighting: Use and potential savings

    SciTech Connect (OSTI)

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  20. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  1. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  2. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide...

  3. Household energy consumption and expenditures, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  4. Revisions in Natural Gas Monthly Consumption and Price Data, 2004 - 2007

    Reports and Publications (EIA)

    2009-01-01

    This report summarizes the method in which natural gas consumption data are collected and processed for publication and details the most notable revisions in natural gas consumption data for the period 2004 to 2007. It is intended to assist data users in evaluating the quality of the monthly consumption and price data for residential, commercial, and industrial consumers of natural gas.

  5. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  6. Average Residential Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  7. Average Residential Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  8. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    7 2009 Methane Emissions for U.S. Residential Buildings Energy Production, by Fuel Type Fuel Type Petroleum 1.0 Natural Gas 38.8 Coal 0.0 Wood 2.6 Electricity (2) 51.6 Total 94.0 Note(s): Source(s): MMT CO2 Equivalent (1) 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is

  9. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Guide to Benchmarking Residential Program Progress Webcast Slides Lessons Learned: Measuring Program Outcomes and Using Benchmarks Guide for Benchmarking

  10. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. PDF icon Solution Center Demo More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  11. Texas Natural Gas Residential Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    34,630 27,431 17,469 10,765 8,508 7,809 7,451 7,270 11,527 24,155 33,110 1994 42,609 ... 1997 47,522 36,893 25,245 15,606 11,595 8,451 7,599 6,789 7,140 9,175 21,561 37,410 1998 ...

  12. Rhode Island Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,350 10,605 11,374 1970's 11,940 12,160 13,294 11,417 12,950 13,043 12,329 13,514 13,609 13,426 1980's 13,960 14,424 14,823 13,749 15,041 14,992 16,100 16,742 17,678 18,283 1990's 17,724 17,366 20,000 19,722 17,384 17,342 18,839 18,162 16,461 16,601 2000's 18,655 17,937 17,545 20,176 19,470 19,088 16,869 17,672 17,692 17,914 2010's 16,942 16,864 15,883 18,221 19,724 19,522

  13. South Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13,774 16,756 18,162 1970's 18,930 19,607 20,627 22,758 20,383 18,211 33,231 31,875 28,214 17,675 1980's 18,866 18,980 17,548 18,741 19,246 16,434 17,440 20,200 20,790 20,472 1990's 18,396 19,612 22,392 24,345 23,486 25,164 29,406 25,741 25,430 25,669 2000's 29,057 27,485 27,621 29,154 29,314 28,537 24,928 25,158 27,100 27,160 2010's 32,430 26,851 22,834 28,642 31,862 27,171

  14. South Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 9,910 10,302 12,906 1970's 13,784 12,436 13,182 11,190 11,338 11,969 14,510 14,141 14,874 11,830 1980's 10,558 9,758 11,584 10,648 10,994 11,357 10,557 9,288 10,687 11,342 1990's 10,204 11,218 10,791 12,431 12,056 12,610 14,085 13,203 11,646 11,766 2000's 12,608 12,335 12,897 13,175 12,281 12,212 11,514 12,402 13,566 13,595 2010's 12,815 12,961 10,742 13,920 14,213 11,638

  15. Tennessee Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,659 43,784 45,396 1970's 46,571 46,992 53,763 45,993 43,586 44,020 43,749 43,530 39,807 45,136 1980's 44,894 41,857 42,023 40,596 44,045 39,434 40,240 43,483 47,668 49,196 1990's 46,340 49,357 52,220 58,919 57,334 59,994 70,423 64,130 59,386 60,561 2000's 68,428 68,053 69,330 69,746 65,331 66,277 61,018 60,736 69,181 66,111 2010's 74,316 67,190 53,810 71,241 78,385 67,9

  16. Texas Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 201,407 211,763 220,728 1970's 232,189 237,387 240,662 241,478 222,603 232,320 235,637 269,964 274,849 315,857 1980's 224,800 209,045 221,383 214,479 230,311 212,676 194,602 210,688 209,957 230,099 1990's 210,655 222,200 214,682 231,799 213,433 206,415 229,318 234,988 199,454 175,907 2000's 193,555 208,449 209,951 206,694 191,507 185,124 166,225 199,802 192,750 192,153 2010's 226,445 199,958 169,980 207,148

  17. Utah Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 38,935 40,779 43,948 1970's 44,637 49,849 48,855 48,647 50,347 59,736 66,417 35,558 47,783 60,462 1980's 57,639 54,789 45,957 54,938 54,639 58,727 57,654 41,536 42,241 45,168 1990's 43,424 50,572 44,701 51,779 48,922 48,975 54,344 58,108 56,843 55,474 2000's 55,626 55,008 59,398 54,632 60,527 58,044 60,017 60,563 65,974 65,184 2010's 66,087 70,076 59,801 70,491 62,458 58,177

  18. Vermont Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,301 1,290 1,278 1,252 1,352 1,456 1,595 1,663 1,868 2,126 1990's 2,150 2,203 2,520 2,530 2,438 2,299 2,523 2,631 2,454 2,565 2000's 2,843 2,719 2,761 3,118 3,112 3,088 2,874 3,207 3,075 3,183 2010's 3,078 3,214 3,012 3,415 3,826 3,754

  19. Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,495 43,582 46,663 1970's 49,554 49,488 55,427 51,618 48,160 48,802 52,491 48,953 54,250 50,999 1980's 54,825 50,997 48,253 47,318 51,439 48,752 51,517 55,421 58,539 61,712 1990's 51,438 54,199 62,431 65,472 65,176 68,712 76,214 73,905 63,186 69,189 2000's 79,701 70,249 75,476 85,330 82,755 85,355 71,693 80,957 79,725 84,445 2010's 88,157 79,301 70,438 85,702 92,817 83,512

  20. Washington Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,160 26,342 30,479 1970's 31,929 33,934 38,631 36,468 35,525 34,349 32,348 30,533 27,437 32,850 1980's 29,734 26,847 29,143 25,998 29,242 33,000 30,217 29,799 34,981 38,359 1990's 40,346 46,222 43,048 53,258 53,144 52,763 62,689 61,813 61,936 71,704 2000's 71,779 84,416 73,347 71,110 70,932 73,626 75,491 80,152 84,509 84,143 2010's 75,554 85,393 79,892 83,365 78,750 71,818

  1. West Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 50,202 54,665 56,366 1970's 57,973 55,629 59,523 55,686 53,793 51,296 51,434 51,609 53,395 47,964 1980's 48,284 47,114 43,002 39,967 39,707 36,750 36,222 35,634 37,690 37,128 1990's 32,600 32,587 35,291 35,208 35,201 35,379 37,390 35,996 29,664 31,403 2000's 31,602 31,939 30,793 32,209 30,331 29,795 26,085 26,528 27,517 26,172 2010's 27,021 25,073 22,538 26,514 28,257 24,97

  2. Wisconsin Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 90,994 93,425 101,124 1970's 105,208 109,758 104,648 110,524 116,314 119,981 122,786 119,292 128,873 124,672 1980's 123,233 111,408 118,145 112,316 112,952 116,184 110,780 103,154 121,335 127,009 1990's 114,050 124,081 123,405 130,134 128,175 136,012 147,893 135,819 115,946 127,607 2000's 135,095 125,277 137,234 142,067 135,169 131,215 120,567 131,160 140,576 133,176 2010's 123,618 129,445 112,554 142,985 150,409

  3. U.S. Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 843,900 747,331 648,504 465,867 326,313 207,172 150,349 142,498 159,378 205,013 392,459 590,602 1974 816,943 688,478 597,641 482,013 315,920 215,382 166,289 142,086 154,824 235,176 358,546 612,830 1975 750,713 732,408 677,687 596,831 337,326 203,708 167,293 143,604 153,980 223,383 329,397 607,794 1976 843,235 739,592 578,491 442,648 315,760 220,871 170,257 140,774 152,346 241,902 471,326 734,158 1977 936,793 823,439 560,779 401,258

  4. New York Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 56,307 52,502 51,981 35,963 23,868 13,364 10,098 9,189 9,514 16,060 28,576 57,291 1990 54,059 52,751 46,615 34,434 20,503 13,138 10,258 8,933 10,089 14,793 29,074 43,341 1991 55,999 51,173 47,603 33,457 19,738 11,231 9,292 8,622 9,542 16,338 29,610 46,288 1992 58,076 59,000 53,492 41,548 23,835 13,470 10,509 9,649 10,006 18,633 30,758 49,715 1993 58,856 61,673 60,184 38,778 20,123 13,685 10,003 9,069 9,719 18,990 33,567 49,569 1994 70,935

  5. North Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,946 5,655 6,202 3,723 1,899 1,020 744 695 745 1,338 2,823 6,866 1990 8,535 4,909 4,402 3,296 1,604 957 763 732 752 1,070 2,985 4,998 1991 7,073 6,819 5,529 2,963 1,490 931 748 756 782 1,486 3,751 5,647 1992 7,573 7,366 5,194 4,509 2,222 1,301 837 734 806 1,781 3,446 6,819 1993 8,379 8,140 8,024 5,030 1,977 1,039 829 761 815 1,459 3,918 6,733 1994 11,081 9,487 6,623 3,521 1,704 1,206 866 806 903 1,568 3,655 6,030 1995 9,068 9,632 6,916

  6. North Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,660 1,590 1,476 1,040 506 309 213 166 240 398 816 1,411 1990 1,661 1,440 1,175 949 581 337 191 167 220 398 828 1,235 1991 2,019 1,528 1,254 859 671 277 196 193 224 441 1,187 1,489 1992 1,500 1,456 1,128 1,002 616 311 260 214 285 458 990 1,472 1993 2,059 1,522 1,462 1,082 568 350 268 210 271 505 964 1,457 1994 2,042 2,019 1,448 1,031 582 263 220 183 235 385 807 1,446 1995 1,811 1,711 1,518 1,190 706 390 235 183 252 424 1,095 1,695 1996

  7. Ohio Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 49,326 56,594 42,862 31,700 18,482 7,759 7,332 7,262 9,812 20,647 37,970 69,403 1990 50,210 47,643 39,078 28,903 17,232 9,850 7,886 7,153 8,553 16,806 29,783 45,224 1991 58,400 51,151 42,595 25,951 13,621 7,982 6,897 6,230 7,805 17,321 35,764 48,007 1992 57,528 50,254 45,783 31,344 17,276 10,336 8,098 7,238 8,111 20,929 34,181 49,551 1993 55,994 58,767 52,719 32,260 13,835 11,884 7,273 6,549 7,996 20,454 34,956 51,423 1994 72,950 59,452

  8. Oklahoma Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,577 13,137 12,277 5,784 3,043 2,169 1,858 1,654 1,886 2,571 4,798 11,039 1990 14,092 10,213 8,262 6,640 4,024 2,206 1,679 1,599 1,563 2,416 4,675 8,248 1991 15,898 11,165 8,216 4,711 2,853 1,985 1,747 1,573 1,741 2,327 6,915 10,069 1992 12,164 10,656 7,235 5,961 3,219 2,549 1,949 1,712 1,775 2,236 4,722 11,635 1993 14,565 12,460 12,131 8,019 3,907 2,331 1,832 1,612 1,729 2,317 6,783 10,675 1994 13,551 13,450 9,884 5,919 3,639 2,014

  9. Oregon Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,632 4,026 3,351 2,054 1,141 950 696 549 581 804 1,835 2,886 1990 3,807 3,786 3,219 1,820 1,476 1,206 704 560 532 893 1,973 3,407 1991 5,334 3,529 3,075 2,631 1,936 1,461 811 595 582 710 2,106 3,554 1992 4,367 3,223 2,477 1,891 1,248 772 610 526 648 1,017 1,993 4,337 1993 5,789 4,569 3,843 2,533 1,769 945 768 672 698 959 2,336 4,896 1994 4,708 4,373 3,359 2,394 1,415 1,086 751 611 637 1,147 3,247 5,120 1995 5,117 3,656 3,532 2,783 2,048

  10. Pennsylvania Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 42,523 40,317 37,886 26,310 15,825 8,128 6,400 6,014 6,716 13,222 22,442 44,960 1990 46,618 34,274 31,872 24,487 13,211 8,393 5,973 5,697 6,665 10,603 20,874 31,349 1991 42,638 38,146 32,729 22,324 11,101 6,704 5,716 5,399 6,792 13,403 23,637 34,139 1992 44,113 41,812 36,068 26,243 13,989 8,047 6,134 5,902 6,950 15,853 24,806 36,609 1993 41,969 45,019 42,350 24,988 11,007 8,560 5,614 5,688 6,754 15,261 24,357 37,429 1994 55,091 47,970

  11. Rhode Island Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,864 2,682 2,711 1,828 1,223 590 500 464 497 855 1,325 2,744 1990 3,256 2,532 2,455 1,867 1,218 762 481 480 539 688 1,353 2,093 1991 2,788 2,714 2,448 1,758 1,087 565 498 525 491 870 1,436 2,186 1992 2,997 3,092 2,802 2,271 1,446 771 639 423 547 890 1,720 2,403 1993 3,091 3,326 3,291 2,200 1,117 671 558 472 487 975 1,510 2,023 1994 3,061 3,269 2,694 1,698 1,098 602 439 422 427 736 1,060 1,877 1995 2,054 2,903 2,634 1,834 1,195 711 448

  12. South Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,768 3,029 3,327 1,875 879 468 395 327 346 620 1,526 3,911 1990 4,887 2,591 2,252 1,538 737 439 366 346 375 483 1,605 2,776 1991 3,764 3,740 2,875 1,318 604 439 375 370 390 645 1,969 3,122 1992 4,203 4,071 2,650 2,295 1,033 597 424 386 409 792 1,750 3,784 1993 4,276 4,291 4,274 2,559 956 501 407 377 391 630 2,030 3,652 1994 5,997 4,969 3,024 1,526 714 528 439 429 444 734 1,590 3,090 1995 4,919 5,128 3,604 1,584 746 510 472 397 475 646

  13. South Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,762 1,865 1,639 1,036 562 340 245 221 298 535 1,076 1,764 1990 1,769 1,529 1,293 959 600 346 231 215 237 527 973 1,524 1991 2,199 1,522 1,341 845 645 301 227 215 286 609 1,434 1,595 1992 1,639 1,497 1,202 996 638 321 265 254 315 602 1,267 1,797 1993 2,291 1,784 1,678 1,153 606 370 281 236 363 641 1,261 1,768 1994 2,234 2,249 1,558 1,034 603 270 181 259 274 503 1,098 1,794 1995 2,027 1,867 1,622 1,255 782 408 271 206 307 705 1,332 1,828

  14. Arkansas Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 52,777 56,346 58,322 1970's 59,792 48,737 47,387 48,883 44,110 48,543 49,348 49,057 47,937 49,892 1980's 46,835 42,796 44,832 42,783 45,903 40,189 38,530 40,055 42,867 42,312 1990's 39,188 40,639 39,474 45,545 41,527 41,107 46,289 42,428 38,190 36,245 2000's 42,361 37,202 39,130 37,994 34,760 33,605 31,495 32,731 35,718 33,252 2010's 36,240 33,737 26,191 34,989 38,127 30,803

  15. Colorado Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 75,351 78,371 81,068 1970's 82,595 84,864 89,187 98,454 91,809 99,933 107,355 99,946 92,064 97,751 1980's 89,700 75,010 84,688 84,173 93,439 90,154 81,151 86,263 92,888 91,567 1990's 91,916 97,440 94,614 106,187 99,504 104,286 110,924 115,583 110,839 111,748 2000's 116,363 123,514 128,828 124,214 120,574 124,255 119,270 130,971 133,947 128,993 2010's 131,224 130,116 115,695 134,936 132,106 125,43

  16. Delaware Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,844 7,068 7,475 1970's 7,843 8,172 8,358 7,514 7,380 6,985 7,380 7,209 7,458 6,986 1980's 6,910 6,807 6,677 6,219 6,855 6,210 6,861 7,074 7,586 7,595 1990's 7,270 7,189 8,194 8,295 8,557 8,505 9,791 8,972 7,755 8,862 2000's 9,467 9,175 9,550 10,766 10,399 10,339 9,111 10,000 9,875 10,049 2010's 10,126 10,030 8,564 10,197 11,316 10,501

  17. District of Columbia Natural Gas Residential Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,730 13,686 13,041 13,007 17,374 16,605 17,296 16,729 17,471 17,433 1990's 15,137 15,286 16,587 16,589 15,865 15,690 17,290 15,807 13,249 14,147 2000's 15,437 12,947 14,249 15,156 14,276 13,853 11,412 13,371 13,222 13,466 2010's 13,608 12,386 11,260 13,214 14,242 12,371

  18. Florida Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 9,430 11,318 11,636 1970's 14,702 13,242 12,837 16,295 14,793 15,209 16,839 18,220 21,619 17,518 1980's 15,134 16,357 13,622 15,372 14,866 13,533 13,860 14,566 14,891 13,089 1990's 12,976 12,908 14,380 13,940 13,855 14,540 16,293 13,117 14,102 13,797 2000's 15,133 15,547 15,127 15,866 15,892 16,124 15,641 15,066 15,594 15,214 2010's 18,744 16,400 14,366 15,321 16,652 14,777

  19. Georgia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 80,322 84,072 87,878 1970's 87,359 88,319 85,256 86,191 76,207 87,184 86,356 98,334 96,368 91,036 1980's 90,240 91,934 86,822 91,376 95,299 84,033 89,171 100,630 108,125 103,681 1990's 90,263 96,662 108,214 115,655 105,436 114,670 127,062 114,383 107,398 98,777 2000's 140,838 119,969 126,667 129,907 126,492 124,560 110,245 111,895 119,375 118,589 2010's 138,671 113,335 97,664 121,629 134,438 117,523

  20. Hawaii Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,416 1,289 1,197 1,121 1,048 625 579 591 563 565 1990's 565 545 551 558 578 574 540 517 535 524 2000's 535 537 539 537 524 516 518 509 499 510 2010's 509 486 481 582 583 572

  1. Idaho Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,179 6,545 6,980 1970's 7,711 8,455 10,887 9,947 9,652 14,089 12,512 11,771 7,800 8,752 1980's 7,387 6,711 6,861 6,510 7,339 7,759 7,283 7,007 7,683 8,783 1990's 8,569 10,223 9,659 12,557 12,285 13,003 14,941 15,239 16,002 17,912 2000's 19,131 19,118 20,399 18,940 20,682 21,603 22,450 23,419 27,532 25,531 2010's 23,975 26,666 23,924 27,370 24,616 22,963

  2. Illinois Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 382,277 392,325 434,065 1970's 439,152 462,644 487,845 445,723 461,746 478,602 507,935 519,973 520,525 495,570 1980's 478,489 467,398 458,572 430,606 479,572 446,567 437,081 407,875 462,339 499,984 1990's 442,163 466,970 475,360 495,311 473,788 500,796 538,749 497,230 409,812 445,217 2000's 467,052 427,146 459,400 473,451 443,410 437,572 398,231 433,048 465,927 440,065 2010's 416,570 418,143 360,891 452,602

  3. Indiana Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,519 145,955 156,699 1970's 158,699 162,747 169,267 155,039 158,130 162,858 152,860 151,637 168,468 173,147 1980's 163,665 159,003 160,066 145,255 151,568 146,251 140,135 139,048 153,609 155,934 1990's 140,492 146,446 152,692 163,944 157,467 161,059 179,939 169,140 140,122 151,529 2000's 161,221 147,338 156,809 157,356 148,587 148,655 127,649 142,543 152,701 139,743 2010's 138,415 132,094 115,522 144,496

  4. Iowa Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,592 84,936 91,219 1970's 96,219 92,231 96,463 91,310 91,936 94,370 89,676 86,950 80,877 95,941 1980's 84,955 77,017 84,791 77,323 79,767 78,750 74,202 65,246 76,111 77,403 1990's 71,380 78,801 74,879 83,422 78,260 82,238 88,078 81,696 68,901 71,430 2000's 73,857 71,074 71,545 74,024 68,321 67,271 61,844 67,754 75,449 70,111 2010's 68,376 67,097 55,855 72,519 76,574 62,032

  5. Kansas Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 84,912 89,372 94,320 1970's 97,317 98,644 100,720 96,468 93,363 98,372 101,330 94,592 99,411 102,413 1980's 85,294 74,701 81,804 80,538 79,340 78,350 70,582 69,653 76,420 76,033 1990's 71,327 74,825 71,522 84,896 74,156 75,846 85,376 69,415 70,217 68,146 2000's 70,601 70,182 70,863 70,369 65,049 64,923 57,078 63,091 70,336 71,068 2010's 67,117 65,491 50,489 68,036 71,126 NA

  6. Maine Natural Gas Residential Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,967 3,571 4,910 1970's 5,247 5,591 6,036 6,027 6,174 5,578 6,111 5,747 5,887 5,587 1980's 555...

  7. Louisiana Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 8,279 8,546 8,377 4,724 2,816 2,321 2,189 2,026 2,035 2,513 4,166 9,714 1990 12,359 6,495 5,729 4,263 2,775 2,264 2,028 1,973 2,033 2,349 4,380 6,745 1991 10,169 8,812 6,321 3,668 2,540 2,264 1,911 1,900 1,974 2,267 5,200 7,567 1992 9,861 9,220 5,650 4,544 2,799 2,288 2,067 1,960 2,014 2,222 4,185 8,411 1993 8,577 8,402 7,933 5,575 2,944 2,216 2,110 1,836 1,888 2,112 5,120 7,896 1994 11,755 9,414 6,612 4,057 2,495 2,036 1,924 1,717 1,882

  8. Maine Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 92 84 92 66 49 27 12 19 21 35 46 95 1990 109 86 82 67 48 30 20 19 22 27 56 83 1991 106 105 94 76 46 32 24 19 26 36 56 102 1992 128 139 122 96 66 37 24 22 17 41 70 111 1993 144 153 114 71 38 30 22 22 27 62 88 129 1994 171 135 116 69 49 32 23 22 30 51 78 117 1995 130 139 112 81 48 28 24 24 31 48 97 151 1996 159 143 137 81 49 29 25 23 28 67 105 120 1997 166 133 142 85 56 34 21 26 30 66 107 142 1998 152 127 120 71 45 31 22 25 27 62 95 132

  9. Maryland Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 12,209 10,880 11,186 7,032 4,320 2,681 2,241 2,070 2,177 3,134 5,131 12,076 1990 13,718 8,971 8,796 6,861 3,558 2,659 2,203 1,986 2,069 2,672 4,832 8,102 1991 11,849 10,304 9,016 5,908 3,199 2,317 2,173 2,031 2,161 3,691 6,625 9,961 1992 12,442 11,583 9,717 7,087 4,007 2,577 2,153 2,068 2,027 4,038 6,855 10,567 1993 11,900 12,922 12,365 6,676 3,460 2,471 1,967 1,921 2,140 3,629 6,642 10,778 1994 15,481 14,047 10,751 5,905 3,732 2,579

  10. Massachusetts Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 17,593 16,517 16,940 11,858 7,552 4,053 3,006 2,683 2,901 4,839 7,495 16,224 1990 20,092 15,721 14,900 11,633 7,192 4,891 3,161 2,635 2,990 3,726 7,713 12,157 1991 16,305 16,628 14,673 11,075 6,325 3,761 3,014 2,723 3,036 4,492 8,070 12,854 1992 17,599 19,067 16,712 13,384 8,475 4,822 3,453 3,203 3,369 5,342 10,056 14,189 1993 18,222 19,597 18,273 13,178 7,263 4,464 3,499 3,084 3,280 5,839 10,175 14,355 1994 21,444 22,427 18,027 11,263

  11. Michigan Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 55,928 52,459 51,163 34,224 20,415 9,803 8,052 7,957 9,726 19,994 31,679 60,266 1990 55,931 48,164 43,437 31,606 19,275 11,093 7,779 8,253 9,336 17,937 29,517 45,069 1991 61,349 49,685 43,914 29,081 18,655 10,014 7,555 6,594 9,297 18,491 33,409 49,160 1992 56,513 52,668 46,640 36,421 21,545 11,927 8,773 8,655 9,435 20,856 34,278 50,376 1993 59,618 57,465 54,627 35,109 18,269 11,464 8,589 7,199 10,020 22,363 34,389 50,690 1994 72,958

  12. Minnesota Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 18,926 19,064 16,511 9,806 5,523 3,121 2,388 2,269 2,682 5,430 11,067 20,120 1990 18,979 16,064 13,558 9,519 5,540 3,296 2,372 2,281 2,621 5,611 9,947 17,178 1991 22,882 16,115 14,249 8,351 5,656 2,804 2,303 2,268 3,236 6,654 14,101 18,529 1992 18,895 15,904 14,009 10,391 5,136 3,130 2,702 2,525 3,021 6,449 12,857 18,543 1993 22,379 18,681 16,369 10,780 5,399 3,576 2,574 2,397 3,548 7,022 12,508 18,169 1994 26,272 22,129 14,653 10,392

  13. Mississippi Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,995 4,030 4,077 2,195 1,282 929 864 829 894 1,043 1,933 4,241 1990 6,060 3,307 2,793 2,205 1,266 922 850 809 798 948 2,070 3,018 1991 4,628 4,348 3,390 1,903 1,117 882 846 811 824 1,024 2,357 3,625 1992 4,724 4,551 2,850 2,440 1,287 963 896 817 856 979 1,927 4,198 1993 4,474 4,388 4,396 2,961 1,465 947 830 788 815 933 2,518 3,832 1994 6,163 5,192 3,481 2,254 1,088 883 845 784 834 921 1,542 3,098 1995 5,027 4,997 3,800 1,770 1,178 892

  14. Missouri Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 21,508 22,300 19,809 11,192 5,793 3,615 3,008 2,732 3,111 5,047 9,441 21,588 1990 24,889 16,807 14,381 11,838 6,241 3,783 2,946 2,713 2,876 4,467 9,332 15,677 1991 27,020 20,480 15,212 7,969 4,851 3,001 2,751 2,597 2,764 4,433 12,195 17,407 1992 20,977 18,433 13,548 11,044 5,858 3,838 2,931 2,681 2,942 4,259 10,344 19,801 1993 24,602 21,375 21,306 13,404 6,009 3,676 2,871 2,487 3,096 4,774 11,929 18,644 1994 26,174 29,359 15,303 10,085

  15. Montana Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,803 2,778 2,544 1,666 965 680 426 435 568 1,084 1,728 2,518 1990 2,625 2,421 1,900 1,459 1,104 701 389 392 450 1,040 1,694 2,673 1991 3,533 2,139 2,087 1,585 1,244 608 455 382 559 977 2,218 2,626 1992 2,529 2,180 1,620 1,371 837 541 485 421 727 1,106 1,792 3,065 1993 3,658 2,509 2,611 1,686 1,005 644 608 530 741 1,172 2,236 2,961 1994 2,722 2,915 2,180 1,600 1,005 614 461 396 535 1,184 2,115 2,986 1995 3,072 2,398 2,441 1,796 1,264 704

  16. Nebraska Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,006 7,911 6,742 3,687 1,968 1,137 1,078 1,007 1,212 1,972 3,788 7,297 1990 7,593 6,472 5,262 3,959 2,276 1,294 1,056 947 1,034 1,896 3,458 6,251 1991 9,508 6,544 5,212 3,123 2,234 1,163 1,019 953 1,085 2,062 5,196 6,573 1992 6,858 5,956 4,706 3,760 2,020 1,311 1,047 983 1,096 2,030 4,561 7,085 1993 9,013 6,132 7,668 5,098 2,360 1,495 1,119 999 1,217 1,998 4,336 6,820 1994 8,455 8,562 6,098 4,020 2,328 1,179 1,014 935 1,037 1,523 3,169

  17. Nevada Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,128 2,971 1,957 1,106 829 748 531 478 555 703 1,400 2,359 1990 2,988 3,010 2,208 1,127 862 775 562 520 521 717 1,270 2,593 1991 3,919 2,512 2,116 1,876 1,208 853 622 546 547 680 1,315 2,941 1992 3,525 2,611 2,094 1,394 803 695 671 529 608 727 1,226 3,302 1993 3,892 3,157 2,715 1,503 1,087 910 600 612 651 804 1,492 3,261 1994 3,597 3,331 2,505 1,474 1,151 883 669 587 632 829 1,751 3,855 1995 3,927 3,102 2,189 2,156 1,568 1,087 801 655

  18. New Hampshire Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,044 904 926 686 422 210 155 127 169 274 448 926 1990 1,118 890 815 655 395 262 145 128 162 203 465 665 1991 905 943 799 599 359 189 141 127 156 249 453 690 1992 1,032 1,089 869 766 461 219 159 139 151 288 526 750 1993 1,048 1,081 1,009 721 349 211 149 124 155 328 528 790 1994 1,294 1,187 925 665 391 222 136 126 170 275 419 762 1995 1,013 1,024 917 688 376 225 160 135 175 254 550 991 1996 1,193 1,147 998 698 426 233 159 155 169 312 667

  19. New Jersey Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 31,078 29,095 27,754 17,680 10,547 6,101 5,231 4,778 5,283 8,933 15,715 33,347 1990 32,311 24,403 23,115 17,743 9,578 6,157 5,017 4,515 5,336 6,708 14,180 22,596 1991 30,731 27,476 24,120 16,279 8,515 5,361 4,707 4,563 5,168 8,750 16,235 24,735 1992 31,150 31,006 26,880 20,212 11,680 6,166 5,239 4,918 5,338 10,368 17,953 27,553 1993 29,736 33,593 30,688 19,409 8,489 5,799 4,956 4,483 5,149 9,600 17,162 26,505 1994 43,772 40,563 31,677

  20. New Mexico Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,623 4,696 3,345 1,960 1,111 910 829 734 765 899 1,975 3,746 1990 5,350 4,743 3,855 2,541 1,671 1,043 795 755 811 947 1,874 3,762 1991 5,664 4,784 3,632 3,030 1,732 1,079 880 778 811 1,052 1,926 4,398 1992 5,968 5,376 3,842 2,723 1,514 1,122 929 851 889 1,033 1,992 5,194 1993 5,542 4,610 3,478 1,890 979 442 964 849 929 2,000 4,358 5,803 1994 4,824 4,762 3,326 2,062 1,070 957 909 805 872 2,174 4,024 5,084 1995 5,335 3,968 2,699 2,282

  1. Arizona Natural Gas Residential Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    28,634 25,412 28,426 28,206 27,084 1990's 30,320 31,353 28,386 28,161 29,684 26,893 27,709 31,057 36,100 32,940 2000's 34,740 36,249 35,305 35,810 38,206 35,767 36,055 38,321...

  2. Effects of Feedback on Residential Electricity Consumption: A...

    Office of Scientific and Technical Information (OSTI)

    Barbara C. Farhar Colleen Fitzpatrick January 1989 Prepared under Task No. BE911041 Solar Energy Research Institute A Division of MidwestResearch Institute 1617 Cole...

  3. New Mexico Natural Gas Residential Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 31,126 31,568 28,061 1970's 30,771 32,396 34,621 23,730 25,331 27,826 36,476 25,525 25,882 ...

  4. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,406 7,044 7,392 4,722 2,856 1,709 1,457 1,383 1,404 1,862 3,646 7,240 1990 10,893 6,493 5,254 4,143 2,657 1,625 1,411 1,334 1,356 1,529 3,360 5,355 1991 7,299 8,327 6,724 3,891 2,059 1,583 1,434 1,368 1,389 1,793 3,886 6,396 1992 8,777 9,267 5,605 5,012 2,714 1,772 1,423 1,311 1,373 1,728 3,402 7,261 1993 8,110 8,189 8,716 5,668 2,848 1,641 1,430 1,328 1,330 1,526 3,853 6,727 1994 10,714 10,653 6,935 4,557 2,208 1,542 1,361 1,323 1,325

  5. Alaska Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,793 2,148 1,566 1,223 858 638 432 370 536 895 1,474 1,656 1990 1,745 2,090 1,756 1,181 771 548 409 407 527 929 1,586 2,216 1991 1,931 1,847 1,477 1,258 907 662 470 438 600 926 1,356 1,691 1992 1,777 1,933 1,764 1,346 1,012 628 474 438 643 1,209 1,442 1,682 1993 2,079 2,138 1,471 1,288 891 577 423 402 513 1,043 1,261 1,772 1994 1,815 1,763 1,952 1,480 1,026 651 491 416 567 1,042 1,497 2,195 1995 2,059 1,923 1,912 1,573 943 680 534 448

  6. Arizona Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,104 4,913 2,937 1,670 1,205 1,094 880 777 833 959 1,768 3,945 1990 5,994 5,582 4,035 2,197 1,427 1,145 931 856 926 1,044 1,711 4,473 1991 6,284 4,569 4,018 3,214 1,620 1,209 1,042 862 900 1,077 1,895 4,664 1992 5,598 4,220 3,589 2,313 1,207 1,132 947 815 870 1,000 1,576 5,118 1993 5,504 4,120 4,078 2,178 1,297 1,097 832 801 854 988 1,847 4,566 1994 5,663 5,158 3,659 2,142 1,443 1,116 899 806 851 1,053 2,024 4,869 1995 5,531 4,576 2,846

  7. Arkansas Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,774 7,118 6,736 3,835 1,927 1,402 1,237 1,137 1,239 1,562 2,987 6,356 1990 8,681 5,556 4,628 3,810 2,161 1,367 1,154 1,111 1,170 1,479 3,267 4,804 1991 8,475 6,922 5,073 2,980 1,671 1,261 1,103 1,085 1,170 1,524 3,895 5,481 1992 7,150 6,724 4,305 3,828 1,854 1,371 1,194 1,124 1,096 1,511 3,132 6,185 1993 8,141 7,122 6,736 4,971 2,257 1,310 1,109 1,017 1,103 1,575 4,024 6,182 1994 8,723 7,974 5,659 3,756 1,800 1,190 1,068 959 1,107 1,423

  8. California Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 87,958 75,817 53,779 37,832 31,161 26,581 22,730 22,977 24,184 28,083 40,070 63,104 1990 78,572 73,931 60,247 37,602 30,979 25,125 22,555 22,334 22,093 24,435 40,091 76,544 1991 81,885 52,982 60,602 46,136 34,795 28,515 24,971 22,944 23,383 26,211 39,238 67,035 1992 77,875 61,574 46,860 37,311 28,422 24,100 22,397 22,039 21,969 24,434 37,291 75,266 1993 87,565 66,015 50,594 36,252 29,411 25,116 23,646 22,749 23,934 25,932 39,240 70,513

  9. Colorado Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 14,966 15,278 13,652 8,580 5,694 3,947 2,778 2,279 2,601 3,750 6,975 11,066 1990 15,699 13,559 12,631 9,873 7,248 4,191 2,478 2,357 2,331 3,450 7,142 10,956 1991 17,902 15,114 11,686 9,187 7,108 3,600 2,569 2,283 2,367 3,541 8,076 14,007 1992 16,198 14,400 11,499 8,789 5,005 3,963 2,809 2,438 2,644 3,547 7,607 15,715 1993 18,551 15,981 15,025 9,897 6,505 3,996 2,851 2,391 3,027 4,451 8,984 14,527 1994 16,252 15,391 13,500 9,732 6,819

  10. Connecticut Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,412 5,891 5,717 3,694 2,231 1,296 1,114 996 1,138 1,986 3,221 6,991 1990 6,690 5,673 5,000 3,708 2,203 1,345 1,100 931 1,119 1,660 3,201 4,817 1991 6,359 5,707 5,011 3,432 1,976 1,173 915 938 1,086 1,943 3,433 5,209 1992 6,675 6,571 5,777 4,284 2,417 1,394 1,125 996 1,155 2,271 3,876 5,855 1993 6,726 7,402 6,255 4,043 1,947 1,274 1,040 1,059 1,128 2,317 3,922 5,101 1994 7,795 7,960 6,527 4,038 2,162 1,397 1,022 921 1,037 1,677 2,506

  11. Delaware Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,257 1,153 1,223 793 466 272 192 189 207 275 485 1,085 1990 1,613 1,069 1,008 797 449 260 183 166 190 222 483 830 1991 1,249 1,217 1,079 795 409 211 169 186 175 261 547 892 1992 1,303 1,417 1,158 948 528 301 197 179 183 307 628 1,044 1993 1,304 1,386 1,487 1,019 448 243 185 167 185 289 609 974 1994 1,579 1,836 1,480 879 397 281 179 159 180 259 459 869 1995 1,359 1,487 1,417 865 501 264 197 177 176 230 601 1,231 1996 1,701 1,918 1,504

  12. District of Columbia Natural Gas Residential Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,903 2,556 2,762 1,663 1,025 649 507 483 494 655 1,099 2,637 1990 3,258 2,193 1,984 1,522 849 596 490 433 435 542 1,005 1,828 1991 2,703 2,543 2,076 1,493 804 503 460 432 463 587 1,220 2,001 1992 2,683 2,829 2,172 1,820 948 630 469 420 446 642 1,314 2,213 1993 2,768 2,823 2,867 1,641 825 546 437 419 427 588 1,115 2,134 1994 3,317 3,018 2,437 1,402 725 527 427 389 403 547 928 1,746 1995 2,503 2,877 2,239 1,299 813 472 431 379

  13. Florida Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,709 1,445 1,834 1,207 817 707 674 617 641 637 974 1,825 1990 2,829 1,470 1,262 1,048 810 699 661 603 618 633 905 1,438 1991 1,595 1,811 1,568 1,078 766 714 653 610 646 659 1,130 1,677 1992 2,206 2,345 1,478 1,340 936 733 674 627 636 685 956 1,766 1993 1,652 1,868 1,923 1,480 963 772 679 618 669 706 1,007 1,605 1994 2,725 2,089 1,472 1,152 815 746 691 665 712 711 829 1,248 1995 2,239 2,453 1,595 1,122 841 748 716 641 729 668 1,004 1,785

  14. Georgia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 15,116 16,389 9,603 7,211 4,629 3,050 2,988 2,792 3,466 5,190 11,110 22,137 1990 16,238 11,794 10,094 6,398 3,781 3,153 2,914 2,900 2,979 5,357 9,115 15,540 1991 18,493 13,332 10,872 5,129 3,781 3,092 2,984 2,965 2,893 4,829 12,479 15,812 1992 19,167 14,531 12,768 7,360 4,718 3,536 3,170 2,981 3,211 5,284 12,934 18,555 1993 17,952 18,076 15,664 9,279 4,443 3,106 3,028 2,939 2,903 6,147 11,585 20,533 1994 23,864 16,736 12,037 5,297 4,434

  15. Hawaii Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 51 52 50 50 47 49 46 42 45 43 46 46 1990 49 52 55 50 45 49 48 39 44 42 45 48 1991 50 50 49 51 46 45 40 39 44 42 44 46 1992 51 50 48 46 47 46 45 42 43 42 42 50 1993 51 51 52 48 44 47 46 41 42 42 46 47 1994 53 53 52 51 48 49 46 42 45 43 47 50 1995 53 52 52 50 49 50 47 43 45 44 43 45 1996 49 51 53 49 44 45 42 40 41 39 41 44 1997 51 49 46 41 42 41 43 41 40 39 42 45 1998 53 52 45 49 41 47 45 40 41 39 40 44 1999 49 48 44 46 44 43 45 41 41 44 36

  16. Idaho Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,619 1,672 1,206 747 368 306 160 146 221 329 768 1,241 1990 1,445 1,419 1,078 630 475 360 173 160 186 349 896 1,397 1991 2,145 1,469 1,059 909 696 393 194 179 217 314 1,088 1,559 1992 1,843 1,361 944 730 445 247 233 183 274 428 1,024 1,946 1993 2,265 1,959 1,705 1,044 692 334 302 251 310 481 1,159 2,057 1994 1,929 1,926 1,432 1,001 568 367 298 212 273 584 1,456 2,240 1995 2,375 1,760 1,503 1,274 915 539 338 254 304 628 1,364 1,748 1996

  17. Illinois Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 74,796 76,868 64,320 40,575 24,582 12,602 10,775 9,958 13,627 26,027 51,490 94,362 1990 71,107 64,322 52,008 37,441 23,464 12,361 10,424 10,802 12,633 30,333 40,903 76,365 1991 92,323 62,627 54,680 32,273 18,197 11,041 10,168 10,122 16,099 27,231 61,099 71,109 1992 80,315 63,013 59,187 40,752 22,488 12,963 10,391 11,171 13,758 28,742 54,950 77,632 1993 85,860 74,466 67,993 42,426 18,258 12,716 10,373 9,728 15,193 31,937 51,226 75,134 1994

  18. Indiana Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,991 23,940 20,950 12,801 7,660 3,832 2,894 2,868 3,957 8,198 15,187 29,656 1990 25,597 20,159 17,227 13,294 7,054 3,980 3,042 3,116 3,684 8,499 13,130 21,711 1991 28,978 22,309 18,772 10,680 5,630 3,174 2,936 2,947 3,906 7,584 16,912 22,617 1992 26,077 22,018 18,963 14,093 7,584 4,627 3,484 3,312 3,960 8,361 15,953 24,261 1993 27,916 25,987 24,049 14,401 6,431 4,369 3,157 3,096 4,022 9,497 16,628 24,391 1994 35,494 28,268 20,773 12,918

  19. Iowa Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 12,794 12,643 12,215 7,244 3,943 2,063 1,647 1,527 1,790 3,225 5,912 12,401 1990 14,120 10,664 9,604 7,337 4,172 2,452 1,633 1,529 1,599 2,866 5,772 9,631 1991 16,033 11,730 9,458 5,924 3,559 1,991 1,473 1,511 1,757 4,082 8,906 12,377 1992 12,381 11,637 8,482 6,857 3,335 2,186 1,546 1,668 1,885 3,725 8,350 12,827 1993 15,138 13,050 11,587 7,597 3,450 2,382 1,563 1,516 2,137 4,595 8,673 11,735 1994 16,659 14,415 9,423 6,371 3,718 1,867

  20. Kansas Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 12,686 13,761 11,948 6,518 3,436 2,203 1,845 1,687 1,955 2,901 5,398 11,694 1990 15,037 10,951 9,080 7,528 4,486 2,458 1,819 1,678 1,770 2,515 5,082 8,922 1991 16,989 12,186 8,833 5,415 3,570 1,982 1,737 1,634 1,689 2,494 7,289 11,008 1992 12,653 10,939 7,890 6,917 3,788 2,609 1,932 1,740 1,798 2,421 6,102 12,732 1993 15,743 13,423 13,022 9,143 4,717 2,454 1,870 1,680 1,800 2,677 6,796 11,571 1994 15,494 13,162 8,589 5,752 3,096 1,911

  1. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 9,700 10,403 8,293 5,319 3,161 1,809 1,332 1,337 1,446 3,109 6,141 13,034 1990 9,736 8,409 6,367 5,007 2,448 1,599 1,376 1,288 1,375 3,306 5,741 9,412 1991 11,629 9,644 7,168 3,430 1,805 1,378 1,278 1,168 1,487 3,120 7,676 9,682 1992 11,805 8,511 7,813 4,179 2,626 1,835 1,326 1,416 1,413 3,376 6,997 10,617 1993 11,143 11,145 9,198 4,989 1,908 1,710 1,289 1,137 1,410 3,858 7,612 11,510 1994 15,487 10,560 8,417 3,601 2,314 1,260 1,178 1,211

  2. Effects of Feedback on Residential Electricity Consumption: A...

    Office of Scientific and Technical Information (OSTI)

    none of which were elec- trically heated; each had an electric stove, dryer, dishwasher, and water heater. The researchers installed 24-h chart recorders in each residence...

  3. New Hampshire Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,331 4,465 4,526 4,309 4,613 4,698 5,102 5,604 5,927 6,290 1990's 5,903 5,609 6,449 6,493 6,572 6,507 7,012 6,939 6,267 6,613 2000's 7,274 6,812 6,922 7,940 7,086 7,793 6,718 7,394 7,054 7,213 2010's 6,738 6,955 6,422 7,185 7,755 7,587

  4. New Jersey Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 135,143 137,116 145,487 1970's 140,219 143,197 149,924 136,625 135,843 129,406 147,508 134,138 136,347 124,901 1980's 136,481 145,907 148,845 146,674 151,755 150,911 158,266 168,641 181,506 195,542 1990's 171,660 176,640 198,462 195,569 216,873 194,432 222,619 216,925 196,658 209,399 2000's 219,878 214,995 209,836 243,760 232,471 231,065 197,205 228,051 220,432 226,016 2010's 219,141 213,630 191,371 226,195

  5. New York Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 313,656 319,282 331,326 1970's 346,533 352,085 363,412 342,608 341,032 327,384 339,949 325,603 330,968 313,027 1980's 333,902 336,813 343,029 321,949 337,253 320,073 336,712 334,417 357,260 364,713 1990's 337,988 338,892 378,689 384,216 385,408 375,005 403,264 375,641 339,512 370,711 2000's 400,224 376,176 369,614 409,649 392,738 406,175 356,453 400,259 394,196 404,868 2010's 390,491 393,825 357,709 416,357

  6. North Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 21,416 24,646 27,784 1970's 27,353 30,434 33,043 28,435 26,830 27,466 33,727 32,277 35,072 32,244 1980's 33,963 33,053 31,588 31,228 32,405 28,649 31,701 35,903 38,384 38,658 1990's 35,003 37,976 42,588 47,104 47,451 49,379 58,812 52,894 50,786 52,853 2000's 63,899 56,815 58,904 65,410 62,800 63,865 56,506 58,365 63,912 65,642 2010's 74,520 61,644 56,511 69,654 75,178 NA

  7. North Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,467 7,169 7,661 1970's 8,186 8,502 10,346 8,204 9,556 10,200 10,182 10,164 12,417 11,588 1980's 9,644 8,958 10,932 9,685 9,974 10,353 9,351 8,063 9,147 9,825 1990's 9,183 10,338 9,693 10,717 10,661 11,209 12,591 11,370 10,092 10,573 2000's 10,963 10,570 11,725 11,876 11,132 10,692 9,644 10,698 11,500 11,518 2010's 10,536 10,937 9,594 12,085 12,505 10,606

  8. Ohio Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 442,360 444,964 456,414 1970's 459,972 460,820 478,331 439,212 435,800 427,817 440,190 401,928 416,721 373,631 1980's 393,759 377,134 369,437 329,647 350,296 327,591 327,300 326,480 350,612 359,148 1990's 308,321 321,724 340,628 354,110 343,331 357,754 374,824 354,543 296,576 318,214 2000's 343,920 308,534 321,317 343,037 320,823 322,697 272,261 299,577 306,529 292,429 2010's 283,703 286,132 250,871 297,361

  9. Oklahoma Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 67,395 74,782 75,310 1970's 77,460 75,238 77,608 73,744 72,937 79,921 82,078 86,822 84,046 85,285 1980's 76,599 69,774 79,528 79,240 81,379 76,112 66,641 64,164 71,970 71,793 1990's 65,618 69,200 65,811 78,360 69,211 68,702 76,629 71,762 66,521 61,611 2000's 66,862 64,617 67,163 65,681 59,449 59,372 52,734 59,861 66,225 62,293 2010's 65,429 61,387 49,052 66,108 69,050 59,675

  10. Oregon Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13,427 15,126 20,507 1970's 19,742 21,217 23,331 22,271 21,900 28,749 21,038 10,093 17,578 18,869 1980's 18,389 17,163 18,712 16,779 19,495 21,478 19,058 18,750 20,819 22,504 1990's 23,383 26,324 23,109 29,777 28,848 28,067 33,236 32,522 34,417 38,564 2000's 38,698 38,271 38,858 37,300 38,532 39,806 41,045 42,880 45,053 44,819 2010's 40,821 46,604 43,333 46,254 41,185 37,930

  11. Pennsylvania Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 279,817 285,978 295,027 1970's 297,022 304,327 305,492 292,531 271,877 272,634 290,439 277,340 286,163 288,582 1980's 288,326 285,789 272,433 252,280 265,274 244,889 254,863 251,175 268,038 270,742 1990's 240,016 242,728 266,528 268,996 268,405 262,126 278,606 262,494 217,929 241,468 2000's 262,788 238,849 239,123 265,020 247,788 245,099 205,813 231,305 229,254 227,714 2010's 223,642 219,446 197,313 231,861

  12. New Mexico Natural Gas Residential Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 31,126 31,568 28,061 1970's 30,771 32,396 34,621 23,730 25,331 27,826 36,476 25,525 25,882...

  13. 2001 Residential Energy Consumption Survey Form EIA-457C (2001...

    Gasoline and Diesel Fuel Update (EIA)

    ... 08 District heat -- Steam or Hot Water, or ...... 09 ......... 03 A SteamHot water system with radiators or convectors in ...

  14. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 69,542 75,824 83,815 1970's 86,473 84,197 85,881 80,233 76,129 79,156 96,351 94,646 84,436 77,438 1980's 74,235 70,538 67,590 63,049 66,895 60,086 59,372 59,094 64,027 65,086 1990's 56,064 59,465 61,911 66,909 62,533 66,149 70,232 66,033 55,545 59,220 2000's 64,662 56,947 59,104 61,886 56,443 56,142 47,379 51,534 55,025 51,821 2010's 54,391 50,696 43,065 54,208 57,589 47,712

  15. Maine Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,967 3,571 4,910 1970's 5,247 5,591 6,036 6,027 6,174 5,578 6,111 5,747 5,887 5,587 1980's 555 573 585 541 540 525 542 528 568 638 1990's 648 722 872 901 894 913 967 1,009 910 957 2000's 1,037 954 1,056 1,211 1,189 1,149 985 1,170 1,101 1,286 2010's 1,234 1,409 1,487 1,889 2,357 2,605

  16. Maryland Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 77,130 79,015 84,406 1970's 86,811 87,617 89,042 86,670 82,999 82,380 87,408 77,575 83,391 82,784 1980's 68,080 70,423 67,500 64,716 73,012 68,399 71,896 70,670 74,918 75,138 1990's 66,428 69,235 75,122 76,871 76,688 76,552 85,533 77,500 68,057 74,848 2000's 84,082 70,691 80,122 90,669 86,382 85,768 71,345 83,457 81,180 82,699 2010's 83,830 77,838 70,346 83,341 90,542 81,592

  17. Massachusetts Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 73,471 74,919 78,451 1970's 82,646 83,434 86,171 83,988 85,495 90,226 95,107 93,214 86,756 80,839 1980's 94,424 96,679 97,633 91,788 96,817 97,803 102,295 104,847 108,631 111,661 1990's 106,809 102,955 119,670 121,228 119,642 105,795 114,365 112,308 102,062 105,709 2000's 114,077 106,636 109,279 125,879 112,780 118,617 103,882 115,199 132,817 132,883 2010's 125,602 129,217 115,310 116,867 126,902 125,463

  18. Michigan Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 302,472 315,694 333,264 1970's 340,033 343,773 355,266 341,607 346,116 334,866 339,417 299,199 328,260 369,378 1980's 387,279 361,752 358,778 340,732 338,996 341,026 330,240 314,293 348,512 361,667 1990's 327,396 337,205 358,088 369,801 364,588 380,025 399,522 379,838 319,701 350,735 2000's 367,728 343,682 367,765 385,568 362,024 358,623 315,769 328,432 341,754 327,113 2010's 304,330 318,004 276,778 334,211

  19. Mississippi Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 26,145 29,526 30,233 1970's 36,642 40,196 39,334 31,422 28,900 29,530 26,584 25,949 30,387 36,987 1980's 29,485 28,324 27,516 27,552 28,760 25,714 25,282 26,599 26,889 26,312 1990's 25,045 25,756 26,487 28,347 27,086 26,960 30,157 27,626 24,847 24,562 2000's 27,033 27,920 26,457 26,589 24,136 24,464 21,481 22,227 23,843 23,433 2010's 27,152 24,303 19,572 25,185 28,358 NA

  20. Missouri Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 133,355 138,764 151,778 1970's 156,571 153,384 160,082 153,543 152,832 155,178 160,198 154,078 159,013 161,208 1980's 143,425 128,562 135,984 126,604 130,683 128,123 120,564 116,050 128,317 129,144 1990's 115,950 120,680 116,655 134,172 122,566 125,110 137,225 127,625 110,779 112,042 2000's 115,466 116,188 114,185 114,547 109,738 106,856 95,394 101,601 114,025 106,301 2010's 107,389 102,545 83,106 106,446 115,512

  1. Montana Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 19,756 19,711 21,463 1970's 24,794 25,379 23,787 24,923 21,590 24,097 23,525 21,596 22,944 22,579 1980's 19,296 17,245 19,989 16,967 18,443 19,371 16,822 15,359 16,900 18,195 1990's 16,850 18,413 16,673 20,360 18,714 19,640 22,175 21,002 19,172 19,676 2000's 20,116 20,147 21,710 20,436 19,907 19,834 19,449 19,722 21,585 21,765 2010's 20,875 21,710 19,069 20,813 21,379 18,772

  2. Nebraska Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 53,819 53,376 55,163 1970's 58,295 57,678 59,978 50,383 49,403 53,803 54,965 52,909 48,193 53,526 1980's 48,915 43,907 51,381 47,236 47,834 46,674 42,303 38,871 43,502 44,804 1990's 41,499 44,671 41,414 48,256 44,397 45,054 48,989 47,105 40,771 40,588 2000's 42,510 46,663 43,826 42,190 38,600 37,963 35,896 38,596 42,357 40,143 2010's 40,132 39,717 31,286 41,229 42,147 33,830

  3. Nevada Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,230 5,493 6,297 1970's 7,262 7,994 9,052 9,048 9,388 11,091 10,670 11,165 11,778 13,211 1980's 13,182 13,112 15,983 11,427 11,891 12,602 12,226 14,141 15,275 16,765 1990's 17,153 19,135 18,184 20,683 21,263 20,686 22,607 25,243 30,023 28,772 2000's 29,942 32,609 31,958 32,848 36,534 36,397 37,937 38,088 38,665 38,742 2010's 39,379 40,595 37,071 41,664 35,135 36,592

  4. 2001 Residential Energy Consumption Survey Answers to Frequently...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... RoperASW is a well respected survey research firm. You will return your completed forms to ... The government may bring a civil action to prohibit reporting violations which may result ...

  5. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 45,543 51,708 54,804 1970's 55,779 54,867 53,397 55,685 55,117 52,314 56,869 56,503 56,957 52,535 1980's 52,334 50,197 46,950 48,267 50,526 43,706 44,674 49,077 48,913 48,118 1990's 45,411 46,149 49,644 51,366 49,748 49,570 56,522 48,496 46,544 42,647 2000's 47,441 49,242 46,482 46,572 43,859 42,057 38,132 35,481 37,793 36,061 2010's 42,215 36,582 27,580 35,059 38,971 31,7

  6. Alaska Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,958 2,293 4,573 1970's 6,211 6,893 8,394 5,024 4,163 10,393 10,917 11,282 12,166 7,313 1980's 7,917 7,904 10,554 10,434 11,833 13,256 12,091 12,256 12,529 13,589 1990's 14,165 13,562 14,350 13,858 14,895 15,231 16,179 15,146 15,617 17,634 2000's 15,987 16,818 16,191 16,853 18,200 18,029 20,616 19,843 21,439 19,978 2010's 18,714 20,262 21,380 19,215 17,734 18,468

  7. DOE/EIA-0262/1 Residential Energy Consumption Survey:

    Gasoline and Diesel Fuel Update (EIA)

    of the Screener Sample was to replenish the sample pool from which the transportation panel is drawn. Begun with a subset of the NIECS sample in June, 1979, participating...

  8. DOE/EIA-0207/2 Residential Energy Consumption Survey:

    Gasoline and Diesel Fuel Update (EIA)

    to keep a log of their fuel purchases and odometer readings for a two-month period. The panel consists of 500 to 1,000 households reporting each month. Separate tabula tions of...

  9. DOE/EIA-0314(82) Residential Energy Consumption ...

    Gasoline and Diesel Fuel Update (EIA)

    company. It does not refer to privately owned gas wells operated by the household. "Solar collector" refers to active, thermal, concentrating collectors using either air or...

  10. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Below Poverty Line (100 Percent and 125 Percent)-Low income classifications to which certain households are assigned. "Below 100 percent of poverty line includes households with ...

  11. Tennessee Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 8,323 8,151 7,961 4,311 2,220 1,347 1,041 961 1,044 1,683 3,555 8,601 1990 11,556 6,514 5,575 4,407 2,119 1,304 993 963 1,017 1,582 4,018 6,293 1991 9,950 8,803 6,940 3,245 1,629 1,128 1,034 961 1,069 1,898 5,085 7,616 1992 10,132 8,849 6,002 4,859 2,186 1,437 1,120 1,051 1,100 1,885 4,473 9,125 1993 10,319 9,273 10,041 5,755 2,317 1,365 1,109 1,011 1,111 1,839 5,774 9,003 1994 13,829 11,693 7,753 4,606 2,027 1,350 1,133 1,081 1,145 1,668

  12. U.S. Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 295,700 294,406 298,520 283,197 288,236 313,498 343,346 371,844 367,772 391,153 1940's 443,646 442,067 498,537 529,444 562,183 607,400 660,820 802,150 896,348 992,544 1950's 1,198,369 1,474,725 1,621,966 1,685,503 1,894,248 2,123,952 2,327,564 2,500,269 2,714,251 2,912,601 1960's 3,103,167 3,248,578 3,478,563 3,589,021 3,787,292 3,902,802 4,138,259 4,313,304 4,450,354 4,728,281 1970's 4,837,432 4,971,690

  13. Wyoming Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,939 12,592 16,592 1970's 17,984 19,463 22,242 13,868 12,064 12,128 11,703 11,158 13,894 14,407 1980's 9,751 8,904 15,165 13,930 13,806 14,363 12,738 10,616 11,650 11,780 1990's 11,485 11,992 10,895 12,661 11,564 12,152 13,534 12,999 12,702 12,106 2000's 12,177 10,977 13,330 12,144 12,091 11,660 11,673 12,375 13,293 12,656 2010's 12,915 13,283 11,502 13,640 13,269 11,942

  14. Utah Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 8,316 8,290 5,786 3,585 2,215 1,763 1,374 1,235 1,322 1,718 3,640 5,923 1990 7,169 6,949 5,699 3,287 2,576 1,880 1,314 1,236 1,222 1,932 3,699 6,463 1991 9,582 7,276 5,715 4,514 3,544 2,041 1,348 1,269 1,347 1,802 4,293 7,841 1992 8,422 7,132 4,869 3,184 1,986 1,524 1,406 1,255 1,321 1,802 3,844 7,957 1993 8,919 8,045 6,589 4,375 3,055 1,845 1,533 1,353 1,449 2,322 4,676 7,619 1994 7,251 7,329 4,831 3,524 1,577 1,404 1,369 1,306 1,457

  15. Vermont Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 353 314 314 227 122 61 40 37 43 97 165 353 1990 402 327 304 219 130 82 43 40 51 95 183 273 1991 381 366 299 225 124 64 46 40 49 110 187 314 1992 431 426 367 284 145 72 53 49 53 129 205 308 1993 412 446 433 271 138 84 50 45 51 127 189 285 1994 478 456 369 261 139 84 48 45 54 93 134 277 1995 352 372 333 266 136 79 49 42 54 86 176 353 1996 467 418 354 268 167 85 51 47 56 100 208 302 1997 419 416 383 283 189 97 57 52 59 118 214 345 1998 427

  16. Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 9,913 9,446 9,042 5,421 2,881 1,713 1,479 1,340 1,374 2,831 4,799 11,473 1990 10,632 7,167 6,755 4,591 2,400 1,732 1,391 1,367 1,595 2,086 4,429 7,292 1991 9,653 9,064 7,241 4,516 2,150 1,621 1,400 1,365 1,418 2,516 5,473 7,782 1992 10,805 10,106 7,953 5,884 3,269 1,788 1,495 1,406 1,467 3,307 5,553 9,396 1993 10,835 11,634 10,506 5,868 2,438 1,632 1,442 1,412 1,435 2,695 5,569 10,007 1994 14,437 12,113 9,306 4,487 2,623 1,850 1,380 1,386

  17. Washington Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,051 6,660 5,730 3,625 1,822 1,501 1,002 801 969 1,622 3,484 5,091 1990 5,949 6,383 5,338 3,315 2,575 1,945 1,050 795 941 1,966 3,946 6,144 1991 8,514 6,250 5,558 4,714 3,090 2,292 1,292 952 1,105 1,716 4,403 6,336 1992 7,286 5,966 4,719 3,736 2,377 1,384 910 956 1,310 2,236 4,236 7,930 1993 9,680 7,331 6,669 4,665 3,123 2,619 1,424 1,243 1,376 2,169 4,650 8,309 1994 7,905 7,815 6,670 4,519 2,648 1,960 1,460 1,040 1,263 2,558 6,171 9,135

  18. West Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,838 5,621 5,179 3,608 2,263 1,001 741 695 824 1,738 3,240 6,382 1990 6,858 4,690 4,174 3,403 1,747 1,055 724 696 800 1,353 3,031 4,069 1991 5,561 5,527 4,858 2,876 1,372 707 629 622 765 1,738 3,210 4,722 1992 6,183 6,231 4,328 4,038 2,076 1,105 683 661 819 1,899 3,120 4,146 1993 5,220 5,960 5,767 3,560 1,608 962 533 620 740 1,818 3,347 5,072 1994 7,397 6,344 5,136 3,281 1,841 926 541 625 789 1,511 2,462 4,348 1995 5,783 6,546 4,592

  19. Wisconsin Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 19,372 19,607 18,950 12,003 7,875 3,777 2,736 2,220 3,173 6,052 10,581 20,661 1990 19,353 17,314 14,811 10,034 6,598 3,564 2,344 2,475 3,081 6,656 10,282 17,537 1991 23,338 17,258 15,734 9,699 6,053 2,500 2,753 2,464 3,648 7,348 14,481 18,803 1992 19,941 17,320 15,740 11,914 6,373 3,681 2,604 2,662 3,229 7,630 13,233 19,080 1993 23,133 18,435 18,166 12,585 5,585 3,750 2,503 2,586 3,900 7,884 13,043 18,564 1994 25,797 22,434 16,632 10,937

  20. Wyoming Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,923 1,964 1,597 1,180 743 517 344 259 350 518 973 1,412 1990 1,832 1,692 1,511 1,140 849 585 320 288 256 484 973 1,556 1991 2,238 1,668 1,340 1,124 922 463 293 259 274 568 1,179 1,665 1992 1,876 1,492 1,146 951 613 431 323 278 360 551 1,071 1,803 1993 2,142 1,797 1,653 1,164 809 506 366 292 380 641 1,181 1,731 1994 1,849 1,790 1,371 1,121 652 352 276 257 333 662 1,210 1,690 1995 2,037 1,496 1,453 1,200 1,006 681 347 271 361 611 1,125

  1. 2009 Residential Energy Consumption Survey Form EIA-457C (2009...

    U.S. Energy Information Administration (EIA) Indexed Site

    building at HUBUILDADDRESS. PRELOAD HH UNIT NUMBER: RAUNIT PRELOAD RA CASE ID: ... Expiring Month DD, 20YY 2 PRELOAD HH BUILDING ADDRESS: HUBUILDADDRESS PRELOAD ...

  2. National Residential Efficiency Measures Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Development Document, v3.0 Final Draft, June 2012 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado i Executive Summary The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most

  3. Pacific Power- Residential wattsmart Program

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program website.

  4. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  5. Cleco- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Cleco energy efficiency program provides a number of incentives to its residential customers for energy efficiency upgrades. Rebates and cash incentives are available for qualifying Air...

  6. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  7. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the adoption of cost-effective energy...

  8. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Wood Heat * Non-Profit Consortium of Ten Tribal ... Forestry, Fire Management, Self- Governance, ... coordination's across organizations 2 boilers and one ...

  9. Residential and commercial buildings data book. Second edition

    SciTech Connect (OSTI)

    Crumb, L.W.; Bohn, A.A.

    1986-09-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

  10. Residential Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2002-5,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  11. Daniel Wood | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daniel Wood About Us Daniel Wood - Data Visualization and Cartographic Specialist, Office of Public Affairs Daniel Wood Daniel Wood is the Data Visualization and Cartographic Specialist in the Office of Public Affairs at the Department of Energy. He develops creative and interactive ways of viewing the Energy Department's vast array of data. You can check out some of his work here. Prior to joining the Energy.gov team, Daniel worked at a large PR firm in Washington, D.C, doing web development

  12. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  13. Guide for Benchmarking Residential Program Progress with Examples

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network: Guide for Benchmarking Residential Program Progress with Examples.

  14. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  15. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  16. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. ...

  17. Residential Freezers (Appendix B) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File Residential Freezers Appendix B -- v2.0 More Documents & Publications Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) Residential Refrigerators-Freezer...

  18. Better Buildings Residential Program Solution Center Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Program Solution Center Demonstration Webinar Transcript The Better Buildings Residential Program Solution Center is a robust online collection of ...

  19. Residential Energy Efficiency Customer Service Best Practices

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Customer Service Best Practices, call slides and discussion summary, January 22, 2015.

  20. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  1. Residential Building Industry Consulting Services | Open Energy...

    Open Energy Info (EERE)

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  2. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2015. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  3. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary, March 27, 2014. Call Slides and Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  4. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  5. SMECO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative's (SMECO) Residential Energy Efficiency Program helps residential customers save energy by providing rebates for home weatherization and the installation of...

  6. Sharyland Utilities- Residential Standard Offer Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  7. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as ...

  8. Residential Energy Services Network (RESNET) Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Services Network (RESNET) Conference Residential Energy Services Network (RESNET) Conference February 29, 2016 9:00AM EST to March 2, 2016 5:0

  9. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Members Residential Resources Download the Social Media Toolkit. New ... Successful Quality Assurance and Quality Control Programs (101) January 28, 2016 Einstein ...

  10. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Some incentives, including insulation,...

  11. Steven Winter Associates (Consortium for Advanced Residential...

    Open Energy Info (EERE)

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  12. Building America Residential Energy Efficiency Stakeholders Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 Building America Residential Energy Efficiency Technical ...

  13. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Energy Savers [EERE]

    Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air ...

  14. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. See program web site for a...

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the

  16. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other

  17. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division

  18. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division

  19. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.7 66.0 142.2 36 16 28.0 10 708 0.33 558 204 Census Region and Division

  20. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division

  1. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division

  2. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and

  3. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division

  4. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and

  5. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region

  9. Post-Retrofit Residential Assessments

    SciTech Connect (OSTI)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

  10. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  11. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  12. Wood3 Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood3 Resources Jump to: navigation, search Name: Wood3 Resources Place: Houston, Texas Zip: 77056-2409 Product: Wood3 Resources is an energy project development firm run by former...

  13. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  14. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt chloride was developed for nondestructive determination of surface moisture content. Fundamental new understanding of drying characteristics in wood and fiber has been provided that can be used by researchers to improve drying of wood and fiber. The three techniques for measuring moisture content and gradients provided in this study are efficient, practical, and economical - easy to apply by industry and researchers. An energy consumption worksheet is provided as a first step toward reducing energy consumed during drying of lumber and strandboard flakes. However, it will need additional verification and testing.

  15. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  16. Fact Sheet: Better Buildings Residential Network

    Broader source: Energy.gov [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient.

  17. Noble REMC- Residential Energy Efficiency Rebate Incentives

    Broader source: Energy.gov [DOE]

    Through Wabash Valley Power Association, POWER MOVES program, Noble REMC offers residential rebates.

  18. Residential Energy Efficiency Messaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and discussion summary, April 9, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Nothing But Networking for Residential Network Members Social Media and Messages that Matter - Top Tips and Tools Generating Energy Efficiency Project Leads and Allocating Leads to Contractors

  19. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, September 11, 2014.

  20. International Energy Outlook 2016-Buildings sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 6. Buildings sector energy consumption Overview Energy consumed in the buildings sector consists of residential and commercial end users and accounts for 20.1% of the total delivered energy consumed worldwide. Consumption of delivered, or site, energy contrasts with the use of the primary energy that also includes the energy used to generate and deliver electricity to individual sites such as homes, offices, or industrial plants. In the International Energy

  1. Washington Gas- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its residential customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  2. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  3. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England ...

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year ...

  5. Residential propane price decreases slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by ...

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to 2.10 per gallon. That's down 1.11 from a year ...

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago, ...

  8. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent ...

  9. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year ...

  10. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year ...

  11. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to 2.10 per gallon. That's down 94 cents from a year ago, ...

  12. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year ...

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year ...

  14. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increase slightly The average retail price for propane is 2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the ...

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year ...

  16. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year ...

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to 2.09 per gallon. That's down 1.20 from a year ...

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to 2.09 per gallon. That's down 1.09 from a year ...

  19. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year ...

  20. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year ...

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to 2.12 per gallon. That's down 91 cents from a year ago, ...

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to 2.13 per gallon. That's down 80 cents from a year ago, based ...

  3. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 32.7 cents from a year ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England ...

  4. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 4.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are ...

  5. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  6. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Energy Savers [EERE]

    Fort Yukon Wood Energy Program: Wood Boiler Deployment Department of Energy Tribal Program Review Golden, Colorado March 26, 2014 Presented by: Kelda Britton CATG Department of Natural Resources Please contact me for a full list of citations. kelda@catg.org CATG is a consortium of 10 Gwich'in and Koyukon Athabascan tribes located throughout the Yukon Flats. Arctic Village, Beaver, Birch Creek, Canyon Village, Chalkyitsik, Circle, Fort Yukon, Rampart, Stevens Village and Venetie are the remote

  7. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Energy Savers [EERE]

    Wood Energy Program: Wood Boiler Deployment Department of Energy Tribal Program Review Golden, Colorado May 7 2015 Presented by: Frannie Hughes Gwitchyaa Zhee Corporation CEO Work compiled by Kelda Britton, CATG NR Director Please contact me for a full list of citations. kelda@catg.org CATG is a consortium of 10 Gwich'in and Koyukon Athabascan tribes located throughout the Yukon Flats. Arctic Village, Beaver, Birch Creek, Canyon Village, Chalkyitsik, Circle, Fort Yukon, Rampart, Stevens Village

  8. Nothing But Networking for Residential Network Members | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nothing But Networking for Residential Network Members Nothing But Networking for Residential Network Members Better Buildings Residential Network Peer Exchange Call: Nothing But...

  9. Tracking the Sun VIII: The Installed Price of Residential and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Non-Residential Photovoltaic Systems in the United States Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United ...

  10. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  11. Texas Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Texas Price of ... Referring Pages: Average Residential Price Texas Natural Gas Prices Average Residential

  12. Partner With DOE and Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of ...

  13. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and ...

  14. Guide for Benchmarking Residential Program Progress with Examples...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Progress with Examples Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network: Guide for Benchmarking Residential Program ...

  15. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential ...

  16. Staged Upgrades as a Strategy for Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Strategy for Residential Energy Efficiency Staged Upgrades as a Strategy for Residential Energy Efficiency Better Buildings Residential Network Peer Exchange Call Series: ...

  17. Residential Building Audits and Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues. ...

  18. Focus Series: Maine - Residential Direct Install Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine - Residential Direct Install Program Focus Series: Maine - Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct ...

  19. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  20. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  1. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  2. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  3. Characterization of emissions from a fluidized-bed wood chip home heating furnace. Final report Apr 82-May 83

    SciTech Connect (OSTI)

    Truesdale, R.S.

    1984-03-01

    The report gives results of measurements of emissions from a residential wood-chip combustor, operated in both a fluidized-bed and cyclone-fired mode, and their comparison with those from a conventional woodstove and industrial wood-fired boilers. In general, the combustion efficiency of the fluidized-bed and cyclone-fired wood-chip burner is higher than that of conventional woodstoves. Concomitant with this increase in efficiency is a decrease in most emissions. For the fluidized-bed tests, significant reductions of total hydrocarbons and CO were observed, compared to woodstove emissions. The cyclone test showed PAH levels far below those of conventional woodstoves, approaching levels measured in industrial wood-fired boilers. A baghouse, installed during two fluidized-bed tests, was extremely effective in reducing both particulate and PAH emissions. Method 5 samples from above the fluid bed suggest that appreciable PAH is formed in the upper region of the furnace or in the watertube heat exchangers. In general, the cyclone-fired mode was more effective in reducing emissions from residential wood combustion than the fluidized-bed mode.

  4. 120 years of U.S. residential housing stock and floor space

    SciTech Connect (OSTI)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  5. Stanford - Woods Institute for the Environment | Open Energy...

    Open Energy Info (EERE)

    Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name: Stanford- Woods Institute for the Environment...

  6. Council of Athabascan Tribal Governments - Wood Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - capacity to deliver split fire wood, boiler round wood, wood chips for chip boilers; ... of heat and is responsible for feeding boiler Forest and land management plan CATG ...

  7. RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) File Residential Clothes Washers Appendix J2 -- v2.1 More Documents & Publications Residential Clothes Washers (Appendix

  8. Residential Clothes Washers (Appendix J1) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File Residential Clothes Washer J1-v2.1

  9. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  10. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  11. Summary of Needs and Opportunities from the 2011 Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - ...

  12. Shark Tank: Residential Energy Efficiency Edition – Episode #2 (301)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, December 3, 2015.

  13. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    SciTech Connect (OSTI)

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and other sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.

  14. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  15. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  17. Baseline data for the residential sector and development of a residential forecasting database

    SciTech Connect (OSTI)

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  18. Unitil (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Until also offers rebates for residential new construction through the Natural Gas Energy Star Homes/Residential New Construction Program. To receive rebates, new homes must meet certain energy...

  19. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

  20. Residential Renewable Energy Income Tax Credit

    Broader source: Energy.gov [DOE]

    The credit is available to any owner or tenant of residential property. For a newly constructed home, the credit is available to the original owner/occupant. Joint owners of a residential property...