National Library of Energy BETA

Sample records for residential wood consumption

  1. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  2. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  3. Forecasting Hot Water Consumption in Residential Houses

    E-Print Network [OSTI]

    MacDonald, Mark

    and technological advancement in energy-intensive applications are causing fast electric energy consumption growth and consumption of electricity [8], as long as there is no significant correlation between intermittent energyArticle Forecasting Hot Water Consumption in Residential Houses Linas Gelazanskas * and Kelum A

  4. Energy Intensity Indicators: Residential Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  5. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Solar Adoption and Energy Consumption in the ResidentialFall 2012 Solar Adoption and Energy Consumption in theAbstract Solar Adoption and Energy Consumption in the

  6. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect (OSTI)

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  7. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

  8. ResPoNSe: modeling the wide variability of residential energy consumption.

    E-Print Network [OSTI]

    Peffer, Therese; Burke, William; Auslander, David

    2010-01-01

    affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

  9. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    expenditure on energy. PV adoption differs conceptually fromeffect around residential PV adoption, and if so what arein consumption changes after PV adoption. Figure 5.5 shows

  10. Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood

    E-Print Network [OSTI]

    Hughes, Larry

    ERG/200702 Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood Energy.hughes@dal.ca 26 March 2007 #12;Hughes and Wood: Solar energy and multi-storey residential buildings 1 Summary This report considers the limitations on solar energy in new, multi-storey residential buildings. In a time

  11. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  12. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

  13. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01

    the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

  14. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    The China Residential Energy Consumption Survey, Human andof Commercial Building Energy Consumption in China, 2008,and Policy of Uniti Energy Consumption (kWh/yr) Ordinary

  15. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    and energy efficiency policies California Solar Initiative (CSI) data,solar installation and energy consumption, through the analysis of pre- and post-installation consumption datadata regarding 5,243 residential solar system installations located in SDG&E service territory, the energy

  16. Wood stove use in the end-use load and consumer assessment program residential base sample

    SciTech Connect (OSTI)

    LeBaron, B.A.

    1988-11-01

    This report examines wood heating in the End-Use Load and Consumer Assessment Program (ELCAP) Residential Base Sample during the 1985/1986 heating season. The goals of this study were to assess the frequency of wood burning in homes having wood burning equipment and to estimate the quantity of electrical space heat displaced by it use. 15 refs., 18 figs., 6 tabs.

  17. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  18. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F.; Brownstone, David

    2005-01-01

    residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption Table 2Density on Vehicle Usage and Energy Consumption with

  19. South Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C. Temperature andResidentialConsumptionResidential

  20. Energy Preview: Residential Transportation Energy Consumption Survey,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6 1 April 2006January5t 7

  1. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  2. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an 

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  3. Sample design for the residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  4. South Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C. Temperature andResidential Consumption (Million Cubic

  5. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F; Brownstone, David

    2005-01-01

    residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption ReferencesDensity on Vehicle Usage and Energy Consumption UCI-ITS-WP-

  6. Assessment methodology for the air quality impact of residential wood burning

    SciTech Connect (OSTI)

    Lipfert, F.W.

    1981-01-01

    Data from surveys of 1977-1979 indicate that firewood usage tends to vary inversely with population density, resulting in an implied limit to the density of usage. Tests of wood stoves indicate that emissions of particulates vary inversely with heat demand, such that nighttime emissions at low combustion rates may be worse than those during maximum heat demand conditions. Finally, atmospheric dispersion rates are coupled to the driving forces of space heating so that nighttime emissions tend to have a disproportionately large impact on ambient air quality. All of these factors must be considered jointly in order to perform a meaningful assessment of the air quality impacts of increased residential wood fuel use; the results indicate that in flat terrain primary ambient standards are not threatened by residential wood combustion.

  7. Building and occupant characteristics as determinants of residential energy consumption

    SciTech Connect (OSTI)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  8. US, EU Consumption Driving Chinese Imports of Illegal Wood from Around the World

    E-Print Network [OSTI]

    US, EU Consumption Driving Chinese Imports of Illegal Wood from Around the World Chinese Government the world's leading importer of wood from tropical, developing countries. China has captured one, and environmental destruction and poverty in forest areas around the world. It also presents a number

  9. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

  10. Oxidation of volatiles in residential wood burning equipment. Final technical report, September 1980-February 1984

    SciTech Connect (OSTI)

    Malte, P.C.; Thornton, M.M.; Kamber, P.D.

    1984-04-01

    The objectives of this project are to measure, through the use of laboratory combustors, those conditions which promote complete combustion of wood volatiles in residential wood burning equipment. The conditions of interest are combustion temperature, residence time, stoichiometry, and air mixing. The project objectives are met through two laboratory approaches: (1) model compound studies: in order to measure the overall rates of oxidative pyrolysis of biomass volatiles, and to determine the types of intermediate organic species which are likely to form as part of this process, model compounds have been reacted in a specialized jet-stirred reactor, which has been developed as part of this research. (2) high-intensity wood combustion: in order to study the clean combustion of wood, that is, to investigate the conceptual design features required for clean burning, and to ascertain the levels and types of pollutant and condensible species which are most difficult to oxidize, a high-intensity, research wood combustor has been developed and examined for the different phases of the wood burning cycle. Although the objectives of the project have been met, it has not been possible, because of support limitations, to thoroughly explore several interesting aspects which have arisen because of this research. For example, a third laboratory system in which wood pyrolysis gas is injected directly into the a well characterized reactor, so that the kinetics and mechanisms of the gas-phase reaction of the actual biomass volatiles can be studied, could not be thoroughly developed. Refinements in the high-intensity wood combustor, which would bring its design features closer to practicality for the industry, could not be considered. 32 references, 37 figures, 10 tables.

  11. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual’ electricity consumption by country/region

  12. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    level and home size. PV cost per watt of capacity decreases46 Figure 3.9. PV System Cost Evolution by Program Volume,Figure 5.17. Residential PV Systems Cost of CO 2 Reductions

  13. Washington Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google5.10 5.24 5.29 5.84 5.08 4.25 1989-2015 Residential Price 11.35 12.13 12.37 12.57 11.71 11.24 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0

  14. West Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google5.10 5.24 5.29 5.84 5.08 4.25 1989-2015 Residential Price 11.35 12.13 12.37 12.57 11.71 11.24 1989-2015 Percentage of Total Residential DeliveriesDecade Year-0(MillionperNA

  15. Nebraska Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (next release 2:00DecadeResidentialYear Jan

  16. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    al. (2000). "Energy efficiency and consumption – the reboundinnovation, energy efficient design and the rebound effect."of an energy service, the greater the rebound effect (

  17. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Electric Solar Energy Industries Association Self Generationsolar-electric generation systems and its impacts on energyenergy consumption changes with the installation of a solar electric generation

  18. Wisconsin Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google5.10 5.24 5.29 5.84 5.08 4.25 1989-2015 Residential Price 11.35 12.13 12.37 12.57 11.71 11.24 1989-2015 Percentage of Total ResidentialDecade Year-0 Year-1 Year-24.47 5.79

  19. A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption

    SciTech Connect (OSTI)

    Johnson, Brandon J [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Jackson, Roderick K [ORNL] [ORNL; Tolbert, Leon M [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

    2014-01-01

    This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loads throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.

  20. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    renewable energy technologies, solar photovoltaic (PV) technologies hold significant potentialenergy consumption: Potential savings and environmental impact." Renewable andpotential new value stream from NEM solar is monetization of the renewable energy

  1. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    and future energy consumption: Potential savings and environmental impact." Renewable andrenewable energy installation in practice. This dissertation will provide insight and make recommendations for program design principles and future

  2. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building 

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  3. California Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 ArizonaResidential Consumers (Number ofProcessedYear

  4. Nevada Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNet Withdrawals (MillionThousand

  5. New Hampshire Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNet WithdrawalsThousandYearper

  6. New Jersey Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetper Thousand CubicYear JanThousandYear

  7. New Mexico Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetperProductionNetYear(MillionYear Jan

  8. Minnesota Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet)Year Jan Feb Mar Apr May

  9. Mississippi Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved Reserves (Billionoff)Year Janin

  10. Missouri Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)Year Jan Feb Mar Apr May Jun

  11. Montana Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr

  12. Texas Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexicoConferencePrice (Dollars per ThousandResidential

  13. Vermont Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A County roadFeet) Deliveries toResidential

  14. Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A CountyFeet) Deliveries toResidential

  15. Wisconsin Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThe U.S. Department ofWinners0,Residential

  16. Iowa Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the RichardBudget andtheFeet)Residential

  17. Idaho Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch88 SignPrice (Dollars perResidential

  18. Statistical Analysis of Historical State-Level Residential Energy Consumption Trends

    SciTech Connect (OSTI)

    Belzer, David B.; Cort, Katherine A.

    2004-08-01

    Developing an accurate picture of the major trends in energy consumption in the nation’s stock of residential buildings can serve a variety of national and regional program planning and policy needs related to energy use. This paper employs regression analysis and uses the PRISM (Princeton Scorekeeping Method) approach with historical data to provide some insight into overall changes in the thermal integrity of the residential building stock by state. Although national energy use intensity estimates exist in aggregate, these numbers shed little light on what drives building consumption, as opposing influences are hidden within the measurement (e.g., more appliances that increase energy use while shell improvements reduce it). This study addresses this issue by estimating changes in the reference temperatures that best characterize the existing residential building stock on a state basis. Improvements in building thermal integrity are reflected by declines in the heating reference temperature, holding other factors constant. Heating and cooling-day estimates to various reference temperatures were computed from monthly average temperature data for approximately 350 climatic divisions in the U.S. A simple cross-sectional analysis is employed to try to explain the differential impacts across states. Among other factors, this analysis considers the impact that the relative growth in the number of residential buildings and the stringency of building energy codes has had on residential building energy use. This paper describes the methodology used, presents results, and suggests directions for future research.

  19. Missouri Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19Fuel ConsumptionThousandDecadeDecade

  20. Rhode Island Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serialIndustrial Consumption (Million

  1. Hawaii Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚—34OctoberKHarvestingConsumption

  2. Illinois Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch88Consumption (Million

  3. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  4. User-needs study for the 1993 residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1993-09-24

    During 1992, the Energy Information Administration (EIA) conducted a user-needs study for the 1993 Residential Energy Consumption Survey (RECS). Every 3 years, the RECS collects information on energy consumption and expenditures for various classes of households and residential buildings. The RECS is the only source of such information within EIA, and one of only a few sources of such information anywhere. EIA sent letters to more than 750 persons, received responses from 56, and held 15 meetings with users. Written responses were also solicited by notices published in the April 14, 1992 Federal Register and in several energy-related publications. To ensure that the 1993 RECS meets current information needs, EIA made a specific effort to get input from policy makers and persons needing data for forecasting efforts. These particular needs relate mainly to development of the National Energy Modeling System and new energy legislation being considered at the time of the user needs survey.

  5. Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study

    SciTech Connect (OSTI)

    Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

    2012-01-01

    Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

  6. Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan

    E-Print Network [OSTI]

    Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

    2010-01-01

    Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

  7. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    software. Methodology Residential energy demand is shaped bydrivers of energy and demand in residential buildings arethe residential buildings sector, the level of energy demand

  8. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    of growth in residential energy demand in China will requirein Table 1. Residential energy demand is shaped by a varietydrivers of energy and demand in residential buildings are

  9. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  10. Life in the woods : production and consumption of the urban forest

    E-Print Network [OSTI]

    Volicer, Nadine (Nadine M.)

    2012-01-01

    The use of wood is fraught with paradox. Wood as a building material is embraced for its naturalness, while the cutting of trees is indicted as a destruction of nature. Wood is lauded for its structural properties and ...

  11. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  12. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  13. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    SciTech Connect (OSTI)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  14. ResPoNSe: modeling the wide variability of residential energy consumption.

    E-Print Network [OSTI]

    Peffer, Therese; Burke, William; Auslander, David

    2010-01-01

    the Design of Residential Demand Responsive Technology withHiroshi Asano. 2006. A Residential End-Use Demand Model forModelling of Energy Demand in the Residential Sector: 1.

  15. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01

    estimates of gas and electricity consumption were preparedestimates the gas and electricity consumption in a typicalthat lacked electricity consumption data were discarded for

  16. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    accounting for 79% of non-biomass energy consumption inreliance on biomass for rural energy consumption shows thereliance on biomass for rural energy consumption shows the

  17. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F.; Brownstone, David

    2005-01-01

    Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

  18. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01

    Loads SHGC Window Solar Energy Consumption Cond InfiltrationLoads SHGC Window Solar Energy Consumption Cond InfiltrationLoads SHGC Window Solar Energy Consumption Cond Infiltration

  19. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F; Brownstone, David

    2005-01-01

    on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

  20. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01

    ABSTRACT Households consume energy in many different waysvariations in energy consumption consume considerably morevariations in energy consumption tend to consume a lot more

  1. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    accounting for 79% of non-biomass energy consumption in2000 and 2020. Biomass, the leading energy source in thehigh reliance on biomass for rural energy consumption as

  2. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    SciTech Connect (OSTI)

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.

  3. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial5281 Residential

  4. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    average residential electricity consumption by end-use inaverage residential electricity consumption by end-use inU.S. residential electricity consumption for 2010 for 32

  5. Effect of Water Education on Reducing Residential Consumption in San Antonio, Texas 

    E-Print Network [OSTI]

    Rice, Jeremy Joseph

    2010-10-12

    Percent of Homes in the Study by Monthly Consumption ......................... 6 Table 2 Self Audit and SAWS Audit Results. ....................................................... 12 Table 3 Top 1% Appraisal District Averages... on their consumption (no response, self audit, SAWS audit). Overall, the total reduction from the program was calculated to determine if one method was more effective at reducing consumption. Descriptive statistics and analysis of variance were used to determine...

  6. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    Energy Intensity by End-use Assumptions Urban enduse intensity SpaceEnergy Consumption by Fuel Table 3 End Use Saturations and Intensities Saturation, % Urban Space

  7. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    consumption, increasing imports, supply shortages, and difficulties integrating fully into global energyconsumption has a growing impact on world energy markets, affecting the availability of energy resources and global

  8. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and Commercial Buildings3

  9. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares

  10. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares3

  11. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35

  12. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35

  13. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares3520

  14. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35205

  15. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares352056

  16. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares3520567

  17. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35205678

  18. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares352056789

  19. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares3520567891

  20. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256

  1. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water Use3

  2. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial5281

  3. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial52813 2004 Water

  4. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial52813 2004

  5. Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings 

    E-Print Network [OSTI]

    Lian, Y.; Hao, Y.

    2006-01-01

    Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

  6. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01

    related primary energy consumption of today’s US buildingis, the energy savings that would result if today’s entireenergy efficiency that reflect the properties of today’s

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  7. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01

    1984. “Time-of-Day Electricity Consumption Response toon Residential Electricity Consumption: The Hydro One Pilot.Electricity Consumption .

  8. Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 2025 U.S.27 20258

  9. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares of456780

  10. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares of4567801

  11. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares3 Building

  12. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35 Load

  13. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35 Load6

  14. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35 Load67

  15. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares35 Load678

  16. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares3520 Site

  17. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6 20256 Shares3520 Site3

  18. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water Use35 2010

  19. Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.; Henderson, L.

    1998-05-01

    Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  1. ,"Rhode Island Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by End Use" ,"Click worksheet

  2. ,"South Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by End Use"

  3. ,"South Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by EndAnnual",2014Annual",2014 ,"Release

  4. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas,Consumption byPrices" ,"Click

  5. Please cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010

    E-Print Network [OSTI]

    Parker, Lynne E.

    2012-01-01

    electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.elsevier.com/locate/enbuild Predicting future hourly residential electrical consumption: A machine learning case study Richard E electrical consumption data. In this article, we report on the evaluation of seven different machine learning

  6. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  7. Residential Energy Consumption Survey:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming DryquestionnairesquestionnairesquestionnairesU.S.U.S.

  8. Duct Design Impacts on Energy Consumptions and Life Cycle Costs for Residential Central Heating and Cooling Systems 

    E-Print Network [OSTI]

    Yin, Peng

    2015-08-10

    In this study, a series of laboratory measurements was conducted on residential air handling units (AHUs) and air conditioners to characterize their performance at typical installed conditions. In addition, performance models of blowers and air...

  9. CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL

    E-Print Network [OSTI]

    . Data collection was completed in early 2010. The study yielded energy consumption estimates for 27 statistical methods to combine survey data, household energy consumption data and weather information Commission, conditional demand analysis, CDA, unit energy consumption, UEC, residential, appliance

  10. Household activities through various lenses: crossing surveys, diaries and electric consumption

    E-Print Network [OSTI]

    Durand-Daubin, Mathieu

    2013-01-01

    comparison between electricity consumption and behavioralU.S. residential electricity consumption” Energy Policy, 42(of the residential electricity consumption. ” Energy Policy,

  11. Making Steel Framing as Thermally Efficient as Wood 

    E-Print Network [OSTI]

    Kosny, J.; Childs, P.

    2002-01-01

    In many world regions like North America and Scandinavia wood framing is dominant technology for residential buildings. During last two decades several companies around the world started to promote a low-gage steel framing for residential...

  12. Essays on the Impact of Climate Change and Building Codes on Energy Consumption and the Impact of Ozone on Crop Yield

    E-Print Network [OSTI]

    Aroonruengsawat, Anin

    2010-01-01

    on Residen- iv tial Electricity Consumption 8 Introduction 9Observed residential electricity consumption 2003 to 2006total residential electricity consumption for 2006 by five-

  13. Wood products What is wood?

    E-Print Network [OSTI]

    Slik, Ferry

    Products Particleboard sheets of woods consisting of small wood pieces Production - Wood chipping - Sorting Fiberboard sheets of wood produced from wood fibers (often feels a bit papery) Production - Wood chips for horizontal connections Functions - Protection (secondary compounds) - Horizontal transport - Storage The rays

  14. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01

    strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

  15. Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.

    SciTech Connect (OSTI)

    Onisko, Stephen A.; Roos, Carolyn; Baylon, David

    1993-06-01

    This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

  16. AN ABSTRACT OF THE THESIS OF Jebediah Wilson for the Master of Science in Civil Engineering and Wood Science presented

    E-Print Network [OSTI]

    Gupta, Rakesh

    and Wood Science presented on September 26, 2008. Title: Behavior of a 1/6th Scale, Two-Story, Wood Framed was to develop an understanding of the nature of surge wave loading on wood framed residential structures forces on a 1/6th scale wood framed residential structure, (2) to evaluate qualitatively the structural

  17. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    E-Print Network [OSTI]

    Meyers, Stephen P.

    2008-01-01

    residential/commercial primary energy consumption and carbonWe estimate the savings in primary energy consumption usingconverting site energy to primary energy consumption. The

  18. Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia

    E-Print Network [OSTI]

    Tiedemann, Kenneth Mr.

    2013-01-01

    of residential end use electricity consumption for Britishresidential electricity consumption by end use Apply theresidential end use electricity consumption using a

  19. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    residential electricity in developing country regions. Thehousehold electricity consumption in developing countries.targeting electricity consumption in developing countries,

  20. Current Status and Future Scenarios of Residential Building

    E-Print Network [OSTI]

    a detailed, bottom-up analysis of residential building energy consumption in China using data from a wideLBNL-2416E Current Status and Future Scenarios of Residential Building Energy Consumption in China and Future Scenarios of Residential Building Energy Consumption in China Nan Zhou*, Masaru Nishida

  1. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    Consumption 2005-2030 Consumption (TWh) IND INDO SAS-PAS BRASAS-PAS BRA MEA Figure 4 Air Conditioner Saturation by Region 2005-

  2. 2005 Residential Energy Consumption Survey

    Gasoline and Diesel Fuel Update (EIA)

    G (2005) - Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Fuel Oil or Kerosene Usage Form Service Address: If the customer account...

  3. 2005 Residential Energy Consumption Survey

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama Alabama ProfileDistrictD (2001) --

  4. 2005 Residential Energy Consumption Survey

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama Alabama ProfileDistrictD (2001) --E

  5. 2005 Residential Energy Consumption Survey

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama Alabama ProfileDistrictD (2001) --EF

  6. 2005 Residential Energy Consumption Survey

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama Alabama ProfileDistrictD (2001) --EFG

  7. The Impact of the Russian Tariff on Japanese Demand for Wood Products CINTRAFOR News is

    E-Print Network [OSTI]

    extent, residential housing has always been one of the major drivers of wood demand in JapanThe Impact of the Russian Tariff on Japanese Demand for Wood Products CINTRAFOR News is available will consider the potential impact on Chinese demand for wood products.) Japanese Market for Wood Products Japan

  8. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01

    1989. Residential End-Use Energy Consumption: A Survey ofInstalled Wattage 10.3. Energy Consumption per Socket 10.4.Energy Consumption per Household 10.5. Total Energy

  9. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY-EFFICIENT RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Berk, J.V.

    2011-01-01

    Modem RESIDENTIAL ENERGY CONSUMPTION DATA (1976) TOTAL 18.95HEATING COMMERCIAL ENERGY CONSUMPTION DATA (1976) TOTAL 10.3data on various active and pas- sive methods of reducing energy consumption

  10. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    E-Print Network [OSTI]

    Schipper, L.

    2013-01-01

    the housing and energy consumption data is a detailed studyConventions 6 All energy consumption data refer energy,Italian residential energy consumption data by end use. Unt

  11. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01

    for residential gas furnaces in the U.S. In the proceedingsconsumption of residential furnaces and boilers in U.S.fuel consumption. The gas furnace fuel consumption (FuelUse)

  12. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  13. Optimal Battery Configuration in a Residential Home with Time-of-Use Pricing

    E-Print Network [OSTI]

    Simunic, Tajana

    Optimal Battery Configuration in a Residential Home with Time-of-Use Pricing Baris Aksanli, USA {baksanli, tajana}@ucsd.edu Abstract--Residential energy consumption shows significant diurnal. INTRODUCTION AND RELATED WORK Residential energy consumption constitutes 38% of the total energy consumption

  14. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    Henderson (2005) Home air conditioning in Europe – how muchA.A. Pavlova ( 2003). Air conditioning market saturation and+ paper 6,306 Future Air Conditioning Energy Consumption in

  15. Simulations of Sizing and Comfort Improvements for Residential

    E-Print Network [OSTI]

    LBNL 47309 1 Simulations of Sizing and Comfort Improvements for Residential Forced-Air Heating...................................................................................... 18 PEAK DEMAND AND POWER CONSUMPTION

  16. Community based outreach strategies in residential energy upgrade programs

    E-Print Network [OSTI]

    McEwen, Brendan (Brendan Carl Francis)

    2012-01-01

    Home energy upgrades can reduce residential energy consumption and improve indoor conditions, thereby realizing environmental, economic, health and other social benefits. Utilities, government and other actors have established ...

  17. Wood Curriculum vitae 1 ERIC MATTHEW WOOD

    E-Print Network [OSTI]

    Turner, Monica G.

    Wood ­ Curriculum vitae 1 ERIC MATTHEW WOOD Spatial Analysis for Conservation and Department. C. Radeloff, C. A. Lepczyk, E. M. Wood, S. I. Stewart, and R. B. Hammer. Systematic temporal

  18. Energy Management and Cost Analysis in Residential Houses using Batteries

    E-Print Network [OSTI]

    Simunic, Tajana

    Energy Management and Cost Analysis in Residential Houses using Batteries Baris Aksanli and Tajana}@ucsd.edu Abstract--Residential energy consumption shows significant diurnal patterns that can be leveraged by energy if the batteries are not used in specific configurations. I. INTRODUCTION AND RELATED WORK Residential energy

  19. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  20. FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES

    E-Print Network [OSTI]

    Nairn, John A.

    FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES DURING CRACK PROPAGATION Noah Matsumoto Structural, USA * Corresponding author: John.Nairn@oregonstate.edu SWST member #12;Fracture Toughness of Wood and Wood Composites During Crack Propagation ABSTRACT The mode I fracture toughness as a function of crack

  1. Fact #840: September 29, 2014 World Renewable Electricity Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption is Growing Electricity generated from sources that are renewable - hydroelectric power, bio-fuels, geothermal, solar, wind, wood, waste - have grown 150% from 1980 to...

  2. National Woodfuels and Wood Energy Information Analysis Prepared by: Sok Bun Heng

    E-Print Network [OSTI]

    and electricity. However, whilst a higher consumption of LPG has been used to complement wood fuels. Such energy. The per capita energy consumption is lower compared to developed countries, but high consumption for income generation. II)- Energy Consumption There is no proper study or database about energy consumption

  3. STOICHIOMETRY OF WOOD LIQUEFACTION

    E-Print Network [OSTI]

    Davis, Hubert G.

    2013-01-01

    co 2 By decomposition to (2) - 0 in H cf 0 in wood TABLE VForced Balance - Wood to Char Output - 55 lbs char lbsuc -61 STOICHIOMETRY OF WOOD LIQUEFACTION Hubert G. Davis

  4. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  5. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    16 Figure 10. Residential Primary Energy Use in 2000 and20 Annex 11. Total Sector Primary Energy Use and Projectionsby end users while primary energy consumption includes final

  6. Realized and prospective impacts of U.S. energy efficiency standards for residential appliances: 2004 update

    E-Print Network [OSTI]

    Meyers, Stephen; McMahon, James; McNeil, Michael

    2005-01-01

    Energy Efficiency Standards for Residential Appliances : 2004 Updateenergy savings due to the original standard and any updatesor energy consumption and the actual values. For updates

  7. U.S. Energy Information Administration | State Energy Data 2013...

    Gasoline and Diesel Fuel Update (EIA)

    4: Wood and Biomass Waste Consumption Estimates, 2013 State Wood Wood and Biomass Waste a Residential Commercial Industrial Electric Power Total b Thousand Cords Trillion Btu...

  8. International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007

    E-Print Network [OSTI]

    1985 1990 1995 2000 2005 2010 2015 2020 Year Amount(inmillioncubicmetresWRME) Recovered paper Net pulp fossil fuel prices · Energy security · Policies to reduce climate change · Wood industries' wood needs consumption, e.g. China ­ Nuclear safety #12;International Conference on Wood-based Bioenergy LIGNA

  9. Field Document No.50 REGIONAL WOOD ENERGY DEVELOPMENT PROGRAMME IN ASIA

    E-Print Network [OSTI]

    wood energy data, leading to best estimates of future consumption. It also tries to estimate. The work continues, particularly in much- needed efforts to strengthen the available wood energy data-use Conversion 22 3.7 Quotes 23 4. Selected Wood Energy Data 27 4.1 Energy Balances in RWEDP Member-countries 27

  10. Washington Natural Gas Residential Consumption (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,160 26,342 30,479 1970's 31,929 33,934 38,631 36,468 35,525 34,349 32,348 30,533 27,437...

  11. Residential Consumption of Natural Gas (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)6984179,458 123,620

  12. Residential Energy Consumption Survey: Housing Characteristics,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming DryquestionnairesquestionnairesquestionnairesU.S.U.S.tni

  13. Residential Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8)

  14. Residential Energy Consumption Survey (RECS) - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecadeSign063

  15. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim Energy/HRIf

  16. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim71 optionk

  17. Practical Approach to Designing Wood Roof Truss Assemblies

    E-Print Network [OSTI]

    Gupta, Rakesh

    Practical Approach to Designing Wood Roof Truss Assemblies Rakesh Gupta, M.ASCE1 ; and Pranueng to evaluate "system effects" in light-frame roof truss assemblies. The goal of this study was to develop an improved and practical design method for 3D roof truss assemblies used in residential construction. A truss

  18. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  19. Potential Peak Load Reductions From Residential Energy Efficient Upgrades 

    E-Print Network [OSTI]

    Meisegeier, D.; Howes, M.; King, D.; Hall, J.

    2002-01-01

    the potential peak load reductions from residential energy efficiency upgrades in hot and humid climates. First, a baseline scenario is established. Then, the demand and consumption impacts of individual upgrade measures are assessed. Several of these upgrades...

  20. Retrofit of Existing Residential Building: a Case Study 

    E-Print Network [OSTI]

    Zhao, L.; Xu, W.; Li, L.; Gao, G.

    2006-01-01

    retrofit of the envelope of existing residential buildings should be placed on the wall in northern region. It is possible to reduce about 50 percent of energy consumption of buildings by insulating the wall. The external insulation is suitable...

  1. Secondary residential demand trends in contemporary Japan and North Asia

    E-Print Network [OSTI]

    Lam, Michael M

    2009-01-01

    This research paper attempts to address the opportunity and challenges for Vacation Residential Development in North Asia, with specific geographic focus on Japan first through an analysis of national and regional consumption, ...

  2. Residential Energy Efficiency Messaging | Department of Energy

    Office of Environmental Management (EM)

    Residential Energy Efficiency Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency...

  3. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

  4. Residential Demand Response under Uncertainty Paul Scott and Sylvie Thiebaux and

    E-Print Network [OSTI]

    Thiébaux, Sylvie

    Residential Demand Response under Uncertainty Paul Scott and Sylvie Thi´ebaux and Menkes van den stochastic optimisation in residential demand response. 1 Introduction Electricity consumption in residential participate in smart grid activities such as demand response where loads are shifted to times favourable

  5. Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint

    SciTech Connect (OSTI)

    Christensen, D.

    2011-01-01

    Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framing properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.

  6. WOOD PRODUCTS AND UTILIZATION

    E-Print Network [OSTI]

    WOOD PRODUCTS AND UTILIZATION V #12;#12;443USDA Forest Service Gen. Tech. Rep. PSW-GTR-160. 1997. Section Overview Wood Products and Utilization1 John R. Shelly2 Forests are obviously a very important asset to California, and their economic and social value to the state is well documented. Wood

  7. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  8. Influences of landscape and lifestyle on home energy consumption

    E-Print Network [OSTI]

    Langerhans, Brian

    Influences of landscape and lifestyle on home energy consumption Cara Nelson & Melissa R. Mc conservation and carbon dioxide emissions reduction. Urban residential energy consumption is a valuable place to increase considerably, therefore, understanding the drivers of home energy consumption should be a priority

  9. 20 Engineered Wood Journal Spring 2004 re wood design course

    E-Print Network [OSTI]

    Gupta, Rakesh

    20 Engineered Wood Journal · Spring 2004 A re wood design course offerings in civil, architectural, just maintaining the status quo could spell trouble for a wood products industry facing ever-greater competition from non-wood building materials. University education about wood as an engineering material

  10. Control Mechanisms for Residential Electricity Demand in SmartGrids

    E-Print Network [OSTI]

    Snyder, Larry

    Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

  11. Wood Resources International

    E-Print Network [OSTI]

    ;Wood Resources International Production of energy from wood fuels in 2000 Source: EUBIONET 0 50 100 150.3% Sweden 5.3% Finland 4.1% Russia 13.8% US 37.3% Germany 3.3% France 2.8% Poland 2.1% Other Europe 14 #12;Wood Resources International Global Industrial Roundwood Production in 2002 Other Europe 6.9% CIS

  12. Residential Energy Audits 

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  13. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  14. A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy Design in the UK

    E-Print Network [OSTI]

    Aickelin, Uwe

    residential energy consumers in the UK by considering property energy efficiency levels, the greenness1 A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour

  15. HYDROLYZED WOOD SLURRY FLOW MODELING

    E-Print Network [OSTI]

    Wrathall, Jim

    2012-01-01

    LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on

  16. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  17. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  18. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  19. Reducing Turfgrass Water Consumption using Sensor Nodes and an Adaptive Irrigation Controller

    E-Print Network [OSTI]

    Lawrence, Ramon

    Reducing Turfgrass Water Consumption using Sensor Nodes and an Adaptive Irrigation Controller Scott sensor and irrigation control system that reduces water consumption for residential turfgrass irrigation. It has been estimated that 50- 75% of residential water use is for irrigation. Current systems

  20. U.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy Consumption Estimate Final Report

    SciTech Connect (OSTI)

    None, None

    2002-09-01

    Multiyear study to evaluate light sources and identify opportunities for saving energy. This report estimates energy consumption for residential, commercial, industrial, and outdoor stationary.

  1. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential...

  2. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  3. Please cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010

    E-Print Network [OSTI]

    Parker, Lynne E.

    2012-01-01

    electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010 ARTICLE IN PRESSG Model ENB-3661; No.of Pages13 Energy and Buildings xxx (2012) xxx­xxx Contents lists available at SciVerse ScienceDirect Energy and Buildings journal homepage: www

  4. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect (OSTI)

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  5. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect (OSTI)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  6. Wood pelletization sourcebook

    SciTech Connect (OSTI)

    Haase, S.; Whittier, J. [NEOS Corporation, Lakewood, CO (United States); Fisher, J. [Pellet Fuels Institute, Edina, MN (United States)] [and others

    1994-12-31

    The Wood Pelletization Sourcebook is a document that provides business guidelines and technical information to those considering entering the wood pelleting business. Also, the sourcebook is a useful supplementary document for lenders to refer to in their analysis of a potential manufacturer`s business plan. A survey of wood pellet manufacturers was conducted during the spring and summer of 1994 to gather information on marketing, pelletization technology, environmental regulations, raw material supply and costs, production costs, and the overall outlook of the industry. The study characterizes different sized pelleting operations, creates a sample business plan for potential manufacturers, and identifies key industry success factors.

  7. Creating Value Wood Products Industry

    E-Print Network [OSTI]

    1 Creating Value for the Wood Products Industry Creating Value for the Wood Products Industry for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all assistance to the primary and value-added processing wood products industries in Louisiana. Since its

  8. WOOD ANATOMY INSTRUCTIONS FOR LABORATORY

    E-Print Network [OSTI]

    Cufar, Katarina

    WOOD ANATOMY INSTRUCTIONS FOR LABORATORY WORK KATARINA CUFAR, MARTIN ZUPANCIC University of Ljubljana Biotechnical Faculty Department of Wood Science and Technology #12;Publisher Department of Wood The publishing of "Wood Anatomy - Instructions for Laboratory Work", a textbook by Katarina Cufar and Martin

  9. William B. Wood Complete Publications

    E-Print Network [OSTI]

    Pace, Norman

    3/24/14 William B. Wood Complete Publications Scientific Research: 1. Wood, W. B., and Berg, P protein-ribosome system from Escherichia coli. Proc. Natl. Acad. Sci. USA 48: 94-104. 2. Wood, W. B Harbor Symp. Quant. Biol. 23: 237-246. 3. Wood, W. B., and Berg, P. (1964) Influence of DNA secondary

  10. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  11. A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings 

    E-Print Network [OSTI]

    Yamaha, M.; Fujita, M.; Miyoshi, T.

    2006-01-01

    energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

  12. James F. Wood

    Broader source: Energy.gov [DOE]

    James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's...

  13. Woods for Health Strategy Woods for Health Strategy | 32 | Woods for Health Strategy

    E-Print Network [OSTI]

    Strategy Woods for Health #12;Woods for Health Strategy Woods for Health Strategy | 32 | Woods for Health Strategy Foreword Like the rest of the western world, Scotland experiences growing rates a key role in helping to promote better physical and mental health for all by providing greenspace

  14. Residential Central Wood Pellet Heating Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7| Department ofDepartment< Back Eligibility

  15. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  16. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  17. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  18. Essays on residential desegregation

    E-Print Network [OSTI]

    Wong, Maisy

    2008-01-01

    Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

  19. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

  20. Residential Building Audits and Retrofits

    Broader source: Energy.gov [DOE]

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues.

  1. End-use electrification in the residential sector : a general equilibrium analysis of technology advancements

    E-Print Network [OSTI]

    Madan, Tanvir Singh

    2012-01-01

    The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

  2. The Impact of Urban Form and Housing Characteristics on Residential Energy Use 

    E-Print Network [OSTI]

    Kim, Jong Yon

    2012-11-29

    characteristics and the energy use that result from residential electricity and fuel use. Ordinary least squares regression methods are used to measure the correlations between energy consumption and variables describing housing and urban form characteristics...

  3. Sustainability and residential development : a guide to cost-efficient green building technologies

    E-Print Network [OSTI]

    Determan, Kelley Victoria

    2014-01-01

    Given the upward trend of global energy consumption in recent decades, it has become imperative that countries reduce the amount of energy used on an annual basis. In America, the residential sector is one of the primary ...

  4. Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries

    E-Print Network [OSTI]

    Smith, Jonathan Y. (Jonathan York), 1979-

    2004-01-01

    Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

  5. Residential energy demand modeling and the NIECS data base : an evaluation

    E-Print Network [OSTI]

    Cowing, Thomas G.

    1982-01-01

    The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

  6. Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ;Motivation · The residential sector consumes over 20% of the total energy use in the U.S. · Net zero energy buildings reduce energy consumption and reduce dependence on non- renewable energy sources. · As interestThesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility Liz Balke M

  7. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  8. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    LBNL 61467 Residential Furnace Blower Performance I.S. Walker Environmental Energy Technologies combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test and peak demand reductions in this study are based on replacing a Permanent Split Capacitor (PSC) blower

  9. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  10. Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993 

    E-Print Network [OSTI]

    Twedt, M.; Bassett, K.

    1994-01-01

    Extensive research has been done on residential and commercial applications of existing technologies for energy conservation. This study specifically examines industrial facilities for energy consumption profiles and ...

  11. The Pitfalls of Realist Analysis of Global Capitalism: A Critique of Ellen Meiksins Wood’s Empire of Capitalism: A Critique of Ellen Meiksins Wood's "Empire of Capital"

    E-Print Network [OSTI]

    Robinson, William I.

    2007-01-01

    Boulder: Paradigm Press. Wood, Ellen Meiksins 2002, ‘Globalgroups. 13 Indeed, Wood 2003, p. 23. Wood 2003, p. 132.Ibid. Wood 2003, p. 129. Wood 2003, p. 133. Wood 2003, p.

  12. Precision wood particle feedstocks

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  13. Avalanches in wood compression

    E-Print Network [OSTI]

    Tero Mäkinen; Amandine Miksic; Markus Ovaska; Mikko J. Alava

    2015-06-15

    Wood is a multi-scale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power-laws. The stress- strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using Digital Image Correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  14. Inaugural 2012 Kristie Ann Wood

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Inaugural 2012 Kristie Ann Wood Scholarship Award Call for Nominations We are delighted to announce the Inaugural 2012 Kristie Ann Wood Scholarship Award for an Outstanding Women's, Gender, and Sexualities (WGSS Wood, a feminist mother, wife, friend, daughter, and lawyer who is remembered by her loved ones

  15. Management of ancient wood pasture

    E-Print Network [OSTI]

    Guidance Management of ancient wood pasture Summary Ancient wood pasture is recognised. This guidance note provides an introduction to the restoration and management of ancient wood pastures in Scotland. It is aimed at land managers, their advisers and agency staff involved in land management

  16. Revisions in Natural Gas Monthly Consumption and Price Data, 2004 - 2007

    Reports and Publications (EIA)

    2009-01-01

    This report summarizes the method in which natural gas consumption data are collected and processed for publication and details the most notable revisions in natural gas consumption data for the period 2004 to 2007. It is intended to assist data users in evaluating the quality of the monthly consumption and price data for residential, commercial, and industrial consumers of natural gas.

  17. Rheological Model for Wood

    E-Print Network [OSTI]

    Mohammad Masoud Hassani; Falk K. Wittel; Stefan Hering; Hans J. Herrmann

    2014-10-15

    Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.

  18. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  19. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  20. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  1. Thermal Profiling of Residential Energy Use

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  2. Residential lighting: Use and potential savings

    SciTech Connect (OSTI)

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  3. Household operational energy consumption in urban China : a multilevel analysis on Jinan

    E-Print Network [OSTI]

    Wang, Dong, M.C.P. Massachusetts Institute of Technology

    2012-01-01

    With decades of economic growth and socio-economic transformation, China's residential sector has seen rapid expansion in energy consumption, and is now the second largest energy consuming sector in the country. Faced with ...

  4. Energy Consumption and Economic Growth The Case of Australia Hong To a, *

    E-Print Network [OSTI]

    ;3 depend on imports of crude oil, natural gas, and coal for their industrial and residential energy needs energy consumption and economic growth. Peak oil, energy security and climate change have become key

  5. Inside the guts of wood-eating catfishes: can they digest wood?

    E-Print Network [OSTI]

    German, Donovan P.

    2009-01-01

    the cellulolytic system of the wood-boring marine mollusk2008), how diVerent are the wood-eating catWshes from otherendosymbionts and digest wood, or are these wood- eating

  6. Evaluation on Cooling Energy Load with Varied Envelope Design for High-Rise Residential Buildings in Malaysia 

    E-Print Network [OSTI]

    Al-Tamimi, N.; Fadzil, S.

    2010-01-01

    With the development of the economy in the recent years, Malaysia is maintaining a high economic growth and therefore, its energy consumption increases dramatically. Residential buildings are characterized by being envelope-load dominated buildings...

  7. Impact of residential PV adoption on Retail Electricity Rates Desmond W.H. Cai a,n

    E-Print Network [OSTI]

    Wierman, Adam

    Impact of residential PV adoption on Retail Electricity Rates Desmond W.H. Cai a,n , Sachin Adlakha reduce their electricity consumption from the grid. Electricity rates must increase for utility) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential

  8. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

  9. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  10. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  11. SOME POV-RAY TEXTURES AND COLORS T_Wood1 to T_Wood35

    E-Print Network [OSTI]

    Lee, Carl

    SOME POV-RAY TEXTURES AND COLORS WOODS.INC T_Wood1 to T_Wood35 STONES.INC T_Stone1 to T_Stone44Pink DarkPurple NeonBlue CoolCopper MandarinOrange LightWood MediumWood DarkWood SpicyPink Semi

  12. Residential Retrofit Design Guide Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  13. Causes and Control of Wood Decay,

    E-Print Network [OSTI]

    1 Causes and Control of Wood Decay, Degradation & Stain #12;2 Contents Moisture .................................................................................3 Wood Degradation: Causes and Control..............................4 Weathering......................................................................................................4 Naturally Decay-resistant Species...........................................................5 Wood

  14. STORM WATER Residential

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

  15. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  16. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  17. Robert Wood, University of Washington many contributors

    E-Print Network [OSTI]

    Wood, Robert

    Robert Wood, University of Washington many contributors VOCALS Education and Outreach Snider (Wyoming) · Dave Spencer (NCSU) · Cindy Twohy (OSU) · Rob Wood/Chris Bretherton/Rhea George

  18. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 19943556

  19. Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22PrimaryB6.3. Electricity:

  20. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 155 Reasons32

  1. The Asian Wood Pellet Markets

    E-Print Network [OSTI]

    The Asian Wood Pellet Markets Joseph A. Roos and Allen M. Brackley United States Department Wood Pellet plant in North Pole, Alaska. Clockwise from upper left: pelleting machine; pellets bagged for home use; a Superior Pellet Fuels bag; inventory of product ready for shipment to retailers. Upper

  2. Environmental Impacts of Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Environmental Impacts of Treated Wood 6495_C000.fm Page iii Wednesday, February 1, 2006 5:48 PM #12 through the Florida Center for Environmental Solutions, National Science Foundation Grant No. 0126172. Any of treated-wood research and their efforts in organizing the con- ference entitled Environmental Impacts

  3. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. Residential Retrofit Program Design Guide More...

  4. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    integration of solar and efficiency. The main buildingPolicy efforts to link solar and efficiency have met broadproducts covering both solar and efficiency, education and

  5. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    and power-purchase agreements (PPAs) can provide solar forSolar Homes Partnership Program Administrators Property-Assessed Clean Energy financing Performance-Based Incentive Pacific Gas & Electric Power Purchase Agreement

  6. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    studies from Hawaii." Energy Policy 37: 3268-3273. Yunker,2010). "Behavior and Energy Policy." Science 327: 1204-and the UK economy." Energy Policy 35: 4935-4946. Beck, R.

  7. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    a detailed analysis of solar photovoltaics in San Diego: 60.The viability of solar photovoltaics." Energy Policy Jager,types of solar energy systems (photovoltaics systems are

  8. Maine Natural Gas Residential Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,967 3,571 4,910 1970's 5,247 5,591 6,036 6,027 6,174 5,578 6,111 5,747 5,887 5,587 1980's 555...

  9. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    the influence of the electricity rates on the NEM- PV values aggressively-tiered electricity rates, under which thethe applicable electricity rates (tariffs); in California,

  10. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Conservation vs. renewable energy: Cases (sic) studies from2009). Distributed Renewable Energy Operating Impacts anddeployment, National Renewable Energy Lab CPUC (2006). D.

  11. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    The evolution of installed solar cost over time is downward.2011). California Solar Initiative Cost-EffectivenessTheir Evolution .. 38 3.2.2. Cost of Solar

  12. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Portfolio Standard System Advisor Model Single-familyhave used. NREL’s System Advisor Model (SAM) is the optimalLab’s (NREL) System Advisor Model (SAM), for PV production

  13. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    et al. (2005). Renewable energy policies and markets in theefficiency and renewable energy policy in the state. Inand Renewable Energy Technology and Policy. Washington,

  14. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    of household energy technologies by installing solar systemssolar systems do not produce more gross energy than the householda solar system, households also become generators of energy

  15. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    10 1.5. The Coordination of Solar and Energytension between solar and energy efficiency remains muchand rates: namely solar and energy efficiency. In our case,

  16. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Pacific Gas & Electric Power Purchase Agreement Physical-market. These leasing and power-purchase agreements (PPAs)public utilities to purchase power from qualifying third

  17. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    kW kWh IEPR IOU IPCC ITC LADWP LCOE LSE LTEESP MASH Assemblylevelized cost of energy (LCOE) for PV-based electricitygeneration systems. The LCOE for each system is calculated

  18. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    in the Race Toward a Clean Energy Future. Sacramento,of a continued effort towards clean energy practices moreunder which they also adopt clean energy technologies and

  19. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Renewable Energy Council: 2009 Updates and Trends, Anaheim,s 2012 Integrated Energy Policy Report Update maintains the

  20. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    tax_credit. SEIA (2011). U.S. Solar Market Insight: Year-In-L. (2010). U.S. Solar Market Trends 2009. Washington, DC,92 6.2.2. The NEM Solar Market Requires Ongoing

  1. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Kaya (2009). "Conservation vs. renewable energy: Cases (sic)in social housing." Renewable and Sustainable Energy ReviewsR. W. (2009). Distributed Renewable Energy Operating Impacts

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    the diffusion of photovoltaic systems: a behaviouralresponses to photovoltaic systems in the UK domestic sectorresponses to photovoltaic systems in the UK domestic

  3. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    R. W. (2009). Distributed Renewable Energy Operating Impactsdistributed renewable generation. 15 With respect to existing buildings, however, the perceived tension between solar and energydistributed renewable generators to install and operate these systems cost-effectively. In particular, net energy

  4. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

  5. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Renewable Generation in California: Coordination Challenges in Time and Space."space with NEM. These upcoming initiatives are the Feed-in Tariff (FIT) and the Renewable

  6. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    400 MW of installed solar electric capacity on new homes,were 165 MW of solar capacity installed; capacity more than

  7. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    48 Figure 3.10. Electric-Only and Dual FuelCSI participants who are dual-fuel and electric- only SDG&E3.10. Electric-Only and Dual Fuel Customers No. of Solar

  8. Effects of Feedback on Residential Electricity Consumption: A...

    Office of Scientific and Technical Information (OSTI)

    none of which were elec- trically heated; each had an electric stove, dryer, dishwasher, and water heater. The researchers installed 24-h chart recorders in each residence...

  9. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    and renewable energy technologies, solar photovoltaic (PV)National Renewable Energy Law New Solar Homes Partnershipand promote renewable energy, such as solar energy R&D and

  10. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

  11. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    and improve the potential solar adopter’s perceived value inother impacts of their potential solar choices, as a grouphand, some potential adopters may perceive solar as complex

  12. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    clean energy arena, such as the nascent building performance industry, are the subject of large-scale policy initiatives.

  13. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    TMY or actual solar radiation data, and thus serves theTMY or actual solar radiation data, and thus serves theyear (TMY) solar radiation data. The goal here is to

  14. Wyoming Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover ToDecadeDecade Year-0

  15. Tennessee Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptemberFeet) Decade Year-0

  16. Texas Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015"Separation, Proved Reserves (Billion CubicReserves (BillionDecadeThousand

  17. Utah Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,419595.69 3.99 4.34 3.96 4.18 5.49Decade

  18. Vermont Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,419595.69 3.99 4.34(Million21DecadeNA

  19. Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,419595.69 3.99perDecadeThousand

  20. Residential Lighting End-Use Consumption | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease |Records Management Field OfficerPaylor, Director ofDepartment of

  1. Nebraska Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155 13,348Feet)Repressuring

  2. Nevada Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet) YearMay-15

  3. New Hampshire Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price (Dollars perFeet)

  4. New Jersey Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price (Dollars2009

  5. New Mexico Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price780 922 (Million Cubic2009Decade Year-0

  6. New York Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price780Year Jan FebDecade Year-0Decade Year-0

  7. North Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb MarthroughFeet) Decade Year-0 Year-1Feet)perDecade

  8. North Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb MarthroughFeet)Feet) Year Jan FebProved2009,213

  9. Ohio Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) Year Jan Feb Mar Apr2009Year2009896 832

  10. Oklahoma Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) Year JanIndustrialRepressuring

  11. Oregon Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear Jan FebIndustrialDecade Year-0 Year-1

  12. Pennsylvania Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) AnnualProved7,018 14,068 26,719 36,543

  13. Rhode Island Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013 Independent StatisticsFeet) Leaseper

  14. South Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013 IndependentYearFeet) (Million CubicperDecade

  15. South Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013Additions (Million Cubic Feet)2009 2010DecadeDecade

  16. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers

  17. Alaska Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas andYear Jan Feb Mar

  18. Arizona Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar Apr May Jun

  19. Arkansas Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear Jan Feb Mar Apr May Jun

  20. Colorado Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) GasBarrels)Kansas (MillionYear

  1. Connecticut Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand Cubic Feet)

  2. Delaware Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%Year Jan Feb Mar

  3. New York Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year Jan Feb Mar Apr May

  4. North Carolina Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5Net Withdrawals (MillionperYear

  5. North Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4Barrels) ReservesNorth DakotaYear

  6. Ohio Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ Lease CondensateDecade(Million CubicWestYear

  7. Oklahoma Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead%Texas (Million Cubic Feet)Year

  8. Oregon Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas and Gas

  9. U.S. Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData2009 2010Year Jan FebBarrels) Area:AllDecade

  10. Alabama Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670 2,121 1979-2014

  11. Alaska Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304Exports

  12. Arizona Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand Cubic

  13. Arkansas Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand8Decade Year-0 Year-1

  14. California Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15 Jun-15 Jul-15,926

  15. Colorado Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovCubicYear Jan Feb MarDecade

  16. Connecticut Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million (Million49 4.58

  17. Delaware Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0CommercialNA NA

  18. District of Columbia Natural Gas Residential Consumption (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1-- -- -- -- -- --

  19. Florida Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May Jun JulProved2009Year

  20. Georgia Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar87.1 81.2IndustrialThousandDecade

  1. Hawaii Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousand Cubic Feet) Decade

  2. Idaho Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousandIndustrial3.81 3.99

  3. Illinois Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb MarMay-15 Jun-15 Jul-15Decade

  4. Indiana Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0 Year-1 Year-2Year Jan

  5. Iowa Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecade Year-0 Year-1 Year-2 Year-3 Year-4

  6. Kansas Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuel

  7. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand Cubic Feet)Year Jan

  8. Louisiana Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan

  9. Maine Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1

  10. Maryland Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb5.79 6.50 7.38

  11. Massachusetts Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade

  12. Michigan Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009 2010 2011Year JanDecade

  13. Minnesota Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 (Million Cubic

  14. Mississippi Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35Feet)2009 201022 858

  15. Montana Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) Decade Year-0

  16. Pennsylvania Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeer Review Policies Basic EnergyPrice

  17. Effects of Feedback on Residential Electricity Consumption: A Literature Review

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting Host Site:ERDA

  18. Tennessee Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexicoConference Tight Oil1 SoilPrice

  19. Utah Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentric viewing system for light|

  20. Washington Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02) nerg

  1. West Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN

  2. Wyoming Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single gold crystalPrice

  3. Indiana Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218in aradsafe/filesThousand

  4. Kansas Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducingJobs2015Administration|Price

  5. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet) SoldDepartment ofKen T.Price

  6. Georgia Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LET IonizingGeorge B.Thousand Cubic Feet)

  7. Florida Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |Final ReporttheHouseNewFlippingGrossThousand

  8. Trends in U.S. Residential Natural Gas Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight.... 111.1 14.77.1 111.1ReducingTrends

  9. U.S. Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb MarCubic2009Year Jan Feb Mar

  10. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Weekly7,674a.TotalTotal

  11. District of Columbia Natural Gas Residential Consumption (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full report (1.6

  12. DOE/EIA-0207/2 Residential Energy Consumption Survey:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101CompanyProduct:5/4Q)2Q)0/2Q)|83/2Q)-112

  13. DOE/EIA-0262/1 Residential Energy Consumption Survey:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table

  14. DOE/EIA-0314(82) Residential Energy Consumption Survey:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim Energy

  15. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1

  16. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1U.S. Energy

  17. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1U.S. EnergyU.S.

  18. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1U.S.

  19. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1U.S.U.S. Energy

  20. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1U.S.U.S.

  1. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData -1U.S.U.S.U.S.

  2. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData

  3. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheDataInformation

  4. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol.

  5. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol.Information Administration

  6. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol.Information

  7. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol.InformationAdministration

  8. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015

  9. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA) ‹

  10. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming DryquestionnairesquestionnairesquestionnairesU.S. Energy

  11. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming DryquestionnairesquestionnairesquestionnairesU.S. EnergyU.S.

  12. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming DryquestionnairesquestionnairesquestionnairesU.S.

  13. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming DryquestionnairesquestionnairesquestionnairesU.S.U.S. Energy

  14. Louisiana Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogoFeet) Deliveries to

  15. Maine Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)Price (Dollars per Thousand Cubic Feet) Maine

  16. Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)PriceHistoric ManhattanInformation Administration

  17. Maryland Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)PriceHistoricEnergyAprilMartin

  18. Massachusetts Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder * July 9,

  19. Michigan Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatons ContactThousand Cubic Feet)

  20. 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama Alabama ProfileDistrictD (2001) --

  1. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  2. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  3. Proactive climate protection Building with wood =

    E-Print Network [OSTI]

    = CO2 Proactive climate protection Building with wood = CO 2 #12;Introduction Forests play to produce wood products is vastly lower than other materials. Proactive climate protectionBuilding with wood = Proactive climate protectionBuilding with wood = CO 2 products, carbon storage p. 3 Forests = Natural

  4. Wood River Levee Reconstruction, Madison County, IL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

  5. MARCY B. WOOD Curriculum Vitae, October 2012

    E-Print Network [OSTI]

    Lega, Joceline

    MARCY B. WOOD Curriculum Vitae, October 2012 University of Arizona, College of Education Department 2005 #12;Marcy B. Wood October 2012 Page 2 PUBLICATIONS REFEREED JOURNAL ARTICLES Wood, M. B., Olson, A-Oriented Perspective from Elementary Children. School Science and Mathematics. Good, T. L., Wood, M. B., Sabers, D

  6. FAO Forestry Department Wood Energy WISDOM Slovenia

    E-Print Network [OSTI]

    in developing pellet production and district heating systems; the formulation of a national wood energy strategy

  7. The Woods Hole Laboratory, 1885-1985

    E-Print Network [OSTI]

    The Woods Hole Laboratory, 1885-1985: A Century of Service Woods Hole Laboratory Northeast, Lectures, and Rededication of the Woods Hole Laboratory Contents Foreword and Acknowledgments Committees and Contributions of the Woods Hole Fisheries Laboratory Centennial Lecture II: The MBL and the Fisheries-A Century

  8. Successful biomass (wood pellets ) implementation in

    E-Print Network [OSTI]

    Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East Production of wood fuels in Estonia in 2002 Regional Energy Centres in Estonia Wood pellets production

  9. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  10. Global Timber and Wood Products Market Update -a news brief from Wood Resources International LLC

    E-Print Network [OSTI]

    Global Timber and Wood Products Market Update - a news brief from Wood Resources International LLC to be the major destination for Latin American wood chips, reports the Wood Resource Quarterly In late 2011 wood chips from only three countries: Vietnam, Indonesia and Australia, who together shipped 1

  11. The conservation of waterlogged wood using sucrose 

    E-Print Network [OSTI]

    Parrent, James Michael

    1983-01-01

    wood. This thesis investigates the use of sucrose and how it reacts with wood's ultrastucture to prevent shrinkage and warpage of waterlogged wood. Experiments using archaeological wood from the sunken city of seventeenth century Port Royal... expensive, non-toxic, non-flammable, non-hygroscopic and is readily available in most countries. Utilization of sugar to stabilize wood is not a new concept. A United States patent, No. 755, 240, was issued 32 to William Powell of Liverpool, England...

  12. Integrated Industrial Wood Chip Utilization 

    E-Print Network [OSTI]

    Owens, E. T.

    1984-01-01

    The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

  13. Textile Drying Via Wood Gasification 

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  14. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  15. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  16. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  17. Post-Retrofit Residential Assessments

    SciTech Connect (OSTI)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

  18. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R; Onar, Omer C; DeVault, Robert C

    2011-09-01

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

  19. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  20. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  1. Impacts of CCA-treated wood and wood ash on arsenic concentrations in soils and plants

    E-Print Network [OSTI]

    Ma, Lena

    Impacts of CCA-treated wood and wood ash on arsenic concentrations in soils and plants Lena Q. Ma.e. CCA-treated wood and wood ash. In Florida, up to 5,000,000 ft3 CCA-treated wood were used in 1996 alone and up to 50,000 tons of wood ash are produced annually. Therefore, it is critical to evaluate

  2. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. Rebates and discounts are...

  3. Solar Now! Residential Brochure | Department of Energy

    Energy Savers [EERE]

    Information Resources Solar Now Residential Brochure Solar Now Residential Brochure Four Oregon organizations have teamed up to help Oregon homeowners learn about and install...

  4. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  5. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01

    Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

  6. National Residential Efficiency Measures Database - Building...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database - Building America Top Innovation National Residential Efficiency Measures Database - Building America Top Innovation Image of a...

  7. Residential Energy Efficiency Research Planning Meeting Summary...

    Energy Savers [EERE]

    Residential Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings...

  8. Building America Residential Energy Efficiency Technical Update...

    Broader source: Energy.gov (indexed) [DOE]

    Update meeting in August 2011, held in Denver, Colorado. 2011 Residential Energy Efficiency Technical Update Meeting More Documents & Publications 2011 Residential Energy...

  9. Laboratory Performance Testing of Residential Window Mounted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  10. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

  11. Residential Water Heaters Webinar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7| DepartmentMultifamily Residential Low Income<

  12. Residential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergyResidential

  13. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price

  14. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price1,

  15. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane

  16. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  17. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  18. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4,

  19. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential

  20. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  1. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    SciTech Connect (OSTI)

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and other sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.

  2. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  3. CHEMISTRY AND STOICHIOMETRY OF WOOD LIQUEFACTION

    E-Print Network [OSTI]

    Davis, H.G.

    2012-01-01

    analysis of the wood-oil product derived from the above2 g It is probable that oil products with oxygen contentscollected with the wood-oil product. The condensate contains

  4. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed, these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  5. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed; these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  6. Structure-Infesting Wood-Boring Beetles 

    E-Print Network [OSTI]

    Jackman, John A.

    2006-03-28

    Several kinds of beetles damage stored wood, structural timbers and other wood products. This publication explains how to detect, identify, prevent and control powderpost beetle, old house borer and others....

  7. 120 years of U.S. residential housing stock and floor space

    SciTech Connect (OSTI)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO? emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  8. Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL MANDATORY MEASURES

    E-Print Network [OSTI]

    Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL Building (Energy Budget) and the annual TDV energy consumption for lighting and components not regulated for energy use components included in the performance compliance approach for the Standard Design Building

  9. 1Wood Borer --WB-XX-W America's Least Wanted Wood-Borers

    E-Print Network [OSTI]

    Pittendrigh, Barry

    1Wood Borer -- WB-XX-W WB-07-W America's Least Wanted Wood-Borers Department of Entomology JAPANESE. Pupation takes place in the wood and adults emerge by chewing a round exit hole. Adults feed on the tender) #12;2Wood Borer -- WB-07-W October 2012 It is the policy of the Purdue University Cooperative

  10. Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood

    E-Print Network [OSTI]

    Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood estimated that about 5 million tons of spent preservative treated wood istons of spent preservative treated wood is disposed of annually into landfills in thedisposed of annually into landfills in the United

  11. 1Wood Borer --WB-XX-W America's Least Wanted Wood-Borers

    E-Print Network [OSTI]

    Pittendrigh, Barry

    1Wood Borer -- WB-XX-W WB-08-W America's Least Wanted Wood-Borers Department of Entomology OAK, these beetles feed on oak (Quercus spp). Direct damage results from galleries in the wood that are formed in the breeding season. The host trees for these beetles are important for the wood indus- try, orna

  12. 1Wood Borer --WB-XX-W America's Least Wanted Wood-Borers

    E-Print Network [OSTI]

    Pittendrigh, Barry

    1Wood Borer -- WB-XX-W WB-09-W America's Least Wanted Wood-Borers Department of Entomology EUROPEAN trees are very crucial for the wood industry, ornamental industry and many species of wildlife: The beetles construct the egg gal- leries perpendicular to the grain of the wood which can be found under

  13. 1Wood Borer --WB-XX-W America's Least Wanted Wood-Borers

    E-Print Network [OSTI]

    Pittendrigh, Barry

    1Wood Borer -- WB-XX-W WB-06-W America's Least Wanted Wood-Borers Department of Entomology CAMPHOR August. Female beetles make a horizontal tunnel in the wood initiating gallery construction where/APHIS grant number 10-8100-1488-CA. #12;2Wood Borer -- WB-06-W October 2012 It is the policy of the Purdue

  14. WoodPolymer Composites Prepared by the In Situ Polymerization of Monomers Within Wood

    E-Print Network [OSTI]

    Wood­Polymer Composites Prepared by the In Situ Polymerization of Monomers Within Wood Yong-Feng Li in Wiley Online Library (wileyonlinelibrary.com). ABSTRACT: Wood­polymer composites (WPCs) were prepared from poplar wood (P. ussuriensis Komarov) in a two-step procedure. Maleic anhydride (MAN) was first dis

  15. Advancing Residential Energy Retrofits

    SciTech Connect (OSTI)

    Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

    2012-01-01

    To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

  16. Wood Fuel Future: The Potential Web Text December 2010

    E-Print Network [OSTI]

    burn wood chips or pellets, which are fed into the boilers automatically by an electronically regulatedWood Fuel Future: The Potential Web Text 31st December 2010 Wood Fuel Future: The Potential Wood') supports the development of renewable energy from wood fuel. Of all the clean energy technologies, wood

  17. GUYANA FORESTRY COMMISSION NATIONAL WOOD TRACKING SYSTEM

    E-Print Network [OSTI]

    Timber Sales Agreement VPA Voluntary Partnership Agreement WCL Wood Cutting Lease WTS Wood Tracking chain is managed and controlled the Guyana Forestry Commission has developed a Wood Tracking System (WTS in the process as well as flow charts illustrating essential elements of the system. The WTS links closely

  18. Donald L. Wood Professional Conference Travel Grants

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Donald L. Wood Professional Conference Travel Grants for Engineering Undergraduates APPLICATION by a generous donation from the estate of Donald L. Wood. The student application and final report will be used to describe our accomplishments to the family of this sponsor. #12;Donald L. Wood Professional Conference

  19. How wood waters down wall insulation

    SciTech Connect (OSTI)

    Lunde, P.J.

    1984-02-01

    Wood framing in walls can lower the actual insulating values, since the R-value of wood is only one per inch of thickness. A chart is presented that shows how wood in the stud space reduces insulating values. Several wall systems and the nominal R-value of insulation for each is presented.

  20. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  1. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    best available data, the energy liability as- sociated with providing the current levels of ventilationRESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance of Buildings Group Energy and Environment Division Lawrence Berkeley Laboratory University of California

  2. Autonomous Underwater Gliders Wood, Stephen

    E-Print Network [OSTI]

    Wood, Stephen L.

    of power such as ocean wave energy, and 4) hybrid vehicles that use standard propulsion systems and glider26 Autonomous Underwater Gliders Wood, Stephen Florida Institute of Technology United States. This is still true but scientists at various institutions such as Florida Institute of Technology's Department

  3. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  4. Investigation of residential central air conditioning load shapes in NEMS

    E-Print Network [OSTI]

    Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

    2002-01-01

    of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

  5. Fort Collins Utilities - Residential and Small Commercial Appliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential and Small Commercial Appliance Rebate Program Fort Collins Utilities - Residential and Small Commercial Appliance Rebate Program < Back Eligibility Residential Savings...

  6. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    2007). Coping with Residential Electricity Demand in India'sResidential Electricity Demand in China –Can EfficiencyBoom of Electricity Demand in the residential sector in the

  7. Residential water use and landscape vegetation dynamics in Los Angeles

    E-Print Network [OSTI]

    Mini, Caroline

    2013-01-01

    Reidy, K. (2008). Residential Water Demand Management:Estimation of residential water demand: a state-of-the-art2009, Determinants of residential water demand in Germany,

  8. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01

    New Evidence on Residential Demand Response. ” May 11.past studies on residential demand response have examinedpast studies on residential demand response have examined

  9. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  10. Tracking the Sun VIII: The Installed Price of Residential and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States Tracking the Sun VIII: The Installed Price of Residential...

  11. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  12. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  13. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies the NAO. ENERGY CONSUMPTION AND PRODUCTION IN NORWAY AND THE NAO The demand for heating oil in Norway Average Winter Temperature NORWAY kilotonsofoilmillibars°Cmmofrainfall Annual Heating Oil Consumption

  14. Population, Consumption & the Environment

    E-Print Network [OSTI]

    Columbia University

    consumes the 77 trillion barrels of oil energy equivalent per year ­ Fossil fuel consumption (oil, coal12/11/2009 1 Population, Consumption & the Environment Alex de Sherbinin Center for International of carbon in 2001 · The ecological footprint, a composite measure of consumption measured in hectares

  15. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  16. Connected Consumption: The hidden networks of consumption

    E-Print Network [OSTI]

    Reed, David P.

    In this paper, we present the Connected Consumption Network (CCN) that allows a community of consumers to collaboratively sense the market from a mobile device, enabling more informed financial decisions in geo-local ...

  17. South Carolina Price of Natural Gas Delivered to Residential Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C. Temperature andResidential Consumption (Million

  18. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  19. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  20. Questions Asked during the Financing Residential Energy Efficiency...

    Energy Savers [EERE]

    Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar Transcript...