Sample records for residential ventilation systems

  1. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

  2. Procedures and Standards for Residential Ventilation System

    E-Print Network [OSTI]

    1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated and by the California Energy Commission under Pier Contract 500-08-061. Key terms: residential, ventilation.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

  3. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    1 Advanced Controls and Sustainable Systems for Residential Ventilation William J.N. Turner & Iain..................................................................................................................... 8 Residential Ventilation Standards..........................................................................................9 Passive and Hybrid Ventilation

  4. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    2007. Review of residential ventilation technologies. HVAC&Rof intermittent ventilation for providing acceptable indoorResidential Integrated Ventilation Controller. Energy

  5. Commissioning Residential Ventilation Systems: A Combined Assessment of

    E-Print Network [OSTI]

    Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality ventilation systems are being installed in new California homes. Few measurements are available of commissioning residential whole- house ventilation systems that are intended to comply

  6. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01T23:59:59.000Z

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  7. Measuring Residential Ventilation System Airflows: Part 1 Laboratory

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 1 ­ Laboratory Evaluation of Airflow: residential, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT Building codes increasingly require tighter homes and mechanical ventilation per ASHRAE Standard 62.2. These ventilation flows must

  8. Measuring Residential Ventilation System Airflows: Part 2 -Field

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT The 2008 California State Energy Code

  9. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    Dynamic Control of Ventilation Systems M.H. Sherman and I.S.a defined mechanical ventilation system to provide minimumair as part of ventilation system operation changes with

  10. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    with a detailed heating, ventilation, and air conditioning (well as ventilation systems integrated into heating (naturalventilation standards, including American Society of Heating,

  11. Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography

    E-Print Network [OSTI]

    Stratton, J. Chris

    2014-01-01T23:59:59.000Z

    Residential Mechanical Ventilation Systems”. CAN/CSA-F326-of Domestic Ventilation Systems”. International EnergyPassive Stack Ventilation Systems: Design and Installation”.

  12. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    Comparative Evaluation of Ventilation Systems. ” ASHRAEChimneys for Residential Ventilation. ” AIVC 25 Conference.1995. “Controlled Ventilation Options for Builders. ” Energy

  13. Meeting Residential Ventilation Standards

    E-Print Network [OSTI]

    ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning EngineersLBNL 4591E Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide

  14. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. ” Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ” ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing. ”

  15. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01T23:59:59.000Z

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  16. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    through dynamic control of ventilation systems. Energy andcontinuous mechanical ventilation systems a mean annualcompliant ASHRAE 62.2 ventilation system. Table 12: Average

  17. Field Test of Room-to-Room Distribution of Outside Air with Two Residential Ventilation Systems

    SciTech Connect (OSTI)

    Hendron, R.; Anderson, R.; Barley, D.; Rudd, A.; Townsend, A.; Hancock, E.

    2008-08-01T23:59:59.000Z

    Uniform distribution of outside air is one way to ensure that residential dilution ventilation systems will provide a known amount of fresh air to all rooms.

  18. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01T23:59:59.000Z

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  19. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    Improved controls for ventilation systems, including betterEfficient Residential Ventilation Held on January 10, 2008Consumers Manufacturers / Ventilation Industry Public Sector

  20. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    6 th AIVC Conference “Ventilation Strategies and MeasurementAir Infiltration and Ventilation Centre, U.K. 1985REFERENCES ASHRAE. 2007. “Ventilation for Acceptable Indoor

  1. ASHRAE and residential ventilation

    SciTech Connect (OSTI)

    Sherman, Max H.

    2003-10-01T23:59:59.000Z

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

  2. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    credit for different air distribution methods can be given.Measured Air Distribution Effectiveness for Residential4   Distribution metric

  3. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    E-Print Network [OSTI]

    Sherman, Max

    2010-01-01T23:59:59.000Z

    of whole-house ventilation systems in meeting exposurefor residential ventilation system design is the Americanand operating ventilation systems with variable amounts of

  4. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    of  the effective natural ventilation rate with weather to  Residential  Ventilation  Requirements”.  LBNL  57236.  and  M.H.   Sherman  "Ventilation  Behavior  and  Household 

  5. Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    through dynamic control of ventilation systems. Energy andcontinuous mechanical ventilation systems a mean annualcompliant ASHRAE 62.2 ventilation system. Table 12: Average

  6. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance Berkeley, California The role of ventilation in the housing stock is to provide fresh air and to dilute to provide this ventilation service, either directly for moving the air or indirectly for conditioning

  7. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques”, Air Infiltration and Ventilation

  8. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01T23:59:59.000Z

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  9. Experiment on Residential Ventilation System In Actual House

    E-Print Network [OSTI]

    Tiecheng, L.

    2006-01-01T23:59:59.000Z

    Traced-gas was used in the experiment in order to evaluate the ventilation effect in different conditions in actual house. The influence of interior doors which opened or closed and vents position were considered in the experiment....

  10. Humidity Implications for Meeting Residential Ventilation Requirements

    E-Print Network [OSTI]

    1 LBNL-62182 Humidity Implications for Meeting Residential Ventilation Requirements Iain S. Walker for Meeting Residential Ventilation Requirements ABSTRACT In 2003 ASHRAE approved the nation's first residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change

  11. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    Related to Residential Ventilation Requirements”. LBNLP.N. and M.H. Sherman "Ventilation Behavior and HouseholdReview of Residential Ventilation Technologies”, LBNL 57730.

  12. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01T23:59:59.000Z

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  13. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    often need mechanical ventilation systems to meet current about mechanical ventilation systems but has a default unbalanced mechanical ventilation systems change  the 

  14. May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION

    E-Print Network [OSTI]

    May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 standard. 1 Max Sherman is a Senior Scientist at LBNL and the group leader of its Energy Performance

  15. Does Mixing Make Residential Ventilation More Effective?

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain

    2010-08-16T23:59:59.000Z

    Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

  16. Formaldehyde Transfer in Residential Energy Recovery Ventilators

    E-Print Network [OSTI]

    ;1. INTRODUCTION Mechanical ventilation systems were once considered unnecessary for single-family, US homes

  17. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    quality problems. Traditionally residential ventilation wasquality problems such as moisture. Residential ventilationventilation air is only one way of tackling the R H problem

  18. Cleantech to Market Projects Spring 2011 1. Residential Ventilation Controller; PI -Iain Walker

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Cleantech to Market Projects ­ Spring 2011 1. Residential Ventilation Controller; PI - Iain Walker As homes become more airtight optimizing for energy efficiency. Researchers have designed a smart ventilation system

  19. ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES

    E-Print Network [OSTI]

    Vieira, R.; Parker, D.; Lixing, G.; Wichers, M.

    ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES Robin K. Vieira, Buildings. Research Division Director Danny S. Parker Principal Research Scientist Lixing Gu Principal Research Engineer Michael Wichers... into the homes. Many of these strategies utilize the central air handler fan from the HVAC system to ventilate when the system runs. Controllers can be purchased to force the air to enter for minimum periods of time or to shut off outside air dampers after...

  20. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    E-Print Network [OSTI]

    Sherman, Max

    2010-01-01T23:59:59.000Z

    P. (2002). Technical Note AIVC 57: Residential Ventilation.Air Infiltration and Ventilation Center (AIVC) Edwards, R.Related to Residential Ventilation Requirements. Berkeley,

  1. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18T23:59:59.000Z

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  2. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    systems such as those sold by Honeywell, and Aprilaire. Forin the world. Honeywell (http://yourhome.honeywell.com/US/Products/Ventilation/ ) Honeywell makes a line of economy

  3. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    from steady mechanical ventilation system. For the case ofbecause unbalanced mechanical ventilation systems change theoften need mechanical ventilation systems to meet current

  4. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    for whole-house ventilation, local exhaust ventilation,by mechanical ventilation. Standard 62.2 also requires localVentilation • Mechanical system meeting Section 4 or 'other methods" when approved by LDP • Local

  5. Application Study on Combined Ventilation System of Improving IAQ

    E-Print Network [OSTI]

    Hu, S.; Li, G.; Zhang, C.; Ye, B.

    2006-01-01T23:59:59.000Z

    A type of combined ventilating system is put forward in this paper. Through CFD simulation and testing of contaminant concentrations in a prototype residential room, the results demonstrate that the new ventilating system is advantageous...

  6. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Energy and air quality implications of passive stack ventilation in residential buildings Laboratory is an equal opportunity employer. #12;Energy and air quality implications of passive stack in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however

  7. ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES 

    E-Print Network [OSTI]

    Vieira, R.; Parker, D.; Lixing, G.; Wichers, M.

    2008-01-01T23:59:59.000Z

    . Enthalpy recovery ventilation units tend to use more energy overall - despite the heat recovery - than supply or exhaust only ventilation systems, due to using twice as much fan energy. This paper presents simulation results for eight ventilation strategies...

  8. Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003

    E-Print Network [OSTI]

    Roberson, J.

    2004-01-01T23:59:59.000Z

    Install Residential Ventilation Systems. The Healthy HouseMechanical Ventilation Systems. Canadian StandardsCode: Whole House Ventilation Systems Research Report. 39

  9. A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness

    E-Print Network [OSTI]

    passive ventilation systems to meet ASHRAE 62.2 requirements as a step in the process for optimizing hybrid ventilation systems. A brief review of the literature with reference to the passive and hybrid ventilation systems in residential building is presented. The review focuses on key aspects of ventilation

  10. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max

    2008-01-10T23:59:59.000Z

    The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.

  11. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

  12. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2 

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation ...

  13. Ventilation Air Preconditioning Systems

    E-Print Network [OSTI]

    Khattar, M.; Brandemuehl, M. J.

    1996-01-01T23:59:59.000Z

    simply and cost-effectively with a dual path arrangement that treats and controls the ventilation air independently of the recirculation air. The Electric Power Research Institute (EPRI)--the nonprofit R&D arm of the electric utility industry... particular type of application. EPRI is developing variations of the dual path concept to meet different reeofit and new construction markets. Figure 6. Ventilation Air Conditioner as a Separate Unit EPRVCALMAC System: Separate Unit for Ventilation Air...

  14. Infiltration in ASHRAE's Residential Ventilation Standards

    SciTech Connect (OSTI)

    Sherman, Max

    2008-10-01T23:59:59.000Z

    The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

  15. LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation

    E-Print Network [OSTI]

    LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy and Community Programs under U.S. Department of Energy Contract No. DE-AC03- 76SF00098. #12;LBNL 53776 Table......................................................................................................12 2 #12;LBNL 53776 Introduction As HVAC&R professionals, our major concern is the engineering

  16. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    and Ventilation Center. Emmerich, S.J, Dols, W.S. , “LoopDA:8 Int. IPBSA Conf. (2003) Emmerich S.J. Nabinger, S. J. “53484. Wallace, L. A. , Emmerich, S. J. , and Howard-Reed,

  17. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01T23:59:59.000Z

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  18. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    E-Print Network [OSTI]

    Mortensen, Dorthe K.

    2012-01-01T23:59:59.000Z

    for residential ventilation systems, 2009. CEN, EN15251:The demand controlled ventilation system operated at a lowthe whole house ventilation system that implicitly assumes

  19. Does Mixing Make Residential Ventilation More Effective? Max Sherman, Iain Walker

    E-Print Network [OSTI]

    Does Mixing Make Residential Ventilation More Effective? Max Sherman, Iain Walker Environmental thereof or the Regents of the University of California. #12;Does Mixing Make Residential Ventilation More Effective? Max Sherman and Iain Walker, Lawrence Berkeley Lab ABSTRACT Ventilation dilutes or removes indoor

  20. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01T23:59:59.000Z

    tighter, designed ventilation systems are more frequentlyof passive stack ventilation systems. They have been usedto having a good ventilation system and therefore also to

  1. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01T23:59:59.000Z

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  2. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    SciTech Connect (OSTI)

    Sherman, Max; Logue, Jennifer; Singer, Brett

    2010-06-01T23:59:59.000Z

    The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

  3. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    E-Print Network [OSTI]

    Mortensen, Dorthe K.

    2012-01-01T23:59:59.000Z

    of intermittent ventilation for providing acceptable indoor253. CEN, EN15665: Ventilation for buildings - Determiningcriteria for residential ventilation systems, 2009. CEN,

  4. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect (OSTI)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01T23:59:59.000Z

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  5. Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems

    E-Print Network [OSTI]

    Gieseler, Udo D. J.

    2002-01-01T23:59:59.000Z

    ) 577 Cost efficiency of ventilation systems for low-energy buildings with earth-to-air heat exchange residential low-energy building are simulated for different ventilation systems with earth-to-air heat, simulation 1 Author to whom correspondence should be addressed. 1) VENTILATION SYSTEMS Ventilation systems

  6. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01T23:59:59.000Z

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  7. Ventilation efficiencies of a desk-edge-mounted task ventilation system

    E-Print Network [OSTI]

    Faulkner, David; Fisk, William J.; Sullivan, Douglas P.; Lee, Seung Min

    2002-01-01T23:59:59.000Z

    DESK-EDGE-MOUNTED TASK VENTILATION SYSTEM D Faulkner * , WJthe effectiveness of a task ventilation system with an airthe desk. The task ventilation system provided outside air,

  8. New generation of software? Modeling of energy demands for residential ventilation with HTML interface

    SciTech Connect (OSTI)

    Forowicz, T.

    1997-06-01T23:59:59.000Z

    The paper presents an interactive on-line package for calculation of energy and cost demands for residential infiltration and ventilation, with input and output data entry through a web browser. This is a unique tool. It represents a new kind of approach to developing software employing user (client) and server (package provider) computers. The main program, servicing {open_quotes}intelligent{close_quotes} CGI (Common Gateway Interface) calls, resides on the server and dynamically handles the whole package performance and the procedure of calculations. The {open_quotes}computing engine{close_quotes} consists of two parts: RESVENT - the previously existing program for ventilation calculations and ECONOMICS - for heating and cooling system energy and cost calculations. The user interface is designed in such a way, that it allows simultaneous access by many users from all over the world.

  9. 10/15/03 LBNL-53800 Residential Ventilation Standards Scoping Study

    E-Print Network [OSTI]

    10/15/03 LBNL-53800 Residential Ventilation Standards Scoping Study T-01 Lawrence Berkeley National Laboratory Report Number: LBNL-53800 OVERVIEW This document presents contract no. DE-AC03-76SF00098. #12;VENTILATIONS STANDARDS SCOPING STUDY PAGE LBNL-53800 2 TABLE

  10. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    SciTech Connect (OSTI)

    Sherman, Max H.

    2008-09-01T23:59:59.000Z

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. It can be provided by mechanical or natural means. In most homes, especially existing homes, infiltration provides the dominant fraction of the ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago.

  11. AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION

    E-Print Network [OSTI]

    Turiel, Isaac

    2011-01-01T23:59:59.000Z

    SUt1t1ARY Mechanical ventilation systems usually provide aof any 02 based ventilation system is that a ventilationwith type of ventilation system~ weather conditions, and

  12. AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION

    E-Print Network [OSTI]

    Turiel, Isaac

    2011-01-01T23:59:59.000Z

    ~saon Automatic Variable Ventilation Control Systems Based79-3 Automatic variable ventilation control systems based onof automatic variable ventilation control systems, result in

  13. AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION

    E-Print Network [OSTI]

    Turiel, Isaac

    2011-01-01T23:59:59.000Z

    saon Automatic Variable Ventilation Control Systems Based onL Kusuda, "Control Ventilation to Conserve Energy While t·79-3 Automatic variable ventilation control systems based on

  14. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  15. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31T23:59:59.000Z

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  16. Ventilation efficiencies and thermal comfort results of a desk-edge-mounted task ventilation system

    E-Print Network [OSTI]

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Lee, S.M.

    2003-01-01T23:59:59.000Z

    EDGE-MOUNTED TASK VENTILATION SYSTEM D Faulkner, WJ Fisk, DPDESK-EDGE-MOUNTED TASK VENTILATION SYSTEM D Faulkner * , WJcomfort of a task ventilation system with an air supply

  17. Energy Impact of Residential Ventilation Norms in the United States

    E-Print Network [OSTI]

    in furniture, appliances, and building materials in houses have changed resulting in more indoor pollutants and sustainable technologies. Recent residential construction has created tighter, energy-saving building by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U

  18. Thermal Comfort Study in a Naturally Ventilated Residential Building in a Tropical Hot-Humid Climate Region

    E-Print Network [OSTI]

    Soebarto, V. I.; Handjarinto, S.

    1998-01-01T23:59:59.000Z

    This paper presents a thermal comfort study in a naturally ventilated residential building located in a tropical hot-humid climate region. The specific objective of this study is to investigate whether thermal comfort in this house can be achieved...

  19. Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel

    E-Print Network [OSTI]

    Diamond, Richard

    energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

  20. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  1. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how...

  2. Development of a Residential Integrated

    E-Print Network [OSTI]

    ................................................................................................................................................................... 11 Mechanical Ventilation Systems

  3. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    E-Print Network [OSTI]

    Sherman, Max

    2010-01-01T23:59:59.000Z

    emissions, we assume that local ventilation is not used inventilation is user operated and is presumed to run to exhaust the intermittent and localventilation systems with some restrictions. Standard 62.2 requires source control, including local

  4. Formaldehyde as a Basis for Residential Ventilation Rates1 M.H. Sherman (MHSherman@lbl.gov) and A.T. Hodgson (ATHodgson@lbl.gov)

    E-Print Network [OSTI]

    LBNL-49577 Formaldehyde as a Basis for Residential Ventilation Rates1 M.H. Sherman (MHSherman, houses in the U.S. have been ventilated by passive infiltration in combination with active window opening to reduce infiltration, and the use of windows for ventilation also may have decreased due to a number

  5. Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in

    E-Print Network [OSTI]

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2007-01-01T23:59:59.000Z

    for building ventilation systems." Retrieved December 15,of moisture and ventilation system contamination in U.S.installed in office ventilation systems on workers' health

  6. Relationship of SBS-symptoms and ventilation system type in office buildings

    E-Print Network [OSTI]

    Seppanen, O.; Fisk, W.J.

    2002-01-01T23:59:59.000Z

    SBS-SYMPTOMS AND VENTILATION SYSTEM TYPE IN OFFICE BUILDINGSSBS-SYMPTOMS AND VENTILATION SYSTEM TYPE IN OFFICE BUILDINGSabout the associations of ventilation system types in office

  7. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    and displacement ventilation systems. HVAC&R Research, 12 (and displacement ventilation system. ASHRAE RP-1438 Finalof Displacement Ventilation System—Experimental and

  8. Performance testing of a floor-based, occupant-controlled office ventilation system

    E-Print Network [OSTI]

    Bauman, Fred; Johnston, L.; Zhang, H.; Arens, Edward A

    1991-01-01T23:59:59.000Z

    a room ment ventilation systems." ASHRAE Transactions, Vol.95, Part 2. ence, Ventilation System Performance, 18-21Fountain. 1990. "A ventilation systems in office rooms."

  9. Association of ventilation system type with SBS symptoms in office workers

    E-Print Network [OSTI]

    Seppanen, Olli; Fisk, William J.

    2001-01-01T23:59:59.000Z

    Evaluation of Swedish ventilation systems” Building andP. (1995) “Type of ventilation system in office buildingsEvaluation of ventilation system materials as sources of

  10. Design of a Natural Ventilation System in the Dunhuang Museum

    E-Print Network [OSTI]

    Zhang, Y.; Guan, W.

    2006-01-01T23:59:59.000Z

    Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

  11. MODELING VENTILATION SYSTEM RESPONSE TO FIRE

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

  12. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01T23:59:59.000Z

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  13. STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-6A NA7.5.5 Demand Control Ventilation Systems DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  14. SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE

    E-Print Network [OSTI]

    1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

  15. Design of a Natural Ventilation System in the Dunhuang Museum 

    E-Print Network [OSTI]

    Zhang, Y.; Guan, W.

    2006-01-01T23:59:59.000Z

    that also meets architectural standards. Natural ventilation design methods are presented in this paper. A natural ventilation system is designed in the DunHuang museum. Thermal dynamic simulation and CFD simulation were analyzed in the exhibition hall...

  16. Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student are important considerations in building design. Incorporation of a combination of passive ventilation systems of the National Science Foundation. Research Objectives · To provide proof of concept that a passive ventilation

  17. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  18. The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics

    E-Print Network [OSTI]

    Miller, W.; Karagiozis, A.; Wilson, J.

    2006-01-01T23:59:59.000Z

    THE IMPACT OF ABOVE-SHEATHING VENTILATION ON THE THERMAL AND MOISTURE PERFORMANCE OF STEEP-SLOPE RESIDENTIAL ROOFS AND ATTICS William (Bill) Miller Research Scientist Oak Ridge National Laboratory Oak Ridge, Tennessee Joe Wilson Product... with and without infrared blocking color pigments (IrBCPs) and with and without above-sheathing ventilation. The combination of increased solar reflectance and above-sheathing ventilation reduced the heat flow penetrating the attic floor by 70% as compared...

  19. Renovating Residential HVAC Systems HVAC Systems

    E-Print Network [OSTI]

    - 1 - LBNL 57406 Renovating Residential HVAC Systems HVAC Systems J.A. McWilliams and I.S. Walker Environmental Energy Technologies Division April 2005 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY #12 Laboratory is an equal opportunity employer. This work was supported by the Assistant Secretary for Energy

  20. Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling

    E-Print Network [OSTI]

    Koffi, Juslin; Akoua, Jean-Jacques

    2010-01-01T23:59:59.000Z

    The French regulation on residential building ventilation relies on an overall and continuous air renewal. The fresh air should enter the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However, internal pressure equilibrium and air movements in buildings result from the combined effects ventilation system and parameters such as wind, temperature difference or doors opening. This paper aims to analyse the influence of these parameters on pollutant transfer within buildings. In so doing, experiments are carried out using tracer gas release for representing pollution sources in an experimental house. Mechanical exhaust, balanced and natural ventilation systems are thus tested. Results show the followings: - For all cases, internal doors' opening causes the most important pollutant spread. - When doors are closed, the best performances are obtained with balanced venti...

  1. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01T23:59:59.000Z

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  2. Analysis of Solar Passive Techniques and Natural Ventilation Concepts in a Residential Building Including CFD Simulation

    E-Print Network [OSTI]

    Quince, N.; Ordonez, A.; Bruno, J. C.; Coronas, A.

    2010-01-01T23:59:59.000Z

    step to increase energy performance in buildings is to use passive strategies, such as orientation, natural ventilation or envelope optimisation. This paper presents an analysis of solar passive techniques and natural ventilation concepts in a case...

  3. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    event, the intermittent ventilation equations of Sherman,of the energy impact of ventilation and associated financialReview of Residential Ventilation Technologies. Berkeley,

  4. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect (OSTI)

    Goolsby, G.K.

    1995-01-04T23:59:59.000Z

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  5. Temperature stratification and air change effectiveness in a high cooling load office with two heat source heights in a combined chilled ceiling and displacement ventilation system

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    ceiling and displacement ventilation system. Submitted toceiling and displacement ventilation system. Submitted toceiling and displacement ventilation systems, Energy Build.

  6. Ventilation System Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks | DepartmentVentilation System Basics

  7. Property Tax Exemption for Residential Solar Systems

    Broader source: Energy.gov [DOE]

    [http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0233.pdf HB 233 of 2010] exempted residential solar energy systems from property tax assessments. According to state law, for the purposes of...

  8. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    E-Print Network [OSTI]

    Thatcher, Tracy L.

    2011-01-01T23:59:59.000Z

    Filtration for Ventilation Systems in Commercial BuildingsFiltration for Ventilation Systems in Commercial Buildingsbuilding's mechanical ventilation system and by infiltration

  9. Energy analysis of a personalized ventilation system in a cold climate: influence of the supplied air temperature

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2008-01-01T23:59:59.000Z

    potential of personalized ventilation system in the tropics.a chair-based personalized ventilation system. Building andedged-mounted task ventilation system. Indoor Air, Vol. 14 (

  10. Ventilation Systems Operating Experience Review for Fusion Applications

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles

    1999-12-01T23:59:59.000Z

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

  11. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01T23:59:59.000Z

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report CIRS Auditorium Ventilation System

    E-Print Network [OSTI]

    Ventilation System: Adequacy Assessment, Energy Consumption and Comfort of the Living Space Provided Prepared of a project/report". #12;CEEN 596 FINAL PROJECT REPORT CIRS Auditorium Ventilation System: Adequacy Assessment...........................................................................................13 a) The Ventilation System

  13. A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system

    E-Print Network [OSTI]

    Yu, Jong Keun

    2010-01-01T23:59:59.000Z

    Displacement Ventilation system . . . . . . . . . . 1.1.2responses of mechanical Displacement Ventilation system 2.1of Displacement Ventilation Systems . Experi- mental and

  14. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemand controlled  ventilation systems, Dennis DiBartolomeo the demand controlled ventilation system increased the rate 

  15. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01T23:59:59.000Z

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  16. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Watson, Craig A.

    when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

  17. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.; Arena, L.

    2013-02-01T23:59:59.000Z

    During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

  18. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    E-Print Network [OSTI]

    Hoen, Ben

    2011-01-01T23:59:59.000Z

    Residential Photovoltaic Energy Systems on Home Sales PricesResidential Photovoltaic Energy Systems on Home Sales Prices

  19. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  20. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01T23:59:59.000Z

    scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

  1. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    E-Print Network [OSTI]

    Wray, Craig P.

    2008-01-01T23:59:59.000Z

    Heating, Ventilating, and Air-Conditioning: Recent Advancesthe energy efficiency of many heating, ventilating, and air-system, which delivers heating, cooling, and ventilation air

  2. Lincoln Electric System (Residential)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. 

  3. Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

  4. Floor-supply displacement ventilation system

    E-Print Network [OSTI]

    Kobayashi, Nobukazu, 1967-

    2001-01-01T23:59:59.000Z

    Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

  5. Commissioning of a Coupled Earth Tube and Natural Ventilation System at the Acceptance Phase

    E-Print Network [OSTI]

    Pan, S.; Zheng, M.; Yoshida, H.

    In this paper, the environment and energy performance of an actual coupled earth tube and natural ventilation system in a gymnasium was measured during the acceptance phase in two operation states: no ventilation and natural ventilation. From...

  6. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

  7. Solar Leasing for Residential Photovoltaic Systems

    Broader source: Energy.gov [DOE]

    This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

  8. Effect of Ventilation Strategies on

    E-Print Network [OSTI]

    1 Effect of Ventilation Strategies on Residential Ozone Levels Iain S. Walker ventilation used to reduce concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only

  9. A web based CBR system for heating ventilation and air conditioning systems sales support

    E-Print Network [OSTI]

    Watson, Ian

    A web based CBR system for heating ventilation and air conditioning systems sales support D describes the implementation of a case-based reasoning (CBR) system to support heating ventilation and air. Introduction Western Air is a distributor of heating ventilation and air conditioning (HVAC) systems

  10. Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen

    E-Print Network [OSTI]

    Wan, X.; Yu, L.; Hou, H.

    2006-01-01T23:59:59.000Z

    A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

  11. Key Factors in Displacement Ventilation Systems for Better IAQ

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01T23:59:59.000Z

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  12. Commissioning Trial for Mechanical Ventilation System Installed in Houses

    E-Print Network [OSTI]

    Ohta, I.; Fukushima, A.

    2004-01-01T23:59:59.000Z

    , commissioning process should be introduced more often. REFERENCES (1) Roger Anneling, The P-mark system for prefabricated houses in Sweden, 1998, CADDET (2) Hirai et al, Comparison between results from ventilation network model calculation...

  13. Key Factors in Displacement Ventilation Systems for Better IAQ 

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01T23:59:59.000Z

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  14. Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case

    E-Print Network [OSTI]

    Boyer, Edmond

    Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case E. Witrant1,, A. D, for large scale systems with high environmental impact: the mining ventilation control systems. Ventilation). We propose a new model for underground ventilation. The main components of the system dynamics

  15. Particle transport in low-energy ventilation systems. Part 2: Transients and experiments

    E-Print Network [OSTI]

    Bolster, Diogo

    Particle transport in low-energy ventilation systems. Part 2: Transients and experiments- sumption is a must for efficient ventilation system design. In this work, we study the transport ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical

  16. Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector

    E-Print Network [OSTI]

    Logue, J.M.

    2014-01-01T23:59:59.000Z

    on change in home site energy demand by IECC climate zone.residential sector site energy demand by 2.9 quads (3.1 EJ).programs could reduce the energy demand by 0.7 quads (0.74

  17. Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors

    E-Print Network [OSTI]

    Wu, X.; Gao, J.; Wu, W.

    2006-01-01T23:59:59.000Z

    Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems...

  18. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    E-Print Network [OSTI]

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-01-01T23:59:59.000Z

    Practices for Residential HVAC Systems”. Boston, MA. Jump,techniques for measuring HVAC grille air flows". ASHRAEPractices Guide for Residential HVAC Retrofits. LBNL 53592.

  19. Building America Webinar: Ventilation in Multifamily Buildings...

    Energy Savers [EERE]

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential...

  20. The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics 

    E-Print Network [OSTI]

    Miller, W.; Karagiozis, A.; Wilson, J.

    2006-01-01T23:59:59.000Z

    THE IMPACT OF ABOVE-SHEATHING VENTILATION ON THE THERMAL AND MOISTURE PERFORMANCE OF STEEP-SLOPE RESIDENTIAL ROOFS AND ATTICS William (Bill) Miller Research Scientist Oak Ridge National Laboratory Oak Ridge, Tennessee Joe Wilson Product... Manager Metro Roof Products Oceanside, California Achilles Karagiozis Research Scientist Oak Ridge National Laboratory Oak Ridge, Tennessee ABSTRACT Field studies were conducted on several attic assemblies having stone-coated metal shake roofs...

  1. Temperature stratification and air change effectiveness in a high cooling load office with two heat source heights in a combined chilled ceiling and displacement ventilation system

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    and displacement ventilation system. Submitted to Energy andand displacement ventilation system. Submitted to Energy andand displacement ventilation systems, Energy Build. 34 (

  2. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625 FINALOptimizationFor Immediate48Ventilation

  3. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    SciTech Connect (OSTI)

    Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  4. Steam System Balancing and Tuning for Multifamily Residential...

    Energy Savers [EERE]

    for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested:...

  5. City of Portland- Streamlined Building Permits for Residential Solar Systems

    Broader source: Energy.gov [DOE]

    The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process,...

  6. Water spray ventilator system for continuous mining machines

    DOE Patents [OSTI]

    Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  7. Making the most of residential photovoltaic systems

    SciTech Connect (OSTI)

    Moon, S.; Parker, D.; Hayter, S.

    1999-10-18T23:59:59.000Z

    Making the Most of Residential Photovoltaic Systems, was recently produced by NREL Communications and Public Affairs. It showcases a demonstration project in Florida that produced some remarkable results by incorporating both energy efficiency and photovoltaic systems into newly built housing. The brochure points up the benefits of making wise personal choices about energy use, and how large-scale use of advanced energy technologies can benefit the nation. This is one of a series of brochures that presents stimulating information about photovoltaics, with a goal of helping to push this technology into the power-generation mix in different utilities, communities, and states.

  8. Assessment of Residential GSHP System

    SciTech Connect (OSTI)

    Liu, Xiaobing [ORNL

    2010-09-01T23:59:59.000Z

    This report first briefly reviews geothermal heat pump (GHP) technology and the current status of the GHP industry in the United States. Then it assesses the potential national benefits, in terms of energy savings, reduced summer peak electrical demand, consumer energy cost savings, and reduced CO{sub 2} emissions from retrofitting the space heating, space cooling, and water heating systems in existing U.S. single-family homes with state-of-the-art GHP systems. The investment for retrofitting typical U.S. single-family homes with state-of-the-art GHP systems is also analyzed using the metrics of net present value and levelized cost.

  9. Experiment on Residential Ventilation System In Actual House 

    E-Print Network [OSTI]

    Tiecheng, L.

    2006-01-01T23:59:59.000Z

    ]???????????? ???????? 1 ???? CO2 ???? ??? 30 ???????????? ? 2 CO2 ??????? ? 3 CO2 ??????? 1.3 ???? ????????????????? ?????????????????? ????????? 2 ??? ? 2 ????? ? 1 ???????? ???? ???? ???? ???? ???? ?? ???? ??? ???? ????? ?? Case1... - ? - - ? - Case2 - ? ? - - ? Case3 ? - ? - - ? Case4 - ? - ? - ? 2. ???? 2.1 ???? ? Case1 ????????????? ?????????????????? 3 ??? ? 3 Case1 ?????? Case1 ????? m3 ?????? h-1 ????? m3/h ??? 33.40 0.24 8.12 ??? 23.93 0.16 3.84 ?? 20...

  10. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    Washinton D.C. , Air Conditioning Contractors of America.Refrigeration and Air Conditioning Engineers. ASHRAE 2009a.Refrigerating, and Air-Conditioning Engineers. ASHRAE 2009b.

  11. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    10 Peak Energy Demand and DemandDOE, 2011). The energy demand of existing technologies posesand IAQ. Peak Energy Demand and Demand Response ‘Peak energy

  12. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    E-Print Network [OSTI]

    Wray, Craig P.

    2008-01-01T23:59:59.000Z

    step in designing a ventilation system is determining theto shut down the ventilation system for a period of timeperiod with the ventilation system off (e.g. , at least 6

  13. Analysis of the ventilation systems in the Dartford tunnels using a multiscale modelling approach 

    E-Print Network [OSTI]

    Colella, Francesco; Rein, Guillermo; Carvel, Ricky O; Reszka, Pedro; Torero, Jose L

    2010-01-01T23:59:59.000Z

    The capabilities of the ventilation systems in the two road tunnels at Dartford (London, UK) are analysed using a multi-scale modelling approach. Both tunnels have complex semi-transverse ventilation systems with jet fans to control longitudinal...

  14. Ventilation Behavior and Household Characteristics in New California Houses

    E-Print Network [OSTI]

    Price, Phillip N.; Sherman, Max H.

    2006-01-01T23:59:59.000Z

    pollutant sources get more ventilation. • Except householdshealth issues motivate ventilation behavior. • Security andQuality, IAQ, mechanical ventilation systems, ventilation

  15. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  16. Availability Analysis of the Ventilation Stack CAM Interlock System

    E-Print Network [OSTI]

    Young, J

    2000-01-01T23:59:59.000Z

    Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies, and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability.

  17. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01T23:59:59.000Z

    California’s Solar Photovoltaic Subsidies? Center for thefrom Residential Photovoltaic Systems Naďm R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Naďm R. Darghouth

  18. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    of Photovoltaic Energy Systems on Residential Selling Pricesof photovoltaic (PV) energy systems on home sales prices.

  19. Air flow and particle control with different ventilation systems in a classroom

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Air flow and particle control with different ventilation systems in a classroom Sture Holmberg, Ph@mit.edu Phone: +1-617-253-7714, Fax: +1-617-2536152 Abstract Most ventilation and air conditioning systems. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow

  20. Diagnostics and Measurements of Infiltration and Ventilation Systems in High-Rise Apartment Buildings

    E-Print Network [OSTI]

    Diamond, Richard

    Diagnostics and Measurements of Infiltration and Ventilation Systems in High-Rise Apartment without compromising air quality? We have been studying the air flows and ventilation systems in high systems that are neither efficient nor deliver satisfactory ventilation. Frequent problems include

  1. Experimental Study on Displacement and Mixing Ventilation Systems for a Patient Ward

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Experimental Study on Displacement and Mixing Ventilation Systems for a Patient Ward Yonggao Yin., 2004). Thus, ventilation systems in hospital wards should be improved to control airborne infectious. (2008) conducted a review on designing ventilation systems for hospital wards and other multibed rooms

  2. Usability Heuristics and Qualitative Indicators for the Usability Evaluation of Touch Screen Ventilator Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Ventilator Systems Dinesh Katre1, Ganesh Bhutkar2 , Shekhar Karmarkar3 1 Group Coordinator, Human complexity in the user interface, features and functionalities of ventilator systems can cause medical errors and cost the life of a patient. Therefore, the usability of ventilator systems is most crucial to ensure

  3. `Individual Ventilated Caging System' & `Animal Cage Changing Station' Page 1 NATIONAL INSTITUTE OF IMMUNOLOGY

    E-Print Network [OSTI]

    Bhalla, Upinder S.

    `Individual Ventilated Caging System' & `Animal Cage Changing Station' Page 1 NATIONAL INSTITUTE: (1) `Individual Ventilated Caging System' & (2) `Animal Cage Changing Station' Director, NII ­ New Document (Rs) 1 Individual Ventilated Caging System (Annexure-A) Air Handling Unit = 15 Nos. Animal

  4. An energy standard for residential buildings in south China

    E-Print Network [OSTI]

    Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

    2003-01-01T23:59:59.000Z

    Code for Residential Buildings”, Third International Conference on Indoor Air Quality, Ventilation and Energy Conservation

  5. CO2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems

    E-Print Network [OSTI]

    Nassif, N.

    2011-01-01T23:59:59.000Z

    CO2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO2-based DCV under ASHRAE 62.1.2004 through 2010...

  6. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    E-Print Network [OSTI]

    Logue, J.M.

    2012-01-01T23:59:59.000Z

    Energy Costs of Mechanical Ventilation KEMA-XENERGY.2004.Offermann, F. J.2009. Ventilation and indoor air quality intowards meeting residential ventilation needs. Berkeley, CA,

  7. Georgia Institute of Technology Ventilation System Testing Effective Date 04/01/02

    E-Print Network [OSTI]

    Georgia Institute of Technology Ventilation System Testing Effective Date 04/01/02 Revised 05 for measuring ventilation system performance. 2. Sash Positions a. Vertical rising sashes will be surveyed traverse measurements will be performed per the procedures described in Industrial Ventilation. b. Static

  8. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library development is focused on the develop- ment of models for building heating, ventilation and air

  9. Particle transport in low-energy ventilation systems. Part 1: theory of steady states

    E-Print Network [OSTI]

    Bolster, Diogo

    , such as that pro- vided by a conventional overhead heating, ventilating and air-conditioning system, is mixingParticle transport in low-energy ventilation systems. Part 1: theory of steady states Introduction of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US

  10. Simulation of wind driven ventilative cooling systems for an apartment building in Beijing and Shanghai

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Simulation of wind driven ventilative cooling systems for an apartment building in Beijing., Glicksman, L.R. and Norford, L.K. 2002. "Simulation of wind driven ventilative cooling systems evaluation of two passive cooling strategies, daytime ventilation and night cooling, for a generic, six

  11. Controllability and invariance of monotone systems for robust ventilation automation in buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Controllability and invariance of monotone systems for robust ventilation automation in buildings [2] and control [3] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved comfort for the users and a reduction of energy consumption. Compared to traditional ceiling ventilation

  12. An Analysis of Residential PV System Price Differences between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01T23:59:59.000Z

    why residential customers in Germany pay 25% less for a PVFor Residential PV Systems in Germany. Bundesverband derof PV power applications in Germany”. International Energy

  13. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  14. Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen 

    E-Print Network [OSTI]

    Wan, X.; Yu, L.; Hou, H.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-7-4 Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen Xiongfeng Wan Likui Yu Huabo Hou Master Associate professor Master... viscosity; ? represents thermal expansion coefficient of air; T0 represents temperature of a reference point; T represents temperature; i represents gravity acceleration in i-direction. And the effective viscosity, eff? , equals the sum...

  15. Are the tunnel ventilation systems adapted for the different risk situations?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Are the tunnel ventilation systems adapted for the different risk situations? B. TRUCHOT * INERIS Tunnels, France ABSTRACT The ventilation design criteria for both road and rail tunnel is based of such an approach is that it considers only the impact on the safety ventilation of the smoke propagation

  16. Optimizing Hydronic System Performance in Residential Applications

    SciTech Connect (OSTI)

    Arena, L.; Faakye, O.

    2013-10-01T23:59:59.000Z

    Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

  17. Measuring Airflows in Residential Mechanical Ventilation Systems: Part 2 - Field Measurement and Verification of Residential Ventilation Flows

    E-Print Network [OSTI]

    Stratton, J. Chris

    2014-01-01T23:59:59.000Z

    2012 International Energy Conservation Code. Washington, DC.The International Energy Conservation Code (IECC) also has

  18. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  19. Inverse Design Methods for Indoor Ventilation Systems Using1 CFD-Based Multi-Objective Genetic Algorithm2

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    use efficiency are three important29 indices for heating, ventilation and air-conditioning (HVAC1 Inverse Design Methods for Indoor Ventilation Systems Using1 CFD-Based Multi equilibrium and require ventilation rates of12 a space to design ventilation systems for the space

  20. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    Environments. Proceedings of Indoor Air 2005: 10 thInternational Conference on Indoor Air Quality and Climate,displacement ventilation hybrid air conditioning system-

  1. Current cost and performance requirements for residential cool storage systems

    SciTech Connect (OSTI)

    Brown, D.R.; Spanner, G.E.

    1988-08-01T23:59:59.000Z

    This study defines the current cost and performance requirements for residential cool storage technologies based on the characteristics of conventional air conditioning equipment and residential time-of-day (TOD) rate structures existing during the 1986--1987 time frame. Currently, rate structures are changing rapidly. Given the volatility of rate structures, the establishment of cost goal is challenging. The goals presented in this study are based on the utility rate structure as of 1986. This study serves to define residential cool storage cost and performance requirements in the current economic environment as well as the many issues affecting the requirements for residential cool storage systems both now and in the future. The same methodology can be employed to establish long-run goals once future rate structures are adequately defined. 12 refs., 6 figs., 18 tabs.

  2. Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India

    E-Print Network [OSTI]

    Sahoo, P. K.; Sahoo, R.

    2010-01-01T23:59:59.000Z

    ] and passive solar ventilation [Hamdy and Firky, 1998]. Impact of windows on thermal comfort and passive cooling is addressed by Chaiyapinunt et al. [2005] and Lyons et al. [1999]. Studies related to space cooling load characteristics in residential... load are investigated and analyzed using Design Builder simulation program [DesignBuilder, 2009]. The weather conditions and a detached residential building in the tropical Bhubaneswar are used in the simulation study. The premise of this study is...

  3. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    the use of mechanical ventilation systems in the same way asand operating ventilation systems with variable amounts ofto determine the ventilation system’s operation. We presume

  4. Residential Forced Air System Cabinet Leakage and Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.

    2010-01-01T23:59:59.000Z

    CA.   CEC (2008b).  Residential Alternative Calculation Standard for Air Handlers in Residential Space Conditioning of Standards Options for Residential Air Handler Fans.   

  5. Ventilation Behavior and Household Characteristics in New California Houses

    E-Print Network [OSTI]

    Price, Phillip N.; Sherman, Max H.

    2006-01-01T23:59:59.000Z

    IAQ, mechanical ventilation systems, ventilation standards,to have mechanical ventilation systems resulted in anotherhave and use mechanical ventilation systems; and what is the

  6. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  7. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01T23:59:59.000Z

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  8. Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    E-Print Network [OSTI]

    Giannakis, Georgios

    method for determining the active- and reactive-power set points for PV inverters in residential systems and ensuring voltage regulation. Binary PV-inverter selection variables and nonlinear power-flow relations--Distribution networks, inverter control, optimal power flow (OPF), photovoltaic (PV) systems, sparsity, voltage

  9. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  10. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01T23:59:59.000Z

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  11. awaiting residential aged: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of human... Willis, Gary 2011-12-16 14 Meeting Residential Ventilation Standards Energy Storage, Conversion and Utilization Websites Summary: LBNL 4591E Meeting Residential...

  12. Ventilation Based on ASHRAE 62.2

    E-Print Network [OSTI]

    Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California/ASHRAE Standard 62.2-2007, Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings (ASHRAE

  13. This booklet has been developed to serve as an aid in selecting a laboratory fume hood ventilation system.

    E-Print Network [OSTI]

    Farritor, Shane

    as an aid in selecting a laboratory fume hood ventilation system. The information is intended to be unbiased consider the whole picture -- the laboratory space, the building's ventilation system, the hood's location Ventilation System Components and Accessories Remote Blowers 13 Blower Sizing 14 Air Volume 14 Static Pressure

  14. Using a Constant Volume Displacement Ventilation System to Create a Micro Climate in a Large Airport Terminal in Bangkok

    E-Print Network [OSTI]

    Simmonds, P.; Gaw, W.

    1996-01-01T23:59:59.000Z

    Using a Constant Volume Displacement Ventilation System to Create a Micro Climate in a Large Airport Terminal in Bangkok Peter Simmonds Flack + Kurtz New York Abstract In order to conserve energy and create a comfortable climate for both.... CF'D analysis was used to investigate the effectiveness of a displacement ventilation system. A displacement ventilation system pours ventilation air into a space across the floor. The temperature difference between the supply air and the room...

  15. Smart Residential Energy Systems How Pervasive Com-puting can be used to conserve energy

    E-Print Network [OSTI]

    In order to be effective, residential energy feedback and control systems have to feature a low usageSmart Residential Energy Systems ­ How Pervasive Com- puting can be used to conserve energy Markus accounts for about 40% of total energy consumption [1]. The residential sector alone has seen a rise

  16. Laboratory Performance Testing of Residential Dehumidifiers (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01T23:59:59.000Z

    Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

  17. Use of Statistical Approach to Design an Optimal Duct System for On-demand Industrial Exhaust Ventilation 

    E-Print Network [OSTI]

    Litomisky, A.

    2010-01-01T23:59:59.000Z

    This paper elaborates on how to use statistics to calculate optimal parameters (including duct diameters) of energy-efficient industrial ventilation systems. Based on the fan-law, on-demand ventilation can save up to 80% ...

  18. Use of Statistical Approach to Design an Optimal Duct System for On-demand Industrial Exhaust Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2010-01-01T23:59:59.000Z

    This paper elaborates on how to use statistics to calculate optimal parameters (including duct diameters) of energy-efficient industrial ventilation systems. Based on the fan-law, on-demand ventilation can save up to 80% of electricity compared...

  19. Ventilation Model

    SciTech Connect (OSTI)

    H. Yang

    1999-11-04T23:59:59.000Z

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  20. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01T23:59:59.000Z

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaOperation of Residential Cooling Systems. Proceedings of the

  1. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

  2. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

  3. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  4. Mixed-Mode Ventilation and Building Retrofits

    E-Print Network [OSTI]

    Brager, Gail; Ackerly, Katie

    2010-01-01T23:59:59.000Z

    Page 15 Mixed-Mode Ventilation and Building RetrofitsEngineers. 2000. Mixed-mode ventilation. CIBSE ApplicationsMichael. 2000. Hybrid Ventilation Systems: An Arup Approach

  5. Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2006-01-01T23:59:59.000Z

    latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies...

  6. Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms

    E-Print Network [OSTI]

    Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

    2007-01-01T23:59:59.000Z

    Single duct variable air volume (VAV) systems are widely used in office buildings to achieve energy savings. It supplies proper amount of conditioned air to satisfy both the load and the ventilation requirements of each individual zone. To obtain...

  7. A systems approach to retrofitting residential HVAC systems

    SciTech Connect (OSTI)

    McWilliams, J.A.; Walker, I.S.

    2004-05-01T23:59:59.000Z

    A Best Practices Guide for retrofitting residential HVAC systems has recently been completed by DOE. The guide uses diagnostics and checklists to guide the user to specific retrofit packages that maximize retrofit energy savings, comfort and safety potential. The guide uses a systems approach to retrofitting where the interaction of different building components is considered throughout the retrofit selection process. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC systems can be used. In this study, several houses were surveyed using the Best Practices Guide and a single house was selected for retrofitting. The objectives were to demonstrate how a successful system-wide retrofit can be carried out and to provide feedback to improve the guide. Because it represents a departure from current practice, a key aspect of this study was to investigate the interactions with contractors and code officials who are unfamiliar with the systems approach. The study found that the major barrier to the systems approach in retrofits was in changing the working practices of contractors and code officials.

  8. An Analysis of Residential PV System Price Differences Between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01T23:59:59.000Z

    barriers for PV systems in Germany at the national level, PVfor residential PV systems in Germany. Bundesverband derof PV Power Applications in Germany 2006, Exchange and

  9. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

  10. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05T23:59:59.000Z

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To further satisfy KTI agreements RDTME 3.01 and 3.14 (Reamer and Williams 2001a) by providing the source documentation referred to in the KTI Letter Report, ''Effect of Forced Ventilation on Thermal-Hydrologic Conditions in the Engineered Barrier System and Near Field Environment'' (Williams 2002). Specifically to provide the results of the MULTIFLUX model which simulates the coupled processes of heat and mass transfer in and around waste emplacement drifts during periods of forced ventilation. This portion of the model report is presented as an Alternative Conceptual Model with a numerical application, and also provides corroborative results used for model validation purposes (Section 6.3 and 6.4).

  11. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    SciTech Connect (OSTI)

    SEDERBURG, J.P.

    1999-09-30T23:59:59.000Z

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  12. Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems

    E-Print Network [OSTI]

    Koffi, Juslin

    2010-01-01T23:59:59.000Z

    Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

  13. Residential Renewable Energy System Tax Credit

    Broader source: Energy.gov [DOE]

    To receive the credit applicants must obtain system certification from the State Energy office, or the systems must be installed by a contractor holding a contractor certification issued by the S...

  14. Air change effectiveness in laboratory tests of combined chilled ceiling and displacement ventilation.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2011-01-01T23:59:59.000Z

    for Displacement Ventilation. Atlanta: ASHRAE. ISO. 1993.ceiling and displacement ventilation systems. Energy andceiling and displacement ventilation systems. Submitted to

  15. Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.

    2014-03-01T23:59:59.000Z

    This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

  16. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    nodal model for displacement ventilation and chilled ceiling2002. Displacement ventilation in non- industrial premises.ceiling/displacement ventilation hybrid air conditioning

  17. Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in

    E-Print Network [OSTI]

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2007-01-01T23:59:59.000Z

    LBNL-61870 Risk Factors in Heating, Ventilating, and Air-for Occupant Symptoms in Heating, Ventilating, and Air-uncertain. Characteristics of heating, ventilating, and air-

  18. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    for Building Heating, Ventilation and Air-Conditioningfor Building Heating, Ventilation and Air-Conditioningfor building heating, ventilation and air con- ditioning

  19. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  20. Modeling of Residential Buildings and Heating Systems 

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  1. A COST BASED APPROACH TO DESIGN OF RESIDENTIAL STEEL ROOF SYSTEMS

    E-Print Network [OSTI]

    Mobasher, Barzin

    A COST BASED APPROACH TO DESIGN OF RESIDENTIAL STEEL ROOF SYSTEMS B. Mobasher1 , S-Y.Chen2 , C-5306 Abstract A comprehensive system for the design of residential steel roof truss systems is presented automatically design a roof truss given minimal input and using the design curves as the performance constraints

  2. Fume Hoods Standards and Practices Laboratory exhaust ventilation systems designed, constructed, maintained, and used at Cal

    E-Print Network [OSTI]

    de Lijser, Peter

    Fume Hoods Standards and Practices General Laboratory exhaust ventilation systems designed. New or renovated fume hood systems will be tested using the procedures below. Fume hoods that do to an exhaust system. It can only capture contaminants that are very close to the inlet of the hose, typically

  3. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officethe demand controlled ventilation system increased the ratedemand controlled ventilation systems will, because of poor

  4. Energy saving strategies with personalized ventilation in tropics

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

    2010-01-01T23:59:59.000Z

    of a personalized ventilation system in the tropics, in:edged-mounted task ventilation system, Indoor Air, Vol. 14 (a chair-based personalized ventilation system, Building and

  5. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01T23:59:59.000Z

    potential of personalized ventilation system in the tropics,edged-mounted task ventilation system, Indoor Air, Vol. 14 (a chair-based personalized ventilation system, Building and

  6. Ventilation technologies scoping study

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max H.

    2003-09-30T23:59:59.000Z

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  7. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01T23:59:59.000Z

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  8. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    SciTech Connect (OSTI)

    Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France)

    2013-07-01T23:59:59.000Z

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  9. Intelligent Residential Air-Conditioning System with Smart-Grid Functionality

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Intelligent Residential Air-Conditioning System with Smart-Grid Functionality Auswin George residential air-conditioning (A/C) system controller that has smart grid functionality. The qualifier, conditional on anticipated retail energy prices. The term "smart- grid functionality" means that retail energy

  10. RECOMMENDED VENTILATION STRATEGIES FOR ENERGY-EFFICIENT PRODUCTION HOMES

    E-Print Network [OSTI]

    -port exhaust ventilation fan, and that builders offer balanced heat- recovery ventilation to buyersLBNL-40378 UC-000 RECOMMENDED VENTILATION STRATEGIES FOR ENERGY-EFFICIENT PRODUCTION HOMES Judy A of Energy under Contract No. DE-AC03-76SF00098. #12;i Abstract This report evaluates residential ventilation

  11. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13T23:59:59.000Z

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  12. Measured Air Distribution Effectiveness for Residential

    E-Print Network [OSTI]

    Ventilation Systems Max H. Sherman and Iain S. Walker Environmental Energy Technologies Division May 2008.................................................................................. 9 Ventilation Systems

  13. Cost goals for a residential photovoltaicthermal liquid collector system set in three northern locations

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1980-01-01T23:59:59.000Z

    This study compares the allowable costs for a residential PV/T liquid collector system with those of both PV-only and side-by-side PV and thermal collector systems. Four types of conventional energy systems provide backup: ...

  14. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect (OSTI)

    Bolinger, Mark A

    2008-07-06T23:59:59.000Z

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

  15. Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate

    E-Print Network [OSTI]

    Medina, M. A.; O'Neal, D. L.; Turner, W. D.

    was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented...

  16. Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation

    E-Print Network [OSTI]

    Ren, Y.; Li, D.; Zhang, Y.

    2006-01-01T23:59:59.000Z

    and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement...

  17. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    SciTech Connect (OSTI)

    Ryan, G.W.

    1997-05-07T23:59:59.000Z

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List.

  18. The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    and Utility-Scale Photovoltaic System Prices in the UnitedResidential Photovoltaic Installation Prices and DevelopmentResidential Photovoltaic Installation Prices and Development

  19. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    Drewer and D. Gann, Smart buildings, Journal of Facilities ,smart energy management system specically for residential buildings.buildings is rooted in relative eectiveness per system by a smart

  20. Review of Residential Low-Load HVAC Systems

    SciTech Connect (OSTI)

    Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

    2013-09-01T23:59:59.000Z

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  1. Distributed Control of Residential Energy Systems using a Market Maker

    E-Print Network [OSTI]

    Knobloch,JĂĽrgen

    , in particular reverse power flow during daytime periods of peak generation coupled with low residential load distribution networks and shave peak demand without large-scale capital costs for feeder replacement.weller}@newcastle.edu.au) Abstract: The recent rapid uptake of residential solar photovoltaic (PV) installations provides many

  2. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

  3. Ventilation and Suppression Systems in Road Tunnels: Some Issues regarding their Appropriate Use in a Fire Emergency 

    E-Print Network [OSTI]

    Carvel, Ricky O; Rein, Guillermo; Torero, Jose L

    Two important tunnel safety technologies are addressed. The majority of long road tunnels have ventilation systems. In the event of a fire in a tunnel, such systems will influence fire development in a number of different ...

  4. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11T23:59:59.000Z

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  5. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    SciTech Connect (OSTI)

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05T23:59:59.000Z

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  6. Air Distribution Effectiveness for Different Mechanical Ventilation

    E-Print Network [OSTI]

    LBNL-62700 Air Distribution Effectiveness for Different Mechanical Ventilation Systems Max H Effectiveness for Different Mechanical Ventilation Systems Max H. Sherman and Iain S. Walker Lawrence Berkeley National Laboratory, USA ABSTRACT The purpose of ventilation is to dilute indoor contaminants

  7. Control System Implementation and Follow-up within the Cooling and Ventilation Contracts for the LHC

    E-Print Network [OSTI]

    Body, Y; Morodo, M C

    2001-01-01T23:59:59.000Z

    The control system implementation for the cooling and ventilation facilities connected to the LHC Project relies on the technical and human resources that are organised within large-size industrial contracts. Beside the technical aspects, the follow-up of the implementation activities in the framework of such contracts also involves a managerial effort in order to achieve a flexible and coherent control system. The purpose is to assure precise and reliable regulation together with accurate local and remote supervision in conformity with the operational requirements. These objectives can only be reached by a systematic approach that keeps the co-ordination between the in-house and external cross-disciplinary teams as well as the fulfilment of the validation procedures and the contractual formalities. The case that here illustrates this approach is the control system implementation for the heating, ventilation and air conditioning of the LHC surface buildings, which shall extend up to 2004.

  8. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24T23:59:59.000Z

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  9. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03T23:59:59.000Z

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  10. Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01T23:59:59.000Z

    Break-Even Turnkey Cost of Residential Wind Systems in theaggregate installed cost of a small wind system that couldand wind resource class, (2) significant cost reductions

  11. Incentive Pass-through for Residential Solar Systems in California

    Broader source: Energy.gov [DOE]

    The deployment of solar photovoltaic (PV) systems has grown rapidly over the last decade, partly because of various government incentives. In the United States, those established in California are among the largest and longest-running incentives. Building on past research, this report addresses the still-unanswered question: to what degree have the direct PV incentives in California been passed along from installers to consumers? This report addresses this question by carefully examining the residential PV market in California and applying both a structural-modeling approach and a reduced-form regression analysis to estimate the incentive pass-through rate. The results suggest an average pass-through rate of direct incentives of nearly 100%, but with regional differences among California counties. While these results could have multiple explanations, they suggest a relatively competitive market and well-functioning subsidy program. Further analysis is required to determine whether similar results broadly apply to other states, to other customer segments, to all third-party-owned PV systems, or to all forms of financial incentives for solar.

  12. Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms 

    E-Print Network [OSTI]

    Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

    2007-01-01T23:59:59.000Z

    INTEGRATED DEMAND CONTROLLED VENTILATION FOR SINGLE DUCT VAV SYSTEM WITH CONFERENCE ROOMS Yuebin Yu Mingsheng Liu YoungHum Cho Ke Xu Graduate Student Professor of Architectural Engineering, PhD, PE Graduate.... The total OA intake of IDCV is obtained with the occupancy time ratio considered. The real time distribution of the occupancy and un-occupancy doesn’t much influence the overall calculation. With the amount of OA intake and the local BIN data...

  13. Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems

    E-Print Network [OSTI]

    Mahler, B.; Himmler, R.

    Evaluation Results from 12 Buildings in Operation ESL-IC-08-10-38a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2... ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? What are Facade Integrated Ventilation Systems? ESL-IC-08-10-38a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 3...

  14. Dojat et al. International Journal of Clinical Monitoring and Computing. 1992;9:239-250. A KNOWLEDGE-BASED SYSTEM FOR ASSISTED VENTILATION OF

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ;9:239-250. A KNOWLEDGE-BASED SYSTEM FOR ASSISTED VENTILATION OF PATIENTS IN INTENSIVE CARE UNITS. Michel DOJAT, Laurent with respiratory insufficiency from mechanical ventilation may be complex and requires expertise obtained by long respiratory activity is assisted by a Hamilton Veolar ventilator delivering a positive pressure plateau during

  15. Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls

    E-Print Network [OSTI]

    Yuan, Jinchao

    2007-01-01T23:59:59.000Z

    In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

  16. Energy Savings Potential and RD&D Opportunities for Residential...

    Broader source: Energy.gov (indexed) [DOE]

    assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology...

  17. Natural vs. mechanical ventilation and cooling.

    E-Print Network [OSTI]

    Brager, Gail; Alspach, Peter; Nall, Daniel H.

    2011-01-01T23:59:59.000Z

    the drawbacks of each type of ventilation system helps theThe benefits of natural ventilation for occupants in com-In the strictest sense, “ventilation” refers to the exchange

  18. Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography

    E-Print Network [OSTI]

    Stratton, J. Chris

    2014-01-01T23:59:59.000Z

    Arlington, VA: Air- Conditioning, Heating, and RefrigerationRefrigerating, and Air Conditioning Engineers. Bowser, D.Technical Standards for the Air Conditioning and Heat Pump

  19. Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    Washinton D.C. , Air Conditioning Contractors of America.Refrigeration and Air Conditioning Engineers. ASHRAE 2009a.Refrigerating, and Air-Conditioning Engineers. ASHRAE 2009b.

  20. Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    10 Peak Energy Demand and DemandDOE, 2011). The energy demand of existing technologies posesand IAQ. Peak Energy Demand and Demand Response ‘Peak energy

  1. Measuring Residential Ventilation System Airflows: Part 1 - Laboratory Evaluation of Airflow Meter Devices

    E-Print Network [OSTI]

    Stratton, J. Chris

    2014-01-01T23:59:59.000Z

    2012 International Energy Conservation Code. Washington, DC.The International Energy Conservation Code (IECC) also has

  2. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01T23:59:59.000Z

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  3. STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION CEC- CF-6R-MECH-05 (Revised 08 Ventilation (Page 1 of 7) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Ventilation for Indoor Air Quality (IAQ): All dwelling units shall meet the requirements

  4. Innovative Energy Efficient Industrial Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01T23:59:59.000Z

    factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design...

  5. Ventilation Model Report

    SciTech Connect (OSTI)

    V. Chipman; J. Case

    2002-12-20T23:59:59.000Z

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To asses the impacts of moisture on the ventilation efficiency.

  6. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06T23:59:59.000Z

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  7. Air change effectiveness in laboratory tests of combined chilled ceiling and displacement ventilation.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2011-01-01T23:59:59.000Z

    and displacement ventilation systems. Energy and Buildings,and displacement ventilation systems. Submitted to HVAC&R (and displacement ventilation system. According to Novoselac

  8. OCCUPANT-GENERATED CO2 AS AN INDICATOR OF VENTILATION RATE

    E-Print Network [OSTI]

    Turiel, Isaac

    2012-01-01T23:59:59.000Z

    ln mechanical ventilation systems are often inconvenientlywas conducted, the ventilation system mixes outside air withon a day when the ventilation system was in the all-outside-

  9. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    of automatic variable ventilation control systems based onof automatic variable ventilation control systems, The Johnbe developed. Automatic Variable Ventilation Control Systems

  10. Ventilative cooling

    E-Print Network [OSTI]

    Graça, Guilherme Carrilho da, 1972-

    1999-01-01T23:59:59.000Z

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  11. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Broader source: Energy.gov (indexed) [DOE]

    ensured dilution is dependent on an effective base standard for whole-house and spot ventilation. This is why the ASHRAE 62.2 residential ventilation standard is critical to...

  12. Commissioning of a Coupled Earth Tube and Natural Ventilation System at the Design Phase

    E-Print Network [OSTI]

    Yoshida, H.; Pan, S.; Zheng, M.

    2007-01-01T23:59:59.000Z

    Natural ventilation airflow rate is generally calculated using indoor and outdoor temperature difference without consideration of thermal interaction between the ventilated air and the room in simple analytical method based on pressure balance...

  13. Residential Irrigation System Rainfall Shutoff Devices1 Michael D. Dukes and Dorota Z. Haman2

    E-Print Network [OSTI]

    Jawitz, James W.

    ABE325 Residential Irrigation System Rainfall Shutoff Devices1 Michael D. Dukes and Dorota Z. Haman--are designed to interrupt the cycle of an automatic irrigation system controller when a specific amount of rainfall has occurred. They are small devices wired to the irrigation system controller and mounted

  14. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    to a strati?ed thermal energy storage Figure 5: Model ofsystem with thermal energy storage. (to model ventilation

  15. Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

  16. Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

  17. Proposal for the award of a contract for maintenance work on heating, ventilating and cooling installation and on fluid distribution systems

    E-Print Network [OSTI]

    1985-01-01T23:59:59.000Z

    Proposal for the award of a contract for maintenance work on heating, ventilating and cooling installation and on fluid distribution systems

  18. Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

  19. Japanese activities for introducing residential PV systems as a national energy supply

    SciTech Connect (OSTI)

    Kurokawa, Kosuke [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1994-12-31T23:59:59.000Z

    The paper summarizes Japanese activities concerning photovoltaic systems, specially for the residential use as a national energy supply. This year 1994 is just the 20th anniversary of the Sunshine Project, which started in July 1974. In the Project the utility-connected, residential applications mounted on roofs have been its major target from an early stage of R and D. Recently, it can be considered that technologies for the target have been fundamentally established and a series of new activities are being introduced to promote the commercialization and diffusion of PV systems. To review those activities, several condensed tables are presented, i.e., R and D history of residential applications, recent trends in regulation and code improvements, and new institutional activities to spread PV systems. Possible R and D items from now on are also reviewed and listed, which are necessary to support these efforts.

  20. ENERGY SAVINGS POTENTIALS IN RESIDENTIAL AND SMALL COMMERCIAL THERMAL DISTRIBUTION SYSTEMS - AN UPDATE

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    2003-10-31T23:59:59.000Z

    This is an update of a report (Andrews and Modera 1991) that quantified the amounts of energy that could be saved through better thermal distribution systems in residential and small commercial buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling from the space-conditioning equipment to the conditioned space. This update involves no basic change in methodology relative to the 1991 report, but rather a review of the additional information available in 2003 on the energy-use patterns in residential and small commercial buildings.

  1. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

  2. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01T23:59:59.000Z

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  3. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  4. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    for demand controlled ventilation in commercial buildings.The energy costs of classroom ventilation and some financialEstimating potential benefits of increased ventilation

  5. Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes: Preprint

    SciTech Connect (OSTI)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-04-01T23:59:59.000Z

    The U. S. Department of Energy's Building America residential systems research project uses an analysis-based system research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analysis approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-savings goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

  6. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  7. Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy

    E-Print Network [OSTI]

    Pedram, Massoud

    such as the Consolidated Edison Company of New York (conEdison) employ time-of-day pricing policy [2], with higher unitDesigning a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering companies generally raise electrical energy price during periods of high load demand. A grid

  8. SOLARIZE RALEIGH PILOT PROGRAM DRAFT Request for Proposals from Installers of Residential Solar Photovoltaic Systems

    E-Print Network [OSTI]

    solar photovoltaic ("PV") installation companies ("Installer(s)") or teams of installation companiesSOLARIZE RALEIGH PILOT PROGRAM DRAFT Request for Proposals from Installers of Residential Solar Photovoltaic Systems Proposed Posting Date: February 4, 2014 I. OPPORTUNITY SUMMARY: The North Carolina Solar

  9. Some consideration on the (in)effectiveness of residential energy feedback systems

    E-Print Network [OSTI]

    Paulos, Eric

    Mellon University, USA {jjpierce, chloefan, jlomas, gmarcu, paulos}@cs.cmu.edu ABSTRACT Energy feedback concerning household energy consumption, a number of studies have investigated the "effectiveness" of variousSome consideration on the (in)effectiveness of residential energy feedback systems James Pierce

  10. Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer

    E-Print Network [OSTI]

    Victoria, University of

    around BC: Kamloops, Victoria and Williams Lake. Electric and gas-fired tank water heaters of various The resulting data is presented from a variety of angles, including the relative impacts of water heater ratingSimulation of energy use in residential water heating systems by Carolyn Dianarose Schneyer B

  11. The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings

    E-Print Network [OSTI]

    Xiang, C.; Xie, G.

    2006-01-01T23:59:59.000Z

    In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

  12. Control of the microclimate around the head with opposing jet local ventilation

    E-Print Network [OSTI]

    Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

    2009-01-01T23:59:59.000Z

    of opposing jet local ventilation. AIAA 2009 Region I-NEImpact of a task-ambient ventilation system on perceived airefficiency for personalized ventilation application. Healthy

  13. Indoor Airflow And Pollutant Removal In A Room With Floor-Based Task Ventilation: Results of Additional Experiments

    E-Print Network [OSTI]

    Faulkner, D.

    2011-01-01T23:59:59.000Z

    C , "Displacement Ventilation Systems in Office Rooms,"Controlled Office Ventilation System," ASHRAE Transactions,of a floor-based task ventilation system designed for use in

  14. An Index for Evaluation of Air Quality Improvement in Rooms with Personalized Ventilation Based on Occupied Density and Normalized Concentration

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen; Cermak, Radim; De Carli, Michele; Li, Xianting

    2007-01-01T23:59:59.000Z

    potential of personalized ventilation system in the tropics.edge mounted task ventilation system. Proceedings of Indoorwith a total-volume ventilation system. The index is applied

  15. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT

    E-Print Network [OSTI]

    DeRoos, R.L.

    2011-01-01T23:59:59.000Z

    laminar") flow ventilation system for patient isolation.MICHAELSEN, G. S. Ventilation system maintenance practices:1974. A new ventilation system for cleaner operating

  16. A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools

    E-Print Network [OSTI]

    Daisey, Joan M.

    2010-01-01T23:59:59.000Z

    between seasons and ventilation systems, Proceedings ofto Old school: ventilation system, one constructed prior toall had mechanical ventilation systems of some type. C 0

  17. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  18. Lee, K.S., Zhang, T., Jiang, Z., and Chen, Q. 2009. "Comparison of airflow and contaminant distributions in rooms with traditional displacement ventilation and under-floor air distribution systems,"

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    systems had higher ventilation performance than the mixing one under cooling mode as well as under heating distributions in rooms with traditional displacement ventilation and under-floor air distribution systems with traditional displacement ventilation and under-floor air distribution systems Kisup Lee* Tengfei Zhang, Ph

  19. A computer simulation appraisal of non-residential low energy cooling systems in California

    SciTech Connect (OSTI)

    Bourassa, Norman; Haves, Philip; Huang, Joe

    2002-05-17T23:59:59.000Z

    An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

  20. Reducing Indoor Residential Exposures to Outdoor Pollutants

    E-Print Network [OSTI]

    include ventilation systems, filtration and other measures. These strategies can be used for several types

  1. The effect of hardware configuration on the performance of residential air conditioning systems at high outdoor ambient temperatures

    E-Print Network [OSTI]

    Bain, Joel Alan

    1995-01-01T23:59:59.000Z

    A study was performed which investigated the effect of hardware configuration on air conditioning cooling system performance at high outdoor temperatures. The initial phase of the investigation involved the testing of ten residential air...

  2. Measurement of HVAC system performance and local ventilation using passive perfluorocarbon tracer technology

    SciTech Connect (OSTI)

    Dietz, R.N.; Goodrich, R.W.

    1995-06-01T23:59:59.000Z

    In April of 1993, two (2) perfluorocarbon tracer (PFT) ventilation/indoor air quality assessment tests were performed in the Gleeson Hall building of the SUNY Farmingdale campus. The building was being modified, in part, as a result of significant occupant complaints of perceived poor air quality. The four story building had a basement first floor with air supplied normally by an HVAC system labelled as AC1. During this study, AC1 was inoperational and the basement interior rooms (walls) were primarily gone; the other three floors were still being used for classes. It is possible that a sense of poor air quality may have been perceived by first-floor occupants because they were working in the basement, but this issue could not be addressed. The second floor had two (2) lecture halls--Rm 202 (handled by AC4) and Rm 204 (handled by AC5); the balance of the second floor interior rooms and corridors was split between two other air handling systems, AC2 for the west side of the building and AC3 for the east side. The remaining 3rd and 4th floors were also split about evenly between AC2 and AC3. The perimeter rooms, equipped with wall units having their own outside air (OA) source plus centralized return air (RA) bypasses, were not included in this testing which was restricted to the basement floor (1st floor) and the four operating air handling systems, AC2 to AC5, during Test 1 and only AC2 to AC5 during Test 2. Two types of tests were performed using the full suite of 5 PFT types available. The first test was designed to measure the infiltration, exfiltration, and air exchange between the 5 AC zones above and the second test used the 5th tracer, which had been in the basement, as a distributed source throughout the four other zones to act as a surrogate pollutant source. This report provides final conclusions of both tests and suggestions regarding its usefulness in similar building ventilation and indoor air quality assessments.

  3. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  4. Calculation and design of tunnel ventilation systems using a two-scale modelling approach 

    E-Print Network [OSTI]

    Colella, Francesco; Rein, Guillermo; Borchiellini, Romano; Carvel, Ricky O; Torero, Jose L; Verda, Vittorio

    This paper develops a novel modelling approach for ventilation flow in tunnels at ambient conditions (i.e. cold flow). The complexity of full CFD models of low in tunnels or the inaccuracies of simplistic assumptions are avoided by efficiently...

  5. Fire Size and Fire Spread in Tunnels with Longitudinal Ventilation Systems

    E-Print Network [OSTI]

    Carvel, Ricky O; Beard, Alan; Jowitt, P W; Drysdale, Dougal

    2005-01-01T23:59:59.000Z

    The results and findings of three previous research projects are combined with new research to estimate the overall influence of longitudinal ventilation on fire size and spread in tunnels. Each of the three previous projects is briefly described...

  6. External Authorities and Peers Laboratory Ventilation Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    External Authorities and Peers Laboratory Ventilation Management Program Guidance Document External Authorities and Peers This group encompasses external groups who do not manage laboratory ventilation systems to laboratory ventilation management. Roles Responsibilities Tracking Indicator Laboratory science peers

  7. air ventilation rate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements University of California eScholarship Repository Summary: typical existing house. Designed passive ventilation systemsPassive Ventilation by Constant Area Vents to...

  8. Adventitious ventilation: a new definition for an old mode?

    E-Print Network [OSTI]

    Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Refrigeration and Air-Conditioning Engineers (ASHRAEof ventilation and air- conditioning system types in officeto natural ventilation, air conditioning, with or without

  9. Cooling-load implications for residential passive-solar-heating systems

    SciTech Connect (OSTI)

    Jones, R.W.; McFarland, R.D.

    1983-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

  10. A discussion on life-cycle costs of residential photovoltaic systems

    SciTech Connect (OSTI)

    THOMAS,MICHAEL G.; CAMERON,CHRISTOPHER P.

    2000-04-11T23:59:59.000Z

    This paper discusses the characteristics and needed improvements/enhancements required for the expansion of the grid-tied residential power systems market. The purpose of the paper is to help establish a common understanding, between the technical community and the customers of the technology, of value and costs and what is required in the longer term for reaching the full potential of this application.

  11. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    SciTech Connect (OSTI)

    Aglan, H.

    2005-08-04T23:59:59.000Z

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

  12. LBNL-54331 1 ASHRAE'S FIRST RESIDENTIAL

    E-Print Network [OSTI]

    .2-2003. This standard defines the roles of and minimum requirements for mechanical and natural ventilation systems on the interactions between ventilation and the building envelope. Unbalanced ventilation systems combined to ventilation, such as the operation of combustion appliances or entrainment of soil gas. Such "house-as-system

  13. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    SciTech Connect (OSTI)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26T23:59:59.000Z

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  14. Ventilation Requirements in Hot Humid Iain S. Walker and Max H. Sherman

    E-Print Network [OSTI]

    LBNL-59889 Ventilation Requirements in Hot Humid Climates Iain S. Walker and Max H. Sherman residential ventilation standard, ASHRAE Standard 62.2. Meeting this standard in new construction requires the use of mechanical ventilation, which in turn can often significantly increase the latent load faced

  15. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect (OSTI)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-15T23:59:59.000Z

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the wind tunnel for testing HEPA filters (cf. ASTM F1471 and ASME N511). This project involves three systems that were developed for testing the 24*24*11 (inch) HEPA filters (i.e. the already mentioned mixer, diluter and metric). Prototypes of the mixer and the diluter have been built and individually tested on a preliminary basis. However, the third system (the HEPA metric method) has not been tested, since that requires complete operability of the aerosol wind tunnel device. (The experimental wind tunnel has test aerosol injection, control and measurement capabilities, and can be heated for temperature dependent measurements.) Benefits: US DOE facilities that use HEPA filters and/or require exhaust stacks from their nuclear facility buildings will benefit from access to the new hardware (mixer and diluter) and performance-based metric (for HEPA filter air flow).

  16. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    to districts for ventilation, heating, and cooling.   Thus G is the gas use for heating ventilation  air, G i  is the air  gas use for heating ventilation air  the time elapsed 

  17. Edmund G. Brown, Jr. RESIDENTIAL FORCED-AIR SYSTEM

    E-Print Network [OSTI]

    System Cabinet Leakage and Blower Performance. California Energy Commission, PIER Buildings End Small Grants · EnergyRelated Environmental Research · Energy Systems Integration · Environmentally (Contract Number 50006007) conducted by Lawrence Berkeley National Laboratory. The information from

  18. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Schweik, Charles M.

    University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

  19. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

  20. An ANFIS Based Sensor Network for a Residential Energy Management System D. Senthilkumar, S. Kumar, Y. Ozturk and G. Lee

    E-Print Network [OSTI]

    Kumar, Sunil

    An ANFIS Based Sensor Network for a Residential Energy Management System D. Senthilkumar, S. Kumar management system project, an Integrated and Cognitive Home Energy Management System for Demand Response (DR management system which addresses demand response with efficient energy consumption. 1. Introduction State

  1. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01T23:59:59.000Z

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  2. Tax Credit for Solar Energy Systems on Residential Property (Personal)

    Broader source: Energy.gov [DOE]

    '''''Note: HB 705 of 2013 made several significant changes to this tax credit. Among other changes, wind energy systems are no longer eligible, there is now an expiration date for the credit, and...

  3. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-12-01T23:59:59.000Z

    The market for small wind systems in the United States, often defined as systems less than or equal to 100 kW that produce power on the customer side of the meter, is small but growing steadily. The installed capacity of domestic small wind systems in 2002 was reportedly 15-18 MW, though the market is estimated to be growing by as much as 40 percent annually (AWEA, 2002). This growth is driven in part by recent technology advancements and cost improvements and, perhaps more importantly, by favorable policy incentives targeted at small wind systems that are offered in several states. Currently, over half of all states have incentive policies for which residential small wind installations are eligible. These incentives range from low-interest loan programs and various forms of tax advantages to cash rebates that cover as much as 60 percent of the total system cost for turbines 10 kW or smaller installed in residential applications. Most of these incentives were developed to support a ran ge of emerging renewable technologies (most notably photovoltaic systems), and were therefore not specifically designed with small wind systems in mind. As such, the question remains as to which incentive types provide the greatest benefit to small wind systems, and how states might appropriately set the level and type of incentives in the future. Furthermore, given differences in incentive types and levels across states, as well as variations in retail electricity rates and other relevant factors, it is not immediately obvious which states offer the most promising markets for small wind turbine manufacturers and installers, as well as potential residential system owners. This paper presents results from a Berkeley Lab analysis of the impact of existing and proposed state and federal incentives on the economics of grid-connected, residential small wind systems. Berkeley Lab has designed the Small Wind Analysis Tool (SWAT) to compare system economics under current incentive structures a cross all 50 states. SWAT reports three metrics to characterize residential wind economics in each state and wind resource class: (1) Break-Even Turnkey Cost (BTC): The BTC is defined as the aggregate installed system cost that would balance total customer payments and revenue over the life of the system, allowing the customer to ''break-even'' while earning a specified rate of return on the small wind ''investment.'' (2) Simple Payback (SP): The SP is the number of years it takes a customer to recoup a cash payment for a wind system and all associated costs, assuming zero discount on future revenue and payments (i.e., ignoring the time value of money). (3) Levelized Cost of Energy (LCOE): The LCOE is the levelized cost of generating a kWh of electricity over the lifetime of the system, and is calculated assuming a cash purchase for the small wind system and a 5.5 percent real discount rate. This paper presents SWAT results for a 10 kW wind turbine and turbine power production is based on a Bergey Excel system. These results are not directly applicable to turbines with different power curves and rated outputs, especially given the fact that many state incentives are set as a fixed dollar amount, and the dollar per Watt amount will vary based on the total rated turbine capacity.

  4. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    SciTech Connect (OSTI)

    Himes, D.A.

    1998-08-11T23:59:59.000Z

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated filter loadings and would lead to an unfiltered pathway from the radioactively contaminated and toxic aerosols in the head space (vapor space) of the tank into the outside environment. The initiator for the unfiltered (continuous) release scenario is wetting of the HEPA filters with an accompanying filter breach or failure of the seals surrounding the filter in the enclosure. No releases from the filters themselves are assumed in this scenario. In the absence of controls, the exhaust system would continue to expel the contaminated head space air into the outside environment in all three of these scenarios.

  5. M.H. Sherman, J.M. Logue, B.C. Singer, Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches -LBNL Report Number 3978-E

    E-Print Network [OSTI]

    for Continuous and Intermittent Mechanical Ventilation Approaches - LBNL Report Number 3978-E M.H. Sherman, J and Intermittent Mechanical Ventilation Approaches - LBNL Report Number 3978-E 1 Infiltration Effects Energy Commission through Contract 500-08-06. LBNL Report Number 3978-E #12;M.H. Sherman, J.M. Logue, B

  6. Measured Performance of California Buydown Program Residential PV Systems

    E-Print Network [OSTI]

    in the North. Data were collected from February 2000 through the end of 2001. Key energy production and power production are covered. Measures of energy production magnitude include energy production per unit of plane-of-array irradiance, and photovoltaic system energy production versus household energy consumption. The magnitude

  7. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William J.

    2009-07-08T23:59:59.000Z

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) of $0.52/ft{sup 2} in climate zone 14, followed by $0.32/ft{sup 2} in climate zone 16 and $0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $0.93/ft{sup 2} in climate zone 14, followed by $0.55/ft{sup 2} in climate zone 16, $0.46/ft{sup 2} in climate zone 12, $0.30/ft{sup 2} in climate zone 3, $0.16/ft{sup 2} in climate zone 3. At the high design occupancy of 20 people per 1000 ft{sup 2}, the DCV savings are even higher with a NPV $1.37/ft{sup 2} in climate zone 14, followed by $0.86/ft{sup 2} in climate zone 16, $0.84/ft{sup 2} in climate zone 3, $0.82/ft{sup 2} in climate zone 12, and $0.65/ft{sup 2} in climate zone 6. DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 28 cfm per occupant, except at high design occupancy of 20 people per 1000 ft{sup 2} in climate zones 14 and 16. Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case.

  8. Impact of Independently Controlling Ventilation Rate per Person and Ventilation

    E-Print Network [OSTI]

    1 Impact of Independently Controlling Ventilation Rate per Person and Ventilation Rate per Floor Impact of Independently Controlling Ventilation Rate per Person and Ventilation Rate per Floor Area

  9. Customer Engagement in AEP gridSMART Residential Transactive System

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Fuller, Jason C.; Subbarao, Krishnappa; Chassin, David P.; Somani, Abhishek

    2014-12-31T23:59:59.000Z

    — In 2013, AEP Ohio (AEP) operated a 5-minute real-time price (RTP) electricity market system on 4 distribution feeders as part of their gridSMART® demonstration project. The RTP households were billed for their electricity usage according to an RTP tariff approved by the Public Utility Commission of Ohio. They were given the incentive that their annual bill would be no greater than if they were on the flat-rate tariff, but they had financial incentives to shift consumption from high price periods to low price periods. Incentives were also available for response under high prices from local events, such as reaching the distribution feeder capacity or a critical peak pricing event. An analysis of this transactive system experiment was completed in early 2014. This paper describes the incentive provided to the customer, the nature of their interaction with the smart thermostat that provided automated response to the transactive signal, and their level of satisfaction with the program.

  10. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    E NERGY Shaking Up the Residential PV Market: Implicationsthe Revised Residential Credit ..ITC (capped at $2,000) for residential solar systems. Both

  11. Residential mobility and location choice: a nested logit model with sampling of alternatives

    E-Print Network [OSTI]

    Lee, Brian H.; Waddell, Paul

    2010-01-01T23:59:59.000Z

    Waddell, P. : Modeling residential location in UrbanSim. In:D. (eds. ) Modelling Residential Location Choice. Springer,based model system and a residential location model. Urban

  12. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01T23:59:59.000Z

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  13. Subsurface drip systems for land application of residential wastewater

    E-Print Network [OSTI]

    Neal, Byron Anthony

    1999-01-01T23:59:59.000Z

    classification of the most restrictive soil layer ranging between 4. 12 I/m /day (0. 1 gal/ft /day) for class IV (clay) soils to 20. 6 Vm /day (0. 50 gaV ft /day) for class Ia (sand/gravel) soils (TNRCC, 1997). Texas's design criteria for hydraulic loading... gallons) of wastewater per day. The soil type used for designing the subsurface drip system is a sandy clay loam (type III, 30 TAC Chapter 285, 1997). From the TNRCC (1995) regulations, the hydraulic application rate is 8. 15 I/m /day (0. 20 gal/ft /day...

  14. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    house using the heating/cooling supply ducts. The outdoorfor continuous supply in CZ3 in cooling season R elative Ecooling climate zone 13. The economizer will be modeled as a large supply

  15. An Analysis of Residential PV System Price Differences between the United States and Germany

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems were twice as expensive in the United States as in Germany (median of $5.29/W vs. $2.59/W) in 2012. This price discrepancy stems primarily from differences in non-hardware or "soft" costs between the two countries, which can only be explained in part by differences in cumulative market size and associated learning. A survey of German PV installers was deployed to collect rough data on PV soft costs in Germany to compare to results of a similar survey of U.S. PV installers. Non-module hardware costs and all analyzed soft costs are lower in Germany, especially for customer acquisition, installation labor, and profit/overhead costs, but also for expenses related to permitting, interconnection, and inspection procedures. Additional costs occur in the United States due to state and local sales taxes, smaller average system sizes, and longer project development times. To reduce the identified additional costs of residential PV systems, the United States could introduce policies that enable a robust and lasting market while minimizing market fragmentation.

  16. System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    Technical briefing to report the outcomes of a data monitoring effort to determine the nature of solar vent preheat system performance problems at a U.S. military installation. The analysis reports up-to-date research and findings regarding system design, helping to clarify the issue as a factor of system design, rather than a shortcoming of SVP systems.

  17. Literature Review of Displacement Ventilation 

    E-Print Network [OSTI]

    Cho, S.; Im, P.; Haberl, J. S.

    2005-01-01T23:59:59.000Z

    . Energy Systems Laboratory, Texas A&M University System Page 9 IV. REFERENCES Chen, Q., Glicksman, L.R., Yuan, X., Hu, S. Yang, X. 1999. Performance evaluation and development of design guidelines for displacement ventilation, Final report... testing, and a tracer gas (CO 2 ) step-up procedure. Alamdari, F., Butler, D.J.G., Grigg, P.F., Shaw, M. R. 1998. Chilled ceilings and displacement ventilation. Renewable Energy, Vol. 15, Issues 1-4, pp. 300-305. Abstract: Displacement ventilation...

  18. 16 P R O G R E S S R E S E a R c h & D i S c O v E R y Nu-Air Ventilation Systems began nearly three

    E-Print Network [OSTI]

    Brownstone, Rob

    three decades ago designing and manufacturing heat recovery ventilation (HRV) systems--vital pieceLeft)JulioMilitzerandBrianGibbon SandorFizli sector: Heating and ventilation Mission: Nu-Air is an important supplier of air exchanger16 P R O G R E S S R E S E a R c h & D i S c O v E R y Nu-Air Ventilation Systems began nearly

  19. Overview of existing residential energy-efficiency rating systems and measuring tools

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Garrett-Price, B.A.; Williams, T.A.

    1982-10-01T23:59:59.000Z

    Three categories of rating systems/tools were identified: prescriptive, calculational, and performance. Prescriptive systems include rating systems that assign points to various conservation features. Most systems that have been implemented to date have been prescriptive systems. The vast majority of these are investor-owned utility programs affiliated with the National Energy Watch program of the Edison Electric Institute. The calculational category includes computational tools that can be used to estimate energy consumption. This estimate could then be transformed, probably by indexing, into a rating. The available computational tools range from very simple to complex tools requiring use of a main-frame computer. Performance systems refer to residential energy-efficiency ratings that are based on past fuel consumption of a home. There are few of these systems. For each identified system/tool, the name, address, and telephone number of the developer is included. In addition, relevant publications discussing the system/tool are cited. The extent of field validation/verification of individual systems and tools is discussed. In general, there has been little validation/verification done. A bibliography of literature relevant to the use and implementation of a home energy rating system is also included.

  20. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  1. B. Mobasher, S-Y.Chen, C. Young and S. D. Rajan, "Cost-Based Design Of Residential Steel Roof Systems: A Case Study", Structural Engineering and Mechanics 8:(2) pp.165-180,1999.

    E-Print Network [OSTI]

    Mobasher, Barzin

    B. Mobasher, S-Y.Chen, C. Young and S. D. Rajan, "Cost-Based Design Of Residential Steel Roof OF RESIDENTIAL STEEL ROOF SYSTEMS: A CASE STUDY S. D. Rajan 1 , B. Mobasher 2 , S-Y.Chen 3 and C. Young 3 The cost effectiveness of steel roof systems for residential buildings is becoming increasingly apparent

  2. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect (OSTI)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

    2013-07-01T23:59:59.000Z

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

  3. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating systems or...

  4. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  5. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  6. Residential Mail Procedures Residential Mail Services

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

  7. Output Performance and Payback Analysis of a Residential Photovoltaic System in Colorado: Preprint

    SciTech Connect (OSTI)

    Johnston, S.

    2012-06-01T23:59:59.000Z

    Cost of installation and ownership of a 9.66-kilowatt (kW) residential photovoltaic system is described, and the performance of this system over the past 3 years is shown. The system is located in Colorado at 40 degrees latitude and consists of arrays on two structures. Two arrays are installed on a detached garage, and these are each composed of 18 Kyocera 130-W modules strung in series facing south at an angle of 40 degrees above horizontal. Each 18-panel array feeds into a Xantrex/Schneider Electric 2.8-kW inverter. The other two arrays are installed on the house and face south at an angle of 30 degrees. One of these arrays has twelve 205-W Kyocera panels in series, and the other is made up of twelve 210-Kyocera panels. Each of these arrays feeds into Xantrex/Schneider Electric 3.3-kW inverters. Although there are various shading issues from trees and utility poles and lines, the overall output resembles that which is expected from PVWatts, a solar estimate program. The array cost, which was offset by rebates from the utility company and federal tax credits, was $1.17 per watt. Considering measured system performance, the estimated payback time of the system is 9 years.

  8. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Karl Mayer

    2010-03-31T23:59:59.000Z

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

  9. Building ventilation : a pressure airflow model computer generation and elements of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building ventilation : a pressure airflow model computer generation and elements of validation H when heating a residential building, approximately 30% of the energy loss is due to air renewal[1. Thus in tropical climates, natural ventilation affects essentially the inside comfort by favouring

  10. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14T23:59:59.000Z

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  11. Circulation . Author manuscript Ultrafast and whole-body cooling with total liquid ventilation induces

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits Mourad decrease after resuscitation. Since total liquid ventilation (TLV) with temperature controlled ; physiology ; Liquid Ventilation ; Liver ; physiology ; Lung ; physiology ; Nervous System Physiological

  12. Residential solar-photovoltaic power systems: the need for battery storage

    SciTech Connect (OSTI)

    Mueller, R.O.; Cha, B.K.; Giese, R.F.; Maslowski, C.

    1980-01-01T23:59:59.000Z

    Benefits of battery storage used in conjunction with residential solar photovoltaic (PV) power systems were evaluated for a representative set of utility service areas. The PV systems were assumed capable of exporting excess power to the utility grid, and the batteries sited at the substation level were operated as a form of load-leveling utility storage. A cost-allocation model, SIMSTOR, was employed to determine utility fuel and capital cost savings resulting from the addition of batteries as a function of PV system penetration level. These benefits were compared with the savings of batteries used alone without introduction of the PV systems. Battery storage capacities and discharge rates were varied to determine the battery configurations that maximize net utility savings as a function of battery costs. Installed (rated) PV device capacities up to 20 percent of the generation peak load in each service area were considered. Findings indicate that batteries and PV systems are complementary rather than competing technologies, when attached to the electric supply grid. The utility benefits of the PV systems are primarily fuel savings, while those of the battery are primarily due to savings in utility capacity. The economic rationale for batteries does not change significantly as the penetration level for the PV systems increases. In some of the service areas, the addition of the PV systems tended to sharpen rather than flatten the peaks in the utility's load curves, with the magnitude of the effect becoming more pronounced at the higher PV system penetration levels. As a result of these load shape changes, batteries with higher discharge rates and larger storage capacities were favored.

  13. Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-03-01T23:59:59.000Z

    Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

  14. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    SciTech Connect (OSTI)

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01T23:59:59.000Z

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  15. An economic analysis of grid-connected residential solar photovoltaic power systems

    E-Print Network [OSTI]

    Carpenter, Paul R.

    The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

  16. Modeling buoyancy-driven airflow in ventilation shafts

    E-Print Network [OSTI]

    Ray, Stephen D. (Stephen Douglas)

    2012-01-01T23:59:59.000Z

    Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

  17. A scale model study of displacement ventilation with chilled ceilings

    E-Print Network [OSTI]

    Holden, Katherine J. A. (Katherine Joan Adrienne)

    1995-01-01T23:59:59.000Z

    Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

  18. Experimental Measurements and Numerical Simulations of Particle Transport and Distribution in Ventilated Rooms

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    was neglected, and particles were hence removed only by the ventilation system. Thus the particle removal performance of different ventilation systems can be evaluated. Three ventilation systems have been studied; Ventilation systems; Lagrangian particle tracking, CFD 1. Introduction Suspended particulate matter can serve

  19. AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION E. WITRANT1, K.H. JOHANSSON2. Introduction Traditionally, the control of large-scale systems, such as mining ventilation, has been performed to the preliminary design of the global system and automation devices. Mining ventilation provides for an interesting

  20. AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION E. WITRANT1, K.H. JOHANSSON2, the control of large-scale systems, such as mining ventilation, has been performed locally with decentralized of the global system and automation devices. Mining ventilation provides for an interesting exam- ple

  1. "Passive Ventilation in a Simple Structure" Thomas Rogg

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "Passive Ventilation in a Simple Structure" Thomas Rogg Faculty Mentor: Dr. Scott Civjan, Civil & Environmental Engineering The research concept is to investigate the addition of a passive ventilation system in a greener and more efficient ventilation system. The project is in the very early stages and I have been

  2. Ventilation planning at Energy West's Deer Creek mine

    SciTech Connect (OSTI)

    Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

    2009-08-15T23:59:59.000Z

    In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

  3. Optimal decision making in ventilation control Andrew Kusiak*, Mingyang Li

    E-Print Network [OSTI]

    Kusiak, Andrew

    by heating, ventilating and air- conditioning (HVAC) systems. According to published statistics, HVAC systemsOptimal decision making in ventilation control Andrew Kusiak*, Mingyang Li Department of Mechanical Accepted 24 July 2009 Available online 15 August 2009 Keywords: Ventilation Air quality Multi

  4. Mining ventilation control: a new industrial case for wireless automation

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    system with high envi- ronmental impact: the mining ventilation. We do not pretend to solve the global ventilation is an interesting example of a large scale system with high environmental impact where advancedMining ventilation control: a new industrial case for wireless automation E. Witrant1, A. D

  5. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  6. Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates

    E-Print Network [OSTI]

    Hu, ShiPing, 1970-

    1999-01-01T23:59:59.000Z

    In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

  7. Abandoned Property Abandoned and unclaimed property left in residential facilities, on breezeways, in stairwells, laundry

    E-Print Network [OSTI]

    Boyce, Richard L.

    , in stairwells, laundry rooms, or on the premises may be disposed of within 24 hours. Property left kitchens with ventilation hoods. Microwave cooking may occur in all residential rooms. Washing machines

  8. Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

  9. ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES ventilation systems are better than mixing ventilation systems. The benefits include indoor air quality. This research compared the energy use of a floor-supply displacement ventilation system in a large industrial

  10. Proposal for the award of a contract for the conversion of the former LEP ventilation process control system for the LHC

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    This document concerns the award of a contract for the conversion of the former LEP ventilation process control system for the LHC. The Finance Committee is invited to agree to the negotiation of a contract with ASSYSTEM (FR), the lowest bidder, for the conversion of the former LEP ventilation process control system for the LHC and the maintenance of the process control and supervision system hardware and software for five years, for a total amount of 1 670 524 euros (2 628 403 Swiss francs), not subject to revision, with options for an equipment inventory and a code generator, for an additional amount of 67 115 euros (105 599 Swiss francs), bringing the total amount to 1 737 639 euros (2 734 002 Swiss francs) not subject to revision. The rate of exchange used is that stipulated in the tender.

  11. Children in Residential Care: A wicked problem?

    E-Print Network [OSTI]

    #12;Children in Residential Care: A wicked problem? Mary McKenna Flinders Law School 29 Nov 11 Mary in residential care · At what level of the system should changes occur? · Numbers in residential care in SA-discovery of child abuse in 1970s · Legislation & policy changes · Reporting and investigation · Types of abuse #12

  12. Characterizing Residential Broadband Networks Marcel Dischinger

    E-Print Network [OSTI]

    Saroiu, Stefan

    Characterizing Residential Broadband Networks Marcel Dischinger MPI for Software Systems mdischin and rapidly growing proportion of users connect to the Internet via residential broadband networks such as Dig- ital Subscriber Lines (DSL) and cable. Residential networks are often the bottleneck in the last mile

  13. Guidelines for residential commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics” Lawrence

  14. Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia , Jelena Srebricb This paper explores the potential of using natural ventilation as a passive cooling system for new house conditions in Bangkok, the study found that it is possible to use natural ventilation to create a thermally

  15. TOP DOWN VENTILATION AND COOLING Stephen A. Gage

    E-Print Network [OSTI]

    Linden, Paul F.

    TOP DOWN VENTILATION AND COOLING Stephen A. Gage G.R. Hunt P.F. Linden This paper examines the problems inherent in passively ventilating and cooling low and medium rise urban buildings. We focus openings in passive displacement ventilation systems. A solution is suggested. The concept that is examined

  16. MINING VENTILATION CONTROL: A NEW INDUSTRIAL CASE FOR WIRELESS AUTOMATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    % of the energy consumed by the mining process goes into the ventilation (including heating the air). It is clearMINING VENTILATION CONTROL: A NEW INDUSTRIAL CASE FOR WIRELESS AUTOMATION E. Witrant1, A. D This paper serves as an introduction to Special Session on Ventilation Control in Large-Scale Systems. We de

  17. Effect of repository underground ventilation on emplacement drift temperature control

    SciTech Connect (OSTI)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

    1996-02-01T23:59:59.000Z

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

  18. High SEER Residential AC

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-07-31T23:59:59.000Z

    This article discusses the new offerings of residential air conditioning systems with very high Seasonal Energy Efficiency Ratio (SEER) ratings, the two regional areas dictating operations standards ("hot, humid" and "hot, dry"), and the potential energy savings these new systems can provide. The article concludes with a brief review of current market potential.

  19. Photovoltaics for residential applications

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  20. Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants

    E-Print Network [OSTI]

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01T23:59:59.000Z

    The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

  1. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    Sherman, Max H.

    2010-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. ” Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ” ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing. ” (

  2. Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

  3. Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

  4. Industrial Ventilation Statistics Confirm Energy Savings Opportunity

    E-Print Network [OSTI]

    Litomisky, A.

    2006-01-01T23:59:59.000Z

    is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... velocities at drops and at the main ducts of existing classical industrial ventilation designs in 90 factories, 130 systems, and 1000 drops, we have found that only a minimum of air velocities are in the recommended range. There is a striking dichotomy...

  5. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01T23:59:59.000Z

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  6. Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage

    E-Print Network [OSTI]

    Knobloch,JĂĽrgen

    is increasingly being considered by utilities seeking to reinforce distribution networks and shave peak demand consists of solar PV generation, battery storage and an inelastic energy load. Each RES is connected--The recent rapid uptake of residential solar photo- voltaic (PV) installations provides many challenges

  7. Performance of ventilators for noninvasive positive pressure ventilation in children

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Performance of ventilators for noninvasive positive pressure ventilation in children Brigitte title: ventilators for noninvasive ventilation Supports and grants: The research of Brigitte Fauroux;2 Abstract The aim of the study was to evaluate the performance characteristics of all the ventilators

  8. VFD Technology's Energy Conservation Application at Metro Ventilation Air-conditioning System

    E-Print Network [OSTI]

    Li, G.

    2006-01-01T23:59:59.000Z

    Shenzhen metro has been applied the VFD control technique and close loop negative control logic to adjust and control the temperature and humidity of public area and conserve the energy on HVAC system of children palace station and Fumin station...

  9. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Feldman, D.; Friedman, B.; Margolis, R.

    2013-10-01T23:59:59.000Z

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

  10. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question Ť"What are the best ventilation techniques"

  11. Transient blocking in multi-chamber natural ventilation M. R. Flynn and C. P. Caulfield

    E-Print Network [OSTI]

    Flynn, Morris R.

    , the system must evolve towards a ventilated terminal state in which there is outflow of buoyant fluid (inflowTransient blocking in multi-chamber natural ventilation M. R. Flynn and C. P. Caulfield Dept-energy `natural' ventilation offers an environmental benefit over building ventilation by high

  12. Residential Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    New York enacted legislation in July 2005 exempting the sale and installation of residential solar-energy systems from the state's sales and compensating use taxes. The exemption was extended to...

  13. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  14. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems

    SciTech Connect (OSTI)

    Irvine, L.; Sawyer, A.; Grove, J.

    2011-02-01T23:59:59.000Z

    This handbook is intended as a road map for project planners and solar advocates who want to convert interest into action, to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The handbook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  15. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01T23:59:59.000Z

    This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  16. Why We Ventilate

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    source emission rate of acrolein in residential indoor air.Exposure Acetaldehyde Acrolein Benzene Butadiene, 1,3-Acute Exposure Concerns Acrolein Chloroform Carbon Monoxide

  17. International Journal of Ventilation Volume 2 No 3 Application of CFD to Predict and Control Chemical and Biological

    E-Print Network [OSTI]

    Zhai, John Z.

    attack, since the conventional ventilation systems are not designed for such an attack. How to design ventilation systems that can protect buildings from such an attack is an urgent issue for ventilation system are especially hazardous when they are dispersed inside of a building, where traditional ventilation systems may

  18. Residential Services Headlease residents

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Headlease residents handbook 2013-2014 #12;Map of Brighton inside front cover packs Rent 5 Residential Advisor (RA) network 6 Senior residential advisors Residential Student Support Contents Contents Brighton 1 #12;Welcome Congratulations on securing your place at Sussex. Residential

  19. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09T23:59:59.000Z

    This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on California’s electricity market in a future year (2030); however, it is neither intended to forecast California’s future market, nor are our conclusions intended to have implications specific only to the California market. That said, some of the findings are unique to our underlying assumptions, as described further within the main body of the report, along with other key limitations.

  20. Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990

    SciTech Connect (OSTI)

    Balsavich, J.C.; Breault, R.W.

    1990-10-01T23:59:59.000Z

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

  1. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    SciTech Connect (OSTI)

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-09-01T23:59:59.000Z

    This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

  2. A Semi-Empirical Model for Studying the Impact of Thermal Mass and Cost-Return Analysis on Mixed-mode Ventilation in Office Buildings

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    -mode Ventilation in Office Buildings Haojie Wang1 and Qingyan Chen2,1,* 1 School of Mechanical Engineering, Purdue-mode ventilation that combines natural ventilation and mechanical ventilation has great potential to save cooling energy when compared to mechanical systems and is more reliable than natural ventilation systems

  3. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly Download Series

  4. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly Download SeriesAugust 21,

  5. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly Download SeriesAugust 21,23,

  6. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly Download SeriesAugust

  7. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly Download SeriesAugustOctober

  8. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly Download

  9. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly DownloadDecember 4, 2014

  10. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly DownloadDecember 4,

  11. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly DownloadDecember 4,7, 2014

  12. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly DownloadDecember 4,7, 20141,

  13. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly DownloadDecember 4,7,

  14. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate Monthly DownloadDecember

  15. Residential Solar and Wind Energy Systems Tax Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessmentsMultifamily Residential Savings Category

  16. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect (OSTI)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  17. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  18. THE IMPACT OF CITY-LEVEL PERMITTING PROCESSES ON RESIDENTIAL PV INSTALLATION PRICES AND DEVELOPMENT TIMES

    E-Print Network [OSTI]

    Dong, Changgui

    2014-01-01T23:59:59.000Z

    The installed price of photovoltaic (PV) systems hasprice and development time of residential photovoltaic (PV)

  19. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  20. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab

    SciTech Connect (OSTI)

    Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

    2010-11-15T23:59:59.000Z

    This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

  1. Field comparison of conventional HVAC systems with a residential gas-engine-driven heat pump

    SciTech Connect (OSTI)

    Miller, J.D.

    1994-08-01T23:59:59.000Z

    Through its Office of Federal Energy Management Program (FEMP), the US Department of Energy (DOE) provides technical and administrative support to federal agency programs directed at reducing energy consumption and cost in federal buildings and facilities. One such program is the New Technology Demonstration Program (NTDP). In this context, NTDP is a demonstration of a US energy-related technology at a federal site. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate new technologies. The partnership of these interests is secured through a Cooperative Research and Development Agreement (CRADA). The Fort Sam Houston (San Antonio, Texas) NTDP is a field evaluation of a 3-ton gas-engine-driven residential heat pump. Details of the technical approach used in the evaluation, including instrumentation and methodology, are presented. Dynamic performance maps, based on field data, are developed for the existing residential furnaces and air conditioners at Fort Sam Houston. These maps are the basis for comparisons between the candidate and current equipment. The approach offers advantages over pre/post-measure evaluations by decoupling the measured equipment performance from the effects of different envelope characteristics, occupant behavior, and weather.

  2. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01T23:59:59.000Z

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  3. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit 

    E-Print Network [OSTI]

    Gong, Xiangyang

    2009-05-15T23:59:59.000Z

    desiccant ventilation unit consumes 5.6% more primary energy than a single duct VAV system; it would consumes 11.4% less primary energy when the system is integrated with a presumed passive desiccant ventilation unit....

  4. Why We Ventilate

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01T23:59:59.000Z

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  5. Design and thermal modeling of a residential building

    E-Print Network [OSTI]

    Yeh, Alice Su-Chin

    2009-01-01T23:59:59.000Z

    Recent trends of green energy upgrade in commercial buildings show promise for application to residential houses as well, where there are potential energy-saving benefits of retrofitting the residential heating system from ...

  6. DEVELOPMENT OF SELF-TUNING RESIDENTIAL OIL/BURNER - OXYGEN SENSOR ASSESSMENT AND EARLY PROTOTYPE SYSTEM OPERATING EXPERIENCE

    SciTech Connect (OSTI)

    MCDONALD,R.J.; BUTCHER,T.A.; KRAJEWSKI,R.F.

    1998-09-01T23:59:59.000Z

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available.

  7. Comparison of effectiveness of sub-slab ventilation systems for indoor radon mitigation: A numerical study; Comparaison a l`aide d`un outil numerique de l`efficacite des systemes de ventilation active du sol limitant la penetration du radon dans l`habitat

    SciTech Connect (OSTI)

    Bonnefous, Y.C. [Ecole Nationale des Travaux Publics de l`Etat, 69 - Vaulx en Velin (France). Lab. Sciences de l`Habitat]|[Lawrence Berkeley Lab., CA (United States); Gadgil, A.J. [Lawrence Berkeley Lab., CA (United States); Allard, F. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1992-04-01T23:59:59.000Z

    The functioning of an active sub-slab ventilation system (SVS) has been studied successfully with the help of a previously evaluated numerical model. The parameters explored are the permeability of the sub-slab and the gravel placed beneath it, the amplitude of applied pressure at the installation point of the system and the functioning method: depressurization or pressurization. The mechanisms contributing to the success of the two systems are identified. This numerical study shows that the presence of a layer of gravel beneath the sub-slab considerably improves the performance of the SVS. Considered separately from the extremely permeable sub-slabs, the depressurization systems perform better than the pressurization systems. 17 refs. [Francais] Le fonctionnement des Systemes de Ventilation active du Sol (SVS) a ete etudie a l`aide d`un outil numerique precedemment evalue avec succes. Les parametres explores sont les permeabilites du sol et du gravier place sous plancher bas, l`amplitude de la pression appliquee au point d`installation du systeme, et le mode de fonctionnement: Depressurisation ou Pressurisation. Les mecanismes contribuant au succes des deux systemes sont identifies. Cette etude numerique montre que la presence d`une couche de gravier sous plancher bas ameliore de facon considerable les performances des SVS. Mis a part le cas des sols extremement permeables, les systemes de Depressurisation ont de meilleures performances que les systemes de Pressurisation. 17 refs.

  8. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01T23:59:59.000Z

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  9. Residential Learning University Housing

    E-Print Network [OSTI]

    Rusu, Adrian

    Residential Learning & University Housing Handbook 2008 - 2009 A Guide for Residential Living on the Campus of Rowan University #12;Welcome to Residential Learning & University Housing! The primary purpose of the Office of Residential Life & University Housing is to assist and support students in the pursuit

  10. RESIDENTIAL COLLEGES NORTHWESTERN

    E-Print Network [OSTI]

    Apkarian, A. Vania

    c RESIDENTIAL COLLEGES NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  11. Residential Colleges NORTHWESTERN

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Residential Colleges NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  12. Copyright 2006 Mosby, Inc., an affiliate of Elsevier Inc. Pilbeam: Mechanical Ventilation, 4th

    E-Print Network [OSTI]

    Kay, Mark A.

    Copyright © 2006 Mosby, Inc., an affiliate of Elsevier Inc. Pilbeam: Mechanical Ventilation, 4th Edition Special Techniques in Mechanical Ventilation SECTION IV: Nitric Oxide OUTLINE PROPERTIES SYSTEMS FOR DELIVERING INHALED NO I-NOvent Delivery System Continuous-Flow Ventilator System Premixed

  13. Numerical Comparison of Ventilation Strategies Performance in a Single-family Dwelling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -family house and its ventilation systems are simulated using SIMBAD Toolbox, a combined mass and heat transfer ventilation systems for a heating period. This paper deals with the simulation results with regard to indoor system, is about 22 to 31% depending on the efficiency of the heat exchanger. Balanced ventilation also

  14. Cooling airflow design tool for displacement ventilation.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred

    2009-01-01T23:59:59.000Z

    Tool for Displacement Ventilation: User Notes 2|Page 5.air  temperature.   Ventilation effectiveness is equivalent for Displacement  Ventilation (Chen and Glicksman 2003).  

  15. Design methods for displacement ventilation: Critical review.

    E-Print Network [OSTI]

    Schiavon, Stefano

    2006-01-01T23:59:59.000Z

    Displacement ventilation in non-industrial premises, REHVADisplacement ventilation in non-industrial premises, REHVAof displacement ventilation in non-industrial premises. The

  16. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    SciTech Connect (OSTI)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01T23:59:59.000Z

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  17. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  18. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

    2011-11-01T23:59:59.000Z

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  19. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01T23:59:59.000Z

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  20. Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model

    E-Print Network [OSTI]

    Walker, Christine E. (Christine Elaine)

    2006-01-01T23:59:59.000Z

    Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

  1. Carbon-dioxide-controlled ventilation study

    SciTech Connect (OSTI)

    McMordie, K.L.; Carroll, D.M.

    1994-05-01T23:59:59.000Z

    The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

  2. Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,*

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,* , Kisup Leeb ventilation systems for buildings requires a suitable tool to assess the system performance-scale experimental, multizone network, zonal, and CFD) for predicting ventilation performance in buildings, which can

  3. Genesis and legacy : a study of traditional, contemporary and proposed systems of control over residential developments in Cairo, Egypt

    E-Print Network [OSTI]

    El-Husseiny, Mohamed A. (Mohamed Ahmed)

    1987-01-01T23:59:59.000Z

    This thesis deals with contemporary residential developments presently being carried out by the formal private sector in Cairo. These developments are typical of many other cities in Egypt, and indeed throughout the ...

  4. A computer simulation appraisal of non-residential low energy cooling systems in California

    E-Print Network [OSTI]

    Bourassa, Norman; Haves, Philip; Huang, Joe

    2002-01-01T23:59:59.000Z

    of Nonresidential Low Energy Cooling Systems in California-of Nonresidential Low Energy Cooling Systems in Californiaof Nonresidential Low Energy Cooling Systems in California

  5. 3, 805826, 2006 Ventilation under

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OSD 3, 805­826, 2006 Ventilation under global warming A. Gnanadesikan et al. Title Page Abstract ocean ventilation change under global warming? A. Gnanadesikan 1 , J. L. Russell 2 , and F. Zeng 3 1­826, 2006 Ventilation under global warming A. Gnanadesikan et al. Title Page Abstract Introduction

  6. The International Journal of Ventilation

    E-Print Network [OSTI]

    California at Davis, University of

    air quality and reducing energy required for heating, cooling, and ventilation. One application. Introduction Heating, cooling and ventilation can account for 50 percent of total building energy useThe International Journal of Ventilation Volume 12 Number 4 ISSN 1473 - 3315 March 2014 Contents

  7. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    modeling framework of the Residential End-Use Energy Plamiing System (REEPS) developed for the Electric

  8. Automatic Verification of Wireless Control in a Mining Ventilation Maria D. Di Benedetto1, Alessandro D'Innocenzo1, Emmanuele Serra1, Emmanuel Witrant2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Automatic Verification of Wireless Control in a Mining Ventilation System Maria D. Di Benedetto1 control problem for a mine ventilation system. Ventilation control is essential for the control for the so called secondary ventilation system that ensures air flow in the chambers of the mine where

  9. Residential Cold Climate Heat Pump with Variable-Speed Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Climate Heat Pump with Variable-Speed Technology Residential Cold Climate Heat Pump with Variable-Speed Technology Purdue prototype system Purdue prototype system Unico...

  10. Duquesne Light Company- Residential Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying...

  11. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  12. Residential Energy Audits

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01T23:59:59.000Z

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  13. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  14. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    on Residential Energy Efficiency Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating With Utilities on Residential Energy...

  15. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

  16. Membership Criteria: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

  17. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    No. DE-AC02-05CH11231. Do PV Systems Increase Residentialimpacts of photovoltaic (PV) energy systems on home salesthat existing homes with PV systems sold for a premium over

  18. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    of photovoltaic (PV) energy systems on home sale prices.Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

  19. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    of photovoltaic (PV) energy systems on home sale prices.Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

  20. Evaluation of Existing Technologies for Meeting Residential Ventilation

    E-Print Network [OSTI]

    ....................................................................................................................... 5 Heating and Cooling Equipment) ........................................................................... 9 5. Central Fan Integrated (CFI) Supply with air inlet in return and continuously operating exhaust ........................................................................................................ 9 6. Continuous Supply

  1. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    Presentation b y Steve Emmerich Presentation by Bob H e n dworkshop John Talbott Steve Emmerich Bob Hendron SrikanthREVIEW Presentation by Steve Emmerich A S H R A E S T A N D

  2. Report on Applicability of Residential Ventilation Standards in California

    E-Print Network [OSTI]

    Sherman, Max H.; McWilliam, Jennifer A.

    2005-01-01T23:59:59.000Z

    IL. ICC. 2003. "International Energy Conservation Code."and the International Energy Conservation Code (IECC) are

  3. Review of Literature Related to Residential Ventilation Requirements

    E-Print Network [OSTI]

    McWilliams, Jennifer; Sherman, Max

    2005-01-01T23:59:59.000Z

    IL. ICC. 2003. "International Energy Conservation Code."Code (200 3) International Energy Conservation Code (2003) C

  4. Floor-Supply Displacement Ventilation in a Small Office Nobukazu Kobayashi

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Floor-Supply Displacement Ventilation in a Small Office Nobukazu Kobayashi Building Technology Displacement ventilation . Computational fluid dynamics . Experimental measurements . Floor supply . Indoor air ventilation system using computational-fluid-dynamics (CFD). The experiment was carried out in a full

  5. Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality exchange rate, air distribution method, and ventilation control strategies on the IAQ in an arena. With CFD

  6. Study of natural ventilation in buildings by large eddy simulation Yi Jiang and Qingyan Chen*

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Study of natural ventilation in buildings by large eddy simulation Yi Jiang and Qingyan Chen 02139 *Phone: (617) 253-7714, Fax: (617) 253-6152, Email: qchen@mit.edu Abstract Natural ventilation in the mechanical ventilation systems. Two subgrid-scale models of large eddy simulation (LES), a Smagorinsky

  7. Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    save energy consumed by the heating, ventilating, and air- conditioning systems in a building1 Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation@purdue.edu Abstract Natural ventilation in buildings can create a comfortable and healthy indoor environment, and can

  8. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  9. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  10. PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION

    E-Print Network [OSTI]

    PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

  11. Residential Wood Residential wood combustion (RWC) is

    E-Print Network [OSTI]

    Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

  12. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    cooling and ventilating controls are more sophisticated than commonly available in North America 29 . Remoteand cooling systems. Future thermostats may reside in PCs, digital picture frames, or other kinds of remote

  13. Development of self-tuning residential oil-burner. Oxygen sensor assessment and early prototype system operating experience

    SciTech Connect (OSTI)

    McDonald, R.J.; Butcher, T.A.; Krajewski, R.F.

    1998-09-01T23:59:59.000Z

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available. BNL has continued to investigate all types of sensor technologies associated with combustion systems including all forms of oxygen measurement techniques. In these studies the development of zirconium oxide oxygen sensors has been considered over the last decade. The development of these sensors for the automotive industry has allowed for cost reductions based on quantity of production that might not have occurred otherwise. This report relates BNL`s experience in testing various zirconium oxide sensors, and the results of tests intended to provide evaluation of the various designs with regard to performance in oil-fired systems. These tests included accuracy when installed on oil-fired heating appliances and response time in cyclic operating mode. An evaluation based on performance criteria and cost factors was performed. Cost factors in the oil heat industry are one of the most critical issues in introducing new technology.

  14. Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems

    E-Print Network [OSTI]

    the HVAC system inside the thermal and air leakage envelope by locating the system in a cathedralized attic within the insulated envelope of the house, reducing air conditioner capacity, correct installation

  15. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewable Energy,Geothermal3: RedAbout(Brochure),Ventilation

  16. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01T23:59:59.000Z

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  17. DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

  18. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    layer. In order to test wireless relay and price indicator,Relay As mentioned, the system failure during eld test has

  19. An Analysis of Residential PV System Price Differences Between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01T23:59:59.000Z

    A levelized cost of electricity (LCoE) analysis based on thePV system prices could reduce LCoE assumptions: 25-year life

  20. Energy Implications of Residential Particle Control Technologies Jeffrey A. Siegel1,*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    heating and cooling systems with a MERV 11 filter, followed by a rangehood ventilation fan, with central

  1. Chicopee Electric Light- Residential Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

  2. Solar Energy Option Requirement for Residential Developments

    Broader source: Energy.gov [DOE]

    In March 2009 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/33_.PDF A.B. 1558]) designed to support the integration of solar energy systems into new residential...

  3. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved...

  4. Austin Energy- Residential Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

  5. Waverly Light & Power- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for the purchase and installation of energy efficient HVAC systems and appliances to residential customers. Rebates are available for central AC...

  6. Minnesota Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a variety of appliance, lighting, and heating and cooling system rebates to its residential customers to help make homes more energy efficient. Rebates are available for...

  7. LBNL -47412 Residential Commissioning to Assess

    E-Print Network [OSTI]

    LBNL - 47412 Residential Commissioning to Assess Envelope and HVAC System Performance1 Craig P Scientist and Group Leader at LBNL in its Energy Performance of Buildings Group. #12;i TABLE OF CONTENTS

  8. Kentucky Power- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Power's High Efficiency Heat Pump Program offers a $400 rebate to residential customers living in existing (site-built) homes who upgrade electric resistance heating systems with a new,...

  9. Modeling of Residential Attics with Radiant Barriers 

    E-Print Network [OSTI]

    Wilkes, K. E.

    1988-01-01T23:59:59.000Z

    This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant...

  10. Rating of Mixed Split Residential Air Conditioners

    E-Print Network [OSTI]

    Domanski, P. A.

    1988-01-01T23:59:59.000Z

    A methodology is presented for rating the performance of mixed, split residential air conditioners. The method accounts for the impact on system performance of the indoor evaporator, expansion device and fan; three major components that are likely...

  11. An Analysis of Residential PV System Price Differences Between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01T23:59:59.000Z

    inverter costs. Figure 4: Median installed price of non-appraised PV systemsPV system prices could reduce LCoE assumptions: 25-year life span, nominal discount rate of 4.5%, O&M $100/year, one inverter

  12. Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation surface of

    E-Print Network [OSTI]

    Boyer, Edmond

    Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation Conference 23-27 April 2012, Nantes, France 3801 #12;1. INTRODUCTION Lightweight ventilated facades cavity is almost totally open, fully ventilated and not very wide. Therefore, its contribution

  13. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    SciTech Connect (OSTI)

    Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

    2011-04-12T23:59:59.000Z

    An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

  14. Application of CO{sub 2}-based demand-controlled ventilation using ASHRAE Standard 62: Optimizing energy use and ventilation

    SciTech Connect (OSTI)

    Schell, M.B. [Engelhard Sensor Technologies, Santa Barbara, CA (United States); Turner, S.; Shim, R.O. [Chelsea Group, Ltd., Delray Beach, FL (United States)

    1998-12-31T23:59:59.000Z

    CO{sub 2}-based demand-controlled ventilation (DCV), when properly applied in spaces where occupancies vary below design occupancy, can reduce unnecessary overventilation while implementing target per-person ventilation rates. A recent interpretation of ANSI/ASHRAE Standard 62-1989, Interpretation 1C 62-1989-27, has affirmed that carbon dioxide (CO{sub 2})-based demand-controlled ventilation (DCV) systems can use CO{sub 2} as an occupancy indicator to modulate ventilation below the maximum total outdoor air intake rate while still maintaining the required ventilation rate per person, provided that certain conditions are met. This paper, co-written by the author of the interpretation, provides guidelines on the application of CO{sub 2}-based DCV. In addition, a method is presented that allows reasonable estimates of the actual ventilation rate per person being effectively delivered to the space, based on comparing predicted CO{sub 2} ventilation levels with CO{sub 2} levels logged in an occupied space. Finally, a model is presented to evaluate various CO{sub 2}-based DCV strategies to predict their delivery of target per-person ventilation rates within the lag times required by the standard.

  15. Noninvasive Positive Pressure Ventilation in the Emergency

    E-Print Network [OSTI]

    Noninvasive Positive Pressure Ventilation in the Emergency Department Mei-Ean Yeow, MDa , Jairo I, 1411 East 31st Street, Oakland, CA 94602-1018, USA Noninvasive ventilation is defined as the provision ventilators consist of both negative and positive pressure ventilators. Because negative pressure ventilation

  16. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    SciTech Connect (OSTI)

    Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

    2011-04-12T23:59:59.000Z

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

  17. The development of an Automated Residential Expert System (A.R.E.S.)

    E-Print Network [OSTI]

    White, Pablo

    2013-02-22T23:59:59.000Z

    are employing this vibrant technology to the following areas: expert systems, fuzzy logic, neural networks, robotics, vision, natural language, speech recognition, and genetic algorithms. As a society, artificial intelligence has prompted intense philosophical...

  18. Project Profile: Development of a Low-Cost Residential Plug-and-Play Photovoltaic System

    Broader source: Energy.gov [DOE]

    North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage...

  19. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01T23:59:59.000Z

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  20. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.