Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Behavioral Assumptions Underlying California Residential Sector...  

Broader source: Energy.gov (indexed) [DOE]

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

2

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

38 3.2.1. SDG&E Residential Electric Rates and TheirFootprint of Single-Family Residential New Construction.Solar photovoltaic financing: residential sector deployment,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

3

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

of Residential Source Heat Pump Gas Furnace HeatingResidential Heating Equipment (1) Database Year Minimum Type Code Fuel Effective (2) Efficiency (3) Heat Pumpheating technology of choice for almost 40% of the residential sector. Heat pumps

Wenzel, T.P.

2010-01-01T23:59:59.000Z

4

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

J.E. 1986. The LBL Residential Energy Model. LawrenceInc. MEANS. 1992. Residential Cost Data: 11th Annual EditionInstitute. 1989. Residential End-Use Energy Consumption: A

Wenzel, T.P.

2010-01-01T23:59:59.000Z

5

EIA Energy Efficiency-Residential Sector Energy Intensities,...  

U.S. Energy Information Administration (EIA) Indexed Site

8c) html table 8c excel table 8c excel table 8c For questions about the "Residential Energy Intensity Tables," please contact: Behjat Hojjati Program Manager...

6

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Test Procedures for Water Heaters; Kitchen Ranges, Ovens,Use of Residential Water Heaters. Lawrence Berkeley NationalEnergy Use of Residential Water Heaters. Lawrence Berkeley

Wenzel, T.P.

2010-01-01T23:59:59.000Z

7

Energy-saving technology adoption under uncertainty in the residential sector  

E-Print Network [OSTI]

Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier in a context of growing energy demand. This phenomenon is in part due to the importance of residential energy: in France, buildings account for 23% of CO2 emissions, of which 70% are generated by the residential sector

Paris-Sud XI, Université de

8

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

that forecast US residential energy consumption by end-use.new unit energy consumption in the U.S. DOE appliancethe Residential Energy Consumption Survey, or RECS (US DOE

Wenzel, T.P.

2010-01-01T23:59:59.000Z

9

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network [OSTI]

Financial Incentives in the Residential Sector Stephane deFinancial Incentives in the Residential Sector Stephane desavings achieved in the residential sector. In contrast,

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

10

Energy data sourcebook for the US residential sector  

SciTech Connect (OSTI)

Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

1997-09-01T23:59:59.000Z

11

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network [OSTI]

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

12

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

rate paid at the utilitys avoided cost. Results of theroughly to the utilitys avoided cost of energy. Details anda reasonable value for the avoided cost of residential PV

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

13

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

McNeil, Michael A.

2010-01-01T23:59:59.000Z

14

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)  

Broader source: Energy.gov [DOE]

This paper examines the behavioral assumptions that underlie Californias residential sector energy efficiency programs and recommends improvements that will help to advance the states ambitious greenhouse gas reduction goals.

15

Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector  

E-Print Network [OSTI]

Energy consumption from the residential sector is a complex sociotechnical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM...

Kelly, Scott

16

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Conservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building Equipment

Wenzel, T.P.

2010-01-01T23:59:59.000Z

17

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

of renewable energy as well as create incentives for largenew Renewable Energy Program to provide financial incentivesfinancial incentives to promote renewable energy than energy

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

18

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings. WashingtonSummer Study on Energy Efficiency in Buildings. WashingtonStudy on Energy Efficiency in Buildings. American Council

Wenzel, T.P.

2010-01-01T23:59:59.000Z

19

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

et al. (2005). Renewable energy policies and markets in theefficiency and renewable energy policy in the state. Inand Renewable Energy Technology and Policy. Washington,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

20

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

Conservation vs. renewable energy: Cases (sic) studies from2009). Distributed Renewable Energy Operating Impacts anddeployment, National Renewable Energy Lab CPUC (2006). D.

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

22

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar systems and energy efficiency and conservationEnergy Tax Act encouraged homeowners to invest in energy conservation and solarenergy consumption patterns: that some adopters of solar will thereafter become adopters of energy conservation

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

23

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

81). EIA, Energy Information Administration. US DOE, U.S.84). EIA, Energy Information Administration. US DOE, U.S.87). EIA, Energy Information Administration. US DOE, U.S.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

24

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

40 Figure 3.2. Levelized Cost of Energyof Water and Power Levelized cost of energy Load-servingabove the expected levelized cost of energy (LCOE) for PV-

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

25

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

26

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Gas Market Survey: 1995. AHAM, Association of Home ApplianceEnergy Efficiency and Consumption Trends. Chicago: AHAM.AHAM, Association of Home Appliance Manufacturers. 1996.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

27

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Energy Consumption Coefficients, Palo Alto, CA: EPRI. EA-3410. EPRI, Electric Power Research Institute. 1989.Estimates. Palo Alto, CA: EPRI. CU-6487. This report reviews

Wenzel, T.P.

2010-01-01T23:59:59.000Z

28

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

an Energy-Efficient Economy. Hanford, J.W. and Y . J. Huang.Laboratory. LBL-33101. Hanford, J.W. , J.G. Koomey, L.E.97. Ritschard, R. L. , J.W. Hanford, and A.O. Sezgen. 1992a.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

29

Table E10. Residential Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:0.

30

Table E3. Residential Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.

31

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type1 Delivered21

32

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type1

33

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share of

34

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share of4

35

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share of45

36

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share

37

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share7

38

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share78

39

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share78

40

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share780

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share7801

42

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13 Share78012

43

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type13

44

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type134 2005

45

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type134 20055

46

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type134 200552

47

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type134 2005523

48

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type134 20055234

49

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type134 200552345

50

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type134

51

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type1347 2025

52

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type1347 20258

53

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type1347 202589

54

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

55

Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector  

E-Print Network [OSTI]

Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

Nadkarni, Nikhil S. (Nikhil Sunil)

2012-01-01T23:59:59.000Z

56

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential and3

57

Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report  

SciTech Connect (OSTI)

This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

Cole, Henry E.; Fullen, Robert E.

1980-09-01T23:59:59.000Z

58

Rank Residential Sector Commercial Sector Industrial Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year

59

Tampa Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

60

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect (OSTI)

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

16 Figure 10. Residential Primary Energy Use in 2000 and3. Fuel Consumption in the Residential Sector in 2005 in10 Table 6. Residential Activity

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

62

Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNLs ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energys (DOEs) energy efficiency programs in the buildings sector.

Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

2014-06-18T23:59:59.000Z

63

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

SciTech Connect (OSTI)

With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

Letschert, Virginie; McNeil, Michael A.

2008-05-13T23:59:59.000Z

64

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Efficiency Scenario (non-residential sector only) AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

65

Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4 2010

66

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4

67

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)

68

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2 Year

69

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2 Year3

70

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2 Year34

71

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2 Year345

72

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2

73

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)27 Range

74

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)27 Range8

75

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)27

76

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)27

77

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2720 Site

78

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2720

79

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)27204

80

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)272045

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)2720456

82

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)27204567

83

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type (1)272045678

84

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type

85

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type1 Delivered

86

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41 Type1 Delivered2

87

Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan  

E-Print Network [OSTI]

Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

88

End-use electrification in the residential sector : a general equilibrium analysis of technology advancements  

E-Print Network [OSTI]

The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

Madan, Tanvir Singh

2012-01-01T23:59:59.000Z

89

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

L ABORATORY Japans Residential Energy Demand Outlook tol i f o r n i a Japans Residential Energy Demand Outlook toParticularly in Japans residential sector, where energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

90

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

ABORATORY Japans Residential Energy Demand Outlook to 2030o r n i a Japans Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

91

Residential Energy Audits  

E-Print Network [OSTI]

A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

Brown, W.

1985-01-01T23:59:59.000Z

92

Distributed thermal energy storage in the residential sector: commercialization-readiness assessment and implementation strategy  

SciTech Connect (OSTI)

The readiness of each of three candidate TES systems for near-term commercialization was examined. It was concluded that of these, TES for residential space and hot-water heating are technically and economically ready for commercialization. TES systems are unlikely to be more attractive than standard-heat-pump systems in all areas of the country; however, in many regions, particularly in the northeast and north central states, TES appears to be more attractive. In the not-too-distant future, use of TES with heat pumps may prove to be the best system nationwide. For the third system, TES for residential space cooling, it was found that those units that are presently technically viable would be too costly except in a few parts of the country; more development will be required before these systems could be commercialized on a national scale. TES systems that might be used in commercial buildings (e.g., stores and office buildings) were not examined. Environmental, market and economic, and institutional-readiness studies are presented. Market penetration and benefit analysis are summarized. Barriers to commercialization are identified along with strategies for overcoming the barriers. Schedules and resource requirements are discussed. Summaries of the study techniques and additional information are given in the appendices. (MCW)

None

1980-08-01T23:59:59.000Z

93

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network [OSTI]

of Electricity Energy Efficiency Programs. Resource forWho Should Administer Energy-Efficiency Programs? Berkeleyresources/state-energy-efficiency-policy-briefs. Caracino

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

94

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network [OSTI]

requires domestic energy suppliers to save 154 megatonnes ofa customers utility, energy supplier, a third-party capital

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

95

Solar Photovoltaic Financing: Residential Sector Deployment  

SciTech Connect (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

96

Guide for Benchmarking Residential Energy Efficiency Program...  

Energy Savers [EERE]

Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential...

97

Behaviour Oriented Optimisation Strategies for Energy Efficiency in the Residential Sector  

E-Print Network [OSTI]

to a performing renovation with an annual heat demand of 64.6 kWh/m 2 a and thus can be labelled a low energy building (see Diefenbach 2005, Ebel et al. 2003). Although the inclusion of an example of a passive house would have been interesting..., the calculation method of the DIN 4108-6 would not provide the means to assess the energy demand of a passive house correctly as the lack of a realistic inclusion of changes in the solar gains already indicated. The then needed change of calculation methods...

Koch, A.; Huber, A.; Avci, N.

98

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water58

99

Regional variations in US residential sector fuel prices: implications for development of building energy performance standards  

SciTech Connect (OSTI)

The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

1981-03-01T23:59:59.000Z

100

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 EfficiencyWater

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 EfficiencyWater5 2010

102

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water58 Annual4561341

103

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water583 2004 Water

104

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water583 2004 Water6

105

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

SciTech Connect (OSTI)

A large variety of energy-efficiency policy measures exist. Some are mandatory, some are informative, and some use financial incentives to promote diffusion of efficient equipment. From country to country, financial incentives vary considerably in scope and form, the type of framework used to implement them, and the actors that administer them. They range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-points rewarding customers for buying highly efficient appliances (Japan). All have the primary objective of transforming the current market to accelerate the diffusion of efficient technologies by addressing up-front cost barriers faced by consumers; in most instances, efficient technologies require a greater initial investment than conventional technologies. In this paper, we review the different market transformation measures involving the use of financial incentives in the countries belonging to the Major Economies Forum. We characterize the main types of measures, discuss their mechanisms, and provide information on program impacts to the extent that ex-ante or ex-post evaluations have been conducted. Finally, we identify best practices in financial incentive programs and opportunities for coordination between Major Economies Forum countries as envisioned under the Super Efficient Appliance Deployment (SEAD) initiative.

Can, Stephane de la Rue du; Shah, Nihar; Phadke, Amol

2011-07-13T23:59:59.000Z

106

Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

107

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network [OSTI]

in Residential Hot Water Heaters. Berkeley, CA: Lawrenceelectricity savings because gas hot water heaters are moreprevalent than electric water heaters in California. Bathing

Benenson, P.

2010-01-01T23:59:59.000Z

108

Conference Agenda: Residential Energy Efficiency Solutions 2012...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general...

109

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

SciTech Connect (OSTI)

This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

2011-04-15T23:59:59.000Z

110

Smart Residential Energy Systems How Pervasive Com-puting can be used to conserve energy  

E-Print Network [OSTI]

In order to be effective, residential energy feedback and control systems have to feature a low usageSmart Residential Energy Systems ­ How Pervasive Com- puting can be used to conserve energy Markus accounts for about 40% of total energy consumption [1]. The residential sector alone has seen a rise

111

Modeling diffusion of electrical appliances in the residential sector  

SciTech Connect (OSTI)

This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

McNeil, Michael A.; Letschert, Virginie E.

2009-11-22T23:59:59.000Z

112

Unitil- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

113

Questions Asked during the Financing Residential Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

114

The residential energy map : catalyzing energy efficiency through remote energy assessments and improved data access  

E-Print Network [OSTI]

Although energy efficiency has potential to be a significant energy resource in the United States, many energy efficiency projects continue to go unrealized. This is especially true in the residential sector, where efficiency ...

Howland, Alexis (Alexis Blair)

2013-01-01T23:59:59.000Z

115

Estimated United States Residential Energy Use in 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

Smith, C A; Johnson, D M; Simon, A J; Belles, R D

2011-12-12T23:59:59.000Z

116

MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR  

E-Print Network [OSTI]

LBNL-40295 UC-1600 MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR M. C. Sanchez, J. G-up model of the miscellaneous electricity end use. Using shipment data and a consistent stock accounting-2010). Our study has two components: a historical analysis of miscellaneous electricity use (1976- 1995

117

Building America Residential Energy Efficiency Research Planning...  

Broader source: Energy.gov (indexed) [DOE]

Research Planning meeting in October 2011, held in Washington, D.C. Residential Energy Efficiency Planning Meeting Summary Report More Documents & Publications Residential Energy...

118

Residential Energy Efficiency Customer Service Best Practices...  

Energy Savers [EERE]

Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

119

Building America Residential Energy Efficiency Technical Update...  

Energy Savers [EERE]

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

120

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

122

Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

123

Residential Renewable Energy Tax Credit  

Broader source: Energy.gov [DOE]

Established by ''The Energy Policy Act of 2005'', the federal tax credit for residential energy property initially applied to solar-electric systems, solar water heating systems and fuel cells. '...

124

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network [OSTI]

energy was supplied by hydroelectric power. needed for powerprovide flood control, hydroelectric power, and But they arewas generated by hydroelectric power. is also needed for

Benenson, P.

2010-01-01T23:59:59.000Z

125

CPS Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

126

Raising awareness for energy efficiency in the service sector: learning from success stories to disseminate good practices  

E-Print Network [OSTI]

the residential sector. In the UK, the energy consumption growth of the service sector is assessed to be three time higher than for residential sector (SCRASE ­ 2001). Energy efficiency in the service sector1/15 Raising awareness for energy efficiency in the service sector: learning from success stories

Boyer, Edmond

127

Energy Optimization (Electric)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

128

Austin Energy's Residential Solar Rate  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW...

129

Residential Energy Disclosure (Hawaii)  

Broader source: Energy.gov [DOE]

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

130

PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -  

E-Print Network [OSTI]

Conference, "New Energy Conservation Technologies", Berlin,IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRYIN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY

Schipper, Lee

2013-01-01T23:59:59.000Z

131

Analysis of fuel shares in the residential sector: 1960 to 1995  

SciTech Connect (OSTI)

Historical and future energy use by fuel type in the residential sector of the United States are examined. Of interest is the likely relative demand for fuels as they affect national policy issues such as the potential shortfall of electric generating capacity in the mid to late 1990's and the ability of the residential sector to switch rapdily among fuels in response to fuel shortages, price increases and other factors. Factors affecting the share of a fuel used rather than the aggregate level of energy use are studied. However, the share of a fuel used is not independent of the level of energy consumption. In the analysis, the level of consumption of each fuel is computed as an intermediate result and is reported for completeness.

Reilly, J.M.; Shankle, S.A.; Pomykala, J.S.

1986-08-01T23:59:59.000Z

132

The potential for electricity efficiency improvements in the US Residential Sector  

SciTech Connect (OSTI)

This study represents the most elaborate assessment to date of US residential sector electricity improvements. Previous analyses have estimated the conservation potential for other countries, states, or individual utility service territories. As concern over greenhouse gas emissions has increased, interest has grown in estimates of conservation potential for the US residential sector as a whole. The earliest detailed estimate of US conservation potential is now out of date, while more recent estimates are less detailed than is desirable for engineering-economic estimates of the costs of reducing carbon emissions. In this paper, we first describe the methodology for creating supply curves of conserved energy, and then illustrate the subtleties of assessing the technical conservation potential. Next we present the data and forecasts used in this assessment, including costs, baseline thermal characteristics, energy use, and energy savings. Finally, we present the main results and conclusions from the analysis, and discuss future work. 102 refs., 7 figs., 16 tabs.

Koomey, J.G.; Atkinson, C.; Meier, A.; McMahon, J.E.; Boghosian, S.; Atkinson, B.; Turiel, I.; Levine, M.D.; Nordman, B.; Chan, P.

1991-07-01T23:59:59.000Z

133

INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE  

E-Print Network [OSTI]

and Analysis of Swedish Residential Energy Use Data 1960-80.1980. International Residential Energy Use and ConservationInternational Comparison of Residential Energy ! Js~. Report

Schipper, L.

2013-01-01T23:59:59.000Z

134

RESIDENTIAL SECTOR END-USE FORECASTING WITH EPRI-REEPS 2.1: SUMMARY INPUT ASSUMPTIONS AND RESULTS  

E-Print Network [OSTI]

-76SF00098. #12;#12;i ABSTRACT This paper describes current and projected future energy use by end energy intensity per household of the residential sector is declining, and the electricity intensity per. Sanstad, and Leslie Shown Energy Analysis Program Energy and Environment Division Ernest Orlando Lawrence

135

Xcel Energy- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In addition to home energy audits, Xcel Energy offers rebates to North Dakota residential customers for the purchase of energy efficient heating and water heating technologies. Xcel offers rebates...

136

Clark Energy- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Clark Energy offers a free energy audit to provide residential customers with suggestions on ways to improve the energy efficiency of participating homes. Rebates are available for customers who...

137

Black Hills Energy (Electric)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Black Hills Energy (BHE) offers rebates for residential Colorado customers who purchase energy efficient residential equipment. This program offers rebates for customers who purchase and install...

138

Webinar: Residential Energy Code Compliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Webinar: Residential Energy Code Compliance Webinar: Residential Energy Code Compliance View the Code Compliance Funding Opportunity video or see the slides below. This webinar...

139

Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector  

SciTech Connect (OSTI)

The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

McNeil, Michael A.; Letschert, Virginie E.

2007-05-01T23:59:59.000Z

140

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period  

Broader source: Energy.gov [DOE]

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CALIFORNIA ENERGY Residential Duct Placement  

E-Print Network [OSTI]

through the integrated design, construction, and operation of building systems. The Integrated Energy Systems Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting;#12;ACKNOWLEDGEMENTS The products and outcomes presented in this report are part of the Integrated Design

142

2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview  

E-Print Network [OSTI]

2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview #12;2008 Residential Energy Plan2008 Residential Energy Plan Review ChecklistReview Checklist Simplification ChecklistsOther Available Checklists 2005 and 2008 Residential Energy Documentation2005 and 2008 Residential

143

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

144

Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector  

E-Print Network [OSTI]

2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual electricity consumption by country/region

McNeil, Michael A.; Letschert, Virginie E.

2008-01-01T23:59:59.000Z

145

Jasper County REMC- Residential Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential customers for the purchase and installation of energy...

146

System design and dynamic signature identification for intelligent energy management in residential buildings.  

E-Print Network [OSTI]

for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

Jang, Jaehwi

2008-01-01T23:59:59.000Z

147

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Office of Energy Efficiency and Renewable Energy (EERE)

This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005).

148

Entergy Arkansas- Residential Energy Efficiency Program (Arkansas)  

Broader source: Energy.gov [DOE]

Entergy Arkansas offers the Home Energy Solutions Program to help residential customers understand and make energy efficiency improvements in participating homes. Customers can call a toll-free...

149

Residential Energy Efficiency Research Planning Meeting Summary...  

Broader source: Energy.gov (indexed) [DOE]

Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings and outcomes from the U.S. Department of Energy's...

150

Residential Energy Star Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon offers rebates for Energy Star refrigerators, freezers and clothes washers to Oregon residential electric service customers of Portland General Electric (PGE) and Pacific...

151

Sawnee EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

152

Questar Gas- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Questar Gas provides rebates for residential customers who make their homes more energy efficient by installing certain energy saving appliances, efficient heating equipment, and certain...

153

Residential Energy Conservation Forum  

SciTech Connect (OSTI)

A public forum for homeowners on how to reduce energy usage in the home. Representatives from Long Island Power Authority, Renewable Energy Long Island, and BNL explored alternative energy solutions for the home, analyzing energy efficiency, cost-effectiveness, and environmental-friendliness. Some of the technologies discussed include solar panels, Energy Star-certified products, and modern wood-burning stoves.

2008-06-26T23:59:59.000Z

154

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

155

Ameren Illinois (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

156

Xcel Energy (Gas)- Residential Conservation Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

157

Lincoln Electric System (Residential)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

158

Collaborating With Utilities on Residential Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Collaborating With Utilities on Residential Energy Efficiency, Call Slides and Discussion Summary, June 12, 2014. Call Slides and Discussion Summary More Documents & Publications...

159

Building America Residential Energy Efficiency Stakeholders Meeting...  

Broader source: Energy.gov (indexed) [DOE]

2011, held in Atlanta, Georgia. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting More Documents & Publications Summary of...

160

Duquesne Light Company- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates to its residential customers for purchasing and installing energy-saving equipment. Eligible equipment includes dehumidifiers, freezers, refrigerators, air...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vermont Gas- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Equipment Replacement program offers rebates for residential customers who replace existing heating equipment or water heater with a more energy efficient one. Rebates vary depending on...

162

Tacoma Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power offers a variety of incentives for residential customers to improve the energy efficiency in participating homes. Prescriptive rebates are available for equipment such as heat pumps,...

163

Entergy New Orleans- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

164

OTEC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

165

PSNH- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Public Service of New Hampshire, in collaboration with [http://www.nhsaves.com/ nhsaves], provides incentives for residential customers to increase the energy efficiency of participating homes....

166

Ameren Illinois (Electric)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

167

Residential Energy Efficiency Stakeholders Meeting: March 2011...  

Broader source: Energy.gov (indexed) [DOE]

Stakeholders Meeting: March 2011 Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report and presentations for the Building...

168

Residential Energy Efficiency Technical Update Meeting: August...  

Broader source: Energy.gov (indexed) [DOE]

Technical Update Meeting: August 2011 Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and presentations for the...

169

Residential Energy Efficiency Research Planning Meeting: October...  

Broader source: Energy.gov (indexed) [DOE]

Meeting: October 2011 Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and presentations for the Building...

170

Residential Energy Consumption Survey:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. Energy InformationU.S.

171

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

172

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network [OSTI]

infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches...

Patrick, K.

2008-01-01T23:59:59.000Z

173

Energy Efficiency Trends in Residential and Commercial Buildings...  

Energy Savers [EERE]

Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building...

174

2011 Residential Energy Efficiency Technical Update Meeting Summary...  

Energy Savers [EERE]

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary...

175

2014-06-25 Issuance: Energy Conservation Standards for Residential...  

Broader source: Energy.gov (indexed) [DOE]

6-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule...

176

Urgent Action on Energy Conservation Standards for Residential...  

Energy Savers [EERE]

Urgent Action on Energy Conservation Standards for Residential Water Heaters (Docket Number: EERE-2012-BT-STD-0022) Urgent Action on Energy Conservation Standards for Residential...

177

Financing Residential Energy Efficiency with Carbon Offsets Transcript...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript for the...

178

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above...

179

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above...

180

Unitil (Gas)- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers its New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Home Performance with Energy Star Program can help to improve the energy...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Projected regional impacts of appliance efficiency standards for the U.S. residential sector  

SciTech Connect (OSTI)

Minimum efficiency standards for residential appliances have been implemented in the US for a large number of residential end-uses. This analysis assesses the potential energy, dollar, and carbon impacts of those standards at the state and national levels. In this assessment, the authors use historical and projected shipments of equipment, a detailed stock accounting model, measured and estimated unit energy savings associated with the standards, estimated incremental capital costs, demographic data, and fuel price data at the finest level of geographic disaggregation available. Energy savings from the standards are substantial. Total primary energy savings will peak in 2004 at about 0.7 exajoules/year (1 exajoule = 10{sup 18} joules {approx} 1 quadrillion Btu = 10{sup 15} Btus). Cumulative primary energy savings during the 1990 to 2010 period total 10.6 exajoules. Efficiency standards in the residential sector have been a highly cost-effective policy instrument for promoting energy efficiency. Projected cumulative present-values dollar savings after subtracting out the additional cost of the more efficient equipment are about $33 billion from 1990 to 2010. Average benefit/cost ratios for these standards are about 3.5 for the US as a whole. Projected carbon reductions are approximately 9 million metric tons of carbon/year from 2000 through 2010, an amount roughly equal to 4% of carbon emissions in 1990. Because these standards save energy at a cost less than the price of that energy, the resulting carbon emission reductions are achieved at negative net cost to society. Minimum efficiency standards reduce pollution and save money at the same time.

Koomey, J.G.; Mahler, S.A.; Webber, C.A.; McMahon, J.E.

1998-02-01T23:59:59.000Z

182

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

183

Puget Sound Energy- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Puget Sound Energy's (PSE) Residential Energy Efficiency Rebate Programs offer a variety of incentives for customers who purchase energy efficient appliances and equipment. Rebates include furnaces...

184

Xcel Energy (Gas and Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In addition to home energy audits, Xcel Energy offers rebates to Minnesota residential customers for the purchase of energy efficient HVAC systems, insulation, appliances and lighting equipment....

185

NorthWestern Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Customers who purchase or implement energy efficient...

186

Sustainable Energy Utility- Residential Energy Efficiency Program (District of Columbia)  

Broader source: Energy.gov [DOE]

The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides financial incentives to District residents who install energy-...

187

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

188

Connexus Energy- Residential Efficient HVAC Rebate Program  

Broader source: Energy.gov [DOE]

Connexus Energy offers rebates for residential customers to improve the energy efficiency of homes. Rebates are available for air source heat pumps, ductless heat pumps and ground-source heat pumps...

189

SCE- Non-Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Southern California Edison (SCE) offers incentives for non-residential customers, regardless of size and energy usage. [http://asset.sce.com/Documents/Business%20-%20Energy%20Management%20Solu......

190

Austin Energy- Residential Solar Loan Program (Texas)  

Broader source: Energy.gov [DOE]

Austin Energy offers two types of loans for residential customers to finance solar water heater and and solar PV systems in eligible homes. [http://www.austinenergy.com/Energy%20Efficiency/Programs...

191

Residential Alternative Energy System Tax Credit  

Broader source: Energy.gov [DOE]

Residential taxpayers who install an energy system using a recognized non-fossil form of energy on their home after December 31, 2001 are eligible for a tax credit equal to the amount of the cost...

192

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Energy Through Greater Efficiency: The Potential for Conservation in Californias Residential Sector. Report

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

193

Baseline data for the residential sector and development of a residential forecasting database  

SciTech Connect (OSTI)

This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

1994-05-01T23:59:59.000Z

194

Sustainable Energy Resources for Consumers Webinar on Residential...  

Broader source: Energy.gov (indexed) [DOE]

Publications Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Residential Retrofit Program Design Guide Overview Transcript.doc Residential...

195

Colorado Springs Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

196

Cape Light Compact- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

197

Detroit Public Lighting Department- Residential Energy Wise Program  

Broader source: Energy.gov [DOE]

The Detroit Public Lighting Department (PLD) offers residential customers rebates for energy efficient lights. In addition, low-income residential customers may qualify for free compact fluorescent...

198

Sample Residential Program Term Sheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sample Residential Program Term Sheet Sample Residential Program Term Sheet A sample for defining and elaborating on the specifics of a clean energy loan program. Sample...

199

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

SciTech Connect (OSTI)

The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

2010-05-03T23:59:59.000Z

200

Energy Efficiency & On-Bill Financing for Samll Business & Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Efficient Engine-Driven Heat Pump for the Residential Sector  

Broader source: Energy.gov [DOE]

Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

202

Residential Energy Conservation: Standards, Subsidies, and Public Programs  

E-Print Network [OSTI]

information for energy conservation tax credits. Qualifyinglations Establishing Energy Conservation Standards for Newof the Residential Energy Conservation Tax Credits: Concepts

Quigley, John M.

1986-01-01T23:59:59.000Z

203

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

204

Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

205

East Central Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

East Central Energy (ECE) provides rebates for residential customers to purchase energy efficient equipment. Rebates are offered for recycled refrigerators/freezers, central air conditioning units,...

206

Lower Valley Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

207

Black Hills Energy (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and install energy efficient natural gas appliances, heating equipment and insulation materials....

208

FirstEnergy (Potomac Edison)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

FirstEnergy (Potomac Edison) offers incentives to Maryland residential customers who are interested in upgrading to more energy efficient appliances and HVAC systems. Rebates are available on...

209

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating...

210

CPS Energy- New Residential Construction Incentives  

Broader source: Energy.gov [DOE]

CPS Energy offers incentives for new residential construction that is at least 15% more efficient than required by the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX29R&re=1...

211

Austin Energy- Residential Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

212

Kirkwood Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

213

Solar Energy Option Requirement for Residential Developments  

Broader source: Energy.gov [DOE]

In March 2009 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/33_.PDF A.B. 1558]) designed to support the integration of solar energy systems into new residential...

214

Berkshire Gas- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Berkshire Gas offers all commercial customers various energy efficiency rebates. Berkshire Gas will pay residential customers that use gas to heat their homes 75% of the installed cost (up to $2...

215

The College Station Residential Energy Compliance Code  

E-Print Network [OSTI]

The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

Claridge, D. E.; Schrock, D.

1988-01-01T23:59:59.000Z

216

Residential Energy Efficiency Messaging | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokineticClothes Washers (Appendix J2)Residential

217

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

218

Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results  

SciTech Connect (OSTI)

This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

Koomey, J.G.; Brown, R.E.; Richey, R. [and others

1995-12-01T23:59:59.000Z

219

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

Paris-Sud XI, Université de

220

Energy Audit Results for Residential Building Energy Efficiency  

E-Print Network [OSTI]

Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

public sector, and one in the private sector. Total energy consumptionenergy consumption increased by over 60% in the commercial building (including both public and private) sector.public sector ownership. 2.2.3 Energy data At the national or state level, end-use level energy consumption

Sathaye, Jayant

2011-01-01T23:59:59.000Z

222

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

end-use Residential primary energy consumption was 6.6 EJ inof primary energy. Primary energy consumption includes final14 Residential Primary Energy Consumption by Fuel (with

Zhou, Nan

2010-01-01T23:59:59.000Z

223

Vectren Energy Delivery of Indiana (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Vectren Energy Delivery offers its residential natural gas customers in Indiana rebates for the installation of certain high efficiency natural gas appliances and insulation measures. Rebates are...

224

Vectren Energy Delivery of Ohio (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Vectren Energy Delivery offers residential natural gas customers in Ohio rebates for the installation of certain high efficiency natural gas appliances and building insulation. Rebates are...

225

Xcel Energy- Residential and Low Income Home Energy Service  

Broader source: Energy.gov [DOE]

Xcel's Residential Program provides incentives to install energy efficiency measures in homes and small businesses in Xcel service territory. Rebates are available for evaporative cooling systems,...

226

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect (OSTI)

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

227

Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

228

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

229

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

230

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

energy consumption which includes the developing world. ThisWorld Energy Projection System (WEPS), for example, forecasts total energy consumptionto growth in energy consumption. The World Energy Outlook (

McNeil, Michael A.

2010-01-01T23:59:59.000Z

231

EECLP Webinar Series - #4 Residential Energy Efficiency Deep...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Series - 4 Residential Energy Efficiency Deep Dive, Part Two EECLP Webinar Series - 4 Residential Energy Efficiency Deep Dive, Part Two December 18, 2014 3:00PM to 4:00PM EST...

232

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of participating homes. Electric customers of MidAmerican Energy qualify for rebates on...

233

Energy Smart- Residential Energy Efficiency Rebate Program (20 Municipalities)  

Broader source: Energy.gov [DOE]

Franklin Energy Services has partnered with the Michigan Public Power Agency (MPPA), which is made up of 20 municipal utilities, to offer the Energy Smart Residential Energy Efficiency Rebate...

234

Silicon Valley Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

235

Energy-Sector Stakeholders Attend the Department of Energy's...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

236

Leveraging residential energy management through the Internet of Things  

E-Print Network [OSTI]

Leveraging residential energy management through the Internet of Things Markus Weiss Engineering into the residential environment contribute significantly to today's energy consumption. However, there exists a lack be achieved with adequate information at hand. Thus, conserving energy in residential spaces requires making

237

Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking

238

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

SciTech Connect (OSTI)

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

239

Calculating Energy Savings in High Performance Residential Buildings Programs: Preprint  

SciTech Connect (OSTI)

Accurate and meaningful energy savings calculations are essential for the evaluation of residential energy efficiency programs sponsored by the U.S. Department of Energy (DOE), such as the Building America Program (a public-private partnership designed to achieve significant energy savings in the residential building sector). The authors investigated the feasibility of applying existing performance analysis methodologies such as the Home Energy Rating System (HERS) and the International Energy Conservation Code (IECC) to the high performance houses constructed under Building America, which sometimes achieve whole-house energy savings in the 50-70% range. However, because Building America addresses all major end-use loads and because the technologies applied to Building America houses often exceed what is envisioned by energy codes and home-rating programs, the methodologies used in HERS and IECC have limited suitability, and a different approach was needed. The authors have researched these issues extensively over the past several years and developed a set of guidelines that draws upon work done by DOE's Energy Information Administration, the California Energy Commission, the International Code Council, RESNET, and other organizations that have developed similar methodologies to meet their needs. However, the final guidelines are tailored to provide accurate techniques for quantifying energy savings achieved by Building America to help policymakers assess the effectiveness of the program.

Hendron, B.; Rarrar-Nagy, S.; Anderson, R.; Judkoff, R.; Reeves, P.; Hancock, E.

2003-08-01T23:59:59.000Z

240

Quantifying the Effect of the Principal-Agent Problem on US Residential Energy Use  

E-Print Network [OSTI]

of the Residential Water Heater Market in the Northwest. Residential Water Heaters. http://www.eere.energy.gov/for Residential Water Heaters, Final Letter. http://

Murtishaw, Scott; Sathaye, Jayant

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Energy Agency (2004). World Energy Outlook 2004, OECD. M.A.consumption. The World Energy Outlook (WEO) developed by thefrom the IEAs World Energy Outlook 2002 (2000 data), and

McNeil, Michael A.

2010-01-01T23:59:59.000Z

242

NW Natural (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon administers energy efficiency rebate programs for both residential and commercial customers of NW Natural in Washington. Energy Trust is awarding the rebates and providing...

243

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of their homes. Eligible customers are eligible for rebates on water heaters, air...

244

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of homes. Eligible customers are eligible for rebates on furnaces, furnace fan motors,...

245

Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models  

Reports and Publications (EIA)

This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

2003-01-01T23:59:59.000Z

246

PROJECTED REGIONAL IMPACTS OF APPLIANCE EFFICIENCY STANDARDS FOR THE U.S. RESIDENTIAL SECTOR  

E-Print Network [OSTI]

was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building.S. for a large number of residential end-uses. This analysis assesses the potential energy, dollar, and carbon presented in this report represent lower bounds to the true benefits. Energy savings from the standards

247

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

SciTech Connect (OSTI)

The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

2009-03-31T23:59:59.000Z

248

Anoka Municipal Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Anoka Municipal Utilities (AMU) offers incentives for residential customers to install energy-efficient appliances and light bulbs in eligible homes. Rebates are available for Energy Star qualified...

249

Columbia Gas of Massachusetts- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Columbia Gas of Massachusetts participates in energy efficiency programs that reward eligible residential natural gas customers for utilizing energy efficient equipment or measures. The program...

250

Empire District Electric- Residential Energy Efficiency Rebate Program (Arkansas)  

Broader source: Energy.gov [DOE]

Empire District Electric Company (EDEC) offers rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances....

251

Cookeville Electric Department- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'...

252

Energy Efficiency Fund (Electric and Gas)- Residential New Construction Program  

Broader source: Energy.gov [DOE]

The Energy Efficiency Fund offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing...

253

Lodi Electric Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. Through the Energy Efficient Home...

254

Energy Efficiency & On-Bill Financing for Samll Business & Residential  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & On-Bill Financing For Small Businesses & Residential Presentation for: The Second US-China Energy Efficiency Forum Berkeley, California 05062011 May 5-6,...

255

Cherokee Electric Cooperative- Residential Energy Efficiency Loan Programs  

Broader source: Energy.gov [DOE]

Cherokee Electric Coop offers loans to residential customers for making energy efficiency improvements. In association with the Tennessee Valley Authority (TVA), the Energy Right program offers...

256

2015-02-10 Issuance Energy Conservation Standard for Residential...  

Energy Savers [EERE]

5-02-10 Issuance Energy Conservation Standard for Residential Furnaces; Notice of Proposed Rulemaking and Public Meeting 2015-02-10 Issuance Energy Conservation Standard for...

257

Gunnison County Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Gunnison County Electric Association (GCEA), a Touchstone Energy Cooperative, has a residential rebate program for eligible Energy Star appliances including clothes washers, dishwashers,...

258

Kentucky Utilities Company- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

259

Community based outreach strategies in residential energy upgrade programs  

E-Print Network [OSTI]

Home energy upgrades can reduce residential energy consumption and improve indoor conditions, thereby realizing environmental, economic, health and other social benefits. Utilities, government and other actors have established ...

McEwen, Brendan (Brendan Carl Francis)

2012-01-01T23:59:59.000Z

260

Central Lincoln People's Utility District- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Central Lincoln People's Municipal Utility District (CLPUD) offers a variety of energy efficiency programs for residential customers to save energy in eligible homes. Rebates are available for...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Clark Public Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Clark Public Utilities offers several energy incentives for residential customers to increase the energy efficiency of their homes. Rebates are offered for refrigerators, freezers, clothes washers,...

262

Columbia River PUD- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Columbia River PUD offers a variety of rebates to residential customers for making energy efficient improvements to electrically heated homes. Rebates are available for Energy Star manufactured...

263

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

264

CenterPoint Energy- Residential and Small Commercial Efficiency Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's (CNP) Residential and Small Commercial Standard Offer Program (SOP) provides incentives to encourage contractors to install energy efficiency measures in homes and small...

265

Lake Region Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lake Region Electric Cooperative (LREC) offers a variety of rebates for residential customers to improve the energy efficiency of homes. Rebates are available for Energy Star refrigerators and...

266

Identifying Cost-Effective Residential Energy Efficiency Opportunities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the...

267

Central Georgia EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes. This year,...

268

Omaha Public Power District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Omaha Public Power District (OPPD) offers energy credit refunds to its residential customers for installing high-efficiency heat pumps through the Energy Conservation Program. Newly constructed...

269

Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

270

Louisville Gas and Electric- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

271

Achieving Energy Savings Through Residential Energy Use Behavior  

E-Print Network [OSTI]

Achieving Energy Savings Through Residential Energy Use Behavior Studies Energy Efficiency Research Office PIER Buildings End-use Energy Efficiency Research Program www.energy.ca.gov/research/buildings May 2012 The Issue Understanding the factors that influence energy use behavior is a largely uninvestigated

272

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network [OSTI]

LBNL 62341 Energy Impact of Residential Ventilation Norms in the United States Max H. Sherman of Residential Ventilation Norms in the United States Max Sherman and Iain Walker SUMMARY The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published

273

EnergyUnited- Residential Energy Efficient Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program...

274

CenterPoint Energy (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers residential high-efficiency heating system and water heater rebates to Minnesota customers. These systems can greatly enhance savings and performance in residences which...

275

Richland Energy Services- Residential Energy Conservation and Solar Loan Program  

Broader source: Energy.gov [DOE]

The City of Richland provides low-interest loans to encourageit residential customers to pursue equipment upgrades and home improvement measures that will increase the energy efficiency of their...

276

Solar Photovoltaic Financing: Residential Sector Deployment | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV Incentive Programs

277

Better Buildings Residential Network | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015Commerce |BetterResidential Buildings »

278

Residential Water Heaters Webinar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGHResidentialFreezersofResidential

279

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

of which: CHP ele generation Residential Nonspecified (OtherOther Services (CHP heat Fuel use) Residential End Use (non-Residential Nonspecified (Other Sector) NEW Office (CHP heat

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

280

INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE  

SciTech Connect (OSTI)

This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

Schipper, L.; Ketoff, A.; Meyers, S.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

282

ResPoNSe: modeling the wide variability of residential energy consumption.  

E-Print Network [OSTI]

affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

Peffer, Therese; Burke, William; Auslander, David

2010-01-01T23:59:59.000Z

283

Residential Alternative Energy Tax Deduction  

Broader source: Energy.gov [DOE]

This statute allows taxpayers an income tax deduction of 40% of the cost of a solar, wind, geothermal, and certain biomass energy devices used for heating or electricity generation. Taxpayers can...

284

Energy conservation in commercial and residential buildings  

SciTech Connect (OSTI)

Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

Chiogioji, M.H.; Oura, E.N.

1982-01-01T23:59:59.000Z

285

Hercules Municipal Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Hercules Municipal Utility provides financial incentives for its residential members to increase the energy efficiency of participating homes. Rebates are offered for a variety of home appliances...

286

Residential Energy Efficiency Rebate (Offered by Several Cooperative Utilities)  

Broader source: Energy.gov [DOE]

Associated Electric Cooperative and many of its member cooperatives offer rebates to residential customers who purchase and install energy efficient equipment for the home. Eligible equipment...

287

Farmers Electric Cooperative- Residential/Agricultural Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Farmers Electric Cooperative offers incentives for its residential and agricultural members to increase the energy efficiency of eligible homes and facilities. In order to receive rebates,...

288

Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

289

Florida Power and Light- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Florida Power and Light (FPL) offers rebates to residential customers who implement certain energy efficiency improvements in eligible homes. HVAC rebates are available for the replacement of air...

290

Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

291

San Isabel Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

San Isabel Electric Association (SIEA) provides incentives for its residential customers to install energy efficient equipment. Rebates are available for certain water heaters, washers, dryers,...

292

Modesto Irrigation District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Modesto Irrigation Districts Home Rebate Program offers residential customers cash rebates for the purchase and installation of qualifying energy efficient products installed in existing homes....

293

Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lassen Municipal Utility District (LMUD) offers an incentive for residential customers who purchase and install efficient lighting, HVAC equipment and ENERGY STAR rated appliances for eligible...

294

Orlando Utilities Commission- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Orlando Utilities Commission (OUC) offers rebates on a variety of energy efficient improvements for residential customers. Customers should view the program brochure on the web site listed above...

295

Plumas-Sierra REC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Plumas-Sierra Rural Electric Cooperative (PSREC) offers several financial incentives for residential customers to improve the efficiency of their homes by upgrading to energy saving appliances and...

296

ConEd (Electric)- Residential Energy Efficiency Incentives Program  

Broader source: Energy.gov [DOE]

Con Edison is offering the Residential HVAC Electric Rebate Program. Through this program, incentives are offered on energy efficient heating and cooling equipment for residences in the eligible...

297

CenterPoint Energy- Residential Gas Heating Rebates  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

298

CenterPoint Energy (Gas)- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in eligible homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial...

299

Peninsula Light Company- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

300

South Kentucky RECC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Carroll County REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Carroll County REMC offers incentives to residential customers who purchase and install energy efficiency equipment for the home. Rebates are available on geothermal heat pumps, air source heat...

302

Florida City Gas- Residential Energy Smart Rebate Program  

Broader source: Energy.gov [DOE]

Florida City Gas (FCG) encourages residential customers to become more energy efficient by offering various rebates for the purchase and installation of efficient natural gas appliances. Rebate...

303

Missouri Rural Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Missouri Rural Electric Cooperative (MREC) offers a number of rebates to residential customers for the purchase and installation of energy efficient equipment. Eligible equipment includes clothes...

304

Elk River Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.elkriverutilities.com/index.php Elk River Municipal Utilities] provides rebates to their residential electric customers who purchase and install Energy Star rated appliances and HVAC...

305

Lumbee River EMC- Residential and Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

306

Central New Mexico Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Central New Mexico Electric Cooperative (CNMEC) provides an incentive for its residential members to purchase energy efficient water heaters, clothes washers, dishwashers, refrigerators, and...

307

Sulphur Springs Valley EC- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

308

Middle Tennessee EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Middle Tennessee Electric Membership Corporation (MTEMC) and the Tennessee Valley Authority (TVA) offer incentives for residential customers through the In-Home Energy Evaluation Program. This...

309

Columbia Rural Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Rural Electric Association offers its residential customers a variety of rebates for the purchase of energy efficient equipment and measures. Eligible equipment includes efficient clothes...

310

Norwich Public Utilities (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for...

311

Apply: Increase Residential Energy Code Compliance Rates (DE...  

Broader source: Energy.gov (indexed) [DOE]

view the webinar or presentation slides. Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

312

Dayton Power and Light- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Dayton Power and Light offers rebates to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat pumps, air conditioning...

313

City Water Light and Power- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

City Water Light and Power (CWLP) offers rebates to Springfield residential customers for increasing the energy efficiency of participating homes. Rebates are available for geothermal heat pumps,...

314

Residential Energy Conservation: Standards, Subsidies, and Public Programs  

E-Print Network [OSTI]

July 1983 (mimeo). Quigley, John M. "The Production of555-567. ' - Quigley, John M. , "Residential EnergyPUBLIC PROGRAMS BY JOHN M. QUIGLEY These pa are preliminary

Quigley, John M.

1986-01-01T23:59:59.000Z

315

Okanogan County PUD- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Public Utility District No. 1 of Okanogan County provides rebates to residential customers for purchasing energy efficient appliances. The qualifying appliance must be installed in a location that...

316

Grays Harbor PUD- Non-Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Grays Harbor PUD's Non-Residential Rebate Program offers financial incentives to its commercial, agricultural, industrial, and institutional customers for the installation of energy efficient...

317

Independence Power and Light- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

318

Turlock Irrigation District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Turlock Irrigation District (TID) offers a residential rebate program for customers who install energy-efficient equipment in their homes. Eligible equipment includes

319

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

produced. Primary energy associated with coal products wasUse EJ China Residential Energy Use Gas Coal Oil Biomass GasUse EJ China Residential Energy Use Gas Coal Oil Gas Biomass

2006-01-01T23:59:59.000Z

320

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network [OSTI]

to provide this ventilation service, either directly for moving the air or indirectly for conditioning continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs Berkeley, California The role of ventilation in the housing stock is to provide fresh air and to dilute

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption  

SciTech Connect (OSTI)

This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loads throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.

Johnson, Brandon J [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Jackson, Roderick K [ORNL] [ORNL; Tolbert, Leon M [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

322

Residential Dishwashers | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply CommentsNext-GenerationDryer

323

Residential Freezers | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply

324

Public Sector Energy Efficiency Aggregation Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

325

About Residential | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE| Department ofATVMAboutFeeds

326

Private Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPrior Lake,Sector Jump to:

327

Assessment of Impacts from Adopting the 2009 International Energy Conservation Code for Residential Buildings in Michigan  

SciTech Connect (OSTI)

Energy and economic analysis comparing the current Michigan residential energy efficiency code to the 2009 IECC.

Lucas, Robert G.

2009-10-18T23:59:59.000Z

328

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

SciTech Connect (OSTI)

China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

Zhou, Nan; McNeil, Michael A.; Levine, Mark

2009-06-01T23:59:59.000Z

329

Environmental assessment in support of proposed voluntary energy conservation standard for new residential buildings  

SciTech Connect (OSTI)

The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. 49 refs., 15 tabs.

Hadley, D.L.; Parker, G.B.; Callaway, J.W.; Marsh, S.J.; Roop, J.M.; Taylor, Z.T.

1989-06-01T23:59:59.000Z

330

Enact legislation supporting residential property assessed clean energy financing (PACE)  

SciTech Connect (OSTI)

Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nations states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nations state and metropolitan areas.

Saha, Devashree

2012-11-15T23:59:59.000Z

331

Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an  

E-Print Network [OSTI]

Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

Ma, B.; Yan, Z.; Gui, Z.; He, J.

2006-01-01T23:59:59.000Z

332

Energy efficiency in building sector in India through Heat  

E-Print Network [OSTI]

electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

Oak Ridge National Laboratory

333

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

Consumption and Expenditures 1992. Energy Information Administration, U.S.92). April. US DOE. 1995c. Residential Energy ConsumptionConsumption and Expenditures 1993. EIA, Energy Information Administration, U.S.

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

334

Economic Analysis of Ilumex, A Project to Promote Energy-Efficient Residential Lighting in Mexico  

E-Print Network [OSTI]

Energy-Efficient Residential Lighting in Mexico J. Sathaye,Energy-Efficient Residential Lighting in Mexico J. Sathaye,of U.S. and Canadian lighting programs for the residential,

Sathaye, Jayant A.

2008-01-01T23:59:59.000Z

335

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

336

Demand-side Management Strategies and the Residential Sector: Lessons from International Experience  

E-Print Network [OSTI]

from residential buildings represented 40% of worlds total primary consumption (IEA, 2008). Projections suggest that following the global economic downturn, demand for electricity from buildings is expected to grow at 3.1% between 2007 and 2020 (Mc... the energy-using performance of products such as electrical appliance and equipment, and even buildings (Crossley et al. 2000). Voluntary & negotiated agreements Formal quantified agreement between a government body and a business or organisation which...

Haney, Aoife Brophy; Jamasb, Tooraj; Platchkov, Laura M.; Pollitt, Michael G.

337

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

vehicles. dDoes not include lease, plant, and pipeline fuel. eNatural gas consumed in the residential and commercial sectors. f Includes consumption for industrial combined heat...

338

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

cDoes not includes lease, plant, and pipeline fuel. dNatural gas consumed in the residential and commercial sectors. eIncludes consumption for industrial combined heat and...

339

Energy-Sector Stakeholders Attend the Department of Energy's...  

Office of Environmental Management (EM)

Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

340

Residential Energy Efficiency Rebates (Offered by 16 Utilities)  

Broader source: Energy.gov [DOE]

Bright Energy Solutions offers energy efficiency cash incentive programs to residential and [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=IA82F&re... business] customers of...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Efficient Residential Building Code for Arab Countries  

E-Print Network [OSTI]

This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents specially, the effectiveness...

Hanna, G. B.

2010-01-01T23:59:59.000Z

342

College Station Utilities- Residential Energy Back II Rebate Program  

Broader source: Energy.gov [DOE]

College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. To qualify for the rebate, the A/C system...

343

Austin Energy- Value of Solar Residential Rate (Texas)  

Broader source: Energy.gov [DOE]

Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and...

344

Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

345

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect (OSTI)

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

346

Tomorrow;s energy today for cities and counties: Build up energy savings with residential standards  

SciTech Connect (OSTI)

The paper reveals residential energy efficiency standards that will pay financial and environmental dividends to local communities.

NONE

1995-02-01T23:59:59.000Z

347

An Analysis of Residential Energy Intensity in Iran, A System Dynamics Approach  

E-Print Network [OSTI]

Abstract: substantial development of counties needs to use the resources in an efficient way. One indicator that shows the degree of efficient use of energy resources is energy intensity. Statistics show that Irans energy intensity was in a bad situation during past years and if this manner of using energy resources continues, it will get worse.In this study a system dynamics approach is used to model changes of energy intensity in residential sector in Iran. By implementation and simulation of this model we found some reasons of this problem in Iran. Then we tried to introduce some policies to make steady improvement in energy intensity in the future. Keywords:

Mohamed M. Jamshidi

348

Optional Residential Program Benchmarking | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. Call Slides and Discussion Summary...

349

Empire District Electric- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

350

Kenergy- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

351

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Standards for Consumer Products: Room Air Conditioners,Energy Savings -- Residential Products Room Air Conditionersfor Consumer Products: Residential Central Air Conditioners

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

352

Texas-New Mexico Power Company- Residential Energy Efficiency Programs (Texas)  

Broader source: Energy.gov [DOE]

Texas-New Mexico Power's (TNMP) Residential Standard Offer Program promotes energy efficiency among residential electricity customers in its Texas service area. The program provides incentives for...

353

Energy-economy interactions revisited within a comprehensive sectoral model  

SciTech Connect (OSTI)

This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

Hanson, D. A.; Laitner, J. A.

2000-07-24T23:59:59.000Z

354

Residential Building Stockg Assessment (RBSA)for  

E-Print Network [OSTI]

9/4/2013 1 Residential Building Stockg Assessment (RBSA)for Multi-Family Housing Tom Eckman Objectives Characterize Residential Sector Building Stock ­ Single Family (Four-plex and below) l if il ( i Pacific Northwest Residential Energy Survey (PNWRES92)Survey (PNWRES92) NEEA Survey of Baseline

355

DTE Energy (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE offers a combination of energy audit discounts and rebates for the installation of energy efficiency improvements in Detroit Edison Electric and Michigan Consolidated Gas Co. service areas....

356

DTE Energy (Electric)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE offers a combination of energy audit discounts and rebates for the installation of energy efficiency improvements in Detroit Edison Electric and Michigan Consolidated Gas Co. service areas....

357

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices *

Hoen, Ben

2010-01-01T23:59:59.000Z

358

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work  

Broader source: Energy.gov [DOE]

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work Presentation

359

Residential Energy Simulation and Scheduling: A Case Study Approach Jagannathan Venkatesh, Baris Aksanli, Tajana Simuni Rosing  

E-Print Network [OSTI]

, green energy, residential energy management, smart scheduling I. INTRODUCTION Building energy nature of home energy consumption [5]. A majority of work has focused on characterizing green energyResidential Energy Simulation and Scheduling: A Case Study Approach Jagannathan Venkatesh, Baris

Simunic, Tajana

360

INTERNATIONAL COMPARISON OF RESIDENTIAL GAS USE AND CONSERVATION  

E-Print Network [OSTI]

Energy through G Efficiency: The Potential for Conservation in CaliforniaPs Residential Sector, To appear as Law, Berk. Lab report,

Schipper, Lee

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

Zhou, Nan

2010-01-01T23:59:59.000Z

362

NorthWestern Energy (Gas)- Residential Energy Efficiency Rebate Program (Montana)  

Broader source: Energy.gov [DOE]

NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Customers who purchase an Energy Star programmable...

363

Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector  

SciTech Connect (OSTI)

The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricing information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.

Herter, Karen; Rasin, Josh; Perry, Tim

2009-11-30T23:59:59.000Z

364

Is Efficiency Enough? Towards a New Framework for Carbon Savingsin the California Residential Sector  

SciTech Connect (OSTI)

The overall implementation of energy efficiency in the United States is not adequately aligned with the environmental benefits claimed for efficiency, because it does not consider absolute levels of energy use, pollutant emissions, or consumption. In some ways, promoting energy efficiency may even encourage consumption. A more effective basis for environmental policy could be achieved by recognizing the degree and nature of the synchronization between environmental objectives and efficiency. This research seeks to motivate and initiate exploration of alternative ways of defining efficiency or otherwise moderating energy use toward reaching environmental objectives, as applicable to residential electricity use in California. The report offers three main recommendations: (1) produce definitions of efficiency that better integrate absolute consumption, (2) attend to the deeper social messages of energy efficiency communications, and (3) develop a more critical perspective on benefits and limitations of energy efficiency for delivering environmental benefits. In keeping with the exploratory nature of this project, the report also identifies ten questions for further investigation.

Moezzi, Mithra; Diamond, Rick

2005-10-01T23:59:59.000Z

365

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

366

NineStar Connect- Residential Energy Efficient Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Nine Star Connect (Greenfield and Maxwell, IN) offers residential customers an incentive to buy energy efficient air-source heat pumps, geothermal heat pumps. All heat pumps must meet minimum...

367

Ashland Electric Utility- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

City of Ashland Conservation Division has zero-interest loans to help residential customers finance energy efficiency improvements to participating homes. The maximum loan amount is $7,500. The...

368

Ashland Electric Utility- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

The City of Ashland Conservation District offers a wide variety of incentives for residential customers to increase the energy efficiency of homes, or build new homes that meet efficient design...

369

Shakopee Public Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Shakopee Public Utilities offers its residential customers rebates on a variety of energy-efficient appliances and equipment. Rebates are available for CFL and LED lighting, air-source and...

370

Union Power Cooperative- Residential Energy Efficient Heat Pump Loan Program  

Broader source: Energy.gov [DOE]

Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan...

371

Co-Mo Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Co-Mo Electric Cooperative provides rebates to residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. The...

372

LADWP- Non-Residential Energy Efficiency Incentive Program  

Broader source: Energy.gov [DOE]

Los Angeles Department of Water and Power offers prescriptive and custom incentives to non-residential customers for the installation of energy saving measures, equipment, or systems that exceed...

373

ConEd (Gas)- Residential Energy Efficiency Incentives Program  

Broader source: Energy.gov [DOE]

Con Edison is offering the Residential HVAC Gas Rebate Program. Through this program, incentives are offered on energy efficient heating and cooling equipment for residences in the eligible service...

374

An evaluation of the ORNL residential energy use model  

E-Print Network [OSTI]

This report provides an evaluation of the architecture, empirical foundation, and applications of the Oak Ridge National Laboratory (ORNL) residential energy use model. A particular effort is made to identify the strengths ...

McFadden, Daniel

1981-01-01T23:59:59.000Z

375

Potential Peak Load Reductions From Residential Energy Efficient Upgrades  

E-Print Network [OSTI]

of the distribution network can be improved; and added environmental pollution can be minimized. Energy efficiency improvements, especially through residential programs, are increasingly being used to mitigate this rise in peak demand. This paper examines...

Meisegeier, D.; Howes, M.; King, D.; Hall, J.

2002-01-01T23:59:59.000Z

376

Otter Tail Power Company- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Otter Tail Power Company offers incentives to all residential customers in South Dakota to install energy efficient equipment in residences. Rebates are available for geothermal and air source heat...

377

Property Tax Exclusion for Residential Renewable Energy Property (Florida)  

Broader source: Energy.gov [DOE]

Florida provides a property tax exemption for residential photovoltaic systems, wind energy systems, solar water heaters, and geothermal heat pumps installed on or after January 1, 2013. For the...

378

Taylor County RECC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Taylor County RECC offers rebates to residential customers for upgrading to energy efficient insulation and heat pumps. Under the Button-Up insulation upgrade program, a utility representative will...

379

Linn County Rural Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to residential customers....

380

Platte-Clay Electric Cooperative- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Platte-Clay Electric Cooperative offers a variety of rebates to residential and commercial customers who wish to upgrade to energy efficient equipment. Newly installed ground source heat pumps are...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PG&E- Non-Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Pacific Gas and Electric Company (PG&E) offers rebates and other incentives to businesses and non-residential customers to increase their energy efficiency. In addition to covering equipment...

382

Marshall Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.marshallutilities.com/index.php Marshall Municipal Utilities (MMU)] offers a variety of incentives for its residential customers to install energy-efficient equipment in their homes. ...

383

Jackson EMC- Residential Energy Efficiency Rebate Program (Georgia)  

Broader source: Energy.gov [DOE]

Jackson Electric Membership Corporation (EMC) is an electric cooperative that serves 194,000 customers in 10 counties in northeast Georgia. To encourage its residential customers to adopt energy...

384

Reading Municipal Light Department- Residential ENERGY STAR Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Reading Municipal Light Department (RMLD) offers rebates to residential customers who install Energy Star appliances in eligible homes. The offer is limited to one rebate per appliance or a maximum...

385

PG&E (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for...

386

Pee Dee Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for dual fuel heat pumps, geothermal heat pumps, and...

387

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect (OSTI)

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

388

PNM- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

PNM offers incentives for residential customers to improve the efficiency of eligible homes. PNM will provide a $50 rebate for the proper recycling of old refrigerators or freezers. Customers who...

389

Energy Efficiency Services Sector: Workforce Education and Training Needs  

SciTech Connect (OSTI)

This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

2010-03-19T23:59:59.000Z

390

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Interstate Power and Light (Alliant Energy) offers a number of rebates for energy efficiency for Minnesota residential customers a variety of high efficiency heating and cooling measures, including...

391

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

392

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect (OSTI)

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

393

Residential Energy Consumption Survey (RECS) - Energy Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch AreasResearch Gene OdumToAdministration

394

Energy Preview: Residential Transportation Energy Consumption Survey,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65 15 15t

395

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

behavior patterns in which American households use energy causes wide variations in total residential energy consumption per home,

Kelsven, Phillip

2013-01-01T23:59:59.000Z

396

CARBON FOOTPRINT STUDY OF A ZERO ENERGY COSUMPTION RESIDENTIAL CONSTRUCTION  

E-Print Network [OSTI]

frequently the term of zero energy building (ZEB) is called when designing a new building. A net zero-energyCARBON FOOTPRINT STUDY OF A ZERO ENERGY COSUMPTION RESIDENTIAL CONSTRUCTION Tiberiu Catalina 1 and coal), which provides currently more than 80% of the primary energies marketed in the world

Paris-Sud XI, Université de

397

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network [OSTI]

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

398

Energy Department Announces New Private Sector Partnership to...  

Office of Environmental Management (EM)

Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable...

399

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

400

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and drier climates also contribute to a reduction in demand for space heating. Three alternative cases show how different technology assumptions affect residential energy...

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

LPG is a major energy source, while coal and electricity arethe total residential energy and coal is the dominant fuel.1 Residential Energy consumption by End-use Coal Renewables

Zhou, Nan

2010-01-01T23:59:59.000Z

402

Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics  

E-Print Network [OSTI]

Residential Energy Consumption Survey (RECS), U.S. Energyod for estimating field energy consumption of US residentialconsumption surveydetailed tables. Residential Energy Con- sumption Survey (RECS), U.S.

Greenblatt, Jeffery

2013-01-01T23:59:59.000Z

403

Quantifying the Effect of the Principal-Agent Problem on US Residential Energy Use  

E-Print Network [OSTI]

Residential Energy Consumption Survey (U.S. EIA 2004a) toand energy consumption for refrigeration are from RECS (U.S.Residential Energy Consumption Survey 2001 (RECS 2001) (U.S.

Murtishaw, Scott; Sathaye, Jayant

2006-01-01T23:59:59.000Z

404

EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

405

China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

E-Print Network [OSTI]

heater Residential CO2 Emissions (Mt CO2) 2020 ResidentialEnergy Industrial Sector CO2 Emissions (Mt CO2) IndustrialFigure 5. Power Sector CO2 Emissions by Scenario E3 Max Tech

Zheng, Nina

2013-01-01T23:59:59.000Z

406

Optimal Control of Residential Energy Storage Under Price Fluctuations  

E-Print Network [OSTI]

Optimal Control of Residential Energy Storage Under Price Fluctuations Peter van de ven Department.hegde,laurent.massoulie,theodoros.salonidis}@technicolor.com Abstract--An increasing number of retail energy markets exhibit price fluctuations and provide home users the oppor- tunity to buy energy at lower than average prices. However, such cost savings are hard to realize

407

RESIDENTIAL MANDATORY MEASURES DIVISION 4.2 ENERGY EFFFICIENCY  

E-Print Network [OSTI]

.203.1 Energy Efficiency. Newly constructed low-rise residential buildings shall comply with Sections A4 included in the performance compliance approach for the Standard Design Building (Energy Budget certified by the Energy Commission. SECTION A4.203 PERFORMANCE APPROACH FOR NEWLY CONSTRUCTED BUILDINGS A4

408

Compliance Verification Paths for Residential and Commercial Energy Codes  

SciTech Connect (OSTI)

This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

2011-10-10T23:59:59.000Z

409

Audit Procedures for Improving Residential Building Energy Efficiency  

E-Print Network [OSTI]

Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

410

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network [OSTI]

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

411

Solar Energy and Residential Building Integration Technology and Application  

E-Print Network [OSTI]

Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.

Ding Ma; Yi-bing Xue

412

Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy  

E-Print Network [OSTI]

Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric bills system consists of different types of electrical energy storage (EES) elements, utilizing the benefits

Pedram, Massoud

413

Sustainable Energy Future in China's Building Sector  

E-Print Network [OSTI]

, The Netherlands and Finland (11W/m). Heating and hot water consumption represent 2/3 of energy demand in buildings in China. The thermal performance and heating system efficiency need to be improved dramatically in order to contain the soaring... Efficiency Standard for New Residential Buildings in 1995, the average energy consumption for heating in China is about 90~100kWh/ma 3 which is still almost twice of that in Sweden, Denmark, The Netherlands and Finland (40~50KWh/ma). Furthermore...

Li, J.

2007-01-01T23:59:59.000Z

414

APS - Residential Energy Efficient Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipofthe conveyance ofResidential Savings Category

415

Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood  

E-Print Network [OSTI]

ERG/200702 Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood Energy.hughes@dal.ca 26 March 2007 #12;Hughes and Wood: Solar energy and multi-storey residential buildings 1 Summary This report considers the limitations on solar energy in new, multi-storey residential buildings. In a time

Hughes, Larry

416

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network [OSTI]

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

417

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

residential/commercial primary energy consumption and carbonthe savings in primary energy consumption using factors forsite energy to primary energy consumption. The model uses

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

418

New Energy Efficiency Standards for Residential Clothes Washers...  

Office of Environmental Management (EM)

June 2011 - Residential furnaces and residential central air conditioners and heat pumps September 2011 - Residential refrigerators, freezers, and refrigerator-freezers...

419

Residential Retrofit Design Guide Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Webinar. Res Retro Design Guide Webinar 5-3-11...

420

Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript  

Broader source: Energy.gov [DOE]

Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MidAmerican Energy (Gas and Electric)- Residential EnergyAdvantage Loan Program  

Broader source: Energy.gov [DOE]

MidAmerican Energy's EnergyAdvantage Financing Program, in partnership with First American Bank, offers Iowa residential energy customers below-prime financing on installation of qualifying energy...

422

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

SciTech Connect (OSTI)

An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the direct-DC house with respect to todays typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sectorbecause of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolationthis paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

2011-10-13T23:59:59.000Z

423

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar  

Broader source: Energy.gov [DOE]

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

424

Some consideration on the (in)effectiveness of residential energy feedback systems  

E-Print Network [OSTI]

Some consideration on the (in)effectiveness of residential energy feedback systems James Pierce systems, particularly residential energy feedback systems (REFS), have emerged as a key area for HCI [5]. Residential energy feedback systems (hereafter referred to as REFS) in particular are receiving

Paulos, Eric

425

Performance Criteria for Residential Zero Energy Windows  

E-Print Network [OSTI]

neutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of building

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

426

Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy  

E-Print Network [OSTI]

by bundling energy efficiency, solar photovoltaics (PV), andby bundling energy efficiency, solar photovoltaics (PV), andPhotovoltaics Residential Conservation Service Residential Energy Efficiency

Fuller, Merrian C.

2011-01-01T23:59:59.000Z

427

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

-- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 --...

428

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Residential excluding electricity 6.7 6.5 6.2 6.0 -- -- Commercial 8.7 8.5 8.6 -- -- -- Commercial excluding electricity 4.2 3.9 4.0 4.0 -- -- Buildings sector 20.4 20.0 19.8...

429

A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy Design in the UK  

E-Print Network [OSTI]

residential energy consumers in the UK by considering property energy efficiency levels, the greenness1 A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour

Aickelin, Uwe

430

Siemens AG 2009 Energy Sector  

E-Print Network [OSTI]

der Energieversorgung Intelligente Netze Smart Grid Karl-Josef Kuhn Siemens AG, Corporate Technology pressure on infrastructures Cities are responsible for around 75% of the world's energy consumption Cities directly or indirectly account for 60% of the world's water use An overloaded power grid caused a 3-day

Ulm, Universitt

431

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE  

E-Print Network [OSTI]

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

432

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect (OSTI)

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

433

Non-Residential Energy Code National and Regional Codes  

E-Print Network [OSTI]

Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

434

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

435

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network [OSTI]

Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

436

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

E-Print Network [OSTI]

DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

Hoen, Ben

2012-01-01T23:59:59.000Z

437

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

438

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

Kelsven, Phillip

2013-01-01T23:59:59.000Z

439

HUMAN DISEASE FROM RADON EXPOSURES: THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

A THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIAL BUILDINGSEXPOSURES: THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIALways to implement energy conservation measures without

Budnitz, R.J.

2011-01-01T23:59:59.000Z

440

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

a direct impact on rural energy consumption. Residential16 Figure 11. 2020 Rural and Urban Energy Consumptionareas. Figure 11. 2020 Rural and Urban Energy Consumption

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Four-State Residential Retrofit and Energy Labeling Project: Process Evaluation and Results Webinar  

Broader source: Energy.gov [DOE]

The State Energy Offices in Alabama, Massachusetts, Virginia, and Washington recently completed a multi-year residential energy efficiency pilot program funded by a competitive State Energy Program...

442

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. San

Goldman, Charles

2010-01-01T23:59:59.000Z

443

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

the end user while primary energy consumption includes finalWEC 2001). GDP Primary Energy Consumption (EJ) natural gasHistorical Primary Energy Consumption by sector Energy Use

2008-01-01T23:59:59.000Z

444

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

Zhou, Nan

2010-01-01T23:59:59.000Z

445

An innovative educational program for residential energy efficiency. Final report  

SciTech Connect (OSTI)

Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

Laquatra, J.; Chi, P.S.K.

1996-09-01T23:59:59.000Z

446

AN E&E PUBLISHING SERVICE ENERGY EFFICIENCY: Tenn. project to test range of residential upgrades  

E-Print Network [OSTI]

AN E&E PUBLISHING SERVICE ENERGY EFFICIENCY: Tenn. project to test range of residential upgrades has done on common residential construction near the Oak Ridge lab. In one such project, Christian

447

Project REED (Residential Energy Efficiency Design) is a Web-based building performance simulation tool  

E-Print Network [OSTI]

ABSTRACT Project REED (Residential Energy Efficiency Design) is a Web-based building performance in their particular climate. Reaching The Mass Market: Given this Utility's 4.5 million residential ratepayers residential market. This cost-effective approach can permanently transform the energy con- suming behavior

448

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

'''The availability of rebates through this program is unclear. Contact MidAmerican regarding the availability of gas incentives for residential customers.'''

449

Residential Air Conditioner Direct Load Control "Energy Partners Program"  

E-Print Network [OSTI]

RESIDENTIAL AIR CONDITIONER DIRECT LOAD CONTROL "ENERGY PARTNERS PROGRAMn John D. Cook Supervisor Houston ABSTRACT Demand side management programs like Energy Partners can provide an effective peak reducing capability which within a.... In this partnership the customer allows HLfP to install a I switch on his/her air conditioner or heat pump and i periodically cycle the unit off during the hottest summer 1 days. In return the customer benefits by receiving an incentive payment, as well...

Cook, J. D.

1994-01-01T23:59:59.000Z

450

Piedmont EMC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation's (PEMC) Energy Efficiency and Renewable Energy Loan Program is available to eligible consumers to finance the purchase and installation of energy efficient...

451

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

not provide data on primary energy consumption by sector. Inconsumption into primary energy consumption by multiplyingA.3.5 provides primary energy consumption values for the

2006-01-01T23:59:59.000Z

452

Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries  

E-Print Network [OSTI]

Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

Smith, Jonathan Y. (Jonathan York), 1979-

2004-01-01T23:59:59.000Z

453

Duke Energy (Gas and Electric)- Residential and Builder Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy provides a financial incentive for its residential customers to purchase energy efficient HVAC products through the Smart $aver program. A $200 rebate is available for geothermal heat...

454

Missouri River Energy Services (23 Member Cooperatives)- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Bright Energy Solutions offers energy efficiency cash incentive programs to [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=MN169F&r... residential] and business customers of...

455

FirstEnergy (West Penn Power)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

FirstEnergy (West Penn Power) offers a variety of incentives to Pennsylvania residential customers who are interested in upgrading to more energy efficient appliances and equipment. Rebates are...

456

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

Hoen, Ben

2013-01-01T23:59:59.000Z

457

Minnesota Valley Electric Cooperative-Residential Energy Resource Conservation Loan Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative offers low-interest loans to help residential customers finance energy efficiency improvements through the Energy Conservation Loan Program. ERC Loans can be...

458

Baltimore Gas and Electric Company (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

459

Surface Energy Balance Measurements Above an Exurban Residential Neighbourhood of Kansas City, Missouri  

E-Print Network [OSTI]

and energy ?ows within cities and their surrounding areas.energy balance measurements over a new exurban residential area near Kansas City,

Balogun, Ahmed A.; Adegoke, Jimmy O.; Vezhapparambu, Sajith; Mauder, Matthias; McFadden, Joseph P.; Gallo, Kevin

2009-01-01T23:59:59.000Z

460

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

SciTech Connect (OSTI)

This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

Polly, B.; Kruis, N.; Roberts, D.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices  

SciTech Connect (OSTI)

For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

2011-11-01T23:59:59.000Z

462

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokineticClothes Washers (AppendixEnergy

463

Performance Criteria for Residential Zero Energy Windows  

E-Print Network [OSTI]

energy use data were collected for each city, to provide information regarding the predominant glass area

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

464

Alliant Energy Interstate Power and Light (Electric) - Residential...  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Residential Residential Savings Category Heat Pumps Lighting Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: 100 -...

465

Efficient Residential Water Heaters Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Efficient Residential Water Heaters Webinar Efficient Residential Water Heaters Webinar On Feb. 22, 2011, Jerone Gagliano,...

466

Residential Building Audits and Retrofits | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Building Audits and Retrofits Residential Building Audits and Retrofits Blue version of the EERE PowerPoint template, for use with PowerPoint 2007. Transcript...

467

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

cooling equipment combinations (HVAC market shares) are also1995b). We also use HVAC system market shares for existing3.22, and 3.23 show HVAC system market shares (combined

Wenzel, T.P.

2010-01-01T23:59:59.000Z

468

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar electric capacity on new homes, and to have solar electric systems on 50% of all new homes built in Californiasolar capacity installed; capacity more than quadrupled to 746 MW by the end of 2010 (CPUC 2011). California

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

469

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

year (TMY) solar radiation data. The goal here is toTMY or actual solar radiation data, and thus serves theusing actual solar radiation data, though this data must be

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

470

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

80%glass, low emissivity film Wood Frame Window, 80%glass,low emissivity film, argon fill Wood Frame Window, 80%glass,

Wenzel, T.P.

2010-01-01T23:59:59.000Z

471

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

customer groups. While the cost per kWh for each respectivewith the average cost declines, per kWh for average andcost of doing so would be zero (prior to 2011), or small, on the order of 5 cents per kWh (

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

472

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

473

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

given that distributed PV substitutes for utility generationdistributed generation systems. NEM measures the difference between the electricity a homeowner buys from a utility

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

474

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

auto-defrost refrigerators and freezers, and solid-state/For example, new refrigerators and freezers have increasedfactors for refrigerators and freezers are based on data for

Wenzel, T.P.

2010-01-01T23:59:59.000Z

475

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

The historical factors for refrigerators and freezers arehistorical factors are used are gas heating, room and central air- conditioning, electric and gas water-heating, refrigerators, freezers,

Wenzel, T.P.

2010-01-01T23:59:59.000Z

476

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

and Compact Fluorescent Bulbs Style Lamp Wattage Approximatebulbs is 112 TWh. If the PG&E survey's estimate of fluorescent (

Wenzel, T.P.

2010-01-01T23:59:59.000Z

477

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

of central air and heat pumps is due to conversions of roomnot-specified central air heat pump room air Black-White TVAir Cooling Room Central Air Heat Pump Room Air Electric

Wenzel, T.P.

2010-01-01T23:59:59.000Z

478

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

Heaters, Direct Heating Equipment, Mobile Home Furnaces,Manufactured Homes) National (Washington DC) Heating Coolingis electric heating in single family homes, which is 50

Wenzel, T.P.

2010-01-01T23:59:59.000Z

479

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

discussion. CEC & CPUC, Go Solar California: What Is The Newcan be found at Go Solar California, Download Current CSIAND FUNDING FOR THE CALIFORNIA SOLAR INITIATIVE. San

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

480

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

device. For instance, an incandescent bulb used one hour persockets. We create incandescent bulb UECs by both hours ofand lifetimes for standard incandescent bulbs and their more

Wenzel, T.P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

of Sales (5) Type MND PAD TAD SAD BAD TADI SADI Average (6)kWh/yr kWh/yr kWh/yr MND PAD TAD SAD BAD TADI SADI Average (UEC= 550 kWh/yr 14.6 cuft TAD 2001 UEC= 9.8 * Capacity + 276

Wenzel, T.P.

2010-01-01T23:59:59.000Z

482

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

households that installed smart meters all reported someCPUC and CEC and enabled by smart meters. o Accounts withoutinverters could utilize smart meter communication platforms

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

483

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar radiation data. The goal here is to estimate generic output datasolar radiation data. The goal here is to estimate generic output data

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

484

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

temperature of the storage water heater is higher, less hottechnology: individual storage water heaters (STR), whereof each type of storage water heater are shown in Figure 4.3

Wenzel, T.P.

2010-01-01T23:59:59.000Z

485

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

of offering NEM for biogas-electric systems and fuel cells.but AB 2228 (2002) allowed biogas-electric facilities up to

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

486

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

efficiency potential of a heat pump water heater. Table 4.1.Gas Oil New Heat Pump Water Heater (1) Standby losses andefficiency for heat pump water heaters varies depending on

Wenzel, T.P.

2010-01-01T23:59:59.000Z

487

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

10 with: area in ft uvalue in Btu/hr-F-ft slope in F-day/yrperimeter in ft, uvalue in Btu/hr-F-ft slope in F-day/yrheater w/fan RM AFUE Btu/hr Gas RM 74 AFUE >42000

Wenzel, T.P.

2010-01-01T23:59:59.000Z

488

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

2008-05-08T23:59:59.000Z

489

An analysis of residential energy consumption in a temperate climate  

SciTech Connect (OSTI)

Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

Clark, Y.Y.; Vincent, W.

1987-06-01T23:59:59.000Z

490

About the Better Buildings Residential Network | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout the Better Buildings Residential Network About

491

DOE has published the revised 2010 Energy Sector Specific Plan  

Broader source: Energy.gov [DOE]

The Department of Energy announces the publication of the Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan 2010.

493

Shrewsbury Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

In collaboration with EFI, Shrewsbury Electric offers rebates on ENERGY STAR appliances. Eligible products include washing machines, dishwashers, refrigerators, and room air conditioners. ...

494

Douglas Electric Cooperative- Residential Energy Efficiency Loans  

Broader source: Energy.gov [DOE]

Douglas Electric Cooperative offers rebates to its members for the purchase of energy efficient products and measures. Rebates include clothes washers, heat pumps, manufactured homes, and...

495

Questar Gas- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers,...

496

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Consumption XLS Table 17. Renewable Energy Consumption by Sector and Source XLS Table 18. Carbon Dioxide Emissions by Sector and Source - United States XLS Table 18.1. Carbon...

497

AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

1 AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL homes energy efficient through Title 24 Part 6 Building Energy Efficiency Standards (Standards for Energy Efficiency in Existing Buildings (AB 549 Report), the Energy Commission made a series

498

Energy Analysis by Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OF THEofEndstatesOctober marks

499

Performance Criteria for Residential Zero Energy Windows  

SciTech Connect (OSTI)

This paper shows that the energy requirements for today's typical efficient window products (i.e. ENERGY STAR{trademark} products) are significant when compared to the needs of Zero Energy Homes (ZEHs). Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate. In heating dominated climates, windows with U-factors of 0.10 Btu/hr-ft{sup 2}-F (0.57 W/m{sup 2}-K) will become energy neutral. In mixed heating/cooling climates a low U-factor is not as significant as the ability to modulate from high SHGCs (heating season) to low SHGCs (cooling season).

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-10-09T23:59:59.000Z

500

Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B C D EHistorical Resources