Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Progress Energy Carolinas- SunSense Residential PV Incentive Program  

Broader source: Energy.gov [DOE]

'''''Note: This program is budgeted to support a total of 1 MW of residential systems per year. The program is now fully subscribed for 2013. New applications will be accepted starting January 1,...

2

PV Incentive Program  

Broader source: Energy.gov [DOE]

The New York State Energy Research and Development Authority (NYSERDA) provides an incentive eligible installers for the installation of approved, grid-connected photovoltaic (PV) systems. The base...

3

Austin Energy- Commercial PV Incentive Program  

Broader source: Energy.gov [DOE]

Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

4

Austin Energy- Residential Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

5

SMUD- PV Residential Retrofit Buy-Down  

Broader source: Energy.gov [DOE]

SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved...

6

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network [OSTI]

Washington Renewable Energy Production Incentives Cash Backincentives for customer- sited PV: Non-Residential Renewable Energy (Renewable Energy Program SolarGenerations Solar Pioneer Program New York Energy $mart PV Incentive

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

7

CPS Energy- New Residential Construction Incentives  

Broader source: Energy.gov [DOE]

CPS Energy offers incentives for new residential construction that is at least 15% more efficient than required by the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX29R&re=1...

8

City of Anaheim This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

a contract. Back to Top Financing Information Federal Solar Incentives o Residential Renewable Energy TaxCity of Anaheim This page outlines solar PV incentives, financing mechanisms, permitting process | Incentives | Permitting | Interconnection Contact Information City of Anaheim Building Division 200 S

9

City of Los Angeles This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

Incentives o Residential Renewable Energy Tax Credit · A taxpayer may claim a credit of 30% of qualifiedCity of Los Angeles This page outlines solar PV incentives, financing mechanisms, permitting these hyperlinks: Find an Installer | Financing | Incentives | Permitting | Interconnection Contact Information

10

California Solar Initiative- PV Incentives  

Broader source: Energy.gov [DOE]

'''Pacific Gas and Electric (PG&E) and San Diego Gas and Electric (SDG&E) have reached their budget limits for residential rebates. Both utilities will continue accepting applications for...

11

Solar Works! In Seattle: Introduction to Solar Electric (PV)  

Broader source: Energy.gov [DOE]

Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

12

Solar PV Incentive Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV Incentive Programs Solar PV

13

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network [OSTI]

Financial Incentives in the Residential Sector Stephane deFinancial Incentives in the Residential Sector Stephane desavings achieved in the residential sector. In contrast,

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

14

ConEd (Electric)- Residential Energy Efficiency Incentives Program  

Broader source: Energy.gov [DOE]

Con Edison is offering the Residential HVAC Electric Rebate Program. Through this program, incentives are offered on energy efficient heating and cooling equipment for residences in the eligible...

15

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network [OSTI]

E NERGY Shaking Up the Residential PV Market: Implicationsthe Revised Residential Credit ..ITC (capped at $2,000) for residential solar systems. Both

Bolinger, Mark

2008-01-01T23:59:59.000Z

16

Riverside Public Utilities- Residential PV Incentive Program  

Broader source: Energy.gov [DOE]

'''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014. '''''

17

Designing Effective Incentives to Drive Residential Retrofit Program Participation (Text Version)  

Broader source: Energy.gov [DOE]

Transcript of the webinar, "Designing Effective Incentives to Drive Residential Retrofit Program Participation."

18

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work  

Broader source: Energy.gov [DOE]

Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work Presentation

19

LADWP- Non-Residential Energy Efficiency Incentive Program  

Broader source: Energy.gov [DOE]

Los Angeles Department of Water and Power offers prescriptive and custom incentives to non-residential customers for the installation of energy saving measures, equipment, or systems that exceed...

20

ConEd (Gas)- Residential Energy Efficiency Incentives Program  

Broader source: Energy.gov [DOE]

Con Edison is offering the Residential HVAC Gas Rebate Program. Through this program, incentives are offered on energy efficient heating and cooling equipment for residences in the eligible service...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optimum Inverter Sizing in Consideration of Irradiance Pattern and PV Incentives  

E-Print Network [OSTI]

Optimum Inverter Sizing in Consideration of Irradiance Pattern and PV Incentives Song Chen* Peng Li Boston, Massachusetts, USA Abstract-- This paper proposes a general method of sizing the inverter for a PV system. The method evaluates effects of PV incentive policies, inverter efficiency curves

Lehman, Brad

22

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

SciTech Connect (OSTI)

On August 8, 2005, the Energy Policy Act of 2005 (EPAct 2005) increased the Section 48 investment tax credit (ITC) for commercial photovoltaic (PV) systems from 10% to 30% of the project's 'tax credit basis' (i.e., the dollar amount to which the ITC applies), and also created in Section 25D of the Internal Revenue Code a new 30% ITC (capped at $2,000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 both credits were extended 'as is' for an additional year (through 2008). In early 2006, Berkeley Lab published an LBNL/CESA case study that examined the financial impact of EPAct 2005's solar tax credits on PV system owners, in light of the $2,000 cap on the residential credit, as well as the fact that most PV systems in the U.S. also receive cash incentives from state-, local-, or utility-administered PV programs, and that these cash incentives may reduce the value of federal tax credits in certain situations. That case study was subsequently revised in February 2007 to reflect new Internal Revenue Service (IRS) guidance. The findings of that case study, which are briefly recapped in the next section, remained relevant up until October 2008, when the Energy Improvement and Extension Act of 2008 extended both solar credits for an unprecedented eight years, removed the $2,000 cap on the residential credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax (AMT). These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely to spur significant growth in residential, commercial, and utility-scale PV installations in the years ahead. In light of these substantial changes to the solar ITC, this report takes a fresh look at the value of these revised credits, focusing specifically on the Section 25D residential credit. After first setting the stage by briefly reviewing our previous findings, the document proceeds to cover four specific areas in which the removal of the $2,000 cap on the residential ITC will have significant implications for PV program administrators, PV system owners, and the PV industry that go beyond the obvious market growth potential created by these more-lucrative federal incentives. These four areas include: (1) The financial implications of whether or not residential cash rebates are considered to be taxable income; (2) The role of low-interest loan programs and other forms of 'subsidized energy financing' under an uncapped ITC; (3) The degree to which taxable and nontaxable rebate levels might be reduced in response to the extra value provided by an uncapped ITC; and (4) The impact of an uncapped ITC on third-party financing and ownership models that are just beginning to emerge in the residential sector. The document concludes by highlighting a common thread that runs throughout: the need for PV program managers to understand whether or not their rebates are considered to be taxable income before they can react in an appropriate manner to the recent changes in federal solar policy and, if financing programs are offered, the need to understand whether the IRS considers these programs to be 'subsidized'. Finally, we note that this paper is based on current law; future legislative changes to the ITC could, of course, alter the conclusions reached here.

Bolinger, Mark; Barbose, Galen; Wiser, Ryan

2008-11-12T23:59:59.000Z

23

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

communication with New York State Energy Research andSolar Pioneer Program New York Energy $mart PV IncentivePower Authority (LIPA) New York State Energy Research and

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

24

City of Madison- Green Madison Residential Incentives  

Broader source: Energy.gov [DOE]

Green Madison offers homeowners in the City of Madison incentives for installing recommended energy-efficiency improvements. In order to qualify, residents must have a comprehensive home energy...

25

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network [OSTI]

incentives under the California Solar Initiative takeRates Undermine Californias Solar Photovoltaic Subsidies? Solar PV and Retail Rate Design, Unpublished draft report for the California

Darghouth, Naim

2010-01-01T23:59:59.000Z

26

EWEB- Solar Electric Program (Performance-Based Incentive)  

Broader source: Energy.gov [DOE]

The Eugene Water and Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential and commercial customers who generate electricity using solar photovoltaic (PV)...

27

Central Lincoln People's Utility District- Renewable Energy Incentive Program (Oregon)  

Broader source: Energy.gov [DOE]

Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

28

Berkeley Program Offers New Option for Financing Residential PV Systems  

SciTech Connect (OSTI)

Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

Bolinger, Mark A

2008-07-06T23:59:59.000Z

29

THE SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems  

E-Print Network [OSTI]

THE SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems #12 and Sustainability partnered with neighborhood coalition offices,

30

Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations  

E-Print Network [OSTI]

interest PV loan programs: a residential solar investmentsolar ITC, it is important to evaluate the financial attractiveness of this specific type of loan

Bolinger, Mark

2008-01-01T23:59:59.000Z

31

Why Are Residential PV Prices in Germany So Much Lower Than in the United States?  

E-Print Network [OSTI]

Why Are Residential PV Prices in Germany So Much Lower Than in the United States? A Scoping is significantly lower in Germany than in the U.S., due primarily to differences in "soft" costs ­ But relatively consultant data relevant to the cost structure of residential PV in Germany · Focus is the pre

32

Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice in the U.S.  

SciTech Connect (OSTI)

In the U.S., the increasing financial support for customer-sited photovoltaic (PV) systems provided through publicly-funded incentive programs has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in addressing PV system performance. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address factors that affect performance, and describe key implementation details. Based on this review, we then offer recommendations for how PV incentive programs can be effectively designed to mitigate potential performance issues.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-10-06T23:59:59.000Z

33

SRP- EarthWise Solar Energy Incentive Program  

Broader source: Energy.gov [DOE]

'''''NOTE: SRP reopened its incentive programs effective May 1, 2013. SRP has funding available for 12 MW of residential photovoltaic (PV) systems, 4 MW of small commercial PV systems, 5 MW of...

34

Riverside Public Utilities- Non-Residential PV Incentive Program  

Broader source: Energy.gov [DOE]

'''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014.'''''

35

New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

36

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Broader source: Energy.gov [DOE]

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

37

High efficiency battery converter with SiC devices for residential PV Cam Pham, Remus Teodorescu, Tamas Kerekes and Laszlo Mathe  

E-Print Network [OSTI]

High efficiency battery converter with SiC devices for residential PV systems Cam Pham, Remus, where the generated energy price is relatively high. Smart PV systems with internal battery storage launched a financial support program for residential PV systems with battery storage [2]. Furthermore

Teodorescu, Remus

38

Impact of residential PV adoption on Retail Electricity Rates Desmond W.H. Cai a,n  

E-Print Network [OSTI]

is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households with rooftop photo voltaic (PV) panels has grown rapidly over the past few years. This growth

Low, Steven H.

39

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

Washington Renewable Energy Production Incentives Cash BackSupport for Renewable Energy October 2006 Incentive-basedSupport for Renewable Energy October 2006 Incentive Hold-

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

40

Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment  

SciTech Connect (OSTI)

The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

Farhar, B. C.; Buhrmann, J.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations  

SciTech Connect (OSTI)

Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy efficiency improvements, and often featuring low interest rates, longer terms, and no-hassle application requirements. Historically, these loan programs have met with mixed success (particularly for PV), for a variety of reasons, including: (1) historical lack of homeowner interest in PV, (2) lack of program awareness, (3) reduced appeal in a low-interest-rate environment, and (4) a tendency for early PV adopters to be wealthy, and not in need of financing. Although some of these barriers have begun to fade--most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates--the passage of the Energy Policy Act of 2005 (EPAct 2005) introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from several U.S cities concerning a new type of PV financing program. Led by the City of Berkeley, California, these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. As discussed in more detail later, this seemingly innovative approach has a number of features that should appeal to PV owners, including: long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from Federal taxable income, as part of the local property tax deduction. For these reasons, Berkeley's program--which was first announced on October 23, 2007--has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica, and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. Berkeley's Proposed PV Program In addition, a bill (AB 811) that would authorize all cities (not just 'charter cities' like Berkeley) in California to create this type of program was approved by the California General Assembly on January 29, 2008 and passed on to the State Senate for consideration. That local governments from across California and the broader US are so genuinely excited about the prospect of supporting the installation of residential PV in their communities through this type of program is no doubt an interesting development. Given, however, the potential for such programs to negatively interact with the residential solar ITC, it is important to evaluate the financial attractiveness of this specific type of loan program, particularly in advance of any broader state- or nation-wide 'rollout'. This case study presents such an evaluation. Because Berkeley appears to have the most-well-developed proposa

Bolinger, Mark A; Bolinger, Mark

2008-02-01T23:59:59.000Z

42

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

SciTech Connect (OSTI)

Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

Darghouth, Naim; Barbose, Galen; Wiser, Ryan

2010-03-30T23:59:59.000Z

43

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

SciTech Connect (OSTI)

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

44

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

2006. Celentano, Ron. 2005. SDF Solar PV Grant Program inSustainable Development Fund (SDF) Rhode Island RenewableOH DOD OR ETO PA SDF RI RIREF Small PV Program RI

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

45

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice  

E-Print Network [OSTI]

based on the actual energy production of the PV system overof estimated annual energy production, expressed either onto maximize annual energy production. Although some programs

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

46

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice  

E-Print Network [OSTI]

Sustainable Development Fund (SDF) and CCEF require a fullor hybrid incentive structure. SDFs Solar Grant program andEntity receiving the PBI payment. SDF splits the PBI payment

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

47

Sandia National Laboratories: PV Value  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

48

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

SciTech Connect (OSTI)

Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

2011-06-01T23:59:59.000Z

49

U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices  

SciTech Connect (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

2014-10-01T23:59:59.000Z

50

Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

James, T.

2014-03-01T23:59:59.000Z

51

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect (OSTI)

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

52

Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program  

Broader source: Energy.gov [DOE]

Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

53

Solar Photovoltaic Financing: Residential Sector Deployment  

SciTech Connect (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

54

QUANTIFYING RESIDENTIAL PV ECONOMICS IN THE US PAYBACK vs. CASH FLOW  

E-Print Network [OSTI]

Plains, NY, in the greater New York City metro area. Without any incentives such a system should cost ENERGY VALUE Richard Perez ASRC, The University at Albany 251 Fuller Road Albany, NY 12203 perez parallel, the paper addresses another aspect of economic feasibility: the value of energy produced

Perez, Richard R.

55

Optimal Design and Management of a Smart Residential PV and Energy Storage System  

E-Print Network [OSTI]

electric energy prices during peak hours. Given this pricing scheme, one way for residential users to lower and uses the stored energy during peak hours. As a result, energy is bought at a lower price during off-peak hours, stored, and consumed during peak hours to avoid paying higher energy prices during those hours

Pedram, Massoud

56

Renewable Energy Incentive Program  

Broader source: Energy.gov [DOE]

In February 2009, the District Department of the Environment (DDOE) introduced the Renewable Energy Incentive Program (REIP), a rebate for solar photovoltaic (PV) systems. In April 2012, solar...

57

Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)  

SciTech Connect (OSTI)

This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

Not Available

2012-05-01T23:59:59.000Z

58

Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems  

SciTech Connect (OSTI)

This handbook is intended as a road map for project planners and solar advocates who want to convert interest into action, to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The handbook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

Irvine, L.; Sawyer, A.; Grove, J.

2011-02-01T23:59:59.000Z

59

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

SciTech Connect (OSTI)

A large variety of energy-efficiency policy measures exist. Some are mandatory, some are informative, and some use financial incentives to promote diffusion of efficient equipment. From country to country, financial incentives vary considerably in scope and form, the type of framework used to implement them, and the actors that administer them. They range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-points rewarding customers for buying highly efficient appliances (Japan). All have the primary objective of transforming the current market to accelerate the diffusion of efficient technologies by addressing up-front cost barriers faced by consumers; in most instances, efficient technologies require a greater initial investment than conventional technologies. In this paper, we review the different market transformation measures involving the use of financial incentives in the countries belonging to the Major Economies Forum. We characterize the main types of measures, discuss their mechanisms, and provide information on program impacts to the extent that ex-ante or ex-post evaluations have been conducted. Finally, we identify best practices in financial incentive programs and opportunities for coordination between Major Economies Forum countries as envisioned under the Super Efficient Appliance Deployment (SEAD) initiative.

Can, Stephane de la Rue du; Shah, Nihar; Phadke, Amol

2011-07-13T23:59:59.000Z

60

Solar Thermal Incentive Program  

Broader source: Energy.gov [DOE]

The New York State Energy Research and Development Authority (NYSERDA) offers incentives for the installation of solar water heating systems to residential and non-residential customers of the...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network [OSTI]

staff; 2006. [20] Celentano R. SDF Solar PV Grant Program infive-year system warranty, SDF and CCEF both require a fullinstalled at least one system. SDF offers a proficiency test

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

62

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network [OSTI]

Elements for the California Solar Initiative. Decision 06-Incentive Program (SGIP) a California Solar Initiative (CSI)modules only) a b c d e The California solar legislation SB1

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

63

Energy Optimization (Electric)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

64

Cape Light Compact- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

65

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network [OSTI]

of panel titled Financing Residential and Small CommercialL ABORATORY Financing Non-Residential Photovoltaic Projects:1 2. Policy Support for Non-Residential PV

Bolinger, Mark

2009-01-01T23:59:59.000Z

66

Renewable Energy Incentives  

Broader source: Energy.gov [DOE]

'''''Note: The Public Service Commission of Wisconsin (PSC) issued an order in September 2013 which suspends incentives for Solar Thermal and Solar Photovoltaic (PV) systems for the remainder of...

67

Ameren Illinois (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

68

Entergy New Orleans- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

69

Ameren Illinois (Electric)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

70

Cascade Natural Gas- Conservation Incentives for New Homes  

Broader source: Energy.gov [DOE]

Cascade Natural Gas offers a variety of incentives to residential customers for including energy efficiency measures in new homes in Washington and Oregon. Incentives are available directly from...

71

City of Palo Alto Utilities- PV Partners  

Broader source: Energy.gov [DOE]

The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10...

72

LADWP- Solar Incentive Program  

Broader source: Energy.gov [DOE]

'''''Note: LADWP reached its budget limit for non-residential solar incentive applications in Augugst 2012. Applicants who have not received a confirmation as of August 22, 2012, have had their...

73

JEA- Solar Incentive Program  

Broader source: Energy.gov [DOE]

The JEA Solar Incentive Program provides rebates to JEA's residential customers who install new and retrofit solar hot water heaters on their homes. The rebate is worth $800 for new solar thermal...

74

Lassen Municipal Utility District- PV Rebate Program  

Broader source: Energy.gov [DOE]

Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

75

Encouraging PV Adoption in New Market-Rate ResidentialConstruction: A Critical Review of Program Experiences to Date  

SciTech Connect (OSTI)

In this paper, we review experiences with programs to support the deployment of photovoltaics (PV) in new, market-rate homes, drawing upon interviews with program managers around the country, project data, and publicly-available documentation on program design, impacts, and experiences. We focus on state clean energy funds, which have been established in 14 U.S. states to build markets for clean energy resources, as well as a select number of other state or local organizations whose activities are particularly noteworthy. We describe the types of programs implemented and their impacts to date, and discuss key issues and lessons learned for initiatives aimed at growing the new home market for PV.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-04-24T23:59:59.000Z

76

Lodi Electric Utility- PV Rebate Program  

Broader source: Energy.gov [DOE]

Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

77

Residential Energy Efficiency Rebates (Offered by 16 Utilities)  

Broader source: Energy.gov [DOE]

Bright Energy Solutions offers energy efficiency cash incentive programs to residential and [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=IA82F&re... business] customers of...

78

Dover Public Utilities- Green Energy Program Incentives  

Broader source: Energy.gov [DOE]

Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

79

Photovoltaic Incentive Design Handbook  

SciTech Connect (OSTI)

Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

Hoff, T. E.

2006-12-01T23:59:59.000Z

80

Delaware Electric Cooperative- Green Energy Program Incentives  

Broader source: Energy.gov [DOE]

'''''NOTE: The Renewable Resource Program will accept requests for grant funding for calendar year 2013 beginning January 9, 2013. Applications for residential PV and geothermal systems will not...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy  

E-Print Network [OSTI]

by bundling energy efficiency, solar photovoltaics (PV), andby bundling energy efficiency, solar photovoltaics (PV), andPhotovoltaics Residential Conservation Service Residential Energy Efficiency

Fuller, Merrian C.

2011-01-01T23:59:59.000Z

82

BEopt Optimization Tool and National Residential Efficiency Measures...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drawing tool * Detailed utility rates * PV compensation * PVefficiency incentives * Demand response * HPXML export * Schedule wizard * Output visualization * Batch...

83

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating...

84

Colorado Springs Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

85

El Paso Electric Company- Residential Efficiency Program (New Mexico)  

Broader source: Energy.gov [DOE]

EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

86

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

SciTech Connect (OSTI)

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

87

Grid Parity for Residential Photovoltaics in the United States: Key Drivers and Sensitivities; Preprint  

SciTech Connect (OSTI)

In this report, we analyze PV break-even costs for U.S. residential customers. We evaluate some key drivers of grid parity both regionally and over time. We also examine the impact of moving from flat to time-of-use (TOU) rates, and we evaluate individual components of the break-even cost, including effect of rate structure and various incentives. Finally, we examine how PV markets might evolve on a regional basis considering the sensitivity of the break-even cost to four major drivers: technical performance, financing parameters, electricity prices and rates, and policies. We find that electricity price rather than technical parameters are in general the key drivers of the break-even cost of PV. Additionally, this analysis provides insight about the potential viability of PV markets.

Ong, S.; Denholm, P.; Clark, N.

2012-08-01T23:59:59.000Z

88

Residential Solar Tax Credit  

Broader source: Energy.gov [DOE]

Enacted in August 1997, this personal income tax credit originally applied to expenditures on solar-electric (PV) equipment used on residential property. The credit, equal to 25% percent of the...

89

Missouri River Energy Services (23 Member Cooperatives)- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Bright Energy Solutions offers energy efficiency cash incentive programs to [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=MN169F&r... residential] and business customers of...

90

Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities  

SciTech Connect (OSTI)

Grid parity--or break-even cost--for photovoltaic (PV) technology is defined as the point where the cost of PV-generated electricity equals the cost of electricity purchased from the grid. Break-even cost is expressed in $/W of an installed system. Achieving break-even cost is a function of many variables. Consequently, break-even costs vary by location and time for a country, such as the United States, with a diverse set of resources, electricity prices, and other variables. In this report, we analyze PV break-even costs for U.S. residential customers. We evaluate some key drivers of grid parity both regionally and over time. We also examine the impact of moving from flat to time-of-use (TOU) rates, and we evaluate individual components of the break-even cost, including effect of rate structure and various incentives. Finally, we examine how PV markets might evolve on a regional basis considering the sensitivity of the break-even cost to four major drivers: technical performance, financing parameters, electricity prices and rates, and policies. We find that local incentives rather than ?technical? parameters are in general the key drivers of the break-even cost of PV. Additionally, this analysis provides insight about the potential viability of PV markets.

Denholm, P.; Margolis, R. M.; Ong, S.; Roberts, B.

2009-12-01T23:59:59.000Z

91

Pallets of PV: Communities Purchase Solar and Drive Down Costs...  

Open Energy Info (EERE)

A Community Guide to Collective Purchasing of Residential PV Systems." Northwest Sustainable Energy for Economic Development (Northwest SEED), May. Groups: OpenEI Community...

92

City of San Francisco- Solar Energy Incentive Program  

Broader source: Energy.gov [DOE]

The City and County of San Francisco, through the San Francisco Public Utilities Commission (SFPUC), are providing incentives to residents and businesses who install photovoltaic (PV) systems on...

93

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network [OSTI]

Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

94

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

Hoen, Ben

2013-01-01T23:59:59.000Z

95

Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities  

SciTech Connect (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

Goodrich, A.; James, T.; Woodhouse, M.

2012-02-01T23:59:59.000Z

96

City of Lompoc Utilities- PV Rebate Program  

Broader source: Energy.gov [DOE]

City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the...

97

Tampa Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

98

Tacoma Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power offers a variety of incentives for residential customers to improve the energy efficiency in participating homes. Prescriptive rebates are available for equipment such as heat pumps,...

99

Black Hills Power- Residential Customer Rebate Program  

Broader source: Energy.gov [DOE]

Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

100

PSNH- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Public Service of New Hampshire, in collaboration with [http://www.nhsaves.com/ nhsaves], provides incentives for residential customers to increase the energy efficiency of participating homes....

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Texas-New Mexico Power Company- Residential Energy Efficiency Programs (Texas)  

Broader source: Energy.gov [DOE]

Texas-New Mexico Power's (TNMP) Residential Standard Offer Program promotes energy efficiency among residential electricity customers in its Texas service area. The program provides incentives for...

102

Merced Irrigation District- PV Buydown Program  

Broader source: Energy.gov [DOE]

Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate...

103

Delmarva Power- Home Performance with Energy Star Incentive Program  

Broader source: Energy.gov [DOE]

Delmarva Power and Light Company offers the Home Performance with Energy Star Program, which provides incentives for residential customers who have audits performed by participating contractors....

104

PEPCO- Home Performance with Energy Star Incentive Program  

Broader source: Energy.gov [DOE]

The Potomac Electric Power Company (PEPCO) offers the Home Performance with Energy Star Program which provides incentives for residential customers who have audits performed by participating...

105

Cascade Natural Gas- Conservation Incentives for Existing Homes  

Broader source: Energy.gov [DOE]

Cascade Natural Gas offers a variety of incentives to residential customers for making energy efficiency improvements to existing homes. Eligible equipment includes furnaces, water heaters,...

106

NV Energy (Northern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers, small commercial, nonprofit, school and other public customers to install solar water heaters on their homes and facilities. ...

107

Ameren Illinois (Gas)- Cooking and Heating Business Efficiency Incentives  

Broader source: Energy.gov [DOE]

Ameren Illinois offers several incentive programs that include efficient natural gas technologies. The programs are available only to non-residential customers that receive natural gas service from...

108

Research of PV Application on  

E-Print Network [OSTI]

that conforms to the MN Building code definition of a "townhouse". Single house prototype of the UMore Park stage, possible form of energy infrastructure in the future, attitude of developers and future dwellers-off, incentives and payback of PV, issues of shading effects and solution; (3) Case study of single solar house

Netoff, Theoden

109

Cost goals for a residential photovoltaicthermal liquid collector system set in three northern locations  

E-Print Network [OSTI]

This study compares the allowable costs for a residential PV/T liquid collector system with those of both PV-only and side-by-side PV and thermal collector systems. Four types of conventional energy systems provide backup: ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

110

Decisions on Pilot Performance-Based Incentive Program  

E-Print Network [OSTI]

(PBI) Program for photovoltaic (PV) systems. The report was adopted by the Energy Commission at its parent; no minimum or maximum system size limit. · The reservation period for system installation is 12 Commercial Customer 10 kW PV System 7 Residential Customer 3 kW PV System 7 Eligibility 8 Reservations 9

111

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners  

SciTech Connect (OSTI)

Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

Kollins, K.; Speer, B.; Cory, K.

2009-11-01T23:59:59.000Z

112

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network [OSTI]

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

113

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above...

114

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above...

115

Hercules Municipal Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Hercules Municipal Utility provides financial incentives for its residential members to increase the energy efficiency of participating homes. Rebates are offered for a variety of home appliances...

116

Anoka Municipal Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Anoka Municipal Utilities (AMU) offers incentives for residential customers to install energy-efficient appliances and light bulbs in eligible homes. Rebates are available for Energy Star qualified...

117

Farmers Electric Cooperative- Residential/Agricultural Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Farmers Electric Cooperative offers incentives for its residential and agricultural members to increase the energy efficiency of eligible homes and facilities. In order to receive rebates,...

118

Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

119

Cookeville Electric Department- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'...

120

Energy Efficiency Fund (Electric and Gas)- Residential New Construction Program  

Broader source: Energy.gov [DOE]

The Energy Efficiency Fund offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

San Isabel Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

San Isabel Electric Association (SIEA) provides incentives for its residential customers to install energy efficient equipment. Rebates are available for certain water heaters, washers, dryers,...

122

Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lassen Municipal Utility District (LMUD) offers an incentive for residential customers who purchase and install efficient lighting, HVAC equipment and ENERGY STAR rated appliances for eligible...

123

Rochester Public Utilities- Residential Conserve and Save Rebate  

Broader source: Energy.gov [DOE]

Rochester Public Utilities (RPU) offers incentives to residential customers for installing energy-efficient equipment in participating homes through the Conserve and Save Rebate Program. These...

124

Puget Sound Energy- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Puget Sound Energy's (PSE) Residential Energy Efficiency Rebate Programs offer a variety of incentives for customers who purchase energy efficient appliances and equipment. Rebates include furnaces...

125

PPL Electric Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

PPL Electric Utilities offers numerous rebates and incentives for its residential customers. Refer to the program web site for complete details.

126

Xcel Energy- Residential and Low Income Home Energy Service  

Broader source: Energy.gov [DOE]

Xcel's Residential Program provides incentives to install energy efficiency measures in homes and small businesses in Xcel service territory. Rebates are available for evaporative cooling systems,...

127

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

'''The availability of rebates through this program is unclear. Contact MidAmerican regarding the availability of gas incentives for residential customers.'''

128

Longmont Power and Communications- Residential and Commercial Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Longmont Power and Communications offers an incentive for its residential and commercial customers to install energy efficient washing machines and dishwashers. The rebate [http://www.ci.longmont...

129

Plumas-Sierra REC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Plumas-Sierra Rural Electric Cooperative (PSREC) offers several financial incentives for residential customers to improve the efficiency of their homes by upgrading to energy saving appliances and...

130

Kentucky Utilities Company- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

131

Carroll County REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Carroll County REMC offers incentives to residential customers who purchase and install energy efficiency equipment for the home. Rebates are available on geothermal heat pumps, air source heat...

132

Clark Public Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Clark Public Utilities offers several energy incentives for residential customers to increase the energy efficiency of their homes. Rebates are offered for refrigerators, freezers, clothes washers,...

133

Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

134

Central New Mexico Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Central New Mexico Electric Cooperative (CNMEC) provides an incentive for its residential members to purchase energy efficient water heaters, clothes washers, dishwashers, refrigerators, and...

135

CenterPoint Energy- Residential and Small Commercial Efficiency Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's (CNP) Residential and Small Commercial Standard Offer Program (SOP) provides incentives to encourage contractors to install energy efficiency measures in homes and small...

136

Walton EMC- Residential Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Walton Electric Membership Corporation (WEMC) is an electric cooperative that serves 100,000 customers in ten northeastern Georgia counties. WEMC provides a number of incentives to residential...

137

Middle Tennessee EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Middle Tennessee Electric Membership Corporation (MTEMC) and the Tennessee Valley Authority (TVA) offer incentives for residential customers through the In-Home Energy Evaluation Program. This...

138

FirstEnergy (Potomac Edison)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

FirstEnergy (Potomac Edison) offers incentives to Maryland residential customers who are interested in upgrading to more energy efficient appliances and HVAC systems. Rebates are available on...

139

Salt River Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

140

Louisville Gas and Electric- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

City Utilities of Springfield- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

City Utilities of Springfield Missouri provides incentives for residential customers to increase the efficiency of eligible homes. Rebates are available for programmable thermostats, insulation...

142

Sustainable Energy Utility- Residential Energy Efficiency Program (District of Columbia)  

Broader source: Energy.gov [DOE]

The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides financial incentives to District residents who install energy-...

143

SoCalGas- Multi-Family Residential Rebate Program  

Broader source: Energy.gov [DOE]

Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy efficiency. The program offers rebates for...

144

Grays Harbor PUD- Non-Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Grays Harbor PUD's Non-Residential Rebate Program offers financial incentives to its commercial, agricultural, industrial, and institutional customers for the installation of energy efficient...

145

Tax Credits, Rebates & Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential, Nonprofit, Residential, Schools, State Government Savings Category: Photovoltaics, Solar Water Heat California Solar Initiative- PV Incentives '''Pacific Gas and...

146

Austin Energy- Residential Solar Loan Program (Texas)  

Broader source: Energy.gov [DOE]

Austin Energy offers two types of loans for residential customers to finance solar water heater and and solar PV systems in eligible homes. [http://www.austinenergy.com/Energy%20Efficiency/Programs...

147

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network [OSTI]

of State Incentives for Renewable Energy (DSIRE). 2008.based incentives CBIs or PBIs) and/or renewable energyRenewable Energy Bonds (CREBs) . 7 2.2 State and Local Policy Support for PV Deployment .. 8 2.2.1 Net Metering .. 8 2.2.2 Cash Incentives .

Bolinger, Mark

2009-01-01T23:59:59.000Z

148

PV Solar Site Assessment (Milwaukee High School)  

Broader source: Energy.gov [DOE]

The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

149

Cedar Falls Utilities- Residential New Construction Program  

Broader source: Energy.gov [DOE]

Cedar Falls Utilities offers incentives to residential customers who construct new energy efficient homes. A rate discount of 25% is available to customers who meet the 5 Star Home Program criteria...

150

Cowlitz County PUD- Residential Weatherization Plus Program  

Broader source: Energy.gov [DOE]

Cowlitz County PUD offers an incentive to residential customers who weatherize their homes. Eligible residences can be either site-built or manufactured homes, but must have a permanently installed...

151

New Mexico Gas Company- Residential Efficiency Programs  

Broader source: Energy.gov [DOE]

The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding insulation and for homes which attain Energy Star...

152

SCE- Non-Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Southern California Edison (SCE) offers incentives for non-residential customers, regardless of size and energy usage. [http://asset.sce.com/Documents/Business%20-%20Energy%20Management%20Solu......

153

PNM- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

PNM offers incentives for residential customers to improve the efficiency of eligible homes. PNM will provide a $50 rebate for the proper recycling of old refrigerators or freezers. Customers who...

154

Electric District No. 3- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Electric District No. 3 of Pinal County (ED3) provides incentives for their residential and business customers to invest in photovoltaics (PV). Residential and commercial customers installing PV...

155

Trico Electric Cooperative- SunWatts Incentive Program  

Broader source: Energy.gov [DOE]

Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing photovoltaic (PV) systems and solar water heaters. The up-front rebate for...

156

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

157

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

E-Print Network [OSTI]

DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

Hoen, Ben

2012-01-01T23:59:59.000Z

158

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network [OSTI]

of electricity retail rates or on the private economics ofelectricity rates and hence the customer economics of residential, behind-the-meter PV. We calculate the private

Barbose, Galen

2013-01-01T23:59:59.000Z

159

National Grid (Electric)- Residential Energy Efficiency Rebate Programs (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid residential electric customers in Upstate New York are eligible for several incentives offerings. Rebates are available for properly recycling inefficient refrigerators and for the...

160

American Municipal Power (Public Electric Utilities)- Residential Efficiency Smart Program (Ohio)  

Broader source: Energy.gov [DOE]

Efficiency Smart provides energy efficiency incentives to the American Municipal Power, Inc (AMP) network of public power communities. Efficiency Smart assists residential, commercial , and...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

162

Utilities District of Western Indiana REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Utilities District of Western Indiana REMC offers residential customers incentives for energy efficient heat pumps, water heaters, and air conditioners. Eligible air-source heat pump and air...

163

Wright-Hennepin Cooperative Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Wright-Hennepin Cooperative Electric Association provides financial incentives for its residential customers to purchase and install energy efficient HVAC equipment. Rebates are offered for...

164

RESIDENTIAL EXCHANGE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

establishes the right of Pacific Northwest electric utilities to participate in the Residential Exchange Program that provides wholesale power cost benefits for residential and...

165

Understanding the Complexities of Subnational Incentives in Supporting a National Market for Distributed Photovoltaics  

SciTech Connect (OSTI)

Subnational policies pertaining to photovoltaic (PV) systems have increased in volume in recent years and federal incentives are set to be phased out over the next few. Understanding how subnational policies function within and across jurisdictions, thereby impacting PV market development, informs policy decision making. This report was developed for subnational policy-makers and researchers in order to aid the analysis on the function of PV system incentives within the emerging PV deployment market. The analysis presented is based on a 'logic engine,' a database tool using existing state, utility, and local incentives allowing users to see the interrelationships between PV system incentives and parameters, such as geographic location, technology specifications, and financial factors. Depending on how it is queried, the database can yield insights into which combinations of incentives are available and most advantageous to the PV system owner or developer under particular circumstances. This is useful both for individual system developers to identify the most advantageous incentive packages that they qualify for as well as for researchers and policymakers to better understand the patch work of incentives nationwide as well as how they drive the market.

Bush, B.; Doris, E.; Getman, D.

2014-09-01T23:59:59.000Z

166

sttesuhcassa RESIDENTIAL  

E-Print Network [OSTI]

University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

Schweik, Charles M.

167

sttesuhcassa RESIDENTIAL  

E-Print Network [OSTI]

Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

Mountziaris, T. J.

168

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

rate paid at the utilitys avoided cost. Results of theroughly to the utilitys avoided cost of energy. Details anda reasonable value for the avoided cost of residential PV

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

169

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic  

E-Print Network [OSTI]

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused relaxation techniques. Index Terms--Distribution networks, microgrids, photovoltaic systems, inverter control

Giannakis, Georgios

170

Austin Energy- Value of Solar Residential Rate (Texas)  

Broader source: Energy.gov [DOE]

Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and...

171

Designing Incentives Toolkit Better Buildings Residential Network  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations &Energy

172

Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options  

SciTech Connect (OSTI)

This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

Speer, B.

2012-10-01T23:59:59.000Z

173

Why Are Resiential PV Prices in Germany So Much Lower Than in the United States?  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) SunShot Initiative, in conjunction with the Lawrence Berkeley National Laboratory (LBNL) discusses the installed price of residential PV being significantly lower in Germany than in the United States.

174

NineStar Connect- Residential Energy Efficient Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Nine Star Connect (Greenfield and Maxwell, IN) offers residential customers an incentive to buy energy efficient air-source heat pumps, geothermal heat pumps. All heat pumps must meet minimum...

175

Ashland Electric Utility- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

The City of Ashland Conservation District offers a wide variety of incentives for residential customers to increase the energy efficiency of homes, or build new homes that meet efficient design...

176

Entergy Texas- Residential and Small Commercial Standard Offer Program  

Broader source: Energy.gov [DOE]

The Hard to Reach, A/C Heat Pump, and Residential Standard Offer Programs provides incentives for the retrofit or new construction installation of a wide range of energy efficiency measures. The...

177

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of participating homes. Electric customers of MidAmerican Energy qualify for rebates on...

178

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of their homes. Eligible customers are eligible for rebates on water heaters, air...

179

CoServ Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CoServ Electric Cooperative's "Think Green Rebate Program" provides a range of incentives encouraging its residential customers to upgrade to high efficiency equipment in their homes. Rebates are...

180

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of homes. Eligible customers are eligible for rebates on furnaces, furnace fan motors,...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Otter Tail Power Company- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Otter Tail Power Company offers incentives to all residential customers in South Dakota to install energy efficient equipment in residences. Rebates are available for geothermal and air source heat...

182

College Station Utilities- Residential Energy Back II Rebate Program  

Broader source: Energy.gov [DOE]

College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. To qualify for the rebate, the A/C system...

183

Columbia Water and Light- Residential HVAC Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Water and Light (CWL) provides an HVAC incentive for residential customers that are replacing an older heating and cooling system. Customers should submit the mechanical permit from a...

184

Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

185

Texas Gas Service- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Texas Gas Service offers an incentive for its residential customers within the Austin and Sunset Valley city limits to install new central furnaces, hydronic water heaters, high efficiency gas...

186

PG&E- Non-Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Pacific Gas and Electric Company (PG&E) offers rebates and other incentives to businesses and non-residential customers to increase their energy efficiency. In addition to covering equipment...

187

Marshall Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.marshallutilities.com/index.php Marshall Municipal Utilities (MMU)] offers a variety of incentives for its residential customers to install energy-efficient equipment in their homes. ...

188

Central Electric Cooperative- Non-Residential Lighting Rebate  

Broader source: Energy.gov [DOE]

The Central Electric Cooperative offers a commercial lighting system improvement incentive for any customer not on a residential utility rate. To use the program and learn how much the rebates can...

189

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

190

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

191

Cost trends and government incentives in the California photovoltaics market, 2007-2008  

E-Print Network [OSTI]

The focus of this thesis is to analyze cost trends and government incentives in the California PV market during 2007-2008. The data show that pre-rebate system costs increased in California during this time period and that ...

Wang Yan, S.B. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

192

Tax Incentives  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION1 - In13 - InBlueTax Incentives of

193

Supporting Photovoltaics in Market-Rate Residential NewConstruction: A Summary of Programmatic Experience to Date and LessonsLearned  

SciTech Connect (OSTI)

As a market segment for solar photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost of the PV system into their tax-deductible home mortgage and, with rebates and other financial incentives, potentially achieve an immediate net-positive cash flow from the investment. New homes are amenable to building-integrated photovoltaics (BIPV), which are less susceptible to aesthetic concerns than traditional, rack-mounted systems. The performance of PV systems can be optimized on new homes by taking roof orientation and shading into account when designing the home. Perhaps most importantly, subdivisions with PV systems installed on a large number of homes offer potential cost savings from volume purchases of modules and inverters and from scale economies in system design and installation. Finally, the ability of builders to install PV as a standard feature on multiple homes in new subdivisions offers an opportunity to circumvent the high transaction costs and information-related market barriers typically confronted when each individual homeowner must make a decision about installing PV. Builders may benefit in several ways from incorporating PV into new homes. Builders may gain greater market differentiation, enhanced media exposure, and less community or political opposition to development projects. Additionally, if homebuyers place a high value on PV, builders may be able to earn additional profits, just as they would on granite countertops or other high-value home features. Although the impact of PV on the original sale price of new homes has not yet been rigorously examined, some limited empirical evidence does suggest that PV and energy efficient features may have a positive effect on resale value. Along with its unique advantages, residential new construction also faces unique barriers to PV adoption. Most fundamentally, perhaps, is the general aversion to technology risk within the building industry, particularly in ''hot'' housing markets where builders face little difficulty selling homes. Builders may also be concerned about the up-front cost of PV and its impact on new home prices and profits. The potential for project delays associated with PV module availability, installation scheduling, utility interconnection agreements, building inspections, permit processing, or other factors, may also be of great concern. Finally, many builders may believe that most homebuyers are not particularly interested in PV, given its cost, and that some may even be opposed based on concerns about aesthetics, maintenance, or reliability. In this paper, prepared on behalf of the Clean Energy States Alliance (CESA), we describe early efforts by state clean energy funds to support the deployment of PV in new, market-rate homes. (Other recent reports prepared for CESA describe experiences with programs targeting affordable housing.) We focus on the activities of clean energy funds in nine states that have funded specific projects and/or have offered targeted programs for PV in market-rate residential new construction. We also include in our review several other state or local organizations whose efforts are particularly noteworthy or have some direct bearing on the efforts of clean energy funds in the same state--however, we do not attempt to comprehensively review the activities of entities other than state clean energy funds.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-02-10T23:59:59.000Z

194

ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)  

SciTech Connect (OSTI)

This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

Balcomb, J.D.; Hayter, S.J. (National Renewable Energy Laboratory); Weaver, N.L. (InterWeaver Consulting)

2001-02-16T23:59:59.000Z

195

Energy 101: Solar PV  

SciTech Connect (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2011-01-01T23:59:59.000Z

196

Energy 101: Solar PV  

ScienceCinema (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2013-05-29T23:59:59.000Z

197

Distributed Control of Residential Energy Systems using a Market Maker  

E-Print Network [OSTI]

, in particular reverse power flow during daytime periods of peak generation coupled with low residential load distribution networks and shave peak demand without large-scale capital costs for feeder replacement.weller}@newcastle.edu.au) Abstract: The recent rapid uptake of residential solar photovoltaic (PV) installations provides many

Knobloch,Jürgen

198

Memphis Light, Gas and Water (Electric)- Commercial Efficiency Advice and Incentives Program  

Broader source: Energy.gov [DOE]

Memphis Light, Gas and Water (MLGW), in partnership with the Tennessee Valley Authority (TVA), offers a variety of energy efficient incentives to non-residential customers. The program provides...

199

Stabilized PV system  

DOE Patents [OSTI]

A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

Dinwoodie, Thomas L. (Piedmont, CA)

2002-12-17T23:59:59.000Z

200

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Energy Program Involves implementation of residential and competitive market-based solar PV incentive programs, and provides financial support for solar PV and thermal...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

for Renewable Energy Program Will implement a residential and competitive market-based solar PV incentive programs, and provide financial support for solar PV and thermal...

202

Rochester Public Utilities- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Rochester Public Utilities provides incentives for residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt...

203

Austin Utilities- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Austin Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt;...

204

Owatanna Public Utilities- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Owatanna Public Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt...

205

DYNAMIC MODELING RESIDENTIAL DATA AND APPLICATION  

E-Print Network [OSTI]

was determined between electrolyzer H2 energy production and solar irradiance Yearly residential energy needs well as a replacement for rechargeable lead acid batteries when integrated with solar photovoltaic (PV in other applications such as cooking, heating, and transportation. One of the inherent advantages

Mease, Kenneth D.

206

Nonprice incentives and energy conservation.  

E-Print Network [OSTI]

challenging. Traditional economic incentives for householdbeen an important economic incentive for household energycant change in existing economic incentives advances our un-

Asensio, OI; Delmas, MA

2015-01-01T23:59:59.000Z

207

Residential Mail Procedures Residential Mail Services  

E-Print Network [OSTI]

Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

Buehrer, R. Michael

208

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

SciTech Connect (OSTI)

This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

2009-08-01T23:59:59.000Z

209

Sustaining Cost-Effective Incentives  

Broader source: Energy.gov [DOE]

Presents how understanding the way in which customers' minds process incentives can help energy efficiency programs structure effective incentives.

210

Financing Non-Residential Photovoltaic Projects: Options and Implications  

SciTech Connect (OSTI)

Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years.ii Specifically, due to financial innovation, non-residential entities interested in PV no longer face prohibitively high up-front costs, no longer need to be able to absorb Tax Benefits in order to make the economics pencil out, no longer need to be able to operate and maintain the system, and no longer need to accept the risk that the system does not perform as expected.

Bolinger, Mark

2009-01-09T23:59:59.000Z

211

Sandia National Laboratories: PV Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing consultation complete performance characterization of PV cells and photo sensors calibration of PV reference cells, reference modules, and solar instruments...

212

Optimal Solar PV Arrays Integration for Distributed Generation  

SciTech Connect (OSTI)

Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

213

Transformation of California's Residential Photovoltaics Market Through Third-Party Ownership  

SciTech Connect (OSTI)

Third-party photovoltaics (PV) ownership is a rapidly growing market trend, where commercial companies own and operate customer-sited PV systems and lease PV equipment or sell PV electricity to the building occupant. Third-party PV companies can reduce or eliminate up-front adoption costs, reduce technology risk and complexity by monitoring system performance, and can repackage the PV value proposition by showing cost savings in the first month of ownership rather than payback times on the order of a decade. We find that the entrance of third-party business models in southern California residential PV markets has enticed a new demographic to adopt PV systems that is more highly correlated to younger, less affluent, and less educated populations than the demographics correlated to purchasing PV systems. By enticing new demographics to adopt PV, we find that third-party PV products are likely increasing total PV demand rather than gaining market share entirely at the expense of existing customer owned PV demand. We also find that mean population demographics are good predictors of third-party and customer owned PV adoption, and mean voting trends on California carbon policy (Proposition 23) are poor predictors of PV adoption.

Drury, E.; Miller, M.; Macal, C. M.; Graziano, D. J.; Heimiller, D.; Ozik, J.; Perry, T. D.

2012-03-01T23:59:59.000Z

214

Progress Energy Florida- SunSense Commercial PV Incentive Program  

Broader source: Energy.gov [DOE]

'''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.'''''

215

Federal Tax Incentives for PV: Potential Implications for Program Design  

E-Print Network [OSTI]

low-income/affordable-housing programs Open Questions, Seeking Clarification from IRS Energy Analysis Department Federal (and State) Solar

Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

216

Designing Auction-Based PV Incentives | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company Agrees toDepartmentDepartment ofDesigning

217

Taunton Municipal Lighting Plant- Residential and Non-Profit Weatherization Program (Massachusetts)  

Broader source: Energy.gov [DOE]

Taunton Municipal Lighting Plant (TMLP) offers the 'House N Home' Thermal Rebate Program which provides financial incentives to residential and non-Profit customers for making buildings more energy...

218

Maine Public Service Company- Residential and Small Commercial Heat Pump Program (Maine)  

Broader source: Energy.gov [DOE]

The Public Service Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover...

219

Bangor Hydro Electric Company- Residential and Small Commercial Heat Pump Program (Maine)  

Broader source: Energy.gov [DOE]

Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to...

220

National Grid (Electric)- Non-Residential Energy Efficiency Program (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grids Non-Residential Program is for electric business customers in upstate New York. Incentives are available for both small commercial and large commercial customers in the Upstate New...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Clark County REMC- Clark County REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Clark County REMC provides incentives for residential members to upgrade to more efficient household equipment. Rebates are available for air-source heat pumps, geothermal heat pumps, central air...

222

New Hampshire Electric Co-Op- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-Op provides a number of energy efficiency incentive programs for residential members. First, members can receive a free Home Energy Analysis through the [http://www.nhec...

223

Duke Energy (Gas and Electric)- Residential and Builder Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy provides a financial incentive for its residential customers to purchase energy efficient HVAC products through the Smart $aver program. A $200 rebate is available for geothermal heat...

224

FirstEnergy (West Penn Power)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

FirstEnergy (West Penn Power) offers a variety of incentives to Pennsylvania residential customers who are interested in upgrading to more energy efficient appliances and equipment. Rebates are...

225

Grid integrated distributed PV (GridPV).  

SciTech Connect (OSTI)

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

226

Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices  

SciTech Connect (OSTI)

For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

2011-11-01T23:59:59.000Z

227

Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage  

E-Print Network [OSTI]

is increasingly being considered by utilities seeking to reinforce distribution networks and shave peak demand consists of solar PV generation, battery storage and an inelastic energy load. Each RES is connected--The recent rapid uptake of residential solar photo- voltaic (PV) installations provides many challenges

Knobloch,Jürgen

228

Local Incentives (Massachusetts)  

Broader source: Energy.gov [DOE]

The Massachusetts Office of Business Development helps companies to identify communities interested in offering locally-negotiated incentives, such as Tax Increment Financing (TIF), Special Tax...

229

Two essays on incentives  

E-Print Network [OSTI]

............................................................................................ 31 3. CEO PAY: PERFORMANCE INCENTIVES OR TOURNAMENT PRIZE ? . 34 3.1 Introduction .......................................................................................... 34 3.2 Data and methods...

Stanley, Brooke Winnifred

2008-10-10T23:59:59.000Z

230

Keeping Rebates and Incentives  

Broader source: Energy.gov [DOE]

Presentation covers keeping rebates and incentives to a panel at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

231

Incentives for Energy Independence  

Broader source: Energy.gov [DOE]

In August 2007 Kentucky established the ''Incentives for Energy Independence Act'' to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings,...

232

Enterprise Zone Incentives (Florida)  

Broader source: Energy.gov [DOE]

Enterprise Zone Incentives encourage business growth within certain geographic areas targeted for economic revitalization. Businesses which create jobs within a designated zone are eligible for...

233

State and Local Incentives  

Broader source: Energy.gov [DOE]

To help you make energy efficiency improvements in your commercial building, your state and/or local community might offer incentives or have special programs.

234

Small Commercial Refrigeration Incentive  

Broader source: Energy.gov [DOE]

Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural and institutional buildings. To receive the...

235

Business Incentive Program  

Broader source: Energy.gov [DOE]

Focus on Energy offers financial incentives to eligible business customers who install many types of qualifying energy efficient equipment in existing buildings. The program offers both...

236

New Homes Incentive Program  

Broader source: Energy.gov [DOE]

Energy Trust's New Homes Program offers builders cash incentives for energy efficient measures included in new homes, where the measures exceed the building code. Lighting upgrades, whole home...

237

Solar Leasing for Residential Photovoltaic Systems  

Broader source: Energy.gov [DOE]

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

238

How Can We Make PV Modules Safer?: Preprint  

SciTech Connect (OSTI)

Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

Wohlgemuth, J. H.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

239

Economic Development Incentive Program (Massachusetts)  

Broader source: Energy.gov [DOE]

The Economic Development Incentive Program (EDIP) is a tax incentive program designed to foster job creation and stimulate business growth throughout the Commonwealth. Participating companies may...

240

Federal Incentives for Renewable Energy  

Office of Scientific and Technical Information (OSTI)

State Incentives for Renewable Project Development State incentives for renewable energy in New York include a green building tax credit for commercial entities, a property...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Exploration Incentive Tax Credit (Montana)  

Broader source: Energy.gov [DOE]

The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

242

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998throughThousand CubicWashington Natural GasResidential Residential

243

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect (OSTI)

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

244

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels  

E-Print Network [OSTI]

This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

245

Energy 101: Solar PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel...

246

Testing for PV Reliability (Presentation)  

SciTech Connect (OSTI)

The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

Kurtz, S.; Bansal, S.

2014-09-01T23:59:59.000Z

247

PV PLANNER A DESIGN AND  

E-Print Network [OSTI]

PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS Final Report A Renewable............................................................................................................................................26 3. ILLUSTRATIVE OUTPUTS FROM PV PLANNER FOR A BUILDING INTEGRATED (BIPV) PV APPLICATION

Delaware, University of

248

Residential Services Headlease residents  

E-Print Network [OSTI]

Residential Services Headlease residents handbook 2013-2014 #12;Map of Brighton inside front cover packs Rent 5 Residential Advisor (RA) network 6 Senior residential advisors Residential Student Support Contents Contents Brighton 1 #12;Welcome Congratulations on securing your place at Sussex. Residential

Sussex, University of

249

Aligning Incentives With Program Goals  

Broader source: Energy.gov [DOE]

Presents techniques used by Michigan Saves to increase participation and provide greater incentives.

250

Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems  

E-Print Network [OSTI]

, reactive power generation/consumption based on monitoring local electrical quantities has been recog- nized method for determining the active- and reactive-power set points for PV inverters in residential systems as a viable option to effect voltage regulation [4], [8]­[12]. However, such reactive power control (RPC

Giannakis, Georgios

251

Biomass Energy Production Incentive  

Broader source: Energy.gov [DOE]

In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

252

Renewable Energy Production Incentive  

Broader source: Energy.gov [DOE]

Supported by the state's Renewable Development Fund, Minnesota offers a payment of 1.5 per kilowatt-hour (kWh) for on-farm biogas facilities. Previously, this incentive also offered payments to...

253

Energy and Society (ER100/PP184/ER200/PP284) Topics: PV, Wind, environmental justice  

E-Print Network [OSTI]

? [2 points] ii. [ER200/PP286 only] Relative to using average utility rates, how could time-of-use (TOU. How might our results for the levelized cost of PV electricity differ if we were considering utility-scale installations instead of residential-scale rooftop installations? List and explain three other factors we would

Kammen, Daniel M.

254

Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

SciTech Connect (OSTI)

Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

Goodrich, A.; Woodhouse, M.; Hacke, P.

2012-06-01T23:59:59.000Z

255

Energy Incentive Programs, Maryland  

Broader source: Energy.gov [DOE]

Maryland utilities budgeted $150 million in 2012 across their various electric and gas programs (including those directed at residential and low-income customers) to promote customer energy efficiency.

256

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

257

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

SciTech Connect (OSTI)

The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

Bolinger, Mark; Wiser, Ryan; Ing, Edwin

2006-03-28T23:59:59.000Z

258

Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)  

SciTech Connect (OSTI)

Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

Deline, C.

2010-09-23T23:59:59.000Z

259

Summary Review of Advanced Inverter Technologies for Residential PV Systems  

E-Print Network [OSTI]

and Energy Reliability As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.1: Photovoltaic Systems of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-EE0003507 Hawai`i Energy Sustainability Program Subtask 3.1 Photovoltaic Systems: Report 2 Summary of Inverter Technologies Submitted

260

Measured Performance of California Buydown Program Residential PV Systems  

E-Print Network [OSTI]

of the basis of photovoltaic system "size". Both the magnitude and timing of photovoltaic system energy grid-tied photovoltaic systems installed in California during the past several years have received to characterize system performance. The nineteen monitored systems covered by this paper range in size from 1

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity  

E-Print Network [OSTI]

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity is much and the low one to thin-film cadmium telluride PV systems. Fossil fuel power plants PV displaces. 5.8 External

262

Residential Learning University Housing  

E-Print Network [OSTI]

Residential Learning & University Housing Handbook 2008 - 2009 A Guide for Residential Living on the Campus of Rowan University #12;Welcome to Residential Learning & University Housing! The primary purpose of the Office of Residential Life & University Housing is to assist and support students in the pursuit

Rusu, Adrian

263

Residential Colleges NORTHWESTERN  

E-Print Network [OSTI]

Residential Colleges NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

Shull, Kenneth R.

264

RESIDENTIAL COLLEGES NORTHWESTERN  

E-Print Network [OSTI]

c RESIDENTIAL COLLEGES NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

Apkarian, A. Vania

265

Solar Water Heating Incentive Program  

Broader source: Energy.gov [DOE]

Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who...

266

High Performance Incentive Program (Kansas)  

Broader source: Energy.gov [DOE]

High Performance Incentive Program provides tax incentives to eligible employers that pay above-average wages and have a strong commitment to skills development for their workers. A substantial...

267

Self-Generation Incentive Program  

Broader source: Energy.gov [DOE]

Initiated in 2001, the Self-Generation Incentive Program (SGIP) offers incentives to customers who produce electricity with wind turbines, fuel cells, various forms of combined heat and power (CHP)...

268

Outdoor PV Degradation Comparison  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

269

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms NuclearPublications AnnualNuclearPV

270

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILS Sandia'sAdvancedPV

271

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILS Sandia'sAdvancedPVFinancePV

272

Fault Current Contribution from Single-Phase PV Inverters  

SciTech Connect (OSTI)

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

273

Empirically Derived Strength of Residential Roof Structures for Solar Installations.  

SciTech Connect (OSTI)

Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

2014-12-01T23:59:59.000Z

274

Performance Incentives for Transmission  

E-Print Network [OSTI]

) establishes a framework for markets based on locational marginal pricing (LMP). The NOPR envisions a critical role for congestion rev- enue rights (CRRs), which entitle holders to streams of nodal price, because the extent and location of congestion in LMP-based markets is transparent. Incentive regulation

Oren, Shmuel S.

275

Analysis of federal incentives used to stimulate energy consumption  

SciTech Connect (OSTI)

The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

1981-08-01T23:59:59.000Z

276

Considerations for PV Site Surveys  

E-Print Network [OSTI]

and building codes determine how a solar-electric (photovoltaic; PV) system is installed. A site survey- grid system, if solar energy is not collected, then the electrical loads may not be supported withoutConsiderations for PV Site Surveys John Wiles Sponsored by the U.S. Department of Energy this loss

Johnson, Eric E.

277

City of Phoenix- Energize Phoenix Residential Incentives (Arizona)  

Broader source: Energy.gov [DOE]

The city of Phoenix was awarded a $25 million federal grant from the U.S. Department of Energy Better Buildings Neighborhood Program and the American Recovery and Reinvestment Act (ARRA) to launch...

278

Tax Incentives for Residential Buildings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupplyAbout the GeothermalTax

279

Solar Photovoltaic Financing: Residential Sector Deployment | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV Incentive Programs

280

Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)  

SciTech Connect (OSTI)

This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

Balcomb, J.D.; Hayter, S.J. (National Renewable Energy Laboratory); Weaver, N.L. (InterWeaver Consulting)

2001-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Residential Energy Audits  

E-Print Network [OSTI]

A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

Brown, W.

1985-01-01T23:59:59.000Z

282

Guide for Benchmarking Residential Energy Efficiency Program...  

Energy Savers [EERE]

Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential...

283

Better Buildings Residential Program Solution Center Demonstration...  

Energy Savers [EERE]

Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

284

Presentation: Better Buildings Residential Program Solution Center...  

Energy Savers [EERE]

Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

285

Membership Criteria: Better Buildings Residential Network | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

286

Housing and Residential Life  

E-Print Network [OSTI]

1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

Fernandez, Eduardo

287

PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION  

E-Print Network [OSTI]

PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

288

AREA COORDINATOR RESIDENTIAL EDUCATION  

E-Print Network [OSTI]

AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

Bordenstein, Seth

289

Gulf Power- Solar PV Program  

Broader source: Energy.gov [DOE]

'''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more...

290

2014 PV Performance Modeling Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 PV Performance Modeling Workshop Photo courtesy of Sempra Energy 8:00 AM to 9:00 PM Monday, May 5, 2014 At Biltmore Hotel, Santa Clara, California 512014 Agenda: Start Time...

291

Sandia National Laboratories: PV Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bruce King 505.284.6571 bhking at sandia.gov Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * SAND 2011-4654W * Solar Energy * Solar Research Comments...

292

Residential Wood Residential wood combustion (RWC) is  

E-Print Network [OSTI]

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

293

Pressure-equalizing PV assembly and method  

DOE Patents [OSTI]

Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

Dinwoodie, Thomas L.

2004-10-26T23:59:59.000Z

294

GMP- Biomass Electricity Production Incentive  

Broader source: Energy.gov [DOE]

Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

295

Saskatchewan Petroleum Research Incentive (SPRI)  

Broader source: Energy.gov [DOE]

The Saskatchewan Petroleum Research Incentive is intended to encourage research, development and demonstration of new technologies that facilitate the expanded production of Saskatchewan's oil and...

296

PSCAD Modules Representing PV Generator  

SciTech Connect (OSTI)

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

297

Rooftop PV system. Final technical progress report, Phase II  

SciTech Connect (OSTI)

Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

NONE

1995-08-01T23:59:59.000Z

298

Residential Air Conditioner Direct Load Control "Energy Partners Program"  

E-Print Network [OSTI]

RESIDENTIAL AIR CONDITIONER DIRECT LOAD CONTROL "ENERGY PARTNERS PROGRAMn John D. Cook Supervisor Houston ABSTRACT Demand side management programs like Energy Partners can provide an effective peak reducing capability which within a.... In this partnership the customer allows HLfP to install a I switch on his/her air conditioner or heat pump and i periodically cycle the unit off during the hottest summer 1 days. In return the customer benefits by receiving an incentive payment, as well...

Cook, J. D.

1994-01-01T23:59:59.000Z

299

Economic Development Incentive Programs: Some Best Practices  

E-Print Network [OSTI]

Economic Development Incentive Programs: Some Best Practices Judith I. Stallmann and Thomas G. Johnson Economic development incentives have been a popular tool for attracting, retaining and growing to expectations and promises made. The research literature on economic development incentives finds

Noble, James S.

300

Benchmarking Soft Costs for PV Systems in the United States (Presentation)  

SciTech Connect (OSTI)

This paper presents results from the first U.S. based data collection effort to quantify non-hardware, business process costs for PV systems at the residential and commercial scales, using a bottom-up approach. Annual expenditure and labor hour productivity data are analyzed to benchmark business process costs in the specific areas of: (1) customer acquisition; (2) permitting, inspection, and interconnection; (3) labor costs of third party financing; and (4) installation labor.

Ardani, K.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Distributed Solar Incentive Programs: Recent Experience and Best Practices for Design and Implementation  

SciTech Connect (OSTI)

Based on lessons from recent program experience, this report explores best practices for designing and implementing incentives for small and mid-sized residential and commercial distributed solar energy projects. The findings of this paper are relevant to both new incentive programs as well as those undergoing modifications. The report covers factors to consider in setting and modifying incentive levels over time, differentiating incentives to encourage various market segments, administrative issues such as providing equitable access to incentives and customer protection. It also explores how incentive programs can be designed to respond to changing market conditions while attempting to provide a longer-term and stable environment for the solar industry. The findings are based on interviews with program administrators, regulators, and industry representatives as well as data from numerous incentive programs nationally, particularly the largest and longest-running programs. These best practices consider the perspectives of various stakeholders and the broad objectives of reducing solar costs, encouraging long-term market viability, minimizing ratepayer costs, and protecting consumers.

Bird, L.; Reger, A.; Heeter, J.

2012-12-01T23:59:59.000Z

302

Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems  

SciTech Connect (OSTI)

Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

Feldman, D.; Friedman, B.; Margolis, R.

2013-10-01T23:59:59.000Z

303

DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.  

E-Print Network [OSTI]

1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

Missouri-Rolla, University of

304

Turlock Irrigation District- PV Rebate  

Broader source: Energy.gov [DOE]

'''''Note: The Non-Residential Solar Rebate Program is fully subscribed. Applications received will be placed on a waitlist and will only be eligible for a rebate if a pending project is cancelled....

305

Nonprice incentives and energy conservation.  

E-Print Network [OSTI]

feedback and electricity consumption: A field experimenton household electricity consumption: A tool for savingPer Capita Residential Electricity Consumption Region United

Asensio, OI; Delmas, MA

2015-01-01T23:59:59.000Z

306

Voluntary Initiative on Incentives: Toolkit Training Webinar...  

Energy Savers [EERE]

Voluntary Initiative on Incentives: Toolkit Training Webinar Voluntary Initiative on Incentives: Toolkit Training Webinar March 26, 2015 12:30PM to 2:0...

307

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

308

Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms  

E-Print Network [OSTI]

of DSR program incentive regulation. Introduction Recentin developing an incentive regulation approach for demand-

Cappers, Peter

2010-01-01T23:59:59.000Z

309

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

SciTech Connect (OSTI)

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

310

Salem Electric- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

311

PV Validation and Bankability Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava, WSUEnergyPV Performance andPV

312

PV Value | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on2005-74Laboratories | Department ofPV Value PV

313

Sandia National Laboratories: PV Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV Contacts PV

314

Sandia National Laboratories: PV Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems ReliabilityWorkshops PV

315

RESIDENTIAL SERVICES STUDENT CHARTER Introduction  

E-Print Network [OSTI]

RESIDENTIAL SERVICES STUDENT CHARTER Introduction This Charter sets out the standards of provision. Residential Services are committed to encouraging diversity and inclusiveness within University residences via the Residential Services Annual Report and the internet. Consultation This Charter was developed

Oakley, Jeremy

316

CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL  

E-Print Network [OSTI]

CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY funded and administered a Residential Appliance Saturation Study that serves as an update to the 2003 electric and 10 natural gas residential enduses and appliance saturations for households

317

Essays on residential desegregation  

E-Print Network [OSTI]

Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

Wong, Maisy

2008-01-01T23:59:59.000Z

318

Residential Solar Rights  

Broader source: Energy.gov [DOE]

In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

319

Residential Rewards Program  

Broader source: Energy.gov [DOE]

The Focus on Energy Program offers a Residential Rewards Program to eligible residents for purchasing and installing furnaces, boilers, heat pumps, air sealing, attic insulation, and water heaters....

320

City of Sunset Valley- PV Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Evaluation of evolving residential electricity tariffs  

SciTech Connect (OSTI)

Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30percent, 100percent, 200percent, and 300percent+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

2011-03-22T23:59:59.000Z

322

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

323

Citizens Gas- Residential Efficiency Rebates  

Broader source: Energy.gov [DOE]

Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

324

Efficiency Maine Residential Lighting Program  

Broader source: Energy.gov [DOE]

Efficiency Maine's Residential Lighting Program works directly with retailers and manufacturers to encourage residential customers to purchase energy-efficient lighting. Rebate amounts average $1...

325

Residential Retrofit Program Design Guide  

Broader source: Energy.gov [DOE]

This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

326

Analysis and Design of Smart PV Module  

E-Print Network [OSTI]

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

Mazumdar, Poornima

2012-12-10T23:59:59.000Z

327

PNM- Performance-Based Solar PV Program  

Broader source: Energy.gov [DOE]

In March 2006, PNM initiated a renewable energy credit (REC) purchase program as part of its plan to comply with [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New...

328

Vermont Employment Growth Incentive (Vermont)  

Broader source: Energy.gov [DOE]

The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to grow and expand in Vermont, a...

329

Employment Incentive Credit (New York)  

Broader source: Energy.gov [DOE]

The Employment Incentive Credit is through the New York State Department of Taxation and Finance based on the same qualifying investment for the ITC. The credit is equal to 1.5% to 2.5% of...

330

Xcel Energy- Solar Production Incentive  

Broader source: Energy.gov [DOE]

Beginning in 2014, Xcel must offer a solar production incentive for systems 20 kW-DC or less. The customer's system capacity may not be more than 120% of the customer's on-site annual energy...

331

Profit incentives and technological change  

E-Print Network [OSTI]

This thesis is a collection of three empirical essays on the effect of profit incentives on innovation and technology adoption. Chapter 1, written with Daron Acemoglu, investigates the effect of (potential) market size on ...

Linn, Joshua

2005-01-01T23:59:59.000Z

332

Renewable Energy Business Tax Incentives  

Broader source: Energy.gov [DOE]

[http://www.azleg.gov/legtext/49leg/1r/bills/sb1403s.pdf SB 1403], signed in July of 2009, created tax incentives intended to draw renewable energy product manufacturers to Arizona. Specifically,...

333

Wind Energy Manufacturing Tax Incentive  

Broader source: Energy.gov [DOE]

With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

334

Commercial Scale Wind Incentive Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregons Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

335

International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)  

E-Print Network [OSTI]

cost Achievements Solar PV, wind, power electronics Needscoal-fired power tariff Solar PV Biomass Wind Small hydropower generation units including solar PV, diesel, energy storage, wind, and

Marnay, Chris

2014-01-01T23:59:59.000Z

336

High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint  

SciTech Connect (OSTI)

In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

Hambrick, J.; Narang, D.

2012-06-01T23:59:59.000Z

337

Bryant Residential Tutorship BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013  

E-Print Network [OSTI]

Bryant Residential Tutorship 1 BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013 BACKGROUND The D, Bryant Hall has provided a supportive residential environment for first-year students and has also in the Waikato region continues in the form of the Bryant Residential Tutorships. These Tutorships were offered

Waikato, University of

338

Rooftop PV system. PV:BONUS Phase 3B, final technical report  

SciTech Connect (OSTI)

Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

NONE

1998-11-01T23:59:59.000Z

339

Grid Integrated Distributed PV (GridPV) Version 2.  

SciTech Connect (OSTI)

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle

2014-12-01T23:59:59.000Z

340

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

SciTech Connect (OSTI)

This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on Californias electricity market in a future year (2030); however, it is neither intended to forecast Californias future market, nor are our conclusions intended to have implications specific only to the California market. That said, some of the findings are unique to our underlying assumptions, as described further within the main body of the report, along with other key limitations.

Darghouth, Naim; Barbose, Galen; Wiser, Ryan

2013-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Abstract--This paper deals with the design of a nonlinear con-troller for single-phase grid-connected photovoltaic (PV) systems  

E-Print Network [OSTI]

exhaustion. The PV system is the most employed renewable energy source among different sources. Residential is designed based on the partial feedback linearization which transforms the nonlinear system into a reduced to design partial feedback linearizing controller. The performance of the proposed controller is evaluated

Pota, Himanshu Roy

342

Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results  

SciTech Connect (OSTI)

This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

2012-11-01T23:59:59.000Z

343

Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States  

Broader source: Energy.gov [DOE]

This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

344

Economic Incentives to Promote Innovation in Healthcare Delivery  

E-Print Network [OSTI]

U E S IN ORTHOPAEDIC SURGERY Economic Incentives to Promoteservice offers no economic incentives for clinicians to ef?10, October 2009 Economic Incentives Promoting Innovation

Luft, Harold S.

2009-01-01T23:59:59.000Z

345

Residential Enhanced Rewards Program  

Broader source: Energy.gov [DOE]

Focus on Energy offers incentives for income-qualifying customers for the purchase of high efficiency heating equipment. Owner-occupied single-family and multifamily residences of 3 units or less...

346

Breakeven Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities (Report Summary) (Presentation)  

SciTech Connect (OSTI)

"Break-even cost" for photovoltaic (PV) technology is defined as the point where the cost of PV-generated electricity equals the cost of electricity purchased from the grid. Break-even cost is expressed in $/W of an installed system. Achieving break-even cost is a function of many variables. Consequently, break-even costs vary by location and time for a country, such as the United States, with a diverse set of resources, electricity prices, and other variables. In this presentation, we introduce an analysis of PV break-even costs for residential customers in the United States, including an evaluation of some of the key drivers of PV breakeven both regionally and over time. This presentation includes our methodology and presents results for both near-term residential breakeven costs(2009) and future market sensitivities of break-even costs (2015). See also the the report "Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities". Presentation for NREL/TP-6A2-45991.

Denholm, P.; Margolis, R. M.; Ong, S.; Roberts, B.

2009-12-01T23:59:59.000Z

347

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network [OSTI]

465 Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

348

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network [OSTI]

Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

Meier, Alan K.

2008-01-01T23:59:59.000Z

349

Fact Sheet: Better Buildings Residential Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fact Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn What Is the Residential Network? The Better Buildings Residential Network connects...

350

Fact Sheet: Better Buildings Residential Network | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

351

Residential Retrofit Program Design Guide Overview Transcript...  

Broader source: Energy.gov (indexed) [DOE]

Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide...

352

Residential solar-photovoltaic power systems: the need for battery storage  

SciTech Connect (OSTI)

Benefits of battery storage used in conjunction with residential solar photovoltaic (PV) power systems were evaluated for a representative set of utility service areas. The PV systems were assumed capable of exporting excess power to the utility grid, and the batteries sited at the substation level were operated as a form of load-leveling utility storage. A cost-allocation model, SIMSTOR, was employed to determine utility fuel and capital cost savings resulting from the addition of batteries as a function of PV system penetration level. These benefits were compared with the savings of batteries used alone without introduction of the PV systems. Battery storage capacities and discharge rates were varied to determine the battery configurations that maximize net utility savings as a function of battery costs. Installed (rated) PV device capacities up to 20 percent of the generation peak load in each service area were considered. Findings indicate that batteries and PV systems are complementary rather than competing technologies, when attached to the electric supply grid. The utility benefits of the PV systems are primarily fuel savings, while those of the battery are primarily due to savings in utility capacity. The economic rationale for batteries does not change significantly as the penetration level for the PV systems increases. In some of the service areas, the addition of the PV systems tended to sharpen rather than flatten the peaks in the utility's load curves, with the magnitude of the effect becoming more pronounced at the higher PV system penetration levels. As a result of these load shape changes, batteries with higher discharge rates and larger storage capacities were favored.

Mueller, R.O.; Cha, B.K.; Giese, R.F.; Maslowski, C.

1980-01-01T23:59:59.000Z

353

Analysis of institutional mechanisms affecting residential and commercial buildings retrofit  

SciTech Connect (OSTI)

Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

Not Available

1980-09-01T23:59:59.000Z

354

Residential Wind Power  

E-Print Network [OSTI]

This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

Willis, Gary

2011-12-16T23:59:59.000Z

355

Residential Energy Disclosure (Hawaii)  

Broader source: Energy.gov [DOE]

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

356

PV output smoothing with energy storage.  

SciTech Connect (OSTI)

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

357

Federal Incentives for Wind Power (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the federal incentives available as of April 2013 that encourage increased development and deployment of wind energy technologies, including research grants, tax incentives, and loan programs.

Not Available

2013-05-01T23:59:59.000Z

358

Business Employment Incentive Program (BEIP) (New Jersey)  

Broader source: Energy.gov [DOE]

Economically viable expanding or relocating businesses that create jobs in New Jersey are eligible to secure annual incentive grants via the Business Employment Incentive Program (BEIP) of up to 80...

359

Puerto Rico- Economic Development Incentives for Renewables  

Broader source: Energy.gov [DOE]

The 2008 Economic Incentives for the Development of Puerto Rico Act (EIA) provides a wide array of tax incentives and credits that enable local and foreign companies dedicated to certain business...

360

NRELs PV Tools on the Web: Open PV Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL's PV Tools on the Web: The OpenPV Project NREL TAP Webinar Ted Quinby March 24, 2010 National Renewable Energy Laboratory Innovation for Our Energy Future Overview National...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Federal Incentives for Water Power (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the federal incentives available as of April 2013 for the development of water power technologies.

Not Available

2013-05-01T23:59:59.000Z

362

Sandia National Laboratories: PV Performance Modeling Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being pursued in this collaborative include: PVPMC Website: (http:pvpmc.org) Matlab(tm) PV Performance Modeling Toolbox (PVLIB Toolbox can be downloaded on http:...

363

Ensuring Quality of PV Modules: Preprint  

SciTech Connect (OSTI)

Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

2011-07-01T23:59:59.000Z

364

Updating Interconnection Screens for PV System Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System...

365

CPS Energy- Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

366

Economic Incentives for Protecting Digital Rights Online  

E-Print Network [OSTI]

Economic Incentives for Protecting Digital Rights Online N. Boris Margolina, , Brian Neil Levineb propose the use of economic incentives to both limit and detect unautho- rized sharing. This approach has using direct economic incentives to discourage illegitimate shar- ing and to detect it when it occurs

Wright , Matthew

367

Forging the Link: Linking the Economic Incentives  

E-Print Network [OSTI]

Forging the Link: Linking the Economic Incentives of Low Impact Development with Community on the economic incentives of LID to address the local decisional realities of community watershed protection in nature but details the economic incentives to LID. It is best suited for audiences seeking to understand

368

Overview of State Programs, Incentives & Tax Credits for Business  

E-Print Network [OSTI]

manufacturer classification (or R&D company) from DOR Web site: www.mass.gov/dor #12;Tax Incentives Economic Development Incentive Program The Economic Development Incentive Program (EDIP) is the primary economic-100) of added value Tax Incentives #12;Tax Incentives Economic Development Incentive Program Negotiated

369

NREL: Photovoltaics Research - PV News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D. Principal ScientistOutdoor TestPV

370

Sunshine PV | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside WindSolar Energy JumpSunrainPV Jump to:

371

Kenmos PV | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas,Kelsey NorthKenmec MechanicalKenmos PV Jump

372

Sandia National Laboratories: PV Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV Contacts

373

Sandia National Laboratories: PV Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLongAnalysisPVPublications PV Publications

374

Sandia National Laboratories: PV Value  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems Reliability SandiaTech

375

Sandia National Laboratories: PV bankability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systems

376

Sandia National Laboratories: PV concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentrators Sandians Win

377

Sandia National Laboratories: PV evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentrators Sandians

378

Sandia National Laboratories: PV inverters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentrators

379

Sandia National Laboratories: PV modules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PV Systemsconcentratorsmodulemodules

380

National Residential Efficiency Measures Database Webinar Slides...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building America Webinar: National Residential Efficiency Measures...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

382

Better Buildings Residential Program Solution Center Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Solution Center Demonstration Webinar Transcript Better Buildings Residential Program Solution Center Demonstration Webinar Transcript The Better Buildings Residential...

383

Conference Agenda: Residential Energy Efficiency Solutions 2012...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general...

384

Behavioral Assumptions Underlying California Residential Sector...  

Broader source: Energy.gov (indexed) [DOE]

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

385

Better Buildings Residential Program Solution Center Demonstration...  

Energy Savers [EERE]

Better Buildings Residential Program Solution Center Demonstration Webinar Better Buildings Residential Program Solution Center Demonstration Webinar Demonstration webinar slides...

386

Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

industry standards, it is recommended that the PV system be approved by Go Solar California. 4 PV Size and Performance The PV arrays must be installed in unshaded locations on...

387

RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING  

E-Print Network [OSTI]

RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING Live on-campus in 2014-15 and participate in a unique as part of a residential community in Arroyo Vista! Open to all undergraduate students with 2-3 years

Loudon, Catherine

388

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

389

Draft Transcript on Municipal PV Systems  

Broader source: Energy.gov [DOE]

Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

390

Sample Residential Program Term Sheet  

Broader source: Energy.gov (indexed) [DOE]

Goal DRAFT U.S. DOE Sample Residential Program Term Sheet - DRAFT Introduction is seeking to develop an energy...

391

Questions Asked during the Financing Residential Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

392

Agenda for the PV Module Reliability Workshop, February 26 -...  

Broader source: Energy.gov (indexed) [DOE]

Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado This...

393

axonopodis pv passiflorae: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

394

axonopodis pv citri: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

395

axonopodis pv malvacearum: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

396

Sandia National Laboratories: Sandia Will Host PV Bankability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ateECEnergyComputational Modeling & SimulationSandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Sandia Will Host PV Bankability Workshop at Solar...

397

Department of Veterans Affairs, FONSI - Rooftop solar PV power...  

Broader source: Energy.gov (indexed) [DOE]

Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA)...

398

Statistical and Domain Analytics Applied to PV Module Lifetime...  

Broader source: Energy.gov (indexed) [DOE]

Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Presented at the PV Module Reliability Workshop, February 26 - 27...

399

Integrating Solar PV into Energy Services Performance Contracts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options...

400

Residential & Business Services Director's Office  

E-Print Network [OSTI]

Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

Brierley, Andrew

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

STATE OF CALIFORNIA RESIDENTIAL LIGHTING  

E-Print Network [OSTI]

STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

402

Permanent Home Number: Residential Number  

E-Print Network [OSTI]

Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

Viglas, Anastasios

403

Other Incentive | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont: EnergyThisOthello,Incentive Jump to:

404

City of Chula Vista This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

Fund is to provide low interest financing for property owners to implement energy efficiency retrofits energy system for your home or business. o Typically solar installers will: Locate financing programs Solar Statistics provides a searchable/sortable list of Installers, Contractors, and Sellers by area who

405

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

Program Washington Renewable Energy Production Incentivesfor Renewable Energy October 2006 actual energy productionrenewable energy credits (RECs) through energy production-

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

406

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice  

E-Print Network [OSTI]

unacceptable. In the new California Solar Initiative (CSI),license, or (in California) a solar contractors license. Aperiod. Californias recently enacted solar legislation (

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

407

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

Elements for the California Solar Initiative. Decision 06-Program (SGIP) California Solar Initiative (CSI) Solarmodules only) The California solar legislation SB1 requires

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

408

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

measurements of solar insolation and power output, and caneach systems AC power output, solar insolation, and windof each systems AC power output, solar insolation, and wind

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

409

County of Los Angeles This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

installers to compare costs, system sizing, and services offered before signing a contract. Back to Top the photovoltaic system, and a host customer agrees to site the system on its property and purchases the system system for your home or business. o Typically solar installers will: Locate financing programs to fit

410

City of Long Beach This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

installers to compare costs, system sizing, and services offered before signing a contract. Back to Top the photovoltaic system, and a host customer agrees to site the system on its property and purchases the system system for your home or business. o Typically solar installers will: Locate financing programs to fit

411

City of Palm Desert This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

, system sizing, and services offered before signing a contract. Back to Top Financing Information Federal the photovoltaic system, and a host customer agrees to site the system on its property and purchases the system · Qualified contractors are your key to getting the most productive solar energy system for your home

412

City of Palmdale This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

a minimum of three installers to compare costs, system sizing, and services offered before signing the photovoltaic system, and a host customer agrees to site the system on its property and purchases the system solar energy system for your home or business. o Typically solar installers will: Locate financing

413

City of Santa Ana This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

, system sizing, and services offered before signing a contract. Back to Top Financing Information Federal the photovoltaic system, and a host customer agrees to site the system on its property and purchases the system · Qualified contractors are your key to getting the most productive solar energy system for your home

414

City of San Diego This page outlines solar PV incentives, financing mechanisms, permitting process, and  

E-Print Network [OSTI]

a minimum of three installers to compare costs, system sizing, and services offered before signing is a financial arrangement in which a third-party developer owns, operates, and maintains the photovoltaic system solar energy system for your home or business. o Typically solar installers will: Locate financing

415

City of Santa Monica This page outlines solar PV incentives, financing mechanisms, permitting process, and interconnection  

E-Print Network [OSTI]

, system sizing, and services offered before signing a contract. Back to Top Financing Information the photovoltaic system, and a customer agrees to site the system on its property and purchase the system contractors are your key to getting the most productive solar energy system for your home or business. o

416

High SEER Residential AC  

SciTech Connect (OSTI)

This article discusses the new offerings of residential air conditioning systems with very high Seasonal Energy Efficiency Ratio (SEER) ratings, the two regional areas dictating operations standards ("hot, humid" and "hot, dry"), and the potential energy savings these new systems can provide. The article concludes with a brief review of current market potential.

Hastbacka, Mildred; Dieckmann, John; Brodrick, James

2012-07-31T23:59:59.000Z

417

STORM WATER Residential  

E-Print Network [OSTI]

STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

California at Santa Cruz, University of

418

Residential Mechanical Precooling  

SciTech Connect (OSTI)

This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

German, A.; Hoeschele, M.

2014-12-01T23:59:59.000Z

419

Residential Furnace Blower Performance  

E-Print Network [OSTI]

conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

420

Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia  

SciTech Connect (OSTI)

Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

Rawson, Mark; Sanchez, Eddie Paul

2013-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Photovoltaics for Residential Buildings Webinar  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

422

Renewable Energy Cost Recovery Incentive Payment Program  

Broader source: Energy.gov [DOE]

In May 2005, Washington enacted Senate Bill 5101, establishing production incentives for individuals, businesses, and local governments that generate electricity from solar power, wind power or...

423

Riverside Public Utilities- Energy Efficiency Construction Incentive  

Broader source: Energy.gov [DOE]

Riverside Public Utilities' (RPU) Commercial New Construction Incentives are designed to encourage owners/developers to invest in energy efficient designs in new construction, building expansion...

424

Catawba County- Green Construction Permitting Incentive Program  

Broader source: Energy.gov [DOE]

Catawba County is providing incentives to encourage the construction of sustainably built homes and commercial buildings. Rebates on permit fees and plan reviews are available for certain...

425

Commercial Lighting and LED Lighting Incentives  

Broader source: Energy.gov [DOE]

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

426

SES Awards and Incentives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Incentives The three SES award programs are: * Performance Awards; * Presidential Rank Awards; and * Other Awards Performance Awards: Recognize high quality performance...

427

Clean and Green Property Tax Incentives  

Broader source: Energy.gov [DOE]

In 2007, the Legislature passed House Bill 3 (May special session) that established property tax incentives to encourage energy projects with less environmental impact than conventional facilities....

428

EXP Job Creation Incentive Program (Connecticut)  

Broader source: Energy.gov [DOE]

The EXP Job Creation Incentive Program provides loans towards expenditures related to training, marketing, working capital, or other Connecticut Department of Economic and Community Development...

429

Capital Investment Incentive (Nova Scotia, Canada)  

Broader source: Energy.gov [DOE]

The Capital Investment Incentive (CII) is part of the Productivity Investment Program as outlined in the economic growth plan for Nova Scotia, jobsHere.

430

Virginia Economic Development Incentive Grant (Virginia)  

Broader source: Energy.gov [DOE]

The Virginia Economic Development Incentive Grant is a discretionary cash grant, designed to assist and encourage companies to invest and create new employment opportunities by locating significant...

431

Solar Manufacturing Incentive Grant (SMIG) Program  

Broader source: Energy.gov [DOE]

Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

432

Mohave Electric Cooperative- Renewable Energy Incentive Program  

Broader source: Energy.gov [DOE]

Mohave Electric Cooperative provides incentives for its customers to install renewable energy systems on their homes and businesses. Mohave Electric Cooperative will provide rebates for...

433

Fuel Cell Rebate and Performance Incentive  

Broader source: Energy.gov [DOE]

Under PON 2157 The New York State Energy Research and Development Authority (NYSERDA) offers incentives for the purchase, installation, and operation of customer sited tier (CST, also called ...

434

City of Madison- Green Madison Business Incentives  

Broader source: Energy.gov [DOE]

Green Madison offers businesses in the City of Madison incentives for installing recommended energy-efficiency improvements. In order to qualify, businesses must have a comprehensive energy...

435

Peoples Gas- Residential Rebate Program (Illinois)  

Broader source: Energy.gov [DOE]

'''''Contact Peoples Gas for information on limited-time bonus incentive offerings. Bonus incentives of $250 - $450 are available for eligible purchases made before May 31, 2013.'''''

436

North Shore Gas- Residential Rebate Program  

Broader source: Energy.gov [DOE]

'''Contact North Shore Gas for information on limited-time bonus incentive offerings. Bonus incentives of $250 - $450 are available for eligible purchases made before May 31, 2013.'''

437

PV1 model verification and validation  

E-Print Network [OSTI]

The purpose of this document is 1) to describe, in detail, the theoretic foundation on which PV1 is based, 2) indicate the manner in which its theoretical foundation has been translated into a practical, useful tool for ...

Fuller, Frank H.

1981-01-01T23:59:59.000Z

438

IID Energy- PV Solutions Rebate Program  

Broader source: Energy.gov [DOE]

'''''IID accepted applications for the 2013 PV Solutions Program from Jan. 2, 2013 Jan. 31, 2013. Winners were determined via lottery. The program is now closed for the remainder of 2013, but...

439

PV Module Reliability Research (Fact Sheet)  

SciTech Connect (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

Not Available

2013-06-01T23:59:59.000Z

440

Pacific Power- PV Rebate Program (California)  

Broader source: Energy.gov [DOE]

Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step down over time as key installation targets are met. As...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PV Power Plants Conference USA 2012  

Broader source: Energy.gov [DOE]

The 4th PV Power Plants conference will cover relevant topics for successful project development and sustainable business. This year's event will have an additional focus on certain distributed...

442

Distributed PV Permitting and Inspection Processes  

Broader source: Energy.gov [DOE]

This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

443

PV array simulator development and validation.  

SciTech Connect (OSTI)

The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

2010-06-01T23:59:59.000Z

444

PV System Energy Evaluation Method (Presentation)  

SciTech Connect (OSTI)

This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

Kurtz, S.

2014-01-01T23:59:59.000Z

445

Incentive Rates- At What Cost?  

E-Print Network [OSTI]

with interruptible services. Instead, I filed "ISB" which was priced slightly above the marginal fuel cost on a time of use basis. Many of the periods of the year the first year that I proposed that rate, the cost of interruptible would have been higher than... forms centers on four issues; cost scope of the topic, so let me describe what I feel based pricing, discrimination, competition between is an incentive rate. My view is likely to strike utilities, and effectiveness. You've already some of you...

Schaeffer, S. C.

446

Updating Technical Screens for PV Interconnection: Preprint  

SciTech Connect (OSTI)

Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

2012-08-01T23:59:59.000Z

447

Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool  

SciTech Connect (OSTI)

The market for small wind systems in the United States, often defined as systems less than or equal to 100 kW that produce power on the customer side of the meter, is small but growing steadily. The installed capacity of domestic small wind systems in 2002 was reportedly 15-18 MW, though the market is estimated to be growing by as much as 40 percent annually (AWEA, 2002). This growth is driven in part by recent technology advancements and cost improvements and, perhaps more importantly, by favorable policy incentives targeted at small wind systems that are offered in several states. Currently, over half of all states have incentive policies for which residential small wind installations are eligible. These incentives range from low-interest loan programs and various forms of tax advantages to cash rebates that cover as much as 60 percent of the total system cost for turbines 10 kW or smaller installed in residential applications. Most of these incentives were developed to support a ran ge of emerging renewable technologies (most notably photovoltaic systems), and were therefore not specifically designed with small wind systems in mind. As such, the question remains as to which incentive types provide the greatest benefit to small wind systems, and how states might appropriately set the level and type of incentives in the future. Furthermore, given differences in incentive types and levels across states, as well as variations in retail electricity rates and other relevant factors, it is not immediately obvious which states offer the most promising markets for small wind turbine manufacturers and installers, as well as potential residential system owners. This paper presents results from a Berkeley Lab analysis of the impact of existing and proposed state and federal incentives on the economics of grid-connected, residential small wind systems. Berkeley Lab has designed the Small Wind Analysis Tool (SWAT) to compare system economics under current incentive structures a cross all 50 states. SWAT reports three metrics to characterize residential wind economics in each state and wind resource class: (1) Break-Even Turnkey Cost (BTC): The BTC is defined as the aggregate installed system cost that would balance total customer payments and revenue over the life of the system, allowing the customer to ''break-even'' while earning a specified rate of return on the small wind ''investment.'' (2) Simple Payback (SP): The SP is the number of years it takes a customer to recoup a cash payment for a wind system and all associated costs, assuming zero discount on future revenue and payments (i.e., ignoring the time value of money). (3) Levelized Cost of Energy (LCOE): The LCOE is the levelized cost of generating a kWh of electricity over the lifetime of the system, and is calculated assuming a cash purchase for the small wind system and a 5.5 percent real discount rate. This paper presents SWAT results for a 10 kW wind turbine and turbine power production is based on a Bergey Excel system. These results are not directly applicable to turbines with different power curves and rated outputs, especially given the fact that many state incentives are set as a fixed dollar amount, and the dollar per Watt amount will vary based on the total rated turbine capacity.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-12-01T23:59:59.000Z

448

Post-Retrofit Residential Assessments  

SciTech Connect (OSTI)

This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energys Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

2012-04-30T23:59:59.000Z

449

PowerChoice Residential Customer Response to TOU Rates  

E-Print Network [OSTI]

Savings from Residential Energy Demand Feedback Devices. residential energy consumption, load shifting, consumption feedback

Peters, Jane S.

2010-01-01T23:59:59.000Z

450

Residential Absorption Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL| DepartmentResidential

451

Residential Buildings Integration (RBI)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL| DepartmentResidential|

452

Detailed residential electric determination  

SciTech Connect (OSTI)

Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

Not Available

1984-06-01T23:59:59.000Z

453

Lehigh University Office of Residential Services  

E-Print Network [OSTI]

Lehigh University Office of Residential Services Resident Check-Out Form Students are expected and furniture of all personal property. Residential Services is not responsible for any personal items left and residential administration staff for billing purposes. Signature

Napier, Terrence

454

Vanderbilt University Office of Housing & Residential Education  

E-Print Network [OSTI]

Vanderbilt University Office of Housing & Residential Education RESIDENTADVISERRECRUITMENT2015 Adviser (RA) is a paraprofessional student staff member for the Office of Housing and Residential Coordinators, Head Residents, and faculty to create a premiere residential experience where students can learn

Bordenstein, Seth

455

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY  

E-Print Network [OSTI]

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY Volume 1 and administered a Residential Appliance Saturation Study that serves as an update to the 2003 RASS, with the same residential enduses and appliance saturations for households. These consumption estimates were developed

456

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY  

E-Print Network [OSTI]

2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY Executive and administered a Residential Appliance Saturation Study that serves as an update to the 2003 RASS, with the same residential enduses and appliance saturations for households. These consumption estimates were developed

457

Your Resource Guide to WVU's Residential  

E-Print Network [OSTI]

Your Resource Guide to WVU's Residential Learning Communities Eyes&'Eers 2014­ 2015 Academic throughout the summer. welcomeweek.wvu.edu Residential Education Programming Opportunities Volleypalooza Scarehouse Rich's Fright Farm (Haunted House) Kennywood Fright Night Residential Education Octoberfest

Mohaghegh, Shahab

458

http://warren.ucsd.edu 1 Residential  

E-Print Network [OSTI]

http://warren.ucsd.edu 1 Warren Resources Residential Life Student Conduct University Resources Off and Employment 10 Section II: Residential Life Introduction 11 Residential Life Policies 13 Section III: Student

Tsien, Roger Y.

459

RESIDENTIAL BURGLARY DATE: November 25, 2014  

E-Print Network [OSTI]

RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

Rose, Michael R.

460

City of Ashland- Green Building Incentive  

Broader source: Energy.gov [DOE]

Developers in Ashland may increase the base density of units in residential developments by incorporating energy efficiency, architectural creativity and innovation, and the use of natural features...

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Moorhead Public Service Utility- Renewable Energy Incentive  

Broader source: Energy.gov [DOE]

Moorhead Public Service (MPS) offers rebates for qualifying electricity producing solar or wind renewable energy systems. Wind rebates are not availble to residential customers. Rebates are for up...

462

Unitil- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

463

NYSEG (Gas)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as...

464

SMUD- Residential Solar Loan Program  

Broader source: Energy.gov [DOE]

The Sacramento Municipal Utility District's (SMUD) Residential Loan Program provides 100% financing to customers who install solar water heating systems. All solar water heating systems must meet...

465

Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program This document contains the Final...

466

Miami-Dade County- Targeted Jobs Incentive Fund  

Broader source: Energy.gov [DOE]

The Targeted Jobs Incentive Fund (TJIF) provides financial incentives for select industries, including solar thermal and photovoltaic manufacturing, installation and repair companies that are...

467

Better Buildings: Financing and Incentives: Spotlight on Maine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to a Sustainable Level of Incentives More Documents & Publications Spotlight on Maine: Transition to a Sustainable Level of Incentives Better Buildings: Workforce, Spotlight on...

468

Avista Utilities (Electric)- Commercial Energy Efficiency Incentives Program  

Broader source: Energy.gov [DOE]

Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or equipment. Incentive options are available for heating...

469

Evaluation of evolving residential electricity tariffs  

E-Print Network [OSTI]

residential electricity tariffs Judy Lai, Nicholas DeForest,residential electricity tariffs Judy Lai Senior Researchfrom the current 5-tiered tariff to time variable pricing,

Lai, Judy

2011-01-01T23:59:59.000Z

470

Tacoma Power- Residential Weatherization Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power helps residential customers increase the energy efficiency of homes through the utility's residential weatherization program. Weatherization upgrades to windows are eligible for an...

471

Building America Residential Energy Efficiency Research Planning...  

Broader source: Energy.gov (indexed) [DOE]

Research Planning meeting in October 2011, held in Washington, D.C. Residential Energy Efficiency Planning Meeting Summary Report More Documents & Publications Residential Energy...

472

Residential Energy Efficiency Customer Service Best Practices...  

Energy Savers [EERE]

Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

473

Building America Residential Energy Efficiency Technical Update...  

Energy Savers [EERE]

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

474

Residential Tax Credits Boost Maryland Geothermal Business |...  

Broader source: Energy.gov (indexed) [DOE]

Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business June 18, 2010 - 12:09pm Addthis Paul Lester Communications...

475

Better Buildings Residential Network Case Study: Partnerships...  

Energy Savers [EERE]

Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of...

476

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011  

E-Print Network [OSTI]

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011 Index to Sections Section Page I. GENERAL............................................................................................35 #12;1 I. GENERAL SPECIFICATIONS 1. These specifications apply to existing residential (retro

477

Better Buildings Residential Network Orientation Peer Exchange...  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Residential Network Orientation Peer Exchange Webinar Better Buildings Residential Network Orientation Peer Exchange Webinar September 11, 2014 7:00PM to 8:3...

478

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

479

Quality Assurance for Residential Retrofit Programs | Department...  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance for Residential Retrofit Programs Quality Assurance for Residential Retrofit Programs Blue version of the EERE PowerPoint template, for use with PowerPoint 2007....

480

Residential Waste Do not mix in  

E-Print Network [OSTI]

Residential Waste Do not mix in Newspaper Cardboard Paper ScrapsMagazines and Miscellaneous Paper Experiment-Relatedand ResidentialWastebyType #12;

Nakamura, Iku

Note: This page contains sample records for the topic "residential pv incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta.  

E-Print Network [OSTI]

strains, plants and growth conditions Xanthomonas oryzae pv.Xanthomonas oryzae pv. oryzae. Mol Plant Microbe InteractOryzae sativa L. ) plants. X. oryzae pv. oryzae infection

Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

2008-01-01T23:59:59.000Z

482

Holdover inoculum of Pseudomonas syringae pv. alisalensis from broccoli raab causes disease in subsequent plantings  

E-Print Network [OSTI]

about P. syringae pv. Plant Disease / August 2006 ABSTRACTsyringae pv. lachrymans in soil, plant debris, and thesyringae pv. tomato populations on field tomato plants.

Cintas, N A; Koike, S T; Bunch, R A; Bull, C T

2006-01-01T23:59:59.000Z

483

DOE High Performance Concentrator PV Project  

SciTech Connect (OSTI)

Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

McConnell, R.; Symko-Davies, M.

2005-08-01T23:59:59.000Z

484

PV performance modeling workshop summary report.  

SciTech Connect (OSTI)

During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

2011-05-01T23:59:59.000Z

485

Analysis of Minimum Efficiency Standards and Rebate Incentive Programs for Domestic Refrigerators in the Pacific Northwest.  

SciTech Connect (OSTI)

Refrigerator-freezers (R/Fs) and freezers (FRs) account for 16% of the electricity consumed in the residential sector of the Bonneville Power Administration (BPA) forecast region (Oregon, Washington, Idaho and Western Montana). After space and water heating, R/Fs are the largest residential electrical end-use. There is great potential for reducing electricity consumption in a cost-effective manner through the purchase and use of more energy-efficient R/Fs and FRs. For example, if every household in the BPA region had the best R/F model now mass-produced, the electricity savings would be about 5 billion kWh/yr, approximately the power supplied annually by 1000 MW of nuclear or coal-fired generating capacity. The Northwest Power Planning Council (NPPC) and BPA recognize the savings potential from efficient R/Fs and FRs as well as the barriers to their use. In the 1983 regional power plan, the Council directed BPA to develop and implement incentive and promotion programs for efficient appliances. The NPPC also called for the evaluation of minimum efficiency standards for appliances sold in the region. In response to this directive, the Office of Conservation in BPA funded an evaluation of both rebate incentive programs and minimum efficiency standards for R/Fs and FRs. The results are presented in this report.

Geller, Howard S.

1985-11-01T23:59:59.000Z

486

Evaluation of Encapsulant Materials for PV Applications  

SciTech Connect (OSTI)

Encapsulant materials used in PV modules serve multiple purposes. They physically hold components in place, provide electrical insulation, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Encapsulant materials by themselves do not completely prevent water vapour ingress [1-3], but if they are well adhered, they will prevent the accumulation of liquid water providing protection against corrosion as well as electrical shock. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

Kempe, M.

2010-01-01T23:59:59.000Z

487

National Residential Efficiency Measures Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

488

ASHRAE and residential ventilation  

SciTech Connect (OSTI)

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

489

Residential appliances technology atlas  

SciTech Connect (OSTI)

Residential appliance technology and efficiency opportunities for refrigerators and freezers, cooking appliances, clothes washers and dryers, dishwashers, and some often-ignored household devices such as spas, pool pumps, waterbed heaters, televisions, and home computers are thoroughly covered in this Atlas. The US appliance market, fuel shares, efficiency standards, labeling, and advances in home automation, design for recycling, and CFC issues are also discussed. The resource section contains lists of appliance manufacturers and distributors, and trade, professional, and governmental organizations, a summary of key resources for further information, and an index.

NONE

1994-12-31T23:59:59.000Z

490

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014 Residential

491

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014 Residential05,

492

High-Resolution Residential Feeder Load Characterization and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

functionality, advanced grid functions, smart grid, voltage support, frequency support, photovoltaic systems, PV reliability. I. INTRODUCTION PV output variability on...

493

Large-Scale PV Integration Study  

SciTech Connect (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energys electric grid system in southern Nevada. It analyzes the ability of NV Energys generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

494

Updating Interconnection Screens for PV System Integration  

SciTech Connect (OSTI)

This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

2012-02-01T23:59:59.000Z

495

Sandia National Laboratories: PV_LIB Toolbox  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracks HelioVoltPV-TechPV_LIB Toolbox

496

International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint  

SciTech Connect (OSTI)

The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

Wohlgemuth, J.; Kurtz, S.

2014-10-01T23:59:59.000Z

497

An Incentive Compatible Mechanism for Distributed Resource Planning  

E-Print Network [OSTI]

process and their economic incentives. If agents are not provided with proper incentives, they mayAn Incentive Compatible Mechanism for Distributed Resource Planning Erhan Kutanoglu Department is that without proper incentives, agents may not reveal this information trufully and they may not behave

Wu, David

498

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

SciTech Connect (OSTI)

An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the direct-DC house with respect to todays typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sectorbecause of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolationthis paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

2011-10-13T23:59:59.000Z

499

Tax Credits, Rebates & Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California Solar Initiative- PV Incentives '''Pacific Gas and Electric (PG&E) and San Diego Gas and Electric (SDG&E) have reached their budget limits for residential rebates. Both...

500

Tax Credits, Rebates & Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Incentives '''Pacific Gas and Electric (PG&E) and San Diego Gas and Electric (SDG&E) have reached their budget limits for residential rebates. Both utilities will continue...