Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

2

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

3

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

4

Marietta Power & Water - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power & Water - Residential Energy Efficiency Rebate Program Marietta Power & Water - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

5

Winter Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Residential heating oil prices reflect a similar pattern to that shown in spot prices. However, like other retail petroleum prices, they tend to lag changes in wholesale prices in both directions, with the result that they don't rise as rapidly or as much, but they take longer to recede. This chart shows the residential heating oil prices collected under the State Heating Oil and Propane Program (SHOPP), which only runs during the heating season, from October through March. The spike in New York Harbor spot prices last winter carried through to residential prices throughout New England and the Central Atlantic states. Though the spike actually lasted only a few weeks, residential prices ended the heating season well above where they had started.

6

Peak Electricity Impacts of Residential Water Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak Electricity Impacts of Residential Water Use Title Peak Electricity Impacts of Residential Water Use Publication Type Report LBNL Report Number LBNL-5736E Year of Publication...

7

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

8

Residential heating oil prices virtually unchanged  

Gasoline and Diesel Fuel Update (EIA)

to 3.95 per gallon. That's down 8-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

9

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

last week to 3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

10

Residential heating oil prices increase  

Gasoline and Diesel Fuel Update (EIA)

last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

11

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

12

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winterÂ’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

13

Metering Secondary Water in Residential Irrigation Systems.  

E-Print Network (OSTI)

??The use of residential secondary or dual water systems for irrigation purposes is common in the western United States where water supplies are scarce. While… (more)

Richards, Gregory L.

2009-01-01T23:59:59.000Z

14

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

15

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

16

Columbia Water & Light - Residential Super Saver Loans | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Super Saver Loans Columbia Water & Light - Residential Super Saver Loans Eligibility Multi-Family Residential Residential Savings For Home Weatherization Commercial Weatherization...

17

Orlando Utilities Commission - Residential Solar Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (Florida) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 1,000 Program Info State Florida Program Type Utility...

18

Columbia Water & Light- Residential HVAC Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) provides an HVAC incentive for residential customers that are replacing an older heating and cooling system. Customers should submit the mechanical permit from a...

19

FirstEnergy (West Penn Power) - Residential Solar Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FirstEnergy (West Penn Power) - Residential Solar Water Heating Program (Pennsylvania) FirstEnergy (West Penn Power) - Residential Solar Water Heating Program (Pennsylvania)...

20

Payback Analysis of Design Options for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Payback Analysis of Design Options for Residential Water Heaters Title Payback Analysis of Design Options for Residential Water Heaters Publication Type Report LBNL Report Number...

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Water and Energy Wasted During Residential Shower Events: Findings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems Title Water and Energy Wasted During Residential Shower Events:...

22

Residential Energy Consumption for Water Heating (2005) Provides...  

Open Energy Info (EERE)

Residential Energy Consumption for Water Heating (2005) Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in...

23

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

24

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars ...  

U.S. Energy Information Administration (EIA)

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

25

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

26

Residential Water Conservation in Australia and California  

E-Print Network (OSTI)

In much of the Western United States, reducing residential water use is a major source of water conservation, especially as population growth urbanizes agricultural land. While estimates of the potential of conservation are useful, the experience of Australia provides a realistic target for residential water conservation. Although reliability of urban water use data is often questionable, it is clear that Australians use less water than Californians, with a similar climate, economy, and culture. Per-capita usage is compared, and explanations for use differences are offered. If California had the same residential water use rates as Australia, it could have reduced gross urban water use by 2,600 GL (2.1 million acre-feet) in 2009 and potentially saved 1,800 GL (1.5 million acre-feet) for consumptive use by others.

Ryan Cahill; Jay Lund

2011-01-01T23:59:59.000Z

27

Burbank Water and Power - Residential and Commercial Solar Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Income Residential Nonprofit Residential Schools State Government Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum...

28

Residential oil burners with low input and two stages firing  

SciTech Connect

The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

Butcher, T.; Krajewski, R.; Leigh, R. [and others

1997-12-31T23:59:59.000Z

29

Heterogeneous Responses to Water Conservation Programs: The Case of Residential Users in Los Angeles  

E-Print Network (OSTI)

2003. “Estimation of Residential Water Demand: A State ofand Income Elasticities of Residential Water Demand: A Meta-D. Green, 2000. “Do residential water demand side management

Hanemann, W. Michael; Nauges, Celine

2005-01-01T23:59:59.000Z

30

WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use  

E-Print Network (OSTI)

Fixtures Market Overview: Water Savings Potential forNew Jersey. American Water Works Association ResearchResidential End Uses of Water (REUWS). 1999. American Water

McNeil, Michael

2008-01-01T23:59:59.000Z

31

ENERGY STAR Residential Water Heaters to Save Americans Up to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY STAR Residential Water Heaters to Save Americans Up to 823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to 823 Million in the...

32

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

33

U.S. Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: One of the first places where consumers are feeling the impact of this winterÂ’s market pressures is in home heating oil prices. This chart shows prices for the last four winters, with this yearÂ’s prices shown through January 24, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Although heating oil prices for consumers started this winter at similar levels to those in 1997, they already rose nearly 20 cents per gallon through mid-January. With the continuing upward pressure from crude

34

Performance Comparison of Large Diameter Residential Drinking Water Wells.  

E-Print Network (OSTI)

??Published scientific work indicates that residential large diameter drinking water wells are at a higher risk of contamination from surface water impacts than drilled wells.… (more)

Javor, Paul

2010-01-01T23:59:59.000Z

35

Water and Energy Wasted During Residential Shower Events: Findings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems Speaker(s): James Lutz Date: October 18, 2011 -...

36

Commonwealth Solar Hot Water Residential Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

37

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

38

Burbank Water & Power - Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

39

City Water Light and Power - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Water Light and Power - Residential Energy Efficiency Rebate City Water Light and Power - Residential Energy Efficiency Rebate Programs City Water Light and Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Maximum Rebate Refrigerator Recycling: 2 units Insulation: $1,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Clothes Washer: $150 Central Air Conditioner: $9 per kBTUh Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500 Refrigerator Recycling: $50 per appliance Insulation: 30% Provider Energy Services Office City Water Light and Power (CWLP) offers rebates to Springfield residential

40

Burbank Water and Power - Residential and Commercial Solar Support Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Residential and Commercial Solar Support Burbank Water and Power - Residential and Commercial Solar Support Program Burbank Water and Power - Residential and Commercial Solar Support Program < Back Eligibility Commercial Industrial Low-Income Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum payment of 400,000 per year for performance-based incentives Program Info Start Date 1/1/2010 Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount PV rebates will be awarded via lottery on August 12, 2013 Residential PV: $1.28/W CEC-AC Commercial PV (less than 30 kW): $0.97/W CEC-AC Commercial PV (30 kW or larger): ineligible at this time Solar Water Heaters (residential domestic hot water only; not pools):

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Burbank Water and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Burbank Water and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Program Info State California Program Type Utility Rebate Program Rebate Amount Products purchased from a Burbank retailer are typically awarded higher rebates than those purchased outside Burbank. Inside Burbank: Ceiling Fans: $25 (maximum three) Clothes Washer: $50 Dishwasher: $35 Refrigerator/Freezer: $75 Room A/C: $35 Low E Windows/Doors: $2.00/sq ft

42

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

43

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

seds.html. USDOE. 2009. Residential Energy ConsumptionUSEPA) 2008. Energy Star Residential Water Heaters: FinalExperiences of residential consumers and utilities. Oak

Lekov, Alex

2011-01-01T23:59:59.000Z

44

New Braunfels Utilities - Residential Solar Water Heater Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Braunfels Utilities - Residential Solar Water Heater Rebate New Braunfels Utilities - Residential Solar Water Heater Rebate Program New Braunfels Utilities - Residential Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $0.265/kWh Provider New Braunfels Utilities New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available to these customers. The maximum rebate amount is $900 for participating customers. Applicants must have an active residential electric service account with NBU in order to be eligible. Solar water heaters must preheat water for an electric

45

Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model  

Reports and Publications (EIA)

The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

Information Center

2009-11-09T23:59:59.000Z

46

Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

47

Duquesne Light Company - Residential Solar Water Heating Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

48

Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Residential Solar Water Heating Program Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential Solutions: $1000/improvement Program Info Start Date 1/1/2011 State Louisiana Program Type Utility Rebate Program Rebate Amount kWh savings(annual) x $0.34/kWh Provider Energy Smart Solutions Center Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first-served basis and reflected on the invoice as a discount. All systems must be OG 300 rated and incentive amount is based on kWh savings. Walk-through energy assessments

49

Residential hot water distribution systems: Roundtablesession  

Science Conference Proceedings (OSTI)

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

50

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

51

Extending the Model of Residential Water Conservation Nature and Scope  

E-Print Network (OSTI)

d e l of Residential Water Conservation Nature and Scope ByK e y W o r d s : Urban Water conservation and demand, waterof price-induced water conservation with other drought

Corral, Leonardo; Fisher, Anthony; Hatch, Nile W

1995-01-01T23:59:59.000Z

52

Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aiken Electric Cooperative Inc - Residential Water Heater Rebate Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Free high efficiency water Heater; $200 installation fee Water heater and timer with normal installation: $2.50 credit for 10 years Timer only: $200 cash payment and $2.50 credit for 10 years New construction contract home: $250 Provider Aiken Electric Cooperative Aiken Electric Cooperative offers residential members rebates for installing high-efficiency electric water heaters and/or timers in their homes. Customers have four rebate options:

53

Gibson Electric Membership Corporation - Residential Energy Efficient Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gibson Electric Membership Corporation - Residential Energy Gibson Electric Membership Corporation - Residential Energy Efficient Water Heater Loan Program Gibson Electric Membership Corporation - Residential Energy Efficient Water Heater Loan Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Maximum Rebate No financing cap for water heater. Program Info State Tennessee Program Type Utility Loan Program Rebate Amount Electric-to-Electric Water Heater Installation: up to $100 Gas-to-Electric Energy Heater Installation: up to $175 Provider Gibson Electric Membership Corporation Gibson Electric Membership Corporation provides loans to its residential customers to finance new, energy efficient water heaters. The loans are interest-free and can be paid off in as many as 3 years. To participate,

54

Marietta Power and Water - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power and Water - Residential Energy Efficiency Rebate Marietta Power and Water - Residential Energy Efficiency Rebate Program Marietta Power and Water - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $500 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $250 Heat Pump and Water Heater: $500 Provider Marietta Power and Water Marietta Power and Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a rebate of $500 is available. Electric and dual-fuel heat pumps may be installed in newly constructed

55

Columbia Water and Light - Residential Super Saver Loans | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Super Saver Loans Residential Super Saver Loans Columbia Water and Light - Residential Super Saver Loans < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Solar Maximum Rebate $15,000 Program Info State Missouri Program Type Utility Loan Program Rebate Amount Home Performance Super Saver Loan: up to $15,000 Provider Columbia Water and Light The Columbia Water and Light (CWL) Home Performance Super Saver Loan allows Columbia residents to finance energy improvements to homes with affordable, low interest loans with five to ten year terms. If a Water and Light

56

Residential Solar Water Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

57

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

58

Water and Waste Water Tariffs for New Residential Construction in California  

E-Print Network (OSTI)

Utility_Cities Table of the Water TAP Database Field NameWater andWaste Water Tariffs for New Residential Construction in

Fisher, Diane; Lutz, James

2006-01-01T23:59:59.000Z

59

Performance control strategies for oil-fired residential heating systems  

SciTech Connect

Results are reported of a study of control system options which can be used to improve the combustion performance of residential, oil-fired heating equipment. Two basic control modes were considered in this program. The first is service required'' signals in which an indication is provided when the flame quality or heat exchanger cleanliness have degraded to the point that a service call is required. The second control mode is excess-air trim'' in which the burner would essentially tune itself continuously for maximum efficiency. 35 refs., 67 figs., 2 tabs.

Butcher, T.

1990-07-01T23:59:59.000Z

60

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network (OSTI)

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

62

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Existing Homes Solar Water Heater: $750 New Homes Solar Water Heater: $1,250 - $1,500 Provider Coweta-Fayette Electric Membership Corporation Coweta-Fayette Electric Membership Corporation (EMC) provides electric and natural gas service to 58,000 customers in Georgia's Coweta, Fayette, Meriwether, Heard, Troop and Fulton counties. Currently, Coweta-Fayette EMC offers rebates on solar water heaters from $750 up to $1,500 as part of the Touchstone Energy Home Program. Solar

63

Residential Hot Water Distribution Systems: Roundtable Session  

NLE Websites -- All DOE Office Websites (Extended Search)

David Springer, Davis Energy Group Bion D. Howard, Building Environmental Science & Technology ABSTRACT Residential building practice currently ignores the losses of energy...

64

Solar Water Heating Requirement for New Residential Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

65

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

66

Long Island Power Authority - Residential Solar Water Heating Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

67

Columbia Water and Light- Residential HVAC Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water and Light (CWL) provides an HVAC incentive for residential customers that are replacing an older heating and cooling system. Customers should submit the mechanical permit from a...

68

An Overview of the New Residential Water Heater Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of the New Residential Water Heater Efficiency Standards Speaker(s): Alex Lekov Date: April 26, 2010 - 12:00pm Location: 90-3122 DOE issued new standards for...

69

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

70

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

71

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

72

An Overview of the New Residential Water Heater Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of the New Residential Water Heater Efficiency Standards An Overview of the New Residential Water Heater Efficiency Standards Speaker(s): Alex Lekov Date: April 26, 2010 - 12:00pm Location: 90-3122 DOE issued new standards for residential water heaters last month that will save an estimated 2.6 quads of energy over 30 years. For most product sizes sold, the new standards can be met with modest changes, such as adding more insulation to today's conventional tank-style water heaters. For the most common size electric water heater (50 gallons), the standards will save 4 percent, while for the most common size gas water heater (40 gallons), the new standards will save 3 percent. However, for the biggest products (those with over 55 gallons in storage capacity, which is about 9% and 4% of the electric and gas storage water heater markets, respectively), the new

73

North Branch Municipal Water and Light - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Branch Municipal Water and Light - Residential Energy North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program North Branch Municipal Water and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: See program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:$100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump:$200/ton, plus $25/ton for every 1 EER above minimum

74

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Increased Energy Efficiency for Residential Water Heaters Cost of Increased Energy Efficiency for Residential Water Heaters Speaker(s): Alex Lekov Date: March 22, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn This presentation describes the analysis of the costs of increased energy efficiency for residential water heaters. Here, we focus on the cost and efficiency data for electric and gas-fired water heaters. This data formed the basis of the Technical Support Document for the Department of Energy's (DOE) Final Rule on Water Heaters. The engineering analysis uses computer simulation models to investigate the efficiency improvements due to design options and combinations thereof. The analysis covers four polyurethane foam insulation types based on non-ozone-depleting substances as blowing

75

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon)  

U.S. Energy Information Administration (EIA)

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date

76

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

77

The Impact of Blowing Agents on Residential Water Heater Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Blowing Agents on Residential Water Heater Performance The Impact of Blowing Agents on Residential Water Heater Performance Title The Impact of Blowing Agents on Residential Water Heater Performance Publication Type Report LBNL Report Number LBNL-47352 Year of Publication 2001 Authors Lekov, Alexander B., James D. Lutz, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-47352 Date Published January 12 Abstract The National Appliance Energy Conservation Act of 1987 (NAECA) requires the U.S. Department of Energy (DOE) to consider amendments to the energy conservation standards to increase energy efficiency in residential water heaters. A driving force affecting efficiency is the ozone-depletion regulation regarding blowing agents for insulation in all water heater fuel types. This paper presents results of cost and efficiency impacts of three potential blowing agents. Residential water heaters are typically insulated with polyurethane foam in the space between the tank and the jacket. Currently, water heater manufacturers use HCFC-141b, an ozone-depleting substance, as a blowing agent. After 2003, as a result of the Montreal Protocol (1993), manufacturers must use blowing agents that do not deplete the ozone layer. The analysis presented in this paper considers three replacement candidates, HFC-245fa, HFC-134a, and cyclopentane by comparing their efficiency and cost effectiveness when applied to water heater insulation. This analysis used computer simulation models and other analytical methods to investigate the efficiency improvements due to different design options, when alternative blowing agents are applied. The calculations were based on the DOE test procedure for residential water heaters. The analysis used average manufacturer, retailer, and installer costs to calculate the total consumer costs. Consumer operating expenses were calculated based on modeled energy consumption under test procedure conditions and U.S. average energy prices. With this information, a cost-efficiency relationship was developed to show the average manufacturer and consumer cost to achieve increased efficiency.

78

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

79

Pasadena Water and Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Pasadena Water and Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Maximum Rebate Ceiling Fan: Limit two Room A/C: Limit two Attic/Roof Fan: Limit two Shade Screens: Installation must be made to windows on south, west or east walls; screens must reflect 70% of the sun's heat and glare Skylights/Light Tubes: Limit one Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive amounts increase with purchase from Pasadena retailers and with

80

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Purification of Vegetable Oils Post-Consumption Residential and ...  

Science Conference Proceedings (OSTI)

The viscosity residential treated with clay Tonsil was lower compared to the crude ... Designing a Collaborative System for Socio-Environmental Management of ...

82

Advanced oil burner for residential heating -- development report  

SciTech Connect

The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

Butcher, T.A.

1995-07-01T23:59:59.000Z

83

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network (OSTI)

A WATER CONSERVATION SCENARIO FOR THE RESIDENTIAL ANDWater 'consumption, water conservation. City of Sacramento.Daniel Stockton. Water conservation. Contra Costa County

Benenson, P.

2010-01-01T23:59:59.000Z

84

Regional Residential  

Gasoline and Diesel Fuel Update (EIA)

upward pressure from crude oil markets, magnified by a regional shortfall of heating oil supplies, residential prices rose rapidly to peak February 7. The problem was...

85

Commonwealth Solar Hot Water Residential Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Water Heating Maximum Rebate 3,500 per building or 25% of total installed costs Program Information Funding Source Massachusetts Renewable Energy Trust Fund Start Date...

86

Residential hot water distribution systems: Roundtable session  

E-Print Network (OSTI)

include: combustion and standby losses from water heaters,System Efficiency Losses Standby Loss Combustion LossBecause of their very low standby losses they can achieve

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-01-01T23:59:59.000Z

87

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

88

CONTENTS Water Issues Dominate Oil and  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Issues Dominate Oil and Gas Production ...1 Editor's Letter ...2 Zero Discharge Water Management for Horizontal Shale...

89

Columbia Water & Light- Residential Super Saver Loans  

Energy.gov (U.S. Department of Energy (DOE))

The Columbia Water & Light (CWL) Home Performance Super Saver Loan allows Columbia residents to finance energy improvements to homes with affordable, low interest loans with five to ten year...

90

Enhanced oil recovery water requirements  

SciTech Connect

Water requirements for enhanced oil recovery (EOR) are evaluated using publicly available information, data from actual field applications, and information provided by knowledgeable EOR technologists in 14 major oil companies. Water quantity and quality requirements are estimated for individual EOR processes (steam drive; in situ combustion; and CO/sub 2/, micellar-polymer, polymer, and caustic flooding) in those states and specific geographic locations where these processes will play major roles in future petroleum production by the year 2000. The estimated quantity requirements represent the total water needed from all sources. A reduction in these quantities can be achieved by reinjecting all of the produced water potentially available for recycle in the oil recovery method. For injection water quality requirements, it is noted that not all of the water used for EOR needs to be fresh. The use of treated produced water can reduce significantly the quantities of fresh water that would be sought from other sources. Although no major EOR project to date has been abandoned because of water supply problems, competing regional uses for water, drought situations, and scarcity of high quality surface water and ground water could be impediments to certain projects in the near future.

Royce, B.; Kaplan, E.; Garrell, M.; Geffen, T.M.

1983-03-01T23:59:59.000Z

91

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Technical Report NREL/TP-5500-52635 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Prepared under Task Nos. WTN9.1000, ARRB.2204 Technical Report NREL/TP-5500-52635 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

92

City Water Light and Power - Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

93

Columbia Water & Light - Residential HVAC Rebate Program (Missouri...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

94

EWEB - Residential Solar Water Heating Loan Program (Oregon)...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

95

EWEB - Residential Solar Water Heating Rebate (Oregon) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

96

Solar Water Heating Requirement for New Residential Construction...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

97

Columbia Water & Light - Residential Super Saver Loans (Missouri...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

98

Burbank Water and Power - Residential and Commercial Solar Support...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

99

Residential Solar Water Heating Rebates (New Hampshire) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

100

Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint  

SciTech Connect

The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

Hendron, B.; Burch, J.; Barker, G.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water application related to oil shale listed  

SciTech Connect

A water right application filed by the Rio Blanco Oil Shale Company, Inc. is reported for surface waters and ground water in Rio Blanco County, Colorado.

1986-09-01T23:59:59.000Z

102

Water issues associated with heavy oil production.  

Science Conference Proceedings (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

103

OIL IN THE OPEN WATER Oil in the open water may a ect the health of  

E-Print Network (OSTI)

OIL IN THE OPEN WATER Oil in the open water may a ect the health of microscopic plants and animals. Far beneath the surface, corals and other deepwater communities might also be a ected. OIL AND HUMAN AND SEDIMENTS · Water quality surveys · Transect surveys to detect submerged oil · Oil plume modeling · Sediment

104

ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STAR Residential Water Heaters to Save Americans Up to $823 STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years December 31, 2008 - 9:18am Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced the availability of ENERGY STAR® residential water heaters. With today's announcement, the ENERGY STAR® program now addresses every major residential appliance found in most American homes. Introduction of this product provides significant potential savings to consumers. Water heating represents up to 15.5 percent of national residential energy consumption, the second largest end use of energy in homes, following heating and cooling. Using one of five specified water heating technologies, ENERGY

105

Regional Residential Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

One of the first places where consumers are feeling the impact of this winter’s market pressures is in home heating oil prices. This chart shows prices through ...

106

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

gy.gov/buildings/appliance_standards/residential/water_Efficiency in Domestic Appliances and Lighting (EEDAL 06).http://www1.eere.energy.gov/ buildings/appliance_standards/

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

107

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

108

Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel  

SciTech Connect

The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

Litzke, Wai-Lin

1992-12-01T23:59:59.000Z

109

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network (OSTI)

study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

Lutz, Jim

2012-01-01T23:59:59.000Z

110

Energy-Efficient Water Heating Program for the Residential Sector.  

Science Conference Proceedings (OSTI)

During the power surplus period of the late 1980's, Bonneville sponsored market research which provided an understanding of the market environment in the water heating end-use. The major areas of investigation included market trends, consumer purchasing practices, unit price, and availability of energy-efficient models. In 1988, Bonneville conducted a series of meetings with utilities operating water heater programs. Discussions focused on utility program concerns and the appropriate role for Bonneville as the region seeks efficiency in residential water heating. The design of the Program is based to a large degree on the experiences gained by regional utilities operating water heater incentive programs. In addition, an analysis of incentive programs operated outside the region has been helpful in the development of a regional program. Bonneville is a member of the Appliance Efficiency Group (AEG), formerly the Northwest Appliance Efficiency Group, and participates in discussions on water heating issues as they relate to the Pacific Northwest. The work done with the Appliance Efficiency Group has provided additional input in the development of the Program. This Program has been developed using a Public Involvement Process. A draft program strategy was made available to the public for comment during April 1990. The comments received were considered in the development of this document.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

111

An intelligent pattern recognition model to automate the categorisation of residential water end-use events  

Science Conference Proceedings (OSTI)

The rapid dissemination of residential water end-use (e.g. shower, clothes washer, etc.) consumption data to the customer via a web-enabled portal interface is becoming feasible through the advent of high resolution smart metering technologies. However, ... Keywords: Dynamic time warping algorithm, Gradient vector filtering, Hidden Markov model, Residential water flow trace disaggregation, Water demand management, Water end-use event, Water micro-component

K. A. Nguyen, R. A. Stewart, H. Zhang

2013-09-01T23:59:59.000Z

112

WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

2008-02-28T23:59:59.000Z

113

Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems  

DOE Green Energy (OSTI)

Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

Lutz, James

2005-02-26T23:59:59.000Z

114

ANN-based residential water end-use demand forecasting model  

Science Conference Proceedings (OSTI)

Bottom-up urban water demand forecasting based on empirical data for individual water end uses or micro-components (e.g., toilet, shower, etc.) for different households of varying characteristics is undoubtedly superior to top-down estimates originating ... Keywords: Artificial neural network, Residential water demand forecasting, Water demand management, Water end use, Water micro-component

Christopher Bennett; Rodney A. Stewart; Cara D. Beal

2013-03-01T23:59:59.000Z

115

National Grid - Residential (Gas) Solar Water Heating Rebate...  

Open Energy Info (EERE)

of 12 months in order to receive funding. National Grid works directly with residential solar installers, who submit rebate applications on behalf of the customer. Funding is...

116

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network (OSTI)

the shower only. The wasted energy is the difference betweenLBNL-5115E Water and Energy Wasted During Residential Showercalculate the water and energy wasted during shower events

Lutz, Jim

2012-01-01T23:59:59.000Z

117

Underwater tanker ballast water/oil separation  

SciTech Connect

The invention contemplates tranferring ballast water contaminated with entrained or emulsified oil to an underwater disengagement zone operating on the water displacement principle, as exemplified by an underwater storage tank having an upwardly convex shell with an opening in its bottom through which water can move into and out of the shell as the volume of oil enclosed within the storage zone fluctuates. The ballast mixture of water and oil is introduced into the disengagement zone, where it separates under the influence of gravity into separate oil and water phases. The oil layer rises to a point from which it can be recovered, while the separated water flows out of the open bottom of the zone into the body of water. (2 claims)

McCabe, J.S.

1973-10-02T23:59:59.000Z

118

McMinnville Water and Light - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Residential Energy Efficiency Rebate McMinnville Water and Light - Residential Energy Efficiency Rebate Program McMinnville Water and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Water Heating Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Energy Star Homes: up to $1,180 Energy Star Manufactured Homes: $850 Clothes Washer: $20 - $70 Refrigerator: $15 Freezer: $15 Refrigerator/Freezer Decommissioning: $100 Electric Water Heater: $25 - $50, varies by warranty Heat Pump PTCS Tune-up: contact utility Weatherization Measures: contact utility Provider McMinnville Water and Light

119

Pipeline Flow Behavior of Water-In-Oil Emulsions.  

E-Print Network (OSTI)

??Water-in-oil (W/O) emulsions consist of water droplets dispersed in continuous oil phase. They are encountered at various stages of oil production. The oil produced from… (more)

Omer, Ali

2009-01-01T23:59:59.000Z

120

Impact of “Non-Behavioral Fixed Effects” on Water Use: Weather and Economic Construction Differences on Residential Water Use in Austin, Texas  

E-Print Network (OSTI)

1995). Residential water use and conservation effectiveness:s guide to water use and conservation. Austin, Texas. Theeffective measures for water conservation. A problem with

Tinker, Audrey; Bame, Sherry; Burt, Richard; Speed, Michael

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Water and Energy Wasted During Residential Shower Events: Findings from a  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Energy Wasted During Residential Shower Events: Findings from a Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems Speaker(s): James Lutz Date: October 18, 2011 - 12:00pm Location: 90-3122 Heating water is one of the most energy-consumptive activities in a household, accounting for about 49 percent of California's residential natural gas consumption. Data collected during a pilot field study in California indicate that significant amounts of water and energy are wasted while waiting for hot water to be delivered to the point of end use. We calculate the water and energy wasted during shower events from data collected using a wireless sensor network that monitored water flows and temperatures in three single-family residences. The total calculated water

122

Lansing Board of Water and Light - Hometown Energy Savers® Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savers® Savers® Residential Rebates Lansing Board of Water and Light - Hometown Energy Savers® Residential Rebates < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Appliances & Electronics Construction Heating Heat Pumps Commercial Lighting Lighting Water Heating Other Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Small Business Direct Install Program: No cost or purchase necessary for participation Custom $0.08/kWh Commercial Cooking Equipment: Varies Commercial Refrigeration Equipment: Varies Lighting Compact Fluorescent Lamps: $1.50-$8 Compact Fluorescent Lamp Fixtures: $20 LED Lamps: $5-$15 LED Fixtures: $20 LED Exit Signs: $12.50

123

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

124

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

125

Residential Energy Expenditures for Water Heating (2005) Provides...  

Open Energy Info (EERE)

the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data.

...

126

Water mist injection in oil shale retorting  

DOE Patents (OSTI)

Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

1980-07-30T23:59:59.000Z

127

New and Underutilized Technology: Water Cooled Oil Free Magnetic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Cooled Oil Free Magnetic Bearing Compressors New and Underutilized Technology: Water Cooled Oil Free Magnetic Bearing Compressors October 4, 2013 - 3:58pm Addthis The...

128

Feasibility study and roadmap to improve residential hot water distribution systems  

DOE Green Energy (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

129

Oil and Water Dispersion Technology Licensing Opportunity  

E-Print Network (OSTI)

Oil and Water Dispersion Technology Licensing Opportunity Technology Brief Professor Richard can be achieved by the process of degassing. The removal of dissolved gas, for example in oil dispersions. While laboratory scale degassing is predominantly batch processed and time consuming, Professor

130

How Much Water is Enough? Using PET to Develop Water Budgets for Residential landscapes  

E-Print Network (OSTI)

Conserving and reducing the amount of water used for landscape irrigation continues to be a major issue for municipalities throughout Texas and the nation. Landscape irrigation increases dramatically during summer months and contributes substantially to peak demand placed on municipal water supplies. A survey of monthly water use during 2000 through 2002 for 800 residences of similar size and appraised value in College Station, Texas indicated that average peak water consumption increased as much as 3.3 fold during the summer compared to the nonpeak months of December, January, and February. Although conservation education programs typically suggest ways to reduce indoor and outdoor water use, information that can provide homeowners with a realistic estimate of the amount of water required to sustain their landscape at an acceptable quality is lacking. Potential evapotranspiration (PET) modified by the appropriate crop coefficient is commonly used to increase irrigation efficiency for crops and turf. However, very limited information exists about landscape coefficients (Lc) for use in PET based irrigation of landscapes with multiple plant species. Recent studies at Texas A&M University indicated that 0.70 appears to be a good estimate of Lc to use in PET based landscape irrigation during the summer months. Based on Lc, landscape size, and PET, water budgets were derived for 800 residential landscapes to predict monthly residential water consumption and then compared with actual monthly water used. These comparisons demonstrated seasonal water use patterns as well as the potential for very large reductions in landscape water use. In 2000, 2001, and 2002, an average of 347, 410, and 476 households, repectively, applied irrigation water in excess of PET. Had these households applied landscape irrigation during May through October at 100% of PET, which is equivalent to an Lc of 1.0, total predicted annual water savings for these households would have been 74, 104, and 85 acre feet in 2000, 2001, and 2002, respectively. Had irrigation been applied using an Lc of 0.7, the estimated savings would have totaled 92, 111, and 100 acre-feet during the same period. These data demonstrate the substantial potential that exists to conserve water used for landscape irrigation by using PET, Lc, and landscape size to derive realistic water budgets. If adopted and applied by homeowners, such budgets could result in very large reductions in landscape water use. Historically, tools available to help water utilities curb outdoor water use in high demand periods have included limitations on customers’ watering days and times and general recommendations on how much water a landscape needs. Using PET combined with Lc has the potential to provide realistic water budgets for residential landscapes and greatly reduce landscape water use. Quantitative data showing the amount of water that landscapes need, compared to how much water is typically applied to landscapes, will help utilities target their conservation efforts for maximum results.

White, R.; Havalak, R.; Nations, J.; Thomas, J.; Chalmers, D.; Dewey, D.

2004-01-01T23:59:59.000Z

131

Effect of water dissolution on oil viscosity  

Science Conference Proceedings (OSTI)

Water dissolution in crude oil becomes significant at temperatures > 150 C, and 250 C, water solubilities in heavy crudes are [approx]40 mol%. Dissolved water acts as a low-viscosity solvent that reduces oil-phase viscosity. This phenomenon has been considered in thermal recovery simulations but has never been substantiated. In this work, the effect of water on viscosity was measured for four crude samples with gravities ranging from 0.97 to 1.03 g/cm[sup 3]. At the highest experimental temperature of 286 C, viscosities of water-saturated samples were about one-half those of water-free counterparts. The viscosity reduction, although quite significant, was not as pronounced as the drop estimated by viscosity mixing rules used for hydrocarbon systems. While a log mixing rule or a one-quarter power mixing rule overestimated viscosity effects, a mole-fraction-weighted average of oil and water viscosities matched the experimental data. A possible explanation for failure of the log mixing rule is that the water dissolved in the oil exists not as monomers but as hydrogen-bonded clusters. The authors find good agreement with experiment when the mole fraction of water clusters, calculated from a statistical mechanics based theory is used in the log mixing rule.

Giandt, C.A. (Shell Development Co., Houston, TX (United States)); Chapman, W.G. (Rice Univ., Houston, TX (United States))

1995-02-01T23:59:59.000Z

132

Advanced Heat Pump Water Heating Technology: Testing Commercial and Residential Systems in the Laboratory and Field  

Science Conference Proceedings (OSTI)

Heat pump water heaters (HPWHs) provide electric water heating at a much greater overall efficiency than conventional electric resistance systems. In the residential market, approximately half of all water heaters are electric resistance; these systems can be replaced by HPWHs in most applications with expected savings of 30%–60%. In commercial applications, most systems presently use natural gas or another fuel in direct combustion. Emerging HPWH systems are now able to provide water heating ...

2013-12-20T23:59:59.000Z

133

Oil shale retorting and retort water purification process  

SciTech Connect

An oil shale process is provided to retort oil shale and purify oil shale retort water. In the process, raw oil shale is retorted in an in situ underground retort or in an above ground retort to liberate shale oil, light hydrocarbon gases and oil shale retort water. The retort water is separated from the shale oil and gases in a sump or in a fractionator or quench tower followed by an API oil/water separator. After the retort water is separated from the shale oil, the retort water is steam stripped, carbon adsorbed and biologically treated, preferably by granular carbon adsorbers followed by activated sludge treatment or by activated sludge containing powdered activated carbon. The retort water can be granularly filtered before being steam stripped. The purified retort water can be used in various other oil shale processes, such as dedusting, scrubbing, spent shale moisturing, backfilling, in situ feed gas injection and pulsed combustion.

Venardos, D.G.; Grieves, C.G.

1985-01-22T23:59:59.000Z

134

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network (OSTI)

William Hill (5/25/77). Water conser- vation and deliveries.Santa Cruz Water Department. conservation.Tracey Bliss (5/25/77). Water Standard Oil Refinery. James

Benenson, P.

2010-01-01T23:59:59.000Z

135

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

1 1 Residential Water Use by Source (Million Gallons per Day) Year 1980 3,400 1985 3,320 1990 3,390 1995 3,390 2000 (3) (3) 3,590 2005 3,830 Note(s): Source(s): 29,430 25,600 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not provide estimates of residential use from public supplies in 2000. This value was estimated based on the residential portion of public supply in 1995 and applied to the total public supply water use in 2000. U.S. Geological Survey, Estimated Use of Water in the U.S. in 1985, U.S. Geological Survey Circular 1004, 1988; U.S. Geological Survey, Estimated Use of

136

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

137

Cedarburg Light and Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300 Water Heaters: 25 - 100 Tankless Water Heaters: 100 Heat Pump Water Heater: 300 Air SealingAttic Insulation: Up to 300 Energy Star Home Performance: 33.3% of cost up to...

138

DEVELOPMENT OF SELF-TUNING RESIDENTIAL OIL/BURNER - OXYGEN SENSOR ASSESSMENT AND EARLY PROTOTYPE SYSTEM OPERATING EXPERIENCE  

SciTech Connect

This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available.

MCDONALD,R.J.; BUTCHER,T.A.; KRAJEWSKI,R.F.

1998-09-01T23:59:59.000Z

139

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

140

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

driven by first cost considerations and the availability of power vent and condensing water heaters. Little analysis has been performed to assess the economic impacts of the...

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

142

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

distributor, and installer costs are used to calculate the costs of different water heater designs. Consumer operating expenses are calculated based on the modeled energy...

143

Muscatine Power and Water - Residential Energy Efficiency Rebates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

clothes washers, dryers, ranges, room air and central air conditioners, ground source heat pumps, and water heaters are eligible for this program. The rebate amount...

144

Walton EMC - Residential Solar Water Heating Rebate Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate 200 Program Information Georgia Program Type Utility Rebate Program Rebate Amount Solar Water Heater: 200 per location Walton Electric Membership Corporation (WEMC) is an...

145

Residential Enhanced Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Enhanced Rewards Program Residential Enhanced Rewards Program Residential Enhanced Rewards Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info Funding Source Focus on Energy Expiration Date 05/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Natural Gas Furnace: $475 Furnace with ECM (natural gas, propane, or oil-fired): $850 Hot-Water Boiler ( Natural Gas Furnace with AC: $1,500 Provider Focus on Energy Focus on Energy offers incentives for income-qualifying customers for the purchase of high efficiency heating equipment. Owner-occupied single-family and multifamily residences of 3 units or less are eligible for the incentives. Applicants must be able to document a gross household income of

146

Excess water production diagnosis in oil fields using ensemble classifiers.  

E-Print Network (OSTI)

??In hydrocarbon production, more often than not, oil is produced commingled with water. As long as the water production rate is below the economic level… (more)

Rabiei, Minou

2011-01-01T23:59:59.000Z

147

Lansing Board of Water & Light - Hometown Energy Savers® Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-50 HID Replacement Fixtures: 25-120 HID Replacement Lamps: 0.30watt saved HVAC and Process Air Conditioners and Heat Pumps: 6-30ton Air and Water Cooled Chillers:...

148

Brunswick EMC - Residential Energy Efficiency and Solar Water...  

Open Energy Info (EERE)

insulation, and solar water heaters. The loans of up to 6,000 are available to homeowners served by BEMC for at least one year and who have a good credit history. Incentive...

149

Energy Savings and Breakeven Cost for Residential Heat Pump Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

volume of 45-60 galday, depending on mains water temperature. For every simulation, a home was also modeled to quantify the interaction between the HPWH and the space heating...

150

Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil  

E-Print Network (OSTI)

Solids-stabilized water-in-oil emulsions have been suggested as a drive fluid to recover viscous oil through a piston-like displacement pattern. While crude heavy oil was initially suggested as the base oil, an alternative oil ? used engine oil was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively large supply, and potential solution of used engine oil disposal. In this research, different types of used engine oil (mineral based, synthetic) were tested to make W/O emulsions simply by blending in brine. A series of stable emulsions was prepared with varied water contents from 40~70%. Viscosities of these emulsions were measured, ranging from 102~104 cp at low shear rates and ambient temperature. Then an emulsion made of 40% used engine oil and 60% brine was chosen for a series of coreflood experiments, to test the stability of this emulsion while flowing through porous media. Limited breakdown of the effluent was observed at ambient injection rates, indicating a stability of the emulsion in porous media. Pressure drops leveled off and remained constant at constant rate of injection, indicating steady-state flows under the experimental conditions. No plug off effect was observed after a large volume of emulsion passed through the cores. Reservoir scale simulations were conducted for the emulsion flooding process based on the emulsion properties tested from the experiments. Results showed significant improvement in both displacement pattern and oil recovery especially compared to water flooding. Economics calculations of emulsion flooding were also performed, suggesting this process to be highly profitable.

Fu, Xuebing

2012-12-01T23:59:59.000Z

151

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network (OSTI)

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil &, B. (2013). Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas, 2013 #12;Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

Yang, Zhenyu

152

Residential hot water usage: A review of published metered studies. Topical report, August-December 1994  

SciTech Connect

The report presents a review of residential hot water usage studies. The studies included were published and publicly available, they measured actual hot water usage or energy usage, and they had sufficient demographic information to determine the number of people per household. The available hot water usage data were normalized to a 135 F setpoint temperature to eliminate the variations in usage caused by different water heater thermostat settings. Typical hot water usage as a function of family size was determined from linear regression analyses of the normalized metered studies` data points. A national average hot water usage of 53 gallons per day was determined from the regression analyses and census data on average household size. The review of metered studies also shows that there is no discernible difference in hot water usage for households with either electric or gas water heaters.

Paul, D.D.; Ide, B.E.; Hartford, P.A.

1994-12-01T23:59:59.000Z

153

Downhole oil/water separators - What's new?  

SciTech Connect

The US Department of Energy's (DOE's) National Petroleum Technology Office is interested in new technologies that can bring oil to the surface at a lower cost or with less environment impact. DOE is particularly interested in technologies that can accomplish both of these goals, and downhole oil/water separators (DOWS) seem to achieve that. They have the potential to reduce operating costs while providing a greater degree of environmental protection. DOE learned of the innovative DOWS technology and funded a team from Argonne National Laboratory, CH2M Hill (a private-sector consulting firm), and the Nebraska Oil and Gas Conservation Commission (a state agency) to conduct an independent evaluation of the technical feasibility, economic viability, and regulatory applicability of the DOWS technology. The results of that investigation were published in January 1999 and represent the most complete publicly available reference material on DOWs technology (the full text of the report can be downloaded from Argonne's website at www.ead.anl.gov). Other abbreviated versions of this information have been published during the past year. Last January, in the 1999 Produced Water Seminar, the author provided an overview of the DOWS technology. For the 2000 Produced Water Seminar, the author is providing updated information on DOWS and related technologies. To set the stage for the new information, the next few sections provided a review of previously reported information.

Veil, J. A.

2000-01-12T23:59:59.000Z

154

Evaluation of Residential Hot Water Distribution Ssytems by Numeric Simulation  

SciTech Connect

The objective of this project was to evaluate the performance and economics of various domestic hot water distribution systems in representative California residences. While the greatest opportunities for improved efficiency occur in new construction, significant improvements can also be made in some existing distribution systems. Specific objectives of the project tasks were: (1) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to alternative new systems. (2) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to maintenance, repair, and retrofit modifications of existing systems. (3) Evaluate potential impact of adopting alternative hot water distribution systems and report project findings. The outcome of this project is to provide homeowners, homebuilders, systems suppliers, municipal code officials and utility providers (both electric and water/sewer) with a neutral, independent, third party, cost-benefit analysis of alternative hot water distribution systems for use in California. The results will enable these stakeholders to make informed decisions regarding which system is most appropriate for use.

Wendt, ROBERT

2005-08-17T23:59:59.000Z

155

Residential exposure to drinking water arsenic in Inner Mongolia, China  

SciTech Connect

In the Ba Men region of Inner Mongolia, China, a high prevalence of chronic arsenism has been reported in earlier studies. A survey of the arsenic contamination among wells from groundwater was conducted to better understand the occurrence of arsenic (As) in drinking water. A total of 14,866 wells (30% of all wells in the region) were analyzed for their arsenic-content. Methods used to detect arsenic were Spectrophotometric methods with DCC-Ag (detection limit, 0.5 {mu}g of As/L); Spot method (detection limit, 10 {mu}g of As/L); and air assisted Colorimetry method (detection limit, 20 {mu}g of As/L). Arsenic-concentrations ranged from below limit of detection to 1200 {mu}g of As/L. Elevated concentrations were related to well depth (10 to 29 m), the date the well was built (peaks from 1980-1990), and geographic location (near mountain range). Over 25,900 individuals utilized wells with drinking water arsenic concentrations above 20 {mu}g of As/L (14,500 above 50 {mu}g of As/L-the current China national standard in drinking water and 2198 above 300 {mu}g of As/L). The presented database of arsenic in wells of the Ba Men region provides a useful tool for planning future water explorations when combined with geological information as well as support for designing upcoming epidemiological studies on the effects of arsenic in drinking water for this region.

Ning Zhixiong [Ba Men Anti-Epidemic Station, Lin He, Inner Mongolia (China); Lobdell, Danelle T. [Epidemiology and Biomarkers Branch, Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Chapel Hill (United States); Kwok, Richard K. [RTI International, P.O. Box 12194, 3040 Cornwallis Rd, Research Triangle Park, NC 27709-2194 (United States)], E-mail: rkwok@rti.org; Liu Zhiyi; Zhang Shiying; Ma Chenglong [Ba Men Anti-Epidemic Station, Lin He, Inner Mongolia (China); Riediker, Michael [Institut Universitaire Romand de Sante au Travail, Lausanne (Switzerland); Mumford, Judy L. [Epidemiology and Biomarkers Branch, Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Chapel Hill (United States)

2007-08-01T23:59:59.000Z

156

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network (OSTI)

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence of residential solar water heating on electric utility demand. The electric demand of solar water hears was found to be approximately 0.39 kW lass than conventional electric water heaters during the late late afternoon, early evening period in the summer months when the Austin utility experiences its peak demand. The annual load factor would be only very slightly reduced if there were a major penetration of solar water heaters in the all electric housing sector. Thus solar water heating represents beneficial load management for utilities experiencing summer peaks.

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

157

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

158

Fatty Acid Chemistry at the Oil-Water Interface: Self-Propelled Oil Droplets  

E-Print Network (OSTI)

Fatty Acid Chemistry at the Oil-Water Interface: Self-Propelled Oil Droplets Martin M. Hanczyc transitions. Here we have explored the possibility that fatty acid systems also demonstrate movement. An oil solution. The oil droplets showed autonomous, sustained movement through the aqueous media. Internal

Ikegami, Takashi

159

HEATING OF OIL WELL BY HOT WATER CIRCULATION  

E-Print Network (OSTI)

HEATING OF OIL WELL BY HOT WATER CIRCULATION Mladen Jurak Department of Mathematics University.prnic@ina.hr Abstract When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solu- tions to this problem is heating of oil well by hot water

Rogina, Mladen

160

Policy Office of Drinking Water Title: Two-connection Residential Water System Number: P A.13 – Administration References: WAC 246-291-030(3) Supersedes: P A.13 Two Connection Residential Public Water Systems  

E-Print Network (OSTI)

Office of Drinking Water policies are written descriptions of the approach taken by the Office to implement a statute, regulation, court order, or other agency order, and may include the Office’s current practice, procedure, or method of action based on that approach. Any generally applicable directives or criteria that provide the basis for imposing penalties or sanctions, or for granting or denying Office approvals, must either be in statute or established in a rule. PURPOSE The Office of Drinking Water will waive all water system requirements for water systems with only two-residential connections, where each connection is a single family home. NOTE: This policy does not prevent a local health jurisdiction from regulating two-connection residential water systems. DIRECTION When individuals propose a water system with only two residential connections, where each connection is only a single family home, the Office of Drinking Water will provide a copy of this policy and notice which states the Office of Drinking Water has waived the requirements of chapter 246-291 WAC. The Office of Drinking Water will direct individuals to check with their local

Contact Karen Valenzuela; Denise A. Clifford; Office Of Drinking Water

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Forced oil-water displacement and spontaneous countercurrent imbibition are the crucial mechanisms of secondary oil  

E-Print Network (OSTI)

Abstract Forced oil-water displacement and spontaneous countercurrent imbibition are the crucial mechanisms of secondary oil recovery. Classical mathematical models of both these unsteady flows are based on the fundamental assumption of local phase equilibrium. Thus, the water and oil flows are locally redistributed

Patzek, Tadeusz W.

162

Effect of water contamination on aging of hydraulic oil  

Science Conference Proceedings (OSTI)

A. Rozenberg, Influence of Lubricating Oils on Reliability and Life of ... Oil samples were contaminated with water by mixing with 0.I, 0.5 ... The reserve of antioxi-.

163

Diacylglycerol Oil, 2nd EditionChapter 20 Oil in Water Foods: Mayonnaise and Salad Dressing  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 20 Oil in Water Foods: Mayonnaise and Salad Dressing Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry   D

164

Development of self-tuning residential oil-burner. Oxygen sensor assessment and early prototype system operating experience  

SciTech Connect

This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available. BNL has continued to investigate all types of sensor technologies associated with combustion systems including all forms of oxygen measurement techniques. In these studies the development of zirconium oxide oxygen sensors has been considered over the last decade. The development of these sensors for the automotive industry has allowed for cost reductions based on quantity of production that might not have occurred otherwise. This report relates BNL`s experience in testing various zirconium oxide sensors, and the results of tests intended to provide evaluation of the various designs with regard to performance in oil-fired systems. These tests included accuracy when installed on oil-fired heating appliances and response time in cyclic operating mode. An evaluation based on performance criteria and cost factors was performed. Cost factors in the oil heat industry are one of the most critical issues in introducing new technology.

McDonald, R.J.; Butcher, T.A.; Krajewski, R.F.

1998-09-01T23:59:59.000Z

165

Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities  

SciTech Connect

This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

Ashdown, BG

2004-08-04T23:59:59.000Z

166

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

167

Development of an oil-water pollution monitoring system  

SciTech Connect

Overboard discharge of bilge and ballast water is necessary, so oil-water separators have been researched extensively. The monitoring problem is to be able to determine the oil concentration continuously. An automatic monitor using carbon analyzer techniques is described. With only one calibration curve, the system can detect accurately the concentration of any type of oil in the water. (1 diagram, 2 graphs, 1 photo)

Tyler, B.; Gongaware, W.; Houlihan, T.M.

1977-04-01T23:59:59.000Z

168

Can Oil Float Completely Submerged in Water?  

E-Print Network (OSTI)

Droplet formation in a system of two or more immiscible fluids is a celebrated topic of research in the fluid mechanics community. In this work, we propose an innovative phenomenon where oil when injected drop-wise into a pool of water moves towards the air-water interface where it floats in a fully submerged condition. The configuration, however, is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. The droplet contour is analyzed using edge detection. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number established the assumption of lubrication regime in the thin gap. A brief theoretical formulation also showed the temporal variation of the gap thickness

Nath, Saurabh; Chatterjee, Souvick

2013-01-01T23:59:59.000Z

169

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

6 6 Residential Water Billing Rate Structures for Community Water Systems Rate Structure Uniform Rates Declining Block Rate Increasing Block Rate Peak Period or Seasonal Rate Separate Flat Fee Annual Connection Fee Combined Flat Fee Other Rate Structures Note(s): Source(s): 3.0% 9.0% 1) Systems serving more than 10,000 users provide service to 82% of the population served by community water systems. Columns do not sum to 100% because some systems use more than one rate structure. 2) Uniform rates charge a set price for each unit of water. Block rates charge a different price for each additional increment of usage. The prices for each increment is higher for increasing block rates and lower for decreasing block rates. Peak rates and seasonal rates charge higher prices when demand is highest. Flat fees charge a set price for

170

Regional Variation in Residential Heat Pump Water Heater Performance in the United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Regional Variation in Residential Heat Pump Water Heater Performance in the US Jeff Maguire 4/30/13 Outline * Why HPWHs? * US Water Heating Market * Overview of HPWHs * Model Description * Results o HPWH Performance o Energy Savings Potential o Breakeven Cost 2 Heat Pump Water Heaters Save $300 a year over standard electric? Save $100 a year over standard gas? Heat Pump Electric Gas 3 Questions about HPWHs * Are HPWHs a good replacement for typical gas and electric storage water heaters? o In different locations across the country? o In conditioned/unconditioned space? o Source energy savings?

171

Management of produced water in oil and gas operations.  

E-Print Network (OSTI)

??Produced water handling has been an issue of concern for oil and gas producers as it is one of the major factors that cause abandonment… (more)

Patel, Chirag V.

2005-01-01T23:59:59.000Z

172

Methods of Managing Water in Oil Shale Development - Energy ...  

This invention is a system and method of providing water management and utilization during the process of dewatering and retorting of oil shale. More ...

173

Columbia River PUD - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Manufacturing Heat Pumps Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: rebate amounts cannot exceed 50% of the total project cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Electric Clothes Washers: $50 Gas, Oil or Propane Clothes Washers: $20 Refrigerators/Freezers: $15 Duct Sealing: $400 Ductless Heat Pumps: $1,000 Air-source Heat Pumps: $700 - $1,100

174

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

SciTech Connect

The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

2010-11-24T23:59:59.000Z

175

Crude Oil Chemistry Effects on Corrosion Inhibition and Phase Wetting in Oil-Water Flow.  

E-Print Network (OSTI)

??The presence of water, even in small amounts, is often the cause of internal corrosion problems in crude oil transportation. Understanding the factors influencing steel… (more)

Ayello, Francois

2010-01-01T23:59:59.000Z

176

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil Shale Products. LERCfor Use 1n Oil Shale and Shale Oil. OSRD-32, 1945. Jeris, J.Water coproduced with shale oil and decanted from it is

Farrier, D.S.

2011-01-01T23:59:59.000Z

177

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

178

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

179

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

180

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

Science Conference Proceedings (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States  

SciTech Connect

Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2013-07-01T23:59:59.000Z

182

ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER  

E-Print Network (OSTI)

Water co produced with shale oil and decanted from it isWater from Green River Oil Shale, Chemistry and Industry,for an In-Situ Produced Oil-Shale Processin g Water, LERC

Ossio, E.A.

2011-01-01T23:59:59.000Z

183

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network (OSTI)

situ oil-shale process waters produced laboratory- scale andAn In Situ Produced Oil Shale Process Water D. S. Farrier,].OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER D. S. Farrier

Farrier, D.S.

2011-01-01T23:59:59.000Z

184

ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER  

E-Print Network (OSTI)

Water from Green River Oil Shale, Chemistry and Industry,for an In-Situ Produced Oil-Shale Processin g Water, LERCOf Simulated In-Situ Oil Shale Retort Water B.A. Ossio, J.P.

Ossio, E.A.

2011-01-01T23:59:59.000Z

185

ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER  

E-Print Network (OSTI)

Water from Green River Oil Shale, Chemistry and Industry,an In-Situ Produced Oil-Shale Processin g Water, LERC ReportOf Simulated In-Situ Oil Shale Retort Water B.A. Ossio, J.P.

Ossio, E.A.

2011-01-01T23:59:59.000Z

186

Method for removing oil-based materials from water surface  

SciTech Connect

A method is described for removing oil-based materials floating on the surface of ballast water contained in the ballast tank of a cargo carrier having vertical steel surfaces. The method consists of adding to said surface a spreading agent having a spreading force greater than the oil-based material in an amount sufficient to force substantially all of the material against the surfaces. The ballast water is discharged from the tank at a point below the surface of the water, the oil-based material is forced to deposit on the steel surfaces vacated by the discharged water.

Shewmaker, J.E.

1981-10-06T23:59:59.000Z

187

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

2 2 1999 Single-Family Home Daily Water Consumption by End Use (Gallons per Capita) (1) Fixture/End Use Toilet 18.5 18.3% Clothes Washer 15 14.9% Shower 11.6 11.5% Faucet 10.9 10.8% Other Domestic 1.6 1.6% Bath 1.2 1.2% Dishwasher 1 1.0% Leaks 9.5 9.4% Outdoor Use (2) 31.7 31.4% Total (2) 101 100% Note(s): Source(s): Average gallons Total Use per capita per day Percent 1) Based analysis of 1,188 single-family homes at 12 study locations. 2) Total Water use derived from USGS. Outdoor use is the difference between total and indoor uses. American Water Works Association Research Foundation, Residential End Uses of Water, 1999; U.S. Geological Survey, Estimated Use of Water in the U.S. in 2000, U.S. Geological Survey Circular 1268, 2004, Table 6, p. 17; and Vickers, Amy, Handbook of Water Use and Conservation, June 2002, p. 15.

188

Identification of water requirements for selected enhanced oil recovery methods  

SciTech Connect

Water requirements for enhanced oil recovery (EOR) are thoroughly evaluated by using publicly available information, data from actual field applications, and information provided by knowledgeable EOR technologists in fourteen major oil companies. The different uses of water in selected EOR methods, as well as current research trends, are discussed. Water quantity and quality requirements are estimated for individual EOR processes (steam drive; in situ combustion; and carbon dioxide, micellar-polymer, polymer, and caustic flooding) in those states and specific geographical locations where these processes will likely play major roles in future petroleum production by the year 2000. The estimated quantity requirements represent the total water needed from all sources (e.g., aquifers, lakes, produced water). A reduction in these quantities can be achieved by reinjecting all of the produced water potentially available for recycle (e.g., some is lost in oil and water separation and water treatment processes) in the oil recovery method. For injection water quality requirements, it is noted that not all of the water used for EOR needs to be fresh. The use of treated produced water can significantly reduce the quantities of fresh water that would be sought from other sources. Although no major EOR project to date has been abandoned because of water supply problems, competing regional uses for water, drought situations, and scarcity of high quality (e.g., low total dissolved solids) surface water and ground water could be impediments to certain projects in the near future. 4 figures, 14 tables.

Royce, B.; Kaplan, E.; Garrell, M.; Geffen, T.M.

1982-09-01T23:59:59.000Z

189

The dubuque water portal: evaluation of the uptake, use and impact of residential water consumption feedback  

Science Conference Proceedings (OSTI)

The Dubuque Water Portal is a system aimed at supporting voluntary reductions of water consumption that is intended to be deployed city-wide. It provides each household with fine-grained, near real time feedback on their water consumption, as well as ... Keywords: behavior change, games, smart meters, social comparison, sustainability, water, water and energy feedback systems

Thomas Erickson; Mark Podlaseck; Sambit Sahu; Jing D. Dai; Tian Chao; Milind Naphade

2012-05-01T23:59:59.000Z

190

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

NLE Websites -- All DOE Office Websites (Extended Search)

Break-even Cost for Residential Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Technical Report NREL/TP-6A20-48986 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Prepared under Task No. SS10.2110 Technical Report

191

Improvements of oil-in-water analysis for produced water using membrane filtration.  

E-Print Network (OSTI)

??The accuracy of oil-in-water analysis for produced water is increasingly crucial as the regulations for disposal of this water are getting more stringent world wide.… (more)

Khor, Ee Huey

2011-01-01T23:59:59.000Z

192

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.… (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

193

Estimating Energy and Water Losses in Residential Hot Water Distribution Systems  

E-Print Network (OSTI)

by showers, faucets, and dishwashers. (Actual leaks of hotdraws for sinks and dishwashers may not waste water, from anheat the water. For dishwashers, not only is energy wasted

Lutz, James

2005-01-01T23:59:59.000Z

194

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

195

Heating of Oil Well by Hot Water Circulation  

E-Print Network (OSTI)

When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solutions to this problem is heating of oil well by hot water recycling. We construct and analyze a mathematical model of oil-well heating composed of three linear parabolic PDE coupled with one Volterra integral equation. Further on we construct numerical method for the model and present some simulation results.

Mladen Jurak; Zarko Prnic

2005-03-04T23:59:59.000Z

196

Combustion Characteristics and Kinetic Analysis of Biomass Coal Oil Water Slurry  

Science Conference Proceedings (OSTI)

The combustion characteristics of biomass coal oil water slurry (biomass-COWS), containing Fujian anthracite, water hyacinth, heavy oil and dispersant were studied by thermal analysis with TG-DTG method. The results showed that the ignition temperature ... Keywords: biomass coal oil water slurry, coal oil water slurry, water hyacinth, thermal analysis, combustion kinetics

Luo Zuyun; Lin Rongying

2011-02-01T23:59:59.000Z

197

Making and breaking of water in crude oil emulsions  

E-Print Network (OSTI)

An understanding of the processes involved in oil spills, and how they interact to alter the composition and behavior of the oil with respect to time is essential to determine an effective oil spill response. The review of past research has shown more focus on the laboratory methods and computerized modeling schemes to estimate the formation and breaking of emulsions after an oil spill. However, relatively less effort has gone into the study of emulsions corresponding to actual field conditions. This research aims to simulate an oil spill at sea by developing a new technique to make water in oil emulsions, without disturbing the marine wildlife. Further, this research also attempts to analyze the viscosities of water in oil emulsions and determine appropriate emulsion breakers for different crude oil emulsions. The overall test design for the study includes a test apparatus for spreading and evaporation, three different crude oils, a mixing chamber to form the emulsion, and emulsion breakers. Experiments in this research attempt to gain a better understanding of the processes that occur after oil spills at sea. In particular, the rate of evaporation of different crude oils and the formation of crude oil emulsions on the sea surface have been investigated. It was observed that different crude oils behave differently when subjected to the same weathering procedure. Results indicate that the behavior of the crude oil on the sea surface, subjected to spreading, evaporation, and emulsification, can be predicted by using the new technique developed in this research. This technique can also assist the development of effective recovery equipments and materials.

Mehta, Shweta D.

2005-12-01T23:59:59.000Z

198

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

199

Annular centrifugal contactors as rapid oil-water separation devices  

Science Conference Proceedings (OSTI)

The results of preliminary test to apply devices known as annular centrifugal contactors to the rapid separation of oil-water mixtures are presented. Separation efficiencies of oil from water of >99% have been demonstrated on both light and heavy oils. Equilibrium within the separating zone of the contractor is reached within seconds. Dynamic testing in which water to oil flow ratios of 1:5 and 5:1 have been conducted without loss of performance. The laboratory scaled contactors tested have total throughout of 80 cc/min. The design and construction of larger devices with total throughputs of hundreds of gallons per minute is feasible. Such contactors would be compact units capable of allowing rapid recovery from a broad range of hydrocarbon spills on waterways. The efficiency of these contactors is such that water discharged can be returned directly to the environment. Recovered hydrocarbons may be useful without further refinement. 4 refs., 1 fig., 2 tabs.

Meikrantz, D.H.; Bourne, G.L.

1988-01-01T23:59:59.000Z

200

Annular centrifugal contactors as rapid oil-water separation devices  

Science Conference Proceedings (OSTI)

The results of preliminary tests to apply devices known as annular centrifugal; contactors to the rapid separation of oil-water mixtures are presented. Separation efficiencies of oil from water of >99% have been demonstrated on both light and heavy oils. Equilibrium within the separating zone of the contactor is reached within seconds. Dynamic testing in which water to oil flow ratios of 1:5 and 5:1 have been conducted without loss of performance. The laboratory scaled contactors tested have total throughput of 80 cc/min. The design and construction of larger devices with total throughputs of hundreds of gallons per minute is feasible. Such contactors would be compact units capable of allowing rapid recovery from a broad range of hydrocarbon spills on waterways. The efficiency of these contactors is such that water discharged can be returned to the environment. Recovered hydrocarbons may be useful without further refinement.

Meikrantz, D.H.; Bourne, G.L.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Estimating Energy and Water Losses in Residential Hot Water Distribution Systems  

E-Print Network (OSTI)

For dishwashers, not only is energy wasted as the hot waterhas the energy used to heat this water been wasted, but thewasted heat as water cools down in the distribution system after a draw; and the energy

Lutz, James

2005-01-01T23:59:59.000Z

202

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

Division of Oil, Gas, and Shale Technology to appropriateseven oil shale process waters including retort water, gas1d1i lc the gas condensate is condensed develop oil shale

Fish, Richard H.

2013-01-01T23:59:59.000Z

203

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

Presented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.compounds in the seven oil shale process waters. These

Fish, Richard H.

2013-01-01T23:59:59.000Z

204

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

organoarsenic compounds in oi.l shale process waters using aPresented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.

Fish, Richard H.

2013-01-01T23:59:59.000Z

205

Performance of Large Diameter Residential Drinking Water Wells - Biofilm Growth: Laboratory and Field Testing.  

E-Print Network (OSTI)

??In the first phase of this project three enhanced large diameter (> 60 cm) residential wells were constructed at a study site in Lindsay, Ontario.… (more)

Ruiz Salazar, Hector Fabio

2011-01-01T23:59:59.000Z

206

Variability in energy factor test results for residential electric water heaters  

SciTech Connect

Recent modifications to the minimum energy efficiency requirements for residential water heaters have spurred an investigation into the variability in testing high-efficiency electric water heaters. While initial inter-laboratory comparisons showed excellent agreement between test results from different labs, subsequent inter-laboratory comparisons show differences between measured energy factors of up to 0.040. To determine the source of these differences, analyses of various parts of the test procedure are performed. For one case studied, the uncertainty in test results can be as high as +-0.028 if instrument accuracies reach the minimum level allowed in the test procedure. Other areas of the test procedure where variability is introduced are the optional use of pre-draws, the location of the lower tank temperature-measuring device, the use of insulation on tank fittings, and the use of a warm-up period before the simulated-use test commences. The implications of these issues on test results are provided.

Healy, William; Lutz, James D.; Lekov, Alex

2003-04-25T23:59:59.000Z

207

Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development  

Science Conference Proceedings (OSTI)

Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

Ruple, John; Keiter, Robert

2010-12-31T23:59:59.000Z

208

State of Maine residential heating oil survey: 1995--1996 season summary  

SciTech Connect

In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years` relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine`s prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other.

Elder, B.

1996-05-01T23:59:59.000Z

209

Spontaneous Charging and Crystallization of Water Droplets in Oil  

E-Print Network (OSTI)

We study the spontaneous charging and the crystallization of spherical micron-sized water-droplets dispersed in oil by numerically solving, within a Poisson-Boltzmann theory in the geometry of a spherical cell, for the density profiles of the cations and anions in the system. We take into account screening, ionic Born self-energy differences between oil and water, and partitioning of ions over the two media. We find that the surface charge density of the droplet as induced by the ion partitioning is significantly affected by the droplet curvature and by the finite density of the droplets. We also find that the salt concentration and the dielectric constant regime in which crystallization of the water droplets is predicted is enhanced substantially compared to results based on the planar oil-water interface, thereby improving quantitative agreement with recent experiments.

Joost de Graaf; Jos Zwanikken; Markus Bier; Arjen Baarsma; Yasha Oloumi; Mischa Spelt; Rene van Roij

2008-07-29T23:59:59.000Z

210

Stability of additive-free water-in-oil emulsions  

E-Print Network (OSTI)

We calculate ion distributions near a planar oil-water interface within non-linear Poisson-Boltzmann theory, taking into account the Born self-energy of the ions in the two media. For unequal self-energies of cations and anions, a spontaneous charge separation is found such that the water and oil phase become oppositely charged, in slabs with a typical thickness of the Debye screening length in the two media. From the analytical solutions, the corresponding interfacial charge density and the contribution to the interfacial tension is derived, together with an estimate for the Yukawa-potential between two spherical water droplets in oil. The parameter regime is explored where the plasma coupling parameter exceeds the crystallization threshold, i.e. where the droplets are expected to form crystalline structures due to a strong Yukawa repulsion, as recently observed experimentally. Extensions of the theory that we discuss briefly include numerical calculations on spherical water droplets in oil, and analytical calculations of the linear PB-equation for a finite oil-water interfacial width.

Jos Zwanikken; Joost de Graaf; Markus Bier; René van Roij

2008-10-09T23:59:59.000Z

211

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network (OSTI)

combustion) and the oil shale reserves near Rock Springs,homogeneous reserve of an in situ oil-shale process water

Farrier, D.S.

2011-01-01T23:59:59.000Z

212

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

situ oil shale combustion experiment con- A gas chro- Thisspent shales were waters were studied, retort water and gasof retort waters and gas condensate. Spent shale reduces the

Fox, J.P.

2013-01-01T23:59:59.000Z

213

Burlington Electric Department - Residential Energy Efficiency...  

Open Energy Info (EERE)

Sector Residential Eligible Technologies Clothes Washers, Lighting, Water Heaters, LED Lighting, Tankless Water Heaters Active Incentive Yes Implementing Sector Utility...

214

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

lll67C Presented at the 13th Oil Shale Symposium, Golden,~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.expanded by the Division of Oil, Gas, and Shale Technology

Fish, Richard H.

2013-01-01T23:59:59.000Z

215

Feasibility evaluation of downhole oil/water separator (DOWS) technology.  

SciTech Connect

The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely transferred to operators, particularly to small or medium-sized independent U.S. companies. One of the missions of the U.S. Department of Energy's (DOE's) National Petroleum Technology Office (NPTO) is to assess the feasibility of promising oil and gas technologies that offer improved operating performance, reduced operating costs, or greater environmental protection. To further this mission, the NPTO provided funding to a partnership of three organizations a DOE national laboratory (Argonne National Laboratory), a private-sector consulting firm (CH2M-Hill), and a state government agency (Nebraska Oil and Gas Conservation Commission) to assess the feasibility of DOWS. The purpose of this report is to provide general information to the industry on DOWS by describing the existing uses of simultaneous injection, summarizing the regulatory implications of simultaneous injection, and assessing the potential future uses of the technology. Chapter 2 provides a more detailed description of the two major types of DOWS. Chapter 3 summarizes the existing U.S. and Canadian installations of DOWS equipment, to the extent that operators have been willing to share their data. Data are provided on the location and geology of existing installations, production information before and after installation of the DOWS, and costs. Chapter 4 provides an overview of DOWS-specific regulatory requirements imposed by some state agencies and discusses the regulatory implications of handling produced water downhole, rather than pumping it to the surface and reinjecting it. Findings and conclusions are presented in Chapter 5 and a list of the references cited in the report is provided in Chapter 6. Appendix A presents detailed data on DOWS installations. This report presents the findings of Phase 1 of the simultaneous injection project, the feasibility assessment. Another activity of the Phase 1 investigation is to design a study plan for Phase 2 of the project, field pilot studies. The Phase 2 study plan is being developed separately and is not included in this report.

Veil, J. A.; Langhus, B. G.; Belieu, S.; Environmental Assessment; CH2M Hill; Nebraska Oil and Gas Conservation Commission

1999-01-31T23:59:59.000Z

216

State Residential Energy Consumption Shares 1996  

Gasoline and Diesel Fuel Update (EIA)

Residential customers in the Northeast are more heavily dependent on heating oil than are residential consumers in the rest of the country. Rhode Island is no exception. In 1996,...

217

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

DOE Green Energy (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

218

The extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through beached  

E-Print Network (OSTI)

history of oil spills. In: Proceedings from the Oil Symposium on The Effects of Oil on Wildlife, Herndon female Harlequin Ducks in relation to history of contamination by the Exxon Valdez oil spill. JournalThe extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through

Jones, Ian L.

219

Level and Degradation of Deepwater Horizon Spilled Oil in Coastal Marsh Sediments and Pore-Water  

E-Print Network (OSTI)

eight months after the spill. By contrast, pore-water separated from heavily oiled Louisiana wetland-waters extracted from heavily oiled Louisiana wetlands. Environmental Science & Technology Article dx.doi.org/10 wetlands decades after the Amoco-Cadiz oil spill. The fate and biotransformation of oils in coastal

Wang, Yang

220

Microwave measurement of water content in flowing crude oil  

Science Conference Proceedings (OSTI)

A microwave method and a microwave device for measurement of water content in flowing crude oil are proposed. The method is based on measuring power of electromagnetic waves propagated through a transmission line and reflected from the load that is a ...

Yu. V. Makeev; A. P. Lifanov; A. S. Sovlukov

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

River Forecast Application for Water Management: Oil and Water?  

Science Conference Proceedings (OSTI)

Managing water resources generally and managing reservoir operations specifically have been touted as opportunities for applying forecasts to improve decision making. Previous studies have shown that the application of forecasts into water ...

Kevin Werner; Kristen Averyt; Gigi Owen

2013-07-01T23:59:59.000Z

222

Recycle and reuse of oil-shale water  

Science Conference Proceedings (OSTI)

Oil shale processes require a substantial water supply and produce wastes in water-short areas. As such, wastewater processing and water reuse are required. In the article presented, wastewater treatment concepts were identified and evaluated that can renovate retort water for recycle as high-grade makeup water. Evaporation/concentration of the retort water is feasible when the seed-slurry scale-control process is utilized. Pilot evaporator tests confirmed that conclusion. The Resource Conservation Company developed retort-water treatment system was discussed, and the authors found it to have the following advantages: (1) high-quality distillate was produced; (2) it was immune to moderate fluctuations in wastewater composition; and (3) waste volumes were significantly reduced, thereby minimizing final disposal costs. (JMT)

Mukhopadhyay, D.; Fosberg, T.M.

1982-09-01T23:59:59.000Z

223

Residential Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Performance: guidelines, analysis and measurements of window and skylight performance Windows in residential buildings consume approximately 2% of all the energy used...

224

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renew- ablecom- bined space/water heaters, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

225

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renewabletankless combined space/water heaterds, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.

2010-01-01T23:59:59.000Z

226

First Energy (MetEd, Penelec, Penn Power) - Residential Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Energy (MetEd, Penelec, Penn Power) - Residential Solar Water Heating Program First Energy (MetEd, Penelec, Penn Power) - Residential Solar Water Heating Program Eligibility...

227

New and Underutilized Technology: Water Cooled Oil Free Magnetic Bearing Compressors  

Energy.gov (U.S. Department of Energy (DOE))

The following information outlines key deployment considerations for water cooled oil free magnetic bearing compressors within the Federal sector.

228

Health assessment for Ossineke ground water (Ossineke Residential Wells), Ossineke, Michigan, Region 5. CERCLIS No. MID980794440. Preliminary report  

SciTech Connect

Ossineke Residential Wells are listed on the National Priorities List. The site is located in Alpena County, Michigan. In 1977, several residential wells were determined to be contaminated with components of gasoline, benzene, toluene, xylene, phenol, and tetrachloroethylene. Possible contamination sources include leaking underground gas storage tanks, a lagoon used for waste disposal by a commercial laundromat, or an auto rustproofing operation. Ground water samples showed maximum concentrations detected in parts per billion (ppb): benzene, 21,000; toluene, 53,000; xylene, 11,000; and PCE, 7 ppb. Sampling of the residential wells in 1988 showed the following maximum concentrations in ppb: benzene, 6,590; toluene, 726; xylene, 2,500; tetrachloroethylene, 16; and phenol, 26. The site is of potential public-health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time. Human exposure to benzene, tetrachloroethylene, toluene, xylene, and phenol may occur via the exposure pathways of ingestion, inhalation, and dermal contact.

Not Available

1989-03-10T23:59:59.000Z

229

Treatment methods for breaking certain oil and water emulsions  

DOE Patents (OSTI)

Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

Sealock, Jr., L. John (W. Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

1992-01-01T23:59:59.000Z

230

Residential Heating Oil Prices  

U.S. Energy Information Administration (EIA)

We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly.

231

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

232

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes.  

E-Print Network (OSTI)

??Produced water is a major waste produced from oil and natural gas wells in the state of Texas. This water could be a possible source… (more)

Beech, Scott Jay

2006-01-01T23:59:59.000Z

233

Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers  

Science Conference Proceedings (OSTI)

Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

Howard-Reed, C.; Corsi, R.L. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Moya, J. [Environmental Protection Agency, Washington, DC (United States)

1999-07-01T23:59:59.000Z

234

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

235

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

3 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

236

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

90 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

237

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

238

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

239

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

240

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Estimated United States Residential Energy Use in 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

Smith, C A; Johnson, D M; Simon, A J; Belles, R D

2011-12-12T23:59:59.000Z

242

Ground water control for an in situ oil shale retort  

SciTech Connect

An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of particles containing oil shale. An open base of operation is excavated in the formation above the retort site, and an access drift is excavated to the bottom of the retort site. Formation is explosively expanded to form the fragmented mass between the access drift and an elevation spaced below the bottom of the base of operation, leaving a horizontal sill pillar of unfragmented formation between the top of the fragmented mass and the bottom of the base of operation. The sill pillar provides a safe base of operation above the fragmented mass from which to control retorting operations. A plurality of blasting holes used in explosively expanding the formation extend from the base of operation, through the sill pillar, and open into the top of the fragmented mass. Trenches are formed in the base of operation for collecting ground water which enters the base of operation prior to and during retorting operations, and collected ground water is withdrawn from the base of operation. Casings can be placed in the blasting holes and adapted for controlling gas flow through the fragmented mass during retorting operations. The casings extend above the floor of the base of operation to inhibit flow of ground water through the blasting holes into the fragmented mass, and other blasting holes not having such casings are sealed. After retorting is completed, the floor of the base of operation can be covered with a layer of concrete and/or the blasting holes can be sealed with concrete to inhibit leakage of ground water into treated oil shale particles in the fragmented mass.

Ridley, R.D.

1979-05-08T23:59:59.000Z

243

OIL IN THE OPEN WATER microscopic plants and animals that form the  

E-Print Network (OSTI)

OIL IN THE OPEN WATER microscopic plants and animals that form the basis of the oceanic food web the surface, corals and other deepwater OIL AND HUMAN USE Wellhead CORALS · Coral surveys · Tissue collections · Transect surveys to detect submerged oil · Oil plume modeling · Sediment sampling AQUATIC VEGETATION

244

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data  

E-Print Network (OSTI)

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data Javier large spill oil events threatening coastal habitats and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain, as well as repeated oil spill leaks evidenced

Plaza, Antonio J.

245

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

SciTech Connect

This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

Cassard, H.; Denholm, P.; Ong, S.

2011-02-01T23:59:59.000Z

246

Heterogeneous Responses to Water Conservation Programs: The Case of Residential Users in Los Angeles  

E-Print Network (OSTI)

on welfare of water conservation programs (compensatingHeterogeneous Responses to Water Conservation Programs: TheHeterogeneous responses to water conservations programs: the

Hanemann, W. Michael; Nauges, Celine

2005-01-01T23:59:59.000Z

247

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

248

Ternary Oil-Water-Amphiphile Systems: Self-Assembly and Phase Equilibria  

E-Print Network (OSTI)

Ternary Oil-Water-Amphiphile Systems: Self-Assembly and Phase Equilibria Seung-Yeon Kim surfactant - oil - water systems were studied by grand-canonical Monte Carlo simulations assisted H represents hydrophilic and T hydrophobic groups. In contrast to earlier studies, we studied oil

249

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

market research on solar water heaters. National Renewablespace heaters, and solar water heaters, as well as other

Lekov, Alex

2011-01-01T23:59:59.000Z

250

Low-head air stripper treats oil tanker ballast water  

SciTech Connect

Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions.

Goldman, M. (Camp Dresser McKee, Cambridge, MA (United States))

1992-02-01T23:59:59.000Z

251

Investigation of oil adsorption capacity of granular organoclay media and the kinetics of oil removal from oil-in-water emulsions  

E-Print Network (OSTI)

Produced water, a byproduct of oil and gas production, includes almost 98% of all waste generated by oil and gas exploration and their production activities. This oil contaminated waste water has a great impact on our environment and is considered to be a high-cost liability. The Department of Energy�s Oil and Gas Environmental Program is concerned with the development of new and affordable technology to clean this produced water. Organically modified clays are proposed as a good option for removal of oil from produced water. Organoclay, incorporated into a treatment process shows promise of being a cost effective method of treatment to remove crude oil from brine either as a final treatment prior to brine disposal at sea or as a precursor to desalination. Organoclay also pre-polishes the waste water before further treatment. This research studies the efficacy of using organoclay to remove oil by measuring its adsorption capacity to remove the oil from a SAE 30 (Golden West Superior) motor oil-water emulsion. A kinetic model was developed to examine the time dependent behavior of the oil adsorbing characteristics of the organoclay and to investigate how closely the experimentally obtained data matches the kinetic model. It was found that organoclay is effective in removing various percentages of oil depending on the concentrations of a SAE 30 (Golden West Superior) motor oil-water emulsion. Moreover, it was found that the experimental data closely follow the kinetic behavior of the organoclay as shown by the kinetic model. Since this research is specific to a particular type of oil, SAE 30, further research is required for verifying the adsorption capacity of organoclay in other types of oils. Moreover, it is also recommended that the adsorption capacity of the organoclay, together with conventional adsorbent such as GAC (Granular Activated Carbon), be investigated to determine if there is any further improvement in the adsorption capacity. Lastly, a detailed investigation using the actual produced water from the oil field should be conducted to determine the efficacy of the organoclay system in removing oil from water produced in the field.

Islam, Sonia

2006-12-01T23:59:59.000Z

252

Temperature effects on oil-water relative permeabilities for unconsolidated sands  

SciTech Connect

This study presents an experimental investigation of temperature effects on relative permeabilities of oil- water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in 2 parts. The first was to investigate changes in residual oil saturation with temperature where the cores were 100% saturated with oil at the start of the waterflood. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in residual oil saturation was observed with temperature. A study on viscous instabilities also was performed. This verified the existence of viscous fingers during waterflooding. It also was observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

Sufi, A.H.

1983-03-01T23:59:59.000Z

253

Smooth Cord Grass (Spartina Alterniflora) Response to Simulated Oil Spills in Sediment-Water Microcosms.  

E-Print Network (OSTI)

?? Simulated oil spills were created in S. alterniflora sediment-water microcosms to determine the effects of applied crude oil on S.alterniflora during two 90-day studies.… (more)

Beenk, Elliott E.

2013-01-01T23:59:59.000Z

254

1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive  

E-Print Network (OSTI)

1 Flow in Porous Media Oil companies often pump water into the cavities of the earth where the oil is situated to drive out the oil. In a simplified situation, as given in figure 1 we have a rectangular block of porous material filled with oil. Water is pumped in from the left, creating a presure difference between

Gander, Martin J.

255

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

256

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network (OSTI)

G. Rosenquist. 1998. WHAM: A Simplified Energy ConsumptionWater Heater Analysis Model (WHAM) calculation method, whichcharacteristics of water heaters, WHAM uses parameters from

Lekov, Alex

2011-01-01T23:59:59.000Z

257

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

1 Water Heater Stock for Residential Buildings, By Fuel Type Electric Natural Gas Fuel Oil PropaneLPG Other 0.2 0.2% Total (1) Note(s): Souce(s): According to RECS, 1.1 million...

258

Heat-pump desuperheaters for supplying domestic hot water - estimation of energy savings and economic viability for residential applications  

SciTech Connect

The heat reclaimer is a double-wall heat exchange system that removes superheat from the heat pump (or central air conditioning) cycle and uses it to heat water for domestic uses. During summer operation, this heat would normally be rejected to the atmosphere without being used. Thus, water heating is accomplished using essentially no primary fuel. In winter, the heat extracted from the cycle would have been used for space heating. However, energy savings are possible above the heat pump balance point because water heating is performed at an enhanced efficiency. Potential energy savings and economic viability of the heat reclaimer were determined for 28 sites throughout the United States. These results indicate that the heat reclaimer is not economically attractive compared with gas- or oil-fired water heating systems. However, it is competitive with electric resistance water heaters. Based on these results, a calculational scheme has been developed that could be integrated into the model audit procedure.

Olszewski, M.; Fontana, E.C.

1983-05-01T23:59:59.000Z

259

Black Hills Power - Residential Customer Rebate Program (South...  

Open Energy Info (EERE)

Program Applicable Sector Multi-Family Residential, Residential Eligible Technologies Energy Mgmt. SystemsBuilding Controls, Heat pumps, Water Heaters, Geothermal Heat Pumps,...

260

Black Hills Power - Residential Customer Rebate Program (Wyoming...  

Open Energy Info (EERE)

Program Applicable Sector Multi-Family Residential, Residential Eligible Technologies Energy Mgmt. SystemsBuilding Controls, Heat pumps, Water Heaters, Geothermal Heat Pumps,...

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Austin Energy - Residential Solar Loan Program (Texas) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (Texas) Austin Energy - Residential Solar Loan Program (Texas) Eligibility Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating...

262

Residential Renewable Energy Tax Credit | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Tax Credit Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Solar Water Heat Photovoltaics Wind Fuel Cells Geothermal Heat...

263

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

264

An innovative concept for deep water oil production platform design  

E-Print Network (OSTI)

As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating Production, Storage and Off loading Tower) is studied in this thesis. Instead of using a single large cylindrical structure as in the spar configuration, the FPSOT utilizes a jacket-type framed structure supported by a buoyancy/storage tank deep below the ocean surface. This new structure concept is suitable for water depths up to 1000 meters or more. 20000 tons of concrete and 67000 tons of oil, serving as ballast, provide a good stability of the structure. The stored oil, used as a ballast, can also be replaced by sea water. The deck and the drilling/production equipment of 10000 tons are supported by a framed structure made of small cylindrical members. Because of the smallness of these cylindrical members, wave forces on the upper structure is very small. The forces on the lower structure (buoyancy/ballast tank), which is deeply submerged, are also small. Thus, the platform will be very stable even in a very severe sea state, with maximum surge and heave motions are less than two meters and the pitch motion is always smaller than one degree. All the natural frequencies are very small (less than 0.055 rd/sec). All the calculations are performed for regular and random waves. It was found that the platform motions were extremely small even in stormy waves as compared to the other platform configurations. A model with a scale 1:60 of this concept has been built and tested in deep water wave at the Offshore Technology Research Center on campus. The experimental and theoretical results are very close. A comparison is performed between this new concept and a spar buoy of same draft, weight, buoyancy and catenary system. The motions of the FPSOT, specially in pitch, are smaller than the spar buoy. Thus, this new concept is proved to be feasible and to be a very interesting approach for the future offshore platform design.

Racine, Florian

1994-01-01T23:59:59.000Z

265

Portable water filtration system for oil well fractionation  

Science Conference Proceedings (OSTI)

The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

Seibert, D. L.

1985-08-13T23:59:59.000Z

266

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

267

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

268

Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance.  

E-Print Network (OSTI)

??Conventional waterflooding methods of oil recovery are difficult to apply when reservoirs show evidence of natural fractures, because injected water advances through paths of high… (more)

Hervas Ordonez, Rafael Alejandro

2012-01-01T23:59:59.000Z

269

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

D. Winiarski. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.

2010-01-01T23:59:59.000Z

270

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Winiarski, D. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water-heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

271

Climate Variability and Residential Water Use in the City of Phoenix, Arizona  

Science Conference Proceedings (OSTI)

In this investigation, how annual water use in the city of Phoenix, Arizona, was influenced by climatic variables between 1980 and 2004 is examined. Simple correlation coefficients between water use and annual mean temperature, total annual ...

Robert C. Balling Jr.; Patricia Gober

2007-07-01T23:59:59.000Z

272

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

heating appliances 3 , solar water heating, district heatingOther includes solar, wood, no heating c Electric resistance

Lekov, Alex B.

2010-01-01T23:59:59.000Z

273

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

heating appliances, 3 solar water heating, district heating,Other includes solar, wood, and no heating b Table 2 US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

274

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.

2010-01-01T23:59:59.000Z

275

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

276

Simulating the impact of pricing policies on residential water demand: a Southern France case study  

E-Print Network (OSTI)

. Author-produced version of the article published in Water Resources Management, 2012, 26 (7-sectional data set, an Author-produced version of the article published in Water Resources Management, 2012, 26 employed relate to price, water use, and estimates of the cost of drilling. The Author-produced version

277

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

278

Charlottesville Gas - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Appliances & Electronics Water Heating Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: up to $100 Natural Gas Water Heater Conversion: $100 Provider City of Charlottesville Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for installing new, energy efficient natural gas water heaters and programmable thermostats. Only customers which previously did not have natural gas water heating are

279

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

280

Feasibility study and roadmap to improve residential hot water distribution systems  

E-Print Network (OSTI)

dishwashers, not only is the energy wasted by the hot waterwasted heat as water cools down in the distribution system after a draw; and the energywasted heat as water cools down in the distribution system after a draw; and the energy

Lutz, James D.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

3 2004 Water Use in Multi-Family Housing Units, In-Rent and Submetered Billing (Gallons per Unit per Day) In-Rent Indoor Water Use 143 121 15.3% Note(s): Source(s): Based on a...

282

Development of Standardized Domestic Hot Water Event Schedules for Residential Buildings  

SciTech Connect

The Building America Research Benchmark is a standard house definition created as a point of reference for tracking progress toward multi-year energy savings targets. As part of its development, the National Renewable Energy Laboratory has established a set of domestic hot water events to be used in conjunction with sub-hourly analysis of advanced hot water systems.

Hendron, R.; Burch, J.

2008-08-01T23:59:59.000Z

283

Comparison of Advanced Residential Water Heating Technologies in the United States  

SciTech Connect

Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

Maguire, J.; Fang, X.; Wilson, E.

2013-05-01T23:59:59.000Z

284

Analysis of Data from a Downhole Oil/Water Separator Field Trial in East Texas  

SciTech Connect

Downhole oil/water separator (DOWS) technology is available to separate oil from produced water at the bottom of an oil well. Produced water can be injected directly to a disposal formation rather than lifting it to the surface, treating it there, and reinjecting it. Because of a lack of detailed performance data on DOWS systems, the U.S. Department of Energy (DOE) provided funding to secure DOWS performance data. A large U.S. oil and gas operator offered to share its data with Argonne National Laboratory. This report summarizes data from the DOWS installation in eastern Texas.

Veil, John A.; Layne, Arthur Langhus

2001-04-19T23:59:59.000Z

285

Development of a formula to determine outdoor residential water consumption in College Station, Texas  

E-Print Network (OSTI)

This thesis reports the findings of a telephone survey, public tax records, and water bills of 233 randomly selected single family detached residences, built between 1992 and 1994 in College Station, Texas. Weather information consisting of average daily temperature, daily precipitation, and daily evaporation was also necessary for analysis of gallons of water used. The purpose of this study was to (1) develop a marketing tool that builders could use to determine the water saving features for a particular area to increase sales and lead to possible mortgage reductions, and (2) help cities and developers size water lines appropriately for projected water needs. The COMBEAS computer program and various statistical tests were used to report to findings of the study. No known study has been produced that has analyzed water usage using the COMBEAS regression program and analyzed all of the variables contained in this study. Using the COMBEAS program, comparing gallons to temperature, a base load was determined that remains constant throughout the year. Any watering above this base load was attributed to temperature related (outdoor) watering. Twenty three variables, arrived at by prior research and related to water usage were then tested for significance against the amount of water attributable to outdoor watering. Of these variables, 11 were found to be significant using forward stepwise regression. Multi-colinearity tests were then conducted using the Peal-son Product Moment correlation. After eliminating all but one of those variables in each group that were highly related, 6 variables remained, including non-baseload rainfall and evaporation, yard area, existence of a sprinkler system and/or pool, and the predominant variety of grass. Using these six variables as independent variables, and the temperature dependent watering as the dependent variable, the group was then tested using best subset regression. From these results, those variables making up the highest R2 combination with p-values of less than .05 were then analyzed using multiple linear regression, producing a formula that would most accurately predict outdoor water usage for College Station, Texas and areas with similar climates and populations.

Winkelblech, Audrey Kristen

1997-01-01T23:59:59.000Z

286

Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer  

E-Print Network (OSTI)

.............................................................................................. 15 3.1 WHAM]. ...................................................................................................................................... 14 Table 2: Values of operating condition variables used in WHAM.................................. 16 Simulation Tool Instantaneous volume flow rate of delivered hot water to the ith plumbing fixture, m3 /s WHAM

Victoria, University of

287

Feasibility study and roadmap to improve residential hot water distribution systems  

E-Print Network (OSTI)

perspective, the sink and dishwashers must be considered incool off once again. For dishwashers, not only is the energyit must be made up by the dishwasher heating the cool water

Lutz, James D.

2004-01-01T23:59:59.000Z

288

NETL: News Release - DOE's Oil and Gas Produced-Water Program Logs Key  

NLE Websites -- All DOE Office Websites (Extended Search)

July 20, 2007 July 20, 2007 DOE's Oil and Gas Produced-Water Program Logs Key Milestones Cost-Effectively Treating Coproduced Water Boosts U.S. Energy, Water Supplies MORGANTOWN, WV - A research program funded by the U.S. Department of Energy (DOE) is making significant progress in developing new ways to treat and use water coproduced with oil and natural gas. The ultimate benefit is a two-for-one solution that expects to boost domestic energy supplies while enhancing the Nation's water supply. Coproduced water-some of which occurs naturally in subsurface formations, and some that is recovered following injection of water into an oil or gas reservoir to boost production-accounts for 98 percent of all waste generated by U.S. oil and natural gas operations. Produced-water volumes average nine barrels for each barrel of oil produced. Handling, treating, and safely disposing of this produced water has been a tough, costly challenge for oil and natural gas producers for decades. Much of the produced water has high concentrations of minerals or salts that make it unsuitable for beneficial use or surface discharge. An oilfield operator often must reinject such produced water into deep formations, sometimes resorting to costly trucking of the water to deep-injection well sites specially designated by the U.S. Environmental Protection Agency.

289

Redding Electric - Residential and Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential and Commercial Energy Efficiency Residential and Commercial Energy Efficiency Rebate Program Redding Electric - Residential and Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Windows: $250 - Residential; $750 (Commercial) Insulation: up to $500 - Residential; pre-approval required - Commercial Water Heater Blanket: $20 per unit Radiant/Thermal Barrier Material: $500 - Residential; pre-approval required - Commercial Duct Repair/Replacement: $500

290

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network (OSTI)

Part A: 1966-1975. Sacramento, CA: Employment Developmentand consumption. Sacramento, CA. Department of WaterPopulation for HSAs. Sacramento, CA. L.E. Moberg. Department

Benenson, P.

2010-01-01T23:59:59.000Z

291

Destructed double-layer and ionic charge separation near the oil-water interface  

E-Print Network (OSTI)

We study suspensions of hydrophobic charged colloidal spheres dispersed in a demixed oil-water mixture by means of a modified Poisson-Boltzmann theory, taking into account image charge effects and partitioning of the monovalent ions. We find that the ion's aversion for oil can destroy the double layers of the oil-dispersed colloids. This affects the salt-concentration dependence of the colloidal adsorption to the oil-water interface qualitatively. The theory also predicts a narrow range of the oil-dielectric constant in which micron-sized water-in-oil droplets acquire enough charge to crystallize at volume fractions as small as $\\sim 10^{-3}$ in the absence of colloids. These findings explain recent observations [M.E. Leunissen {\\em et al.}, Proc. Nat. Ac. Sci {\\bf 104}, 2585 (2007)].

Jos Zwanikken; René van Roij

2007-05-16T23:59:59.000Z

292

Diacylglycerol Oil, 2nd EditionChapter 21 Water-in-Oil Type of Emulsion Foods: Margarine, Spreads, and Butter Cream  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 21 Water-in-Oil Type of Emulsion Foods: Margarine, Spreads, and Butter Cream Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry BE22

293

Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water  

DOE R&D Accomplishments (OSTI)

The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

Poston, S. W.

1991-00-00T23:59:59.000Z

294

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

4 Per Capita Use of Hot Water in Single Family Homes by End Use (Gallons per Capita per Day) (1) FixtureEnd Use Toilet 0.0 0.0 0.0% 0.0% Clothes Washer 3.9 10.1 15.5% 27.8% Shower...

295

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

5 2010 Community Water Systems by Size and Type System Size (1) Less than 500 4.9 501 - 3,300 20.1 3,301 - 10,000 28.6 10,001 - 100,000 108.5 More than 100,000 138.1 Total 300.2...

296

Transporting of a Cell-Sized Phospholipid Vesicle Across Water/Oil Interface  

E-Print Network (OSTI)

When a cell-sized water droplet, with a diameter of several tens of micro meter, is placed in oil containing phospholipids, a stable cell-sized vesicle is spontaneously formed as a water-in-oil phospholipid emulsion (W/O CE) with a phospholipid monolayer. We transferred the lipid vesicle thus formed in the oil phase to the water phase across the water/oil interface by micromanipulation, which suggests that the vesicle is transformed from a phospholipid monolayer as W/O CE into a bilayer. The lipid vesicle can then be transported back into the oil phase. This novel experimental procedure may be a useful tool for creating a model cellular system, which, together with a microreactor, is applicable as a micrometer-scale biochemical reaction field.

Hase, M; Hamada, T; Yoshikawa, K; Hase, Masahiko; Yamada, Ayako; Hamada, Tsutomu; Yoshikawa, Kenichi

2006-01-01T23:59:59.000Z

297

Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study  

E-Print Network (OSTI)

A load research project by the Florida Power Corporation (FPC) is monitoring 200 residences in Central Florida, collecting detailed end-use load data. The monitoring is being performed to better estimate the impact of FPC's load control program, as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis.

Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

2000-01-01T23:59:59.000Z

298

Consumer thermal energy storage costs for residential hot water, space heating and space cooling systems  

DOE Green Energy (OSTI)

The cost of household thermal energy storage (TES) in four utility service areas that are representative for hot water, space heating, and space cooling systems in the United States is presented. There are two major sections of the report: Section 2.0 is a technology characterization of commercially available and developmental/conceptual TES systems; Section 3.0 is an evaluation of the consumer cost of the three TES systems based on typical designs in four utility service areas.

None

1976-11-30T23:59:59.000Z

299

Sustainable water supply: rainwater harvesting for multistoried residential apartments in dhaka, bangladesh  

E-Print Network (OSTI)

Rainwater harvesting is a familiar term for Bangladesh. People in areas that lack drinking water, particularly the coastal areas and the rural areas in the country, practice rain water harvesting. The high annual rainfall in the country makes rainwater harvesting a logical solution for the arsenic contamination of ground water in Bangladesh (Rahman et al. 2003). Also, the increasing population in the urban as well as rural areas is putting increased load on underground aquifers which is evident in the fact that the piezometric level in Dhaka has decreased by more than 65 feet in the last decade. The annual rain fall that the city receives may be an effective answer to the recharge of aquifers. Rain water harvesting during the rainy season can reduce the increasing load on groundwater levels. This study aims to provide some guidelines for economic rainwater harvesting system, especially for urban areas for specific user groups. These guidelines were formulated through literature review, analysis of some case studies on rainwater harvesting, and, to a certain extent, practical experience of the researcher. Data from secondary sources have also been used for the purpose. The guidelines have been formulated using existing data on rainwater harvesting systems. Based on these guidelines, a mathematical model has been developed to figure out cistern sizes for collection of rainwater. The solution is applied to a typical plan of an apartment house in Dhaka (multistoried) using programming and visualization so as to demonstrate the scope and benefit of integration of rain water harvesting technique with the architectural design. The harvested rainwater definitely does not meet the basic domestic requirement, but supplements it during the rainy season which, most importantly, is usable for individual household use. Large-scale rainwater harvesting also, hopefully, results in a decrease of seasonal flooding in the urban areas. The products of this research are a) a computer program for sizing cisterns and b) an animation of the proposed rainwater harvesting system that may be used as a tool to demonstrate the benefits of the technique.

Sultana, Farzana

2007-12-01T23:59:59.000Z

300

National Grid (Gas) - Residential EnergyWise Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

amongst its residential customers. Interested customers who heat with gas, oil, or propane should schedule a free home energy audit through National Grid's Weatherization or...

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Trends in U.S. Residential Natural Gas Consumption  

Annual Energy Outlook 2012 (EIA)

the Residential Energy Consumption Survey. Energy Information Administration, Office of Oil and Gas, June 2010 1 Natural gas prices may have also contributed to the decrease...

302

EWEB - Residential Energy Efficiency Rebate Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Energy Efficiency Rebate Programs EWEB - Residential Energy Efficiency Rebate Programs EWEB - Residential Energy Efficiency Rebate Programs < Back Eligibility Low-Income Residential Residential Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $30 Electric Water Heater: $25 - $75 Heat Pump Water Heater: $25 Ductless Heat Pumps: $1,000 - $1,500 Air Source Heat Pump: $1,000

303

Assessment and control of water contamination associated with shale oil extraction and processing. Work plan  

SciTech Connect

The work plan for Los Alamos Scientific Laboratory's research on assessment and control of water contamination associated with shale oil extraction and processing is outlined. There are two tandem tasks in the program, a literature and information review and evaluation and an experimental effort. The experimental work will address environmental control technologies for retort and product water, contamination of ground water by abandoned in situ retorts, raw and spent shale leachates, fugitive emissions from background oil shale retorting, and aquifer bridging during or after shale oil extraction.

Wewerka, E.M.; Wagner, P.; Wanek, P.L.

1979-03-01T23:59:59.000Z

304

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

305

Firelands Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Firelands Electric Cooperative - Residential Energy Efficiency Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $800 Air Source Heat Pump: $500 Dual Fuel Heat Pump: $250 Electric Water Heater: $100-$300 HVAC Controls: $100 Provider Firelands Electric Cooperative Firelands Electric Cooperative (FEC) is offering rebates on energy efficient equipment to residential customers receiving electric service from FEC. Eligible equipment includes new Geothermal Heat Pumps, Air-Source

306

Cookeville Electric Department - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cookeville Electric Department - Residential Energy Efficiency Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Utility Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Energy Audit Suggested Measures: $500 Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $100 Energy Audit Suggested Measures: 50% of cost Provider Cookeville Electric Department Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'' rebate program. Rebates

307

Downhole oil/water separators offer lower costs and greater environmental protection  

Science Conference Proceedings (OSTI)

Produced water management can be a significant expense for oil and gas operators. This paper summarizes a study of the technical, economic, and regulatory feasibility of a relatively new technology, downhole oil/water separators (DOWS), to reduce the volume of water pumped to the surface. The study was funded by the US Department of Energy and conducted by Argonne National Laboratory, CH2M Hill, and the Nebraska Oil and Gas Conservation Commission. DOWS are devices that separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. The oil production rate has increased for more than half of the DOWS installations to date.

Veil, J. A.

1999-11-02T23:59:59.000Z

308

Mathematical modeling of chemical oil-soluble transport for water control in porous media  

Science Conference Proceedings (OSTI)

High water-cut is a long-standing problem in the upstream petroleum industry. Typically one-fourth of the produced fluids from oil wells worldwide are hydrocarbons and the remaining is water. Self-selective in-situ gel formation is a new potential technology ... Keywords: Gelation, Numerical modeling, Porous media, Tetra-methyl-ortho-silicate or tetramethoxysilane (TMOS), Water cut

H. Valiollahi; Z. Ziabakhsh; P. L. J. Zitha

2012-08-01T23:59:59.000Z

309

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

310

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network (OSTI)

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

311

LG/BV series water lubrication VSD oil-free screw compressor ...  

U.S. Energy Information Administration (EIA)

LG/BV series water lubrication VSD oil-free screw compressor,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor manufacturer and ...

312

New York Home Heating Oil Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

313

Vermont Gas- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

The Equipment Replacement program offers rebates for residential customers who replace existing heating equipment or water heater with a more energy efficient one. Rebates vary depending on...

314

Elk River Municipal Utilities - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Program Info State Minnesota Program Type...

315

Black Hills Power- Residential Customer Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

316

Wright-Hennepin Cooperative Electric Association - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heater: 100-200 Ductless Heat Pump: 100 Wright-Hennepin Cooperative Electric Association provides financial incentives for its residential customers to...

317

In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)  

DOE Patents (OSTI)

A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

Robertson, Eric P

2011-05-24T23:59:59.000Z

318

National Grid (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Grid (Electric) - Residential Energy Efficiency Rebate National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Other Commercial Weatherization Manufacturing Appliances & Electronics Program Info State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $30 Multifamily Energy Evaluation: Free assessment, installation of up to ten CFLs/unit, water efficiency measures, hot water pipe and tank wrap, and a $300 rebate for refrigerator replacement costs. Provider National Grid Residential Upstate Efficiency Programs National Grid residential electric customers in Upstate New York are

319

New Mexico Gas Company - Residential Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Programs Residential Efficiency Programs New Mexico Gas Company - Residential Efficiency Programs < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Insulation: $500 Program Info State New Mexico Program Type Utility Rebate Program Rebate Amount ENERGY STAR Qualifying Home: $750 New Mexico Energy$mart Income Qualifying Weatherization: Free Tankless Water Heater: $300 Insulation: 25% of cost up to $500 The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding

320

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

Water from Green River Oil Shale, 11 Chem. Ind. 1, 485 (Effluents from In-Situ Oil Shale Processing," in ProceedingsControl Technology for Oil Shale Retort Water," August 1978.

Fox, J.P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

retort waters. Process waters are produced within the retortorganics. Process waters are produced in large quantities.Measurements Retort waters are co-produced with shale oil

Fox, J.P.

2013-01-01T23:59:59.000Z

322

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

323

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

324

Atmos Energy (Gas) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Efficiency Program (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Furnace lowest $250, $325, or $400 Boiler: $150 or $400 Condensing Water Heater: $300 Storage Water Heater: $75 Tankless Water Heater: $300 Provider Energy Federation Incorporated '''As of August 1, 2012, Iowa energy efficiency programs are offered by Liberty Utilities. ''' Atmos Energy provides rebates for residential natural gas heating equipment through their High Efficiency Rebate Program. When Atmos Receives the

325

Apparatus for removing oil and other floating contaminants from a moving body of water  

DOE Patents (OSTI)

The patent describes a process in which floating contaminants such as oil and solid debris are removed from a moving body of water by employing a skimming system which uses the natural gravitational flow of the water. A boom diagonally positioned across the body of water diverts the floating contaminants over a floating weir and into a retention pond where an underflow weir is used to return contaminant-free water to the moving body of water. The floating weir is ballasted to maintain the contaminant-receiving opening therein slightly below the surface of the water during fluctuations in the water level for skimming the contaminants with minimal water removal.

Strohecker, J.W.

1973-12-18T23:59:59.000Z

326

Use of X-Ray Computed Microtomography to Understand Why Gels Reduce Permeability to Water More Than That to Oil  

E-Print Network (OSTI)

That to Oil R. S. Seright * , New Mexico Petroleum Recovery Research Center J. Liang, Idaho National was used to investigate why gels reduce permeability to water more than that to oil in strongly water 80 to 90 times more than that to oil. In Berea, the gel caused disproportionate permeability

New York at Stoney Brook, State University of

327

Clark County REMC - Clark County REMC - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water...

328

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

329

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

330

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

331

Guidelines for residential commissioning  

E-Print Network (OSTI)

Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics” Lawrence

Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

332

Oil droplet behavior at a pore entrance in the presence of crossflow: Implications for microfiltration of oil-water dispersions  

E-Print Network (OSTI)

The behavior of an oil droplet pinned at the entrance of a micropore and subject to clossflow-induced shear is investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure required to force the droplet into the pore is in excellent agreement with a theoretical prediction based on the Young-Laplace equation. With increasing shear rate, the critical pressure of permeation increases, and at sufficiently high shear rates the oil droplet breaks up into two segments. The results of numerical simulations indicate that droplet breakup at the pore entrance is facilitated at lower surface tension, higher oil-to-water viscosity ratio and larger droplet size but is insensitive to the value of the contact angle. Using simple force and torque balance arguments, an estimate for the increase in critical pressure due to crossflow and the breakup capillary number is obtained and validated for different viscosity ratios, surface tension coefficien...

Darvishzadeh, Tohid; Priezjev, Nikolai V

2013-01-01T23:59:59.000Z

333

Energy management in residential and small commercial buildings. Annual report, fiscal year 1976  

DOE Green Energy (OSTI)

The goal of the present program is to develop the technical basis for efficient energy use in space heating of residential and small commercial buildings. Efficiency measurements performed on conventional residential oil-fired hot water heating equipment, including both steady state and cyclic (part load) efficiency determinations are described. A list of preliminary recommendations for retrofit actions to improve efficiency is provided. A summary of work carried out in the areas of thermal storage media, fenestration, and building thermal dynamics is also presented.

Batey, J.; Gazerro, V.; Salzano, F.J.; Berlad, A.L.

1976-07-01T23:59:59.000Z

334

Hutchinson Utilities Commission - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hutchinson Utilities Commission - Residential Energy Efficiency Hutchinson Utilities Commission - Residential Energy Efficiency Program Hutchinson Utilities Commission - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate 500 Program Info Expiration Date program offered until expiration of funding State Minnesota Program Type Utility Rebate Program Rebate Amount Natural Gas Furnaces: $150-$250, depending on efficiency Natural Gas Furnace Tune-up: $25 ECM Motor: $75 Natural Gas Boilers: $200 Central Air Conditioners: $250 Central Air Conditioner Tune-up: $25 Tankless Gas Water Heaters: $150 Storage Gas Water Heaters: $50 Air Source Heat Pumps: $75/ton

335

Empire District Electric - Residential Energy Efficiency Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

336

Energy Optimization (Electric) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Ceiling Fans: 4 Smart Power Strip: 2 Pipe Wrap: 10 ln. ft. CFL Bulbs: 12 Refrigerator Recycling: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Bulbs: Varies by retailer Ceiling Fan: $15 CFL Fixture: $15 LED Fixture/Downlight Kit: $20 LED Light Bulbs: $10 Smart Power Strip: $20 Room Air Conditioners: $20

337

Residential Solar Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Rights Residential Solar Rights Residential Solar Rights < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State New Jersey Program Type Solar/Wind Access Policy In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar collector" is not defined, but would seem to include both solar photovoltaic and solar thermal technologies which use collectors installed on the roof of a dwelling. This law covers only dwellings that are ''not'' deemed community property of the association, including townhouses which have at least two sides that are

338

Aggregation and transport kinetics of crude oil and sediment in estuarine waters  

E-Print Network (OSTI)

Modeling the transport and fate of spilled crude oil is important for estimating short and long-term toxicity effects in coastal ecosystems. This research project investigates the partitioning of hydrocarbons from a surface crude oil slick, the resurfacing of chemically dispersed crude oil droplets, the suitability of in-situ field instruments for oil and sediment characterization, and the aggregation and settling of dispersed oil and suspended sediments. An initial laboratory study was conducted to investigate apparent hydrocarbon solubility in petroleum/water systems. Mixing shear and initial crude oil layer thickness were related empirically to oil entrainment rate. A model describing hydrocarbons partitioned in colloidal and soluble phases was consistent with experimental data. A second laboratory study was conducted to investigate the influence of coalescence kinetics on mean droplet size and resurfacing rate of chemically dispersed crude oil droplets. Increased mean shear rates resulted in mean droplet diameters and oil resurfacing rates. A third laboratory study was conducted to compare particle size and fractal dimension measurements obtained using a submersible flow cytometer, an electrozone particle counter, and a light scattering particle sizer. Measured particles included latex beads, crude oil, clay, crude oil-clay aggregates, and crude oil-silica aggregates. Tested instruments gave consistent size measurements for all particle systems, suggesting their suitability for sizing marine particles. To describe the aggregation kinetics of oil-sediment systems, a modified Smoluchowski model based on coalesced sphere (CS) assumptions was developed. Observed collision efficiency values (?OBS) were related to collision efficiency values for single particle type systems (?HOMO) and those for two particle type systems (?HET) using a probabilistic approach. For clay and crude oil, ?HOMO values were higher than the ?HOMO value for silica. Clay-oil and silica-oil have similar ?HET values. Thus, crude oil can significantly increase the aggregation rates of noncohesive sediments such as silica. The CS model above was modified to incorporate sediment fractal geometry. The ability of this modified coalesced fractal sphere (mCFS) model to fit experimental data sets was better than that of a coalesced sphere (CS) model. Because of their reduced settling rates, sediments with lower fractal dimension form more aggregate with dispersed oil.

Sterling, Michael Conroy, Jr.

2003-12-01T23:59:59.000Z

339

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

Science Conference Proceedings (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

340

Hellenic renewable energy policies and energy performance of residential buildings using solar collectors for domestic hot water production in Greece  

Science Conference Proceedings (OSTI)

Total final energy consumption in Hellenic buildings reached 6.5 × 106 tons of oil equivalent (Mtoe) or 34.2% of the total (2010)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Texas-New Mexico Power Company - Residential Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas-New Mexico Power Company - Residential Energy Efficiency Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate 20% of TNMP's annual Residential Standard Offer Program incentive budget Program Info State Texas Program Type Utility Rebate Program Rebate Amount Energy Star Rated Home Builders: Custom Residential Large and Small Projects: $260; $0.08/kWh reduction

342

New England Gas Company - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New England Gas Company - Residential and Commercial Energy New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Heat Pumps Appliances & Electronics Water Heating Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Residential Furnace: $300 - $450 Boilers: $1000 - $1500 Combined High Efficiency Boiler/Water Heater: $1,200 Heat Recovery Ventilator: $500 High Efficiency Indirect Water Heater: $400 Condensing Gas Water Heater: $500 High Efficiency On-Demand, Tankless Water Heater: $500 - $800

343

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

New England includes: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. Mid-Atlantic includes: Delaware, District of Columbia, Maryland, New Jersey, New...

344

Water-related impacts of in-situ oil shale processing  

SciTech Connect

This study discusses the water-related impacts of an in-situ oil shale industry located in the Upper Colorado River Basin. It focuses on a 50,000 barrel per day industry based on the modified in-situ process and located in the Piceance Creek Basin, Colorado. It reviews the history of oil shale development in the United States and the reserves, geology, and characteristics of domestic oil shales. In-situ technologies that have been tested or are under active consideration for commercialization are reviewed, and their commercial potential is evaluated. The existing hydrology and water quality of the Upper Colorado River Basin is surveyed as is water use and the statuatory framework for water availability and water quality for in-situ oil shale development. The major environmental problem of in-situ processing, groundwater disruption from in-situ leachates and large-scale dewatering, is analyzed, pertinent experimental results are summarized and interpreted, and recommendations are made for additional research. Methods to control groundwater disruption are identified and discussed and preliminary cost projections are developed. Finally, the reuse, treatment and disposal of effluents produced by in-situ retorting - retort water, gas condensate, mine waters, and others - are discussed.

Fox, J.P.

1980-12-01T23:59:59.000Z

345

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

346

Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil  

DOE Green Energy (OSTI)

The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.

Scharf, Curtis R.; Miller, Mark E.

2003-08-30T23:59:59.000Z

347

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

348

Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Energy Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Geothermal Heat Pumps: 5 ton CFL Bulbs: 12 bulbs per year Program Info State Iowa Program Type Utility Rebate Program Rebate Amount CFL Bulbs: $2/bulb Geothermal Heat Pumps (New Construction): $350/ton Geothermal Heat Pumps (Upgrade): $700/ton Air Source Heat Pumps (New Construction): $800 Air Source Heat Pumps (Upgrade): $400 Central Air Conditioners: $100 - $200 Heat Pump Water Heaters: $400

349

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

350

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

is pyrolysized to produce shale oil, gas, a solid referredshale, and aqueous effluents known as retort water and gasoil shale process waters were studied: retort water and gas

Fox, J.P.

2013-01-01T23:59:59.000Z

351

City of New Bern Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters: 150 The City of New Bern Electric Department offers rebates to its residential customers for installing new replacement energy efficient water heaters and...

352

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs  

E-Print Network (OSTI)

Water injection has been practiced to displace the hydrocarbons towards adjacent wells and to support the reservoir pressure at or above the bubble point. Recently, waterflooding in sandstone reservoirs, as secondary and tertiary modes, proved to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil components, and carbonate minerals are still ambiguous. Various substances are usually added before or during water injection to enhance oil recovery such as dilute surfactant. Various methods were used including surface charge (zeta potential), static and dynamic contact angle, core flooding, inductively coupled plasma spectrometry, CAT scan, and geochemical simulation. Limestone and dolomite particles were prepared at different wettability conditions to mimic the actual carbonate reservoirs. In addition to seawater and dilute seawater (50, 20, 10, and 1 vol%), formation brine, shallow aquifer water, deionized water and different crude oil samples were used throughout this study. The crude oil/water/carbonates interactions were also investigated using short and long (50 cm) limestone and dolomite rocks at different wettability and temperature conditions. The aqueous ion interactions were extensively monitored via measuring their concentrations using advanced analytical techniques. The activity of the free ions, complexes, and ion pairs in aqueous solutions were simulated at high temperatures and pressures using OLI electrolyte simulation software. Dilute seawater decreased the residual oil saturation in some of the coreflood tests. Hydration and dehydration processes through decreasing and increasing salinity showed no impact on calcite wettability. Effect of individual ions (Ca, Mg, and Na) and dilute seawater injection on oil recovery was insignificant in compare to the dilute surfactant solutions (0.1 wt%). The reaction mechanisms were confirmed to be adsorption of hydroxide ions, complexes and ion pairs at the interface which subsequently altered the surface potential from positive to negative. Results in this study indicate multistage waterflooding can enhance oil recovery in the field under certain conditions. Mixed streams simulation results suggest unexpected ions interactions (NaCO3-1, HSO4-1, NaSO4-1 and SO4-2) with various activities trends especially at high temperatures.

Alotaibi, Mohammed

2011-12-01T23:59:59.000Z

353

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

354

Berkshire Gas - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization - Single Family: 75% of cost Weatherization - Multi-Family: 50% of cost Weatherization - Low-Income: 100% of cost Furnaces: $500 - $800 Boilers: $1,000 - $1,500 Combined Boiler/Water Heater: $1,200

355

Springfield Utility Board - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Residential Energy Efficiency Rebate Springfield Utility Board - Residential Energy Efficiency Rebate Program Springfield Utility Board - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers: $25 Electric Water Heaters: $25 Clothes Washers: $30 - $80 Recycle Refrigerator/Freezer: $25 Duct Sealing/Testing: $150 - $400 Heat Pump: $500 Ductless Heat Pump: $1,000 Insulation: 50% (100% for qualified low income customers) Provider Springfield Utility Board

356

Assessment of New Motor Technologies and their Applications: Evaluation of an advanced circulator pump for residential, commercial and industrial applications  

Science Conference Proceedings (OSTI)

Electric pumps are the workhorses behind several industrial processes that help transfer liquids, gases and slurries from one location to another. From simple water pumping systems to sophisticated oil refineries, electric pumps are used in many different areas. Electric pumps are also used in various capacities in the commercial and residential sectors from hot water circulation systems to pool pumps. This technical update provides an assessment of a new circulator pump technology that uses ...

2013-12-04T23:59:59.000Z

357

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field, Colombia. Experimental and simulation studies were conducted to achieve these objectives. The experimental study consisted of injecting reconstituted gas into a cell containing sand and "live" San Francisco oil. Experimental runs were made with injection of (i) the two field gases and their 50-50 mixture, (ii) the two field gases enriched with propane, and (iii) WAG with the two field gases enriched with propane. Produced oil volume, density, and viscosity; and produced gas volume and composition were measured and analyzed. A 1D 7-component compositional simulation model of the laboratory injection cell and its contents was developed. After a satisfactory history-match of the results of a WAG run, the prediction runs were made using the gas that gave the highest oil recovery in the experiments, (5:100 mass ratio of propane:Balcon gas). Oil production results from simulation were obtained for a range of WAG cycles and gas injection rate. The main results of the study may be summarized as follows. For all cases studied, the lowest oil recovery is obtained with injection of San Francisco gas, (60% of original oil-in-place OOIP), and the highest oil recovery (84% OOIP) is obtained with a WAG 7.5-7.5 (cycle of 7.5 minutes water injection followed by 7.5 minutes of gas injection at 872 ml/min). This approximately corresponds to WAG 20-20 in the field (20 days water injection followed by 20 days gas injection at 6.8 MMSCF/D). Results clearly indicate increase in oil recovery with volume of the gas injected. Lastly, of the three injection schemes studied, WAG injection with propane-enriched gas gives the highest oil recovery. This study is based on the one-dimensional displacement of oil. The three-dimensional aspects and other reservoir complexities that adversely affect oil recovery in reality have not been considered. A 3D reservoir simulation study is therefore recommended together with an economic evaluation of the cases before any decision can be made to implement any of the gas or WAG injection schemes.

Rueda Silva, Carlos Fernando

2003-01-01T23:59:59.000Z

358

Pacific Northwest residential energy survey. Volume 1. Executive summary  

SciTech Connect

Information obtained from residential customers with individually metered electric service within each of the 4 states (Washington, Oregon, Idaho, Montana) and 4 climate zones is summarized. Detailed findings of the data obtained from the 4030 personal interviews are presented in 7 chapters: Demographic and Family Characteristics; Dwelling Characteristics; Weatherization; Heating and Air Conditioning Systems; Water Heating; Presence and Use of Major Appliances; and Characteristics of Customers with Various Consumption Patterns. Electricity, natural gas, and fuel oil consumption data were appended to the survey data collected so that these characteristics could be related to the amount of electricity or natural gas consumed. In the appendix, comments about sampling errors are given. (MCW)

1980-08-01T23:59:59.000Z

359

Removal of heavy metal ions from oil shale beneficiation process water by ferrite process  

SciTech Connect

The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. (Alabama Univ., University, AL (United States). Mineral Resources Inst.)

1991-01-01T23:59:59.000Z

360

Removal of heavy metal ions from oil shale beneficiation process water by ferrite process  

SciTech Connect

The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. [Alabama Univ., University, AL (United States). Mineral Resources Inst.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

State Residential Energy Consumption Shares  

Gasoline and Diesel Fuel Update (EIA)

This next slide shows what fuels are used in the residential market. When a This next slide shows what fuels are used in the residential market. When a energy supply event happens, particularly severe winter weather, it is this sector that the government becomes most concerned about. As you can see, natural gas is very important to the residential sector not only in DC, MD and VA but in the United States as well. DC residents use more natural gas for home heating than do MD and VA. While residents use heating oil in all three states, this fuel plays an important role in MD and VA. Note: kerosene is included in the distillate category because it is an important fuel to rural households in MD and VA. MD and VA rely more on electricity than DC. Both MD and VA use propane as well. While there are some similarities in this chart, it is interesting to note

362

San Isabel Electric Association - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Isabel Electric Association - Residential Energy Efficiency San Isabel Electric Association - Residential Energy Efficiency Rebate Program San Isabel Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Marathon Water Heaters: $175 Marathon Water Heaters w/ SIEA Load Control Program: $425 Electric Water Heater (minimum 30 gallon): $100 Washers: $80 Dryer w/ Moisture Sensor: $50 Dishwashers: $60 Refrigerators: $90 Freezers: $90 ETS Room Units: $72 - $180 ETS Furnaces: $432 - $768 Provider San Isabel Electric Association San Isabel Electric Association (SIEA) provides incentives for its residential customers to install energy efficient equipment. Rebates are

363

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

364

Peoples Gas - Residential Rebate Program (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Water Heating Maximum Rebate 100% of project cost Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Furnace: $300 -$500 Boiler: varies, depending on size and efficiency Boiler Controls: $100/unit Complete HVAC System Replacement: $650 - $1,000 Water Heater (Tankless): $450 Water Heater (Indirect): $275 Water Heater (Storage Tank): $100 Attic Insulation: $0.10/sq ft Programmable Thermostat: $50

365

The Energy Cooperative - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Energy Cooperative - Residential Energy Efficiency Rebate The Energy Cooperative - Residential Energy Efficiency Rebate Program The Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $599 Water Heater (Replacement): $100 Water Heater (New): $250 - $350 Geothermal Heat Pump: $599 Central AC: $100 Provider The Energy Cooperative The Energy Cooperative offers incentives to residential customers for the installation of dual fuel heating systems, water heaters, geothermal heat pumps and central air conditioners. Equipment must be installed in eligible

366

Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability  

DOE Green Energy (OSTI)

Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

2010-09-30T23:59:59.000Z

367

Oil filaments produced by an impeller in a water stirred thank  

E-Print Network (OSTI)

In this video, the mechanism followed to disperse an oil phase in water using a Scaba impeller in a cylindrical tank is presented. Castor oil (viscosity = 500 mPas) is used and the Reynolds number was fixed to 24,000. The process was recorded with a high-speed camera. Initially, the oil is at the air water interface. At the beginning of the stirring, the oil is dragged into the liquid bulk and rotates around the impeller shaft, then is pushed radially into the flow ejected by the impeller. In this region, the flow is turbulent and exhibits velocity gradients that contribute to elongate the oil phase. Viscous thin filaments are generated and expelled from the impeller. Thereafter, the filaments are elongated and break to form drops. This process is repeated in all the oil phase and drops are incorporated into the dispersion. Two main zones can be identified in the tank: the impeller discharge characterized by high turbulence and the rest of the flow where low velocity gradients appear. In this region surface f...

Sanjuan-Galindo, Rene; Ascanio, Gabriel; Zenit, Roberto

2010-01-01T23:59:59.000Z

368

Diamonds in the rough: identification of individual napthenic acids in oil sands process water  

Science Conference Proceedings (OSTI)

Expansion of the oil sands industry of Canada has seen a concomitant increase in the amount of process water produced and stored in large lagoons known as tailings ponds. Concerns have been raised, particularly about the toxic complex mixtures of water-soluble naphthenic acids (NA) in the process water. To date, no individual NA have been identified, despite numerous attempts, and while the toxicity of broad classes of acids is of interest, toxicity is often structure-specific, so identification of individual acids may also be very important. The chromatographic resolution and mass spectral identification of some individual NA from oil sands process water is described. The authors concluded that the presence of tricyclic diamondoid acids, never before even considered as NA, suggests an unprecedented degree of biodegradation of some of the oil in the oil sands. The identifications reported should now be followed by quantitative studies, and these used to direct toxicity assays of relevant NA and the method used to identify further NA to establish which, or whether all NA, are toxic. The two-dimensional comprehensive gas chromatography-mass spectrometry method described may also be important for helping to better focus reclamation/remediation strategies for NA as well as in facilitating the identification of the sources of NA in contaminated surface waters (auth)

Rowland, Steven J.; Scarlett, Alan G.; Jones, David; West, Charles E. (Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth (United Kingdom)); Frank, Richard A. (Aquatic Ecosystems Protection Research Division-Water Science and Technology Directorate, Environment Canada, Burlington, Ontario (Canada)

2011-03-10T23:59:59.000Z

369

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

370

Surfactant-assisted spreading of an oil-in-water emulsion on the surface of a liquid bath  

E-Print Network (OSTI)

This fluid dynamics video shows how an oil-in-water emulsion stabilized by an ionic surfactant spreads on the free surface of a layer of pure water. The spreading shows two intriguing features: a transparent area surrounding the source of oil droplets, and a fast retraction of the layer of oil droplets on itself once the source has emptied. We show that the dynamics of spreading are strongly connected to the interfacial/bulk properties of the surfactant.

Roche, Matthieu; Griffiths, Ian; Saint-Jalmes, Arnaud; Stone, Howard A

2010-01-01T23:59:59.000Z

371

Assessment of water issues associated with enhanced oil recovery: a user's guide  

SciTech Connect

This is a user's manual for effectively evaluating water issues associated with enhanced oil recovery (EOR) production. It is designed to provide ready reference and to assist EOR producers, energy planners, and decision-makers in assessing the impacts of water issues related to EOR production. An evaluation is made of EOR water requirements using public available information, data from actual field applications, and information provided by knowledgeable EOR technologists in 14 different major oil companies. Water quantity and quality requirements representing the total water needed from all sources (e.g., aquifers, lakes, etc.) are estimated for individual EOR processes in those states and specific geological locations where these processes will likely play major roles in future petroleum production by the year 2000. A reduction in these quantities can be achieved by reinjecting some or all of the produced water potentially available for recycle (i.e., some is lost in oil and water separation treatment processes) in the recovery method. Data and information for quantity and quality of surface and ground water availability and competing entities by four major user categories are presented on a qualitative and quantitative basis on a state-county basis from monitoring sites nearest existing EOR projects. Information regarding regulatory bodies responsible for the control of water supply and use is presented in tabular form by state only because of the volume and complexity of material. While no major EOR project to date has ever been abandoned because of water supply problems, factors such as competing regional uses for water, drought situations, and scarcity of high quality surface and ground water could be impediments to certain projects in the near future. 6 figures, 22 tables.

Shields, J.; Kaplan, E.; Royce, B.A.

1983-04-01T23:59:59.000Z

372

TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE  

Science Conference Proceedings (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

Lynn E. Katz; R.S. Bowman; E.J. Sullivan

2003-11-01T23:59:59.000Z

373

New York Home Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

374

Oil droplet behavior at a pore entrance in the presence of crossflow: Implications for microfiltration of oil-water dispersions  

E-Print Network (OSTI)

The behavior of an oil droplet pinned at the entrance of a micropore and subject to clossflow-induced shear is investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure required to force the droplet into the pore is in excellent agreement with a theoretical prediction based on the Young-Laplace equation. With increasing shear rate, the critical pressure of permeation increases, and at sufficiently high shear rates the oil droplet breaks up into two segments. The results of numerical simulations indicate that droplet breakup at the pore entrance is facilitated at lower surface tension, higher oil-to-water viscosity ratio and larger droplet size but is insensitive to the value of the contact angle. Using simple force and torque balance arguments, an estimate for the increase in critical pressure due to crossflow and the breakup capillary number is obtained and validated for different viscosity ratios, surface tension coefficients, contact angles, and drop-to-pore size ratios.

Tohid Darvishzadeh; Volodymyr V. Tarabara; Nikolai V. Priezjev

2013-06-10T23:59:59.000Z

375

Groton Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groton Utilities - Residential Energy Efficiency Rebate Program Groton Utilities - Residential Energy Efficiency Rebate Program Groton Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Compact Fluorescent Bulbs: Free While Supplies Last Insulation: $0.50/sq ft Heat Pump Water Heater: Up to $500 HVAC Controls: $250/unit Single Package/Split System Unitary AC: $250/ton Air-Source Heat Pump: $250/ton Water-Source Heat Pump: $150/ton Home Energy Savings Program: Free for Electric Customers

376

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $80-$120 Boilers: $100 Storage Water Heater: $25-$90 Tankless Water Heater: $100 Attic/Wall Insulation, Sealing and Weatherstripping: 20% of cost Energy Audits: $60-$120 Home Performance with ENERGY STAR: average rebate amount is $710 Provider Xcel Energy Xcel Energy residential customers in Colorado can qualify for cash

377

Mississippi Power - EarthCents Residential Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Power - EarthCents Residential Efficiency Rebate Mississippi Power - EarthCents Residential Efficiency Rebate Program Mississippi Power - EarthCents Residential Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Heat Pump Conversion: $150 - $200 Ductless HVAC System (Whole House): $250 Geothermal Heat Pump: $500 Water Heater Conversions: $150 Heat Pump Water Heater: $300 Provider Efficiency Programs Mississippi Power offers rebates to its residential customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps, HVAC systems,

378

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $275 Boiler: $300 Storage Water Heater: $125 Tankless Water Heater: $150 Programmable Thermostat: $20 Attic Insulation: Up to $600 Wall Insulation: Up to $700 Air Sealing: Up to $250 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers residential natural gas customers in Ohio

379

Lumbee River EMC - Residential and Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lumbee River EMC - Residential and Commercial Energy Efficiency Lumbee River EMC - Residential and Commercial Energy Efficiency Program Lumbee River EMC - Residential and Commercial Energy Efficiency Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: $15 Central AC: $25 - $50 Heat Pump: $60 - $195 Geothermal Heat Pump: $350 Water Heaters: $45 - $75 Heat Pump Water Heater: $425 Refrigerator/Freezer Recycling: $50 - $75 Provider Lumbee River Electric Membership Corporation Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services.

380

Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Gas) - Residential Energy Efficiency Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Furnaces: $400 Boilers: $600 Tankless Boiler/Water Heater Combined: $850 - $1050 Indirect Fired/Tankless Water Heaters: $250 - $450 Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for natural gas furnaces, boilers,

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

382

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Programmable Thermostat: 1 per address Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Programmable Thermostat: $20 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a rebate incentive if the

383

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

384

Georgia Environmental Finance Authority - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Environmental Finance Authority - Residential Energy Georgia Environmental Finance Authority - Residential Energy Efficiency Loan Program (Georgia) Georgia Environmental Finance Authority - Residential Energy Efficiency Loan Program (Georgia) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Heating Heat Pumps Water Heating Program Info State Georgia Program Type State Loan Program Rebate Amount Oglethorpe Power Corporation: $5,500 Electric Cities of Georgia: up to $5,000 Municipal Gas Authority of Georgia: up to $5,000 Estes Heating and Air (Statewide): $10,000 The Georgia Environmental Finance Authority (GEFA) encourages Georgians to

385

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Lighting: Purchases limited to 20 CFLs per customer per year Refrigerator/Freezer Recycling: $70 (limit of 2 per customer per program year) Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) State Illinois Program Type Utility Rebate Program Rebate Amount New Construction Builder Incentives: Contact ComEd Lighting: In-store discount

386

Ohio Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Wholesale Heating Oil : Residential ... Weekly heating oil and propane prices are only collected during the heating season which extends from ... 3/20/2013: Next ...

387

Energy Efficiency Fund (Electric and Gas) - Residential New Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund (Electric and Gas) - Residential New Energy Efficiency Fund (Electric and Gas) - Residential New Construction Program Energy Efficiency Fund (Electric and Gas) - Residential New Construction Program < Back Eligibility Construction Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Varies Program Info Funding Source Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount Varies by technology for prescriptive measures and whether the applicant is seeking ENERGY STAR Certification or Home Energy Rating System (HERS)

388

Flint Energies - Residential Energy Efficiency Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flint Energies - Residential Energy Efficiency Loan Program Flint Energies - Residential Energy Efficiency Loan Program Flint Energies - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heating Heat Pumps Insulation Water Heating Maximum Rebate $7,500 Program Info State Georgia Program Type Utility Loan Program Rebate Amount $1,000 - $7,500 Flint Energies has partnered with Robins Federal Credit Union to offer affordable financing options to residential customers who wish to upgrade the energy efficiency of homes and residential equipment. Loans of $1,000

389

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

gas water heaters; and pressure loss calculations for residentialgas water heaters; and pressure loss calculations for residential

Lutz, Jim

2012-01-01T23:59:59.000Z

390

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Boilers Effective for products manufactured before September 1, 2012 AFUE(%) (1) Boilers (excluding gas steam) Gas Steam Boilers Effective for products manufactured on or after September 1, 2012 (2) AFUE (%) (1) No Constant Burning Pilot Automatic Means for Adjusting Water Temperature Gas Steam No Constant Burning Pilot Oil Hot Water Automatic Means for Adjusting Water Temperature Oil Steam None Electric Hot water Automatic Means for Adjusting Water Temperature Electric Steam None Note(s): Source(s): 84 82 None None 1) Annual Fuel Utilization Efficiency. 2) Boilers manufactured to operate without any need for electricity, an electric connection, electric gauges, electric pumps, electric wires, or electric devices are not required to comply with the revised standards that take effect September 1,

391

Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water  

E-Print Network (OSTI)

Evaporation is a fundamental physical phenomenon, of which many challenging questions remain unanswered. Enhanced evaporation of liquids in some occasions is of enormous practical significance. Here we report the enhanced evaporation of the nearly permanently stable silicone oil by dispersing with nanopariticles including CaTiO3, anatase and rutile TiO2. The results can inspire the research of atomistic mechanism for nanoparticle enhanced evaporation and exploration of evaporation control techniques for treatment of oil pollution and restoration of dirty water.

Wenbin Zhang; Rong Shen; Kunquan Lu; Ailing Ji; Zexian Cao

2012-10-23T23:59:59.000Z

392

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

393

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Total Energy Source Demand Coal, Oil, Gas, Heat, Electricity Demography Japan’s population, an important factor in predicting residential energy demand as well

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

394

Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 13901395 Numerical Simulation of Replacing Oil by Water  

E-Print Network (OSTI)

­1395 Numerical Simulation of Replacing Oil by Water in a Scale-Invariant Porous Medium Ekaterina P. KUROCHKINA with 2563 grid in spatial variables. 1 Introduction The interface of oil displaced by water is unstable a significant influence on the transport of water and oil. The permeability heterogenei- ty is often identified

Popovych, Roman

395

SourceGas - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program SourceGas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Insulation/Air Sealing: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Insulation/Air Sealing: 30% of cost

396

Southwest Tennessee EMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Tennessee EMC - Residential Energy Efficiency Rebate Southwest Tennessee EMC - Residential Energy Efficiency Rebate Program Southwest Tennessee EMC - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Electric Water Heater Replacement: $50 Gas to Electric Water Heater Conversion: $200 Electric Water Heater in New Home: $50 Provider Southwest Tennessee Electric Membership Corporation Southwest Tennessee Electric Membership Corporation (STEMC), in collaboration with The Tennessee Valley Authority, offers water heater

397

Residential Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Building Renovations Residential Building Renovations Residential Building Renovations October 16, 2013 - 4:57pm Addthis Renewable Energy Options Residential Building Renovations Photovoltaics Daylighting Solar Water Heating Geothermal Heat Pumps (GHP) Biomass Heating In some circumstances, Federal agencies may face construction or renovation of residential units, whether single-family, multi-family, barracks, or prisons. Based on typical domestic energy needs, solar water heating and photovoltaic systems are both options, depending on the cost of offset utilities. These systems can be centralized for multi-family housing to improve system economics. Daylighting can reduce energy costs and increase livability of units. Geothermal heat pumps (GHP) are a particularly cost-effective option in

398

Walton EMC - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walton EMC - Residential Energy Efficiency Rebate Programs Walton EMC - Residential Energy Efficiency Rebate Programs Walton EMC - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Heating Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Heat Pump: $200 Water Heater: $150 - $200 Waste Heat Recovery System: $200 Underground Wiring Refund: up to $500 Provider Walton Electric Membership Corporation Walton Electric Membership Corporation (EMC) is an electric cooperative that serves approximately 100,000 customers in 10 northeastern Georgia counties. Walton EMC provides financial incentives for residential members that wish to improve the energy efficiency of eligible residences.

399

Tillamook County PUD - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tillamook County PUD - Residential Energy Efficiency Rebate Program Tillamook County PUD - Residential Energy Efficiency Rebate Program Tillamook County PUD - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Expiration Date Rebate program is a limited time offer based on availability of funds and is subject to change without notice. State Oregon Program Type Utility Rebate Program Rebate Amount Water Heaters (minimum of a ten-year warranty): $25 Clothes Washers: $70 Refrigerators/Freezers: $15 Dishwashers: $25

400

Columbia Gas of Massachusetts - Residential Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Massachusetts - Residential Energy Efficiency Columbia Gas of Massachusetts - Residential Energy Efficiency Programs Columbia Gas of Massachusetts - Residential Energy Efficiency Programs < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Insulation Weatherization: 75% of project cost Energy Star homes: $350 - $8,000, varies by number of units and efficiency Warm Air Furnace: $500 - $800 Gas Boiler: $1,000 - $1,500 Integrated Water Heater/Boiler: $1,200

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PEPCO - Residential Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PEPCO - Residential Energy Efficiency Rebate Program PEPCO - Residential Energy Efficiency Rebate Program PEPCO - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Water Heating Maximum Rebate CFL Bulbs: 25 per customer Room A/C:$125 (5 rebates) Program Info Funding Source Maryland Energy Administration State Maryland Program Type Utility Rebate Program Rebate Amount CFLs: $1.50/single and $3/multipack Clothes Washer: $50 - $100 Freezers: $75 Refrigerator: $100 - $150 Room A/C: $25 Dehumidifiers: $25 Tank Water Heater: $25

402

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

403

Okanogan County PUD - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program Okanogan County PUD - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Energy Star Manufactured Home: $600 Refrigerator: $25 Hot water tank: $25 Clothes washer: $50 Decommissioned refrigerator/freezer: $85 Insulation: Rebates Vary, Contact Utility Provider Okanogan County PUD Conservation Department Public Utility District No. 1 of Okanogan County provides rebates to residential customers for purchasing energy efficient appliances. The

404

East Central Electric Cooperative - Residential Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Cooling Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Replacement ground source heat pump - $150 per ton Complete system (unit and ground loop) - $750 per ton Electric water heater - $150 Energy Star Room AC - $50 Energy Star clothes washer - varies depending on cost Energy Star dishwasher - varies depending on cost Provider East Central Electric Cooperative East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water

405

Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate Add-On Heat Pump: $800 Geothermal Heat Pump: $1,000 (residential); $5,000 (commercial) Program Info State Montana Program Type Utility Rebate Program Rebate Amount Add-On Heat Pump: $200 per ton Geothermal Heat Pump: $200/ton (residential); $150/ton (commercial) Water Heater: $100 - $150 Energy Star Dishwasher: $25 Energy Star Refrigerator: $25 Energy Star Clothes Washer: $50 Provider

406

Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Electric) - Residential Energy Efficiency Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Energy Star rebate: one rebate per appliance per residential utility customer Program Info Expiration Date 12/31/12 State Connecticut Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers: $60 Washing Machines: $60 Room AC: $60 Heat Pump Water Heater: $500 Central AC: $200 - $300/ton Dual Enthalpy Economizer Controls: $250 Air Source Heat Pump: $200 - $300/ton Geothermal Heat Pump: $150/ton

407

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

408

Washington Gas- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Washington Gas provides a number of rebates to residential customers who utilize energy efficient equipment and measures in the home. Rebate are available for tankless water heaters, storage (tank)...

409

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

410

Southwest Gas Corporation - Residential and Builder Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Residential and Builder Efficiency Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Residential: 2 per household Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Residential Natural Gas Tankless Water Heater: $450 Natural Gas Clothes Dryer: $30 Windows: $0.95/sq ft Attic Insulation: $0.15/sq ft Floor Insulation: $0.30/sq ft Builders Energy Star Certified Home: $450 Natural Gas Tankless Water Heater: $450 Attic Insulation: $0.15/sq ft

411

Water Usage for In-Situ Oil Shale Retorting – A Systems Dynamics Model  

SciTech Connect

A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an insitu retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The major water consumption was during the remediation of the insitu retorting zone.

Earl D. Mattson; Larry Hull; Kara Cafferty

2012-12-01T23:59:59.000Z

412

Performance Comparison of Residential Hot Water Systems; Period of Performance: January 30, 2001 through July 29, 2002  

DOE Green Energy (OSTI)

A laboratory test experiment was conducted to measure the energy performance of two different types of water heaters--electric storage tank and demand (tankless)--in two types of plumbing distribution systems--copper piping in a tree configuration and cross-linked polyethylene (PEX) piping in a parallel configuration. Two water-usage patterns were used in the week-long experiments and in the annual simulations: one representing a high-usage home and the other representing a low-usage home. Results of weekly performance testing and annual simulations of electric water-heating systems are presented.

Wiehagen, J.; Sikora, J. L.

2003-03-01T23:59:59.000Z

413

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

SciTech Connect

Ground source heat pumps (GSHPs) show promise for reducing house energy consumption, and a desuperheater can potentially further reduce energy consumption where the heat pump from the space conditioning system creates hot water. Two unoccupied houses were instrumented to document the installed operational space conditioning and water heating efficiency of their GSHP systems. This paper discusses instrumentation methods and field operation characteristics of the GSHPs, compares manufacturers' values of the coefficients of performance calculated from field measured data for the two GSHPs, and compares the measured efficiency of the desuperheater system to other domestic hot water systems.

Stecher, D.; Allison, K.

2012-11-01T23:59:59.000Z

414

New England Gas Company - Residential and Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Utility Rebate Program Rebate Amount Residential Furnace: 300 - 450 Boilers: 1000 - 1500 Combined High Efficiency BoilerWater Heater: 1,200 Heat Recovery...

415

Columbia Rural Electric Association - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Rural Electric Association - Residential Energy Efficiency Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Expiration Date 9/31/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Dish Washer: $20 Refrigerator: $35 Freezer: $20 Electric Water Heater: $25 Marathon Electric Water Heater: $150 - $200 Heat Pump Water Heater: $150 CFLs: $1 - $10/fixture PTCS Duct Sealing: $300 PTCS Commissioning/Controls: $200

416

Gunnison County Electric - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gunnison County Electric - Residential Energy Efficiency Rebate Gunnison County Electric - Residential Energy Efficiency Rebate Program Gunnison County Electric - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Dishwashers: $45/unit Clothes Washers: $60/unit Refrigerators: $60/unit Freezers: $60/unit Refrigerator Recycling: $40/unit Freezer Recycling: $40/unit Electric Water Heaters (30-gal capacity, 6-year warranty, mandated EF rating): $70/unit Super Efficient Water Heater: $120/unit (primary heating must be from geothermal heat pump) Water Heaters (lifetime warranty): Additional $25/unit

417

Atmos Energy - Residential Natural Gas and Weatherization Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Residential Natural Gas and Weatherization - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Comprehensive Upgrades (Energize Homes): Up to $5,00 Furnace: $200-$300 Boiler: $200-$300 Combination Boiler/Water Heater: $450 Storage Water Heater: $50-$125 Tankless/Condensing Water Heater: $200 Programmable Thermostat $25 Provider Energy Federation Incorporated '''As of August 1, 2012, Missouri energy efficiency programs are offered by

418

Seattle City Light- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Seattle City Light provides rebates to residential customers for purchasing and installing clothes washers, refrigerator, heat pump water heaters, and ductless heat pumps. [http://www...

419

City of Portland - Streamlined Building Permits for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Program Information Oregon Program Type SolarWind Permitting Standards The...

420

City of Portland - Streamlined Building Permits for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Program Information Oregon Program Type Green Building Incentive The City of Portland's...

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Central New Mexico Electric Cooperative- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Central New Mexico Electric Cooperative (CNMEC) provides an incentive for its residential members to purchase energy efficient water heaters, clothes washers, dishwashers, refrigerators, and...

422

Alabama Gas Corporation- Residential Natural Gas Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment....

423

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

424

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

Science Conference Proceedings (OSTI)

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utahâ??s total crude oil production and 71 percent of Utahâ??s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water â?? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquiferâ??s areal extent, thickness, water chemistry, and relationship to Utahâ??s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utahâ??s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

425

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

426

Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy  

DOE Green Energy (OSTI)

Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

2012-03-01T23:59:59.000Z

427

Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model  

SciTech Connect

A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.

Earl D Mattson; Larry Hull

2012-12-01T23:59:59.000Z

428

An investigation of the combustion of oil sand derived bitumen-in-water emulsions.  

E-Print Network (OSTI)

?? Dwindling conventional oil resources has caused exploration efforts to focus elsewhere. Bitumen from oil sands has emerged as one of the primary unconventional oil… (more)

Kennelly, Timothy Robert

2009-01-01T23:59:59.000Z

429

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network (OSTI)

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

Chen, Ke

2013-01-01T23:59:59.000Z

430

Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios  

Science Conference Proceedings (OSTI)

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted in sandpacks to determine the effect of polymer and chromium concentrations on DPR. All gels studied reduced the permeability to water by a greater factor than the factor by which the oil permeability was reduced. Greater DPR was observed as the concentrations of polymer and chromium were increased. A conceptual model of the mechanisms responsible for DPR is presented. Primary features of the model are (1) the development of flow channels through the gel by dehydration and displacement of the gel and by re-connection of pre-treatment, residual oil volume and (2) high flow resistance in the channels during water flow is caused by significant saturations of oil remaining in the channels. A similar study of DPR was conducted in Berea sandstone cores. Both oil and water permeabilities were reduced by much smaller factors in Berea sandstone cores than in similar treatments in sandpacks. Poor maturation of the gelant in the Berea rock was thought to be caused by fluid-rock interactions that interfered with the gelation process.

G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

2005-12-31T23:59:59.000Z

431

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Electricity and Natural Gas Demand in Japanese ResidentialWater Heating Natural Gas Demand Mtoe Actual Projection Mtoe

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

432

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

2001. Residential Heat Pump Water Heater (HPWH) DevelopmentKelso, J. 2003. Incorporating Water Heater Replacement into2005. Residential Heat Pump Water Heaters: Energy Efficiency

Franco, Victor

2011-01-01T23:59:59.000Z

433

Essays on Water Resource Economics and Agricultural Extension  

E-Print Network (OSTI)

fixed fixed Residential water demand3.2 Residential Water Demand Estimation . . . . . . . . .Value of Supply Reliability in Urban Water Systems 3.1 Loss

Buck, Steven Charles

2011-01-01T23:59:59.000Z

434

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Water Heaters (1) Effective for products manufactured from January 20, 2004 through April 15, 2015 Gas-Fired Storage Water Heaters Oil-Fired Water Heaters EF = 0.67 - (0.0019 x Rated Storage Volume in gallons) EF = 0.59 - (0.0019 x Rated Storage Volume in gallons) Instantaneous Gas-Fired Water Heaters Instantaneous Electric and Table Top Water Heaters EF = 0.62 - (0.0019 x Rated Storage Volume in gallons) EF = 0.93 - (0.00132 x Rated Storage Volume in gallons) Electric Storage Water Heaters EF = 0.97 - (0.00132 x Rated Storage Volume in gallons) Effective for products manufactured on or after April 16, 2015 Gas-Fired Storage Water Heaters Rated Storage Volume ≤ 55 gallons EF = 0.675 - (0.0015 x Rated Storage Volume in gallons)

435

Northeastern REMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeastern REMC - Residential Energy Efficiency Rebate Program Northeastern REMC - Residential Energy Efficiency Rebate Program Northeastern REMC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Geothermal Heat Pump: $1,000 Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $100/ton or $500/unit Air Source Heat Pump: $250/unit Water Heater: $100 Provider Northeastern REMC Northeastern Rural Electric Membership Corporation (REMC) is a consumer-owned corporation that supplies electric power to more than 25,000 members in Northeastern Indiana. Northeastern REMC offers rebates to its residential customers for the purchase of geothermal heat pumps, air-source

436

An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale  

Science Conference Proceedings (OSTI)

This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

1989-01-01T23:59:59.000Z

437

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

438

Anaerobic fermentation of simulated in-situ oil shale retort water  

DOE Green Energy (OSTI)

The feasibility of removing soluble organics from oil shale retort water by anaerobic digestion with methane production was experimentally investigated. The following conclusions were made. The retort water studied had to be pretreated to remove toxic and add deficient constituents before it could be successfully treated with the anaerobic fermentation process. Pretreatment included pH adjustment to 7, ammonia reduction, and nutrient addition. A digested sludge from a conventional municipal sewage treatment plant was successfully acclimated to the retort water studied. A major fraction of the organics in the retort water studied was stabilized by conversion to CH/sub 4/ and CO/sub 2/ using the anaerobic fermentation process. BOD/sub 5/ and COD removal efficiences were 76 to 80 percent. The effluent from anaerobic fermentation of the retort water studied (BOD/sub 5/ : 530 to 580 mg/l) may be suitable for treatment by conventional aerobic processes. The growth of the methane formers, which stabilize the organics, is nutrient limited in the retort water studied. The pretreatment of the retort water studied removed 49 percent of the BOD/sub 5/. This was probably due to the reduction in solubility of high molecular weight fatty acids at neutral pHs. A major component removed from the retort water studied during anaerobic fermentation was fatty acids. The long hydraulic residence time used in this study would not be used in practice.

Ossio, E.A.; Fox, J.P.; Thomas, J.F.; Poulson, R.E.

1977-11-01T23:59:59.000Z

439

ConEd (Electric) - Residential Energy Efficiency Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Electric) - Residential Energy Efficiency Incentives Program ConEd (Electric) - Residential Energy Efficiency Incentives Program ConEd (Electric) - Residential Energy Efficiency Incentives Program < Back Eligibility Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating Heat Pumps Appliances & Electronics Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Central A/C: $400 or $600 Central Air Source Heat Pump: $400 or $600 Electric Heat Pump Water Heater: $400 Energy Star Thermostats: up to $25 Duct Sealing: $100/hr Air Sealing: $75/hr Refrigerator/Freezer Recycling: $50 Con Edison is offering the Residential HVAC Electric Rebate Program.

440

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Residential Energy Efficiency Rebate Gas) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Furnaces: $250 - $400 Boilers: $150 - $400 Water Heaters: $50 - $300 Provider MidAmerican Energy Company '''The availability of rebates through this program is unclear. Contact MidAmerican regarding the availability of gas incentives for residential customers.''' MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above provides specific rebate

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

442

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

443

Total Adjusted Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

444

Total Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

445

Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103  

SciTech Connect

Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

Brigham, William E.

1999-08-09T23:59:59.000Z

446

Purification of trona ores by conditioning with an oil-in-water emulsion  

DOE Patents (OSTI)

The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

Miller, J. D. (Salt Lake City, UT); Wang, Xuming (Salt Lake City, UT); Li, Minhua (Salt Lake City, UT)

2009-04-14T23:59:59.000Z

447

Clallam County PUD - Residential Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clallam County PUD - Residential Efficiency Rebate Program Clallam County PUD - Residential Efficiency Rebate Program Clallam County PUD - Residential Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $15 Freezer: $15 CFL Fixtures: $10 Electric Water Heater: $25 Drain Water Heat Recovery System: $220 Air Sealing: $160 to installer PTCS Duct-Sealing (Manufactured Home): $350 - $500 to installer PTCS Duct-Sealing (Site-Built Home): $500 to installer

448

Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Riverland Energy Cooperative - Residential Energy Efficiency Rebate Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Construction Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount General Lighting: $1 - $15 LED Bulbs: $2/unit Occupancy Sensors: $5 Clothes Washers: $25 Dishwashers: $25 Dehumidifiers: $25 Refrigerators: $25 Room Air Conditioners: $25 Refrigerator/Freezer Recycling: $25 Room Air Conditioner Recycling: $25 Central Air Conditioner: $40 - $80/Ton Electric Water Heater: $50 - $300 Water Heater Installation Cost: $20 - $150

449

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

450

Pearl River Valley Electric Power Association - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

451

Pacific Power - Residential Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - Residential Energy Efficiency Rebate Programs Pacific Power - Residential Energy Efficiency Rebate Programs Pacific Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount CFL/LED Bulbs: Discounted pricing Energy Star CFL/LED Fixtures: $20 Clothes Washers: $50 Refrigerator: up to $35 Dishwasher: $20 Freezer: $20 Room Air Conditioner: $25 Water Heaters: $75 Heat Pump Water Heater: $150 Refrigerator Recycling: $30

452

Tampa Electric - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tampa Electric - Residential Energy Efficiency Rebate Program Tampa Electric - Residential Energy Efficiency Rebate Program Tampa Electric - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Windows, Doors, & Skylights Program Info State Florida Program Type Utility Rebate Program Rebate Amount New Construction Ductwork: $100 Ceiling Insulation: $150 HVAC: $275 per unit Windows: $400 Water Heating: $150 Energy Star Homes Certification: $100 Existing Homes In-Home Energy Audit: Free HVAC Maintenance: $75 HVAC ECM Motor Replacement: $135 Heat Pump: $275 - $400 Ceiling Insulation: $200 - $350 Wall Insulation: $0.31 per square foot

453

Cedar Falls Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Appliance Recycling: 2 rebates per residential account, per appliance type annually Ceiling Fan Light Kits: $20 per light kit; 6 per account per year Central A/C: $400 Air Source Heat Pump: $600 Attic/Ceiling Insulation: $1,000 Air Sealing/Caulking/Weather Stripping: $200 CFL: 50% of cost, up to $5 (10 per customer per year)

454

Brownsville Public Utilities Board - Green Living Residential Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brownsville Public Utilities Board - Green Living Residential Brownsville Public Utilities Board - Green Living Residential Rebate Program Brownsville Public Utilities Board - Green Living Residential Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Texas Program Type Utility Rebate Program Provider Brownsville Public Utilities Board Brownsville Public Utilities Board offers residential customers rebates for installation of energy efficient measures. Through the Green Living Rebate program, customers can apply for rebates for installation of energy efficient HVAC, improved duct flow performance, Energy Star Windows, Energy

455

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

456

Alabama Power - Residential Heat Pump and Weatherization Loan Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Power - Residential Heat Pump and Weatherization Loan Alabama Power - Residential Heat Pump and Weatherization Loan Programs Alabama Power - Residential Heat Pump and Weatherization Loan Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Windows: $350 Program Info State Alabama Program Type Utility Loan Program Rebate Amount Not specified Provider Alabama Power Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to finance an air

457

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

458

Gulf Power - Residential Energy Efficiency EarthCents Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Residential Energy Efficiency EarthCents Program Gulf Power - Residential Energy Efficiency EarthCents Program Gulf Power - Residential Energy Efficiency EarthCents Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Manufacturing Insulation Water Heating Windows, Doors, & Skylights Program Info State Florida Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Energy Select Programmable Thermostat and Time of Use Control: Free HVAC Maintenance: $215 Duct Repair and Air Sealing: $150 - $300 Fan Motor Retrofit: $150 Heat Pump: $100 - $1000; varies by size and efficiency

459

Eau Claire Energy Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eau Claire Energy Cooperative - Residential Energy Efficiency Eau Claire Energy Cooperative - Residential Energy Efficiency Rebate Program Eau Claire Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Clothes washer: $25 Dishwashers: $25 Refrigerators: $25 Room Air Conditioner: $25 Dehumidifier: $25 Refrigerator/Freezer/Room AC Recycling: $25 Central Air Conditioner/Mini Split: $40 - $80/Ton Air Source Heat Pump/Mini-Split Heat Pumps: $150/Ton Package Terminal Heat Pump: $150/Ton Geothermal Heat Pump: $300/Ton

460

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

Properties of Spent Shales. Surface Area Measurements.Carbon. Effects. ~~ co 2,and Oil~Shale Partial-pressure andWater from Green River Oil Shale, 11 Chem. Ind. 1, 485 (

Fox, J.P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential oil water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Living off-grid in an arid environment without a well : can residential and commercial/industrial water harvesting help solve water supply problems?  

Science Conference Proceedings (OSTI)

Our family of three lives comfortably off-grid without a well in an arid region ({approx}9 in/yr, average). This year we expect to achieve water sustainability with harvested or grey water supporting all of our needs (including a garden and trees), except drinking water (about 7 gallons/week). We discuss our implementation and the implication that for an investment of a few thousand dollars, many single family homes could supply a large portion of their own water needs, significantly reducing municipal water demand. Generally, harvested water is very low in minerals and pollutants, but may need treatment for microbes in order to be potable. This may be addressed via filters, UV light irradiation or through chemical treatment (bleach). Looking further into the possibility of commercial water harvesting from malls, big box stores and factories, we ask whether water harvesting could supply a significant portion of potable water by looking at two cities with water supply problems. We look at the implications of separate municipal water lines for potable and clean non-potable uses. Implications on changes to future building codes are explored.

Axness, Carl L.; Ferrando, Ana

2010-08-01T23:59:59.000Z

462

Influence of chemical characterization of oil shale solids on understanding water quality impacts  

SciTech Connect

Synfuels technologies will yield products and effluents that are a function of the raw material being processed and the process variables. Chemical and mineralogic characterization of solids generated in synfuels production provide valuable insight into health and environmental impacts associated with synfuels processing (coal liquefaction or gasification and shale oil extraction). This report deals with considerations relating to leachate generation from solid wastes, but the suggested research approach is applicable to understanding the nature and extent of all effluents from synfuels operations. Solid characterization studies of one raw shale core and two spent shale cores from Occidental Oil Shale, Inc.'s Logan Wash site are described. These data are used to determine the effect of processing on the shale solids and also to evaluate a variety of water quality issues associated with in situ processing. The importance of solid characterization studies in developing an understanding of effluent composition and behavior and subsequently defining environmental impacts is described.

Peterson, E.J.; Wagner, P.

1981-01-01T23:59:59.000Z

463

Ground water and oil field waste sites: a study in Vermilion Parish  

Science Conference Proceedings (OSTI)

Water samples were obtained from 128 private water wells surrounding eight oil field waste sites in Vermilion Parish. The specimens were analyzed for five heavy metals: barium, arsenic, chromium, lead, and cadmium. Half of the specimens were then analyzed for 16 volatile organic compounds. A blood sample was obtained from healthy adults drinking water from the wells tested for volatile organic compounds and this blood sample was also analyzed for volatile organic compounds. None of the water samples had levels of heavy metals or volatile organic compounds that exceeded the National Primary Drinking Water Standards. Barium levels in excess of 250 parts per billion suggested that styrene, toluene, and chloroform might be present. Blood levels of volatile organic compounds were significantly higher than could be accounted for by water consumption with levels in smokers significantly higher than in nonsmokers. These data suggest that as yet there is no contamination of ground water supplies around these sites. Volatile organic accumulation in humans probably occurs from a respiratory rather than from an oral route.

Rainey, J.M.; Groves, F.D.; DeLeon, I.R.; Joubert, P.E. (LSU School of Medicine, New Orleans, LA (USA))