Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL EFM DATA: Disaggregated Residential Load Cost Data The  

Open Energy Info (EERE)

EFM DATA: Disaggregated Residential Load Cost Data The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The...

2

NREL EFM DATA: Disaggregated Residential Load Cost Data | OpenEI  

Open Energy Info (EERE)

EFM DATA: Disaggregated Residential Load Cost Data EFM DATA: Disaggregated Residential Load Cost Data Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( http://205.254.135.24/cneaf/electricity/page/eia861.html), e.g. field A14 references "34", which is the EIA Utility ID for the City of Abbeville, South Carolina Utility Company. Within each data set per utility resides different types of equipment, miscellaneous electric load plugs, and appliances found in "common households" given by costs broken out by months. All data within each cell is a floating point number with the metric of dollars/month, e.g. 0.46 equals $0.46/month of interest. Please note: That costs given are only for electricity costs not gas!

3

Residential load control and metering equipment: Costs and capabilities: Final report  

SciTech Connect

This report summarizes the current costs and capabilities of commercially available equipment for residential load control and metering. Three categories of equipment are covered: communications systems, customer-side load control devices, and load monitoring and solid state metering equipment. The text of the report provides summary descriptions of the technologies available - their capabilities, characteristics, advantages and disadvantages. A series of tables presents budgetary cost estimates, number of systems installed, and design characteristics for the equipment offered by selected vendors. A list of vendors and contact points (names, addresses, telephone numbers) is provided. Communications systems covered in this report are radio, power line carrier, ripple, wave form modification, telephone, satellite, cable TV and hybrid systems. Customer-side devices include relays and actuators, time clocks, programmable thermostats, duty cycle limiters, smart thermostats, and demand controllers. Load monitoring and metering equipment includes kWh and kW meters, time of use meters, automatic/remote reading systems, multi-register meters, and load profile recorders.

Stickels, T.D.; Markel, L.C.

1987-10-01T23:59:59.000Z

4

Use of Residential Smart Appliances for Peak-Load Shifting and Spinning Reserves Cost/Benefit Analysis  

Science Conference Proceedings (OSTI)

In this report, we present the results of an analytical cost/benefit study of residential smart appliances from a utility/grid perspective in support of a joint stakeholder petition to the ENERGY STAR program within the Environmental Protection Agency (EPA) and Department of Energy (DOE). The goal of the petition is in part to provide appliance manufacturers incentives to hasten the production of smart appliances. The underlying hypothesis is that smart appliances can play a critical role in addressing some of the societal challenges, such as anthropogenic global warming, associated with increased electricity demand, and facilitate increased penetration of renewable sources of power. The appliances we consider include refrigerator/freezers, clothes washers, clothes dryers, room air-conditioners, and dishwashers. The petition requests the recognition that providing an appliance with smart grid capability, i.e., products that meet the definition of a smart appliance, is at least equivalent to a corresponding five percent in operational machine efficiencies. It is then expected that given sufficient incentives and value propositions, and suitable automation capabilities built into smart appliances, residential consumers will be adopting these smart appliances and will be willing participants in addressing the aforementioned societal challenges by more effectively managing their home electricity consumption. The analytical model we utilize in our cost/benefit analysis consists of a set of user-definable assumptions such as the definition of on-peak (hours of day, days of week, months of year), the expected percentage of normal consumer electricity consumption (also referred to as appliance loads) that can shifted from peak hours to off-peak hours, the average power rating of each appliance, etc. Based on these assumptions, we then formulate what the wholesale grid operating-cost savings, or benefits, would be if the smart capabilities of appliances were invoked, and some percentage of appliance loads were shifted away from peak hours to run during off-peak hours, and appliance loads served power-system balancing needs such as spinning reserves that would otherwise have to be provided by generators. The rationale is that appliance loads can be curtailed for about ten minutes or less in response to a grid contingency without any diminution in the quality of service to the consumer. We then estimate the wholesale grid operating-cost savings based on historical wholesale-market clearing prices (location marginal and spinning reserve) from major wholesale power markets in the United States. The savings derived from the smart grid capabilities of an appliance are then compared to the savings derived from a five percent increase in traditional operational machine efficiencies, referred to as cost in this report, to determine whether the savings in grid operating costs (benefits) are at least as high as or higher than the operational machine efficiency credit (cost).

Sastry, Chellury; Pratt, Robert G.; Srivastava, Viraj; Li, Shun

2010-12-01T23:59:59.000Z

5

residential load | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

6

OpenEI Community - residential load  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

7

Investigation of residential central air conditioning load shapes in NEMS  

E-Print Network (OSTI)

of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-01-01T23:59:59.000Z

8

Building Energy Software Tools Directory : HVAC Residential Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Residential Load Calcs HD for the iPad Back to Tool HVAC Residential Load Calcs HD screenshot HVAC Residential Load Calcs HD screenshot HVAC Residential Load Calcs HD...

9

Identifying Cost-Effective Residential Energy Efficiency Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Identifying Cost-Effective Residential Energy Efficiency...

10

Building Energy Software Tools Directory: HVAC Residential Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Residential Load Calcs HD for the iPad Carmel Software logo HVAC Residential Load Calcs HD is a comprehensive HVAC heating and cooling load calculation application for the...

11

Load management strategies for electric utilities: a production cost simulation  

SciTech Connect

This paper deals with the development and application of a simulation model for analyzing strategies for managing the residential loads of electric utilities. The basic components of the model are (1) a production-cost model, which simulates daily operation of an electric power system; (2) a load model, which disaggregates system loads into appliance loads and other loads; and (3) a comparison model, which compares the production costs and energy consumption needed to meet a particular load profile to the corresponding costs and energy consumption required for another load profile. The profiles in each pair define alternative ways of meeting the same demand. A method for disaggregating load profiles into appliance components is discussed and several alternative strategies for residential load management for a typical northeastern electric utility are formulated. The method is based on an analysis of the composition of electric loads for a number of classes of residential customers in the model utility system. The effect of alternative load management strategies on the entire residential loadcurve is determined by predicting the effects of these strategies on the specific appliance components of the loadcurve. The results of using the model to analyze alternative strategies for residential load management suggest that load management strategies in the residential sector, if adopted by utilities whose operating and load characteristics are similar to those of the system modeled here, must take into account a wide variety of appliances to achieve significant changes in the total load profile. Moreover, the results also suggest that it is not easy to reduce costs significantly through new strategies for managing residential loads only and that, to be worthwhile, cost-reducing strategies will have to encompass many kinds of appliances.

Blair, P.D.

1979-03-01T23:59:59.000Z

12

Investigation of Residential Central Air Conditioning Load Shapes in  

E-Print Network (OSTI)

LBNL-52235 Investigation of Residential Central Air Conditioning Load Shapes in NEMS Kristina Laboratory is an equal opportunity employer. #12;#12;LBNL-52235 Investigation of Residential Central Air;#12;Investigation of Residential Central Air Conditioning Load Shapes in NEMS i Table of Contents Acronyms

13

Evaluation of The Thermal Performance and Cost Effectiveness of Radiant Barrier Thermal Insulation Materials In Residential Construction.  

E-Print Network (OSTI)

??Reducing heating and cooling systems loads in buildings is a cost effective way to decrease energy consumption in residential houses. This reduction can be achieved… (more)

Asadi, Somayeh

2012-01-01T23:59:59.000Z

14

Potential Peak Load Reductions From Residential Energy Efficient Upgrades  

E-Print Network (OSTI)

The demand for electricity is continuing to grow at a substantial rate. Utilities are interested in managing this growth's peak demand for a number of reasons including: costly construction of new generation capacity can be deferred; the reliability of the distribution network can be improved; and added environmental pollution can be minimized. Energy efficiency improvements, especially through residential programs, are increasingly being used to mitigate this rise in peak demand. This paper examines the potential peak load reductions from residential energy efficiency upgrades in hot and humid climates. First, a baseline scenario is established. Then, the demand and consumption impacts of individual upgrade measures are assessed. Several of these upgrades are then combined into a package to assess the synergistic demand and energy impacts. A sensitivity analysis is then performed to assess the impacts of housing characteristics on estimated demand and energy savings. Finally, the demand, energy, and environmental impacts are estimated at the community level.

Meisegeier, D.; Howes, M.; King, D.; Hall, J.

2002-01-01T23:59:59.000Z

15

Selected cost considerations for geothermal district heating in existing single-family residential areas  

DOE Green Energy (OSTI)

In the past, district heating (geothermal or conventionally fueled) has not been widely applied to the single-family residential sector. Low-heat load density is the commonly cited reason for this. Although it`s true that load density in these areas is much lower than for downtown business districts, other frequently overlooked factors may compensate for load density. In particular, costs for distribution system installation can be substantially lower in some residential areas due to a variety of factors. This reduced development cost may partially compensate for the reduced revenue resulting from low-load density. This report examines cost associated with the overall design of the system (direct or indirect system design), distribution piping installation, and customer branch lines. It concludes with a comparison of the costs for system development and the revenue from an example residential area.

Rafferty, K.

1996-06-01T23:59:59.000Z

16

Testing of Residential Homes under Wind Loads  

Science Conference Proceedings (OSTI)

... At such scales, model dimensions for a residential home are of the order of ... To de- velop flow management devices efficiently, a small-scale (1?8 ...

2013-07-26T23:59:59.000Z

17

Effect of DC Load Currents on Solid State Residential Meters  

Science Conference Proceedings (OSTI)

This report presents results of an extensive laboratory assessment of the impact of DC load currents (including half-wave rectified loads) on the metrological accuracy of residential solid state electricity meters. Sampled surveys were conducted to determine whether products producing DC currents are prevalent in residential premises. In addition, regulations and codes were studied to determine whether such products could naturally appear in the marketplace going forward. Two each of six brands of socket...

2011-12-22T23:59:59.000Z

18

Residential equipment part load curves for use in DOE-2  

SciTech Connect

DOE-2 (DOE2 90) includes several correlation curves that predict the energy use of systems underpart load conditions. DOE-2 simulates systems on an hour-by-hour basis, so the correlations are intended to predict part load energy use (and efficiency) as a function of the part load ratio (PLR) for each hour, where PLR = Hourly Load/Available Capacity. Generally residential and small commercial HVAC equipment meets the load at off-design conditions by cycling on and off. Therefore, the part load correlations must predict the degradation due to this on and off operation over an hourly interval.

Henderson, Hugh; Huang, Y.J.; Parker, D.

1999-02-01T23:59:59.000Z

19

Statistical Review of UK Residential Sector Electrical Loads  

E-Print Network (OSTI)

This paper presents a comprehensive statistical review of data obtained from a wide range of literature on the most widely used electrical appliances in the UK residential load sector. It focuses on individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, and also provides information on the reactive power characteristics of the load, which is often neglected from standard consumption statistics. This data is particularly important for power system analysis. In addition to this, device ownership statistics and probability distribution functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information which provides a useful database for the wider research community.

Tsagarakis, G; Kiprakis, A E

2013-01-01T23:59:59.000Z

20

Distribution substation load impacts of residential air conditioner load control  

SciTech Connect

An ongoing experiment to monitor the substation level load impacts of end-use load control is described. An overview of the data acquisition system, experimental procedures and analysis techniques are provided. Results of the 1983 and 1984 experiments demonstrate the value of aggregate load impact monitoring as a means of verifying load research results, calculating the diversity of end-use loads, and predicting the impacts of load management on the transmission and distribution systems.

Heffner, G.C.; Kaufman, D.A.

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL: Residential Soft Costs Data Collection 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

A), how many labor hours (both full-time employees and contract labor) per residential PV installation were spent on the following? Labor HoursInstallation a) Preparing a...

22

Residential Duct Sealing Cost-Benefit Analysis  

Science Conference Proceedings (OSTI)

Residential air duct leakage can account for as much as 15 percent of a utility bill. Research has shown that houses with supply leakage fractions of 10 percent or greater are viable candidates for air duct sealing or retrofit. This report details the development of a regional program designed to measure and improve residential heating system distribution efficiency via air duct sealing and retrofits. The program consolidates the efforts of several utilities and coordinates a region-wide assessment of th...

2000-06-05T23:59:59.000Z

23

Investigation of residential central air conditioning load shapes in NEMS  

SciTech Connect

This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-05-01T23:59:59.000Z

24

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Increased Energy Efficiency for Residential Water Heaters Cost of Increased Energy Efficiency for Residential Water Heaters Speaker(s): Alex Lekov Date: March 22, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn This presentation describes the analysis of the costs of increased energy efficiency for residential water heaters. Here, we focus on the cost and efficiency data for electric and gas-fired water heaters. This data formed the basis of the Technical Support Document for the Department of Energy's (DOE) Final Rule on Water Heaters. The engineering analysis uses computer simulation models to investigate the efficiency improvements due to design options and combinations thereof. The analysis covers four polyurethane foam insulation types based on non-ozone-depleting substances as blowing

25

Climatic indicators for estimating residential heating and cooling loads  

Science Conference Proceedings (OSTI)

An extensive data base of residential energy use generated with the DOE-2.1A simulation code provides an opportunity for correlating building loads predicted by an hourly simulation model to commonly used climatic parameters such as heating and cooling degree-days, and to newer parameters such as insolation-days and latent enthalpy-days. The identification of reliable climatic parameters for estimating cooling loads and the incremental loads for individual building components, such as changing ceiling and wall R-values, infiltration rates or window areas is emphasized.

Huang, Y.J.; Ritschard, R.; Bull, J.; Chang, L.

1986-11-01T23:59:59.000Z

26

Commercial and Residential Hourly Load Data Now Available on OpenEI! |  

Open Energy Info (EERE)

Commercial and Residential Hourly Load Data Now Available on OpenEI! Commercial and Residential Hourly Load Data Now Available on OpenEI! Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 12:03 building load building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL I am pleased to announce that simulated hourly residential and commercial building load datasets are now available on OpenEI. These datasets are available for all TMY3 locations in the United States. They contain hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). In addition to various

27

Review of Residential Low-Load HVAC Systems  

SciTech Connect

In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

2013-09-01T23:59:59.000Z

28

Energy and cost analysis of residential heating systems  

SciTech Connect

Several energy-saving design changes in residential space-heating systems were examined to determine their energy-conservation potential and cost effectiveness. Changes in conventional and advanced systems (such as the gas heat pump) were considered. The energy and cost estimates were developed from current literature, conversations with heating and equipment manufacturers and dealers, and discussions with individuals doing research and testing on residential space-heating equipment. Energy savings as large as 26, 20, 57% were estimated for design changes in conventional gas, oil, and electric space-heating systems, respectively. These changes increased capital cost of the three systems by 27, 16, and 26%, respectively. For advanced gas and electric systems, energy savings up to 45 and 67%, respectively, were calculated. The design changes needed to produce these energy savings increased capital costs 80 and 35%. The energy use and cost relationships developed for the space heating systems were used as input to the ORNL residential energy-use simulation model to evaluate the effect of space-heating improvements on national energy use to the year 2000. Results indicated a large reduction in national energy use if improved conventional and advanced systems were made available to consumers and if consumers minimized life-cycle costs when purchasing these systems.

O' Neal, D.L.

1978-07-01T23:59:59.000Z

29

Detailed cost estimate of reference residential photovoltaic designs  

DOE Green Energy (OSTI)

This report presents estimated installation costs for four reference residential photovoltaic designs. Installation cost estimates ranged from $1.28 to $2.12/W/sub p/ for arrays installed by union labor (4.1 to 6.07 kW/sub p/-systems), and from $1.22 to $1.83 W/sub p/ for non-union installations. Standoff mounting was found to increase costs from $1.63/W/sub p/ to $2.12/W/sub p/ for a representative case, whereas 25 kWh of battery storage capacity increased installation costs from $1.44/W/sub p/ to $2.08/W/sub p/. Overall system costs (union-based were $6000 to $7000 for a 4.1 kW array in the northeast, to approx. $9000 for a 6.07 kW/sub p/ array in the southwest. This range of installation costs, approx. $1 to $2/W/sub p/ (in 1980 dollars), is representative of current installation costs for residential PV systems. Any future cost reductions are likely to be small and can be accomplished only by optimization of mounting techniques, module efficiencies, and module reliability in toto.

Palmer, R.S.; Penasa, D.A.; Thomas, M.G.

1983-04-01T23:59:59.000Z

30

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

31

The Temperature Sensitivity of the Residential Load and Commercial Building Load  

SciTech Connect

This paper presents a building modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building heating and cooling load in 10 major cities across the Western United States and Canada. A building simulation software are first used to quantify the hourly energy consumption of different building types by end-use and by vintage. Then, the temperature sensitivities are derived based on the climate data inputs.

Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Correia, James; Leung, Lai R.; Wong, Pak C.

2009-07-26T23:59:59.000Z

32

Investigation of Peak Load Reduction Strategies in Residential Buildings in Cooling Dominated Climates.  

E-Print Network (OSTI)

??This investigation of peak load reduction strategies in residential buildings contributes to the global international efforts in reducing energy consumption and is related directly to… (more)

Atallah, Fady

2013-01-01T23:59:59.000Z

33

Commercial and Residential Hourly Load Profiles for all TMY3 Locations in  

Open Energy Info (EERE)

and Residential Hourly Load Profiles for all TMY3 Locations in and Residential Hourly Load Profiles for all TMY3 Locations in the United States Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Hourly load profiles are available for over all TMY3 locations in the United States here. Browse files in this dataset, accessible as individual files and as commercial and residential downloadable ZIP files. This dataset is approximately 4.8GiB compressed or 19GiB uncompressed. July 2nd, 2013 update: Residential High and Low load files have been updated from 366 days in a year for leap years to the more general 365 days in a normal year.

34

SYSPLAN. Load Leveling Battery System Costs  

SciTech Connect

SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer`s monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer`s peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer`s side of the meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer`s load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.

Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States)

1988-03-22T23:59:59.000Z

35

Fuzzy rule-based methodology for residential load behaviour forecasting during power systems restoration  

Science Conference Proceedings (OSTI)

Inadequate load pickup during power system restoration can lead to overload and underfrequency conditions, and even restart the blackout process, due to thermal energy losses. Thus, load behaviour estimation during restoration is desirable to avoid inadequate ... Keywords: artificial intelligence, energy management systems, fuzzy logic, load behaviour estimation, power system distribution, power system restoration, residential load forecasting, thermostatically controlled loads

Lia Toledo Moreira Mota; Alexandre Assis Mota; Andre Luiz Morelato Franca

2005-04-01T23:59:59.000Z

36

PNNL-21294 Methodology for Evaluating Cost- Effectiveness of Residential Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

1294 1294 Methodology for Evaluating Cost- Effectiveness of Residential Energy Code Changes ZT Taylor N Fernandez RG Lucas April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Contents 1.0 Introduction .................................................................................................................................. 1.1 2.0 Estimating Energy Savings of Code Changes .............................................................................. 2.1 2.1 Building Energy Use Simulation Assumptions and Methodology ....................................... 2.1 2.1.1 Energy Simulation Tool ............................................................................................ 2.1

37

Construction Cost Analysis : Residential Construction Demonstration Project Cycle II.  

SciTech Connect

The Residential Construction Demonstration Project (RCDP) is designed to demonstrate new residential building techniques and product innovations which advance the stage-of-the-art in constructing energy-efficient electrically heated residences. A secondary purpose is to obtain documented cost and energy savings data from which to make accurate assessments of the cost-effectiveness of various conservation innovations. The project solicits participation of regional homebuilders by offering them financial incentives for constructing homes to the Model Conservation Standards (MCS) and including at least one innovation.'' The innovations are determined by BPA and the States prior to construction and represent construction techniques or energy saving products that might reduce the cost of building MCS homes, or expand the options available to builders in achieving MCS levels of energy efficiency in homes. Besides covering some of the additional risk for employing the innovation, the incentive payment guarantees that builders will provide certain amounts of information regarding the cost and acceptability of building the homes. In addition, an incentive is paid to homeowners for their participation in data collection efforts following construction. Several one-time'' tests were performed on the houses and homeowners were required to report energy consumption and temperature data on a weekly basis for approximately 18 months. BPA and the States compile the information obtained from the builders and homeowners. Access to this data is provided for the purpose of analyzing the cost and performance of the RCDP homes, as well as understanding the value of the various innovations that are tested. 25 tabs., 4 figs.

Barnett, Cole; Thor, Philip W.

1990-06-01T23:59:59.000Z

38

Testing share & load growth in competitive residential gas markets  

SciTech Connect

The residential market stands as the next frontier for natural gas unbundling. In California, Illinois, Maryland, Massachusetts, New Jersey, New York, Ohio, Pennsylvania and elsewhere, states have introduced pilot programs and other unbundling efforts to target residential gas consumers. These efforts are hardly surprising. The residential market, presently dominated by the regulated local distribution companies, appears lucrative. In 1995, the residential sector of the U.S. natural gas industry consumed 4,736 trillion Btu of natural gas or 32 percent of all natural gas delivered by LDCs in that year. U.S. residential consumers accounted for $28.7 billion or 59 percent of the gas utility industry`s total revenues. Nevertheless, despite all the enthusiasm industry representatives have recently expressed in trade publications and public forums, the creation of a competitive residential market may prove a very slow process. Marketers appear cautious in taking the responsibility of serving residential consumers, and for very good reasons. Gaining a sizable portion of this market requires substantial investment in mass marketing, development of name recognition, acquisition of appropriate technology and employment of skillful personnel. Moreover, residential customers do not behave rationally in a {open_quotes}neoclassical{close_quotes} economic sense. They react not only to a price but to several qualitative factors that have yet to be studied by LDCs and marketers. This article offers results from creating a software program and model that answer two basic questions: (1) What share of the residential natural gas market can be realistically captured by non-regulated suppliers? (2) Will residential unbundling increase total throughput for gas utilities? If so, by how much?

Lonshteyn, A. [Boston Gas Company, MA (United States)

1998-02-15T23:59:59.000Z

39

Study of photovoltaic cost elements. Volume 4. Installation cost model for residential PV systems: users manual. Final report  

SciTech Connect

A quantitative methodology is presented for estimating installation costs of residential photovoltaic systems. The Installation Cost Model for Residential PV Systems is comprised of 144 estimating equations selectively exercised, based on user definition of the system. At the input stage, Residential PV systems can be fully described by 9 design option categories and 9 system specification categories. All assumptions have been validated with installers of solar thermal systems and with TB and A's Architects and Engineers Division. A discussion of the model is included as well as an example of its use with an 8 KW PV system for a Southwest All-Electric Residential design.

1981-07-01T23:59:59.000Z

40

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Science Conference Proceedings (OSTI)

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

{Control of Residential Load Management Networks Using Real Time Pricing  

E-Print Network (OSTI)

Static Setback Demand Response . . . . . . . . . . . . . . .Mitigation Demand Response . . . . . . . . . . . . . . .Cost Ratio Demand Response . . . . . . . . . . . . . . . .

Burke, William Jerome

2010-01-01T23:59:59.000Z

42

Projected cost-effectiveness of alternative residential space cooling systems in the Sacramento area  

SciTech Connect

Electric utilities around the country are seeking to evaluate new demand-side management (DSM) programs and technologies on an equal basis with supply-side resources. In evaluating future demand and supply resources, utilities need to consider uncertainties inherent in prediction. In this paper, five residential space cooling technologies (high efficiency heat pumps, some coupled with utility direct load control or with thermal energy storage), are defined and computer simulation of their performance are described. Cost-effectiveness of the five alternatives are then evaluated, and the relative uncertainty of the data inputs are tested by using the Monte Carlo technique of probability analysis. This comparative analysis comprises an initial screening of potential DSM technologies, and provides a framework and direction for more detailed analysis of these technologies in the future.

Kallett, R.H. (Sacramento Municipal Utility District, Box 15830, Sacramento, CA (US))

1988-08-01T23:59:59.000Z

43

Cost goals for a residential photovoltaicthermal liquid collector system set in three northern locations  

E-Print Network (OSTI)

This study compares the allowable costs for a residential PV/T liquid collector system with those of both PV-only and side-by-side PV and thermal collector systems. Four types of conventional energy systems provide backup: ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

44

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black, Marija Ilic, IEEE Fellow  

E-Print Network (OSTI)

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black This survey contains a sample of the available technologies for implementing residential electricity services understanding of the potential for implementation of residential services. The estimation of the costs

Ilic, Marija D.

46

Cost Estimates of Electricity from a TPV Residential Heating System  

Science Conference Proceedings (OSTI)

A thermophotovoltaic (TPV) system was built using a 12 to 20 kWth methane burner which should be integrated into a conventional residential heating system. The TPV system is cylindrical in shape and consists of a selective Yb2O3 emitter

Günther Palfinger; Bernd Bitnar; Wilhelm Durisch; Jean?Claude Mayor; Detlev Grützmacher; Jens Gobrecht

2003-01-01T23:59:59.000Z

47

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network (OSTI)

For detached residential buildings located in the tropics, it is more challenging and difficult to deal with the space cooling load due to hot and humid climates. In this paper, daily and monthly computer simulations of solar heat gain and cooling load for a detached residential building are carried out using Design Builder software. Different glazing systems ranging from single glazed clear glass to double glaze with electro chromic reflective colored have been analyzed in terms of their impact on solar heat gain and cooling load. The simulation results show reductions in solar heat gain, cooling load and better thermal comfort can be achieved using proper glazing systems for a specific orientation of the building. The significance of these results stems from the fact that they are obtained under local weather conditions, a matter of importance to building architects, designers, contractors, and builders as well as air conditioning equipment manufacturers.

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

48

Cooling-load implications for residential passive-solar-heating systems  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

Jones, R.W.; McFarland, R.D.

1983-01-01T23:59:59.000Z

49

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

distributor, and installer costs are used to calculate the costs of different water heater designs. Consumer operating expenses are calculated based on the modeled energy...

50

Long-term residential load forecasting. Final report  

SciTech Connect

The main objective of this study was to isolate and evaluate the importance of various factors, many of which are household characteristics and weather conditions, that determine the demand for electricity at different times of day. A second purpose was to investigate one of the factors in detail, namely, prices, which was feasible because half of the households in the sample were subjected to time-of-day pricing. Substantial differences between the load curves of the experimental and control groups were found. Households in the experimental group significantly decreased electricity usage when its price was high, the consumption being shifted partly into the early morning hours but more heavily into the evening. The importance of certain appliances in shifting the load curve is also clearly brought out. For example, households with a dishwasher or electric heating appeared to change the timing of use of these appliances under peak-load pricing. Other appliances were also important in determining the load curve for both groups. Swimming pool pumps and air conditioning, for instance, were important determinants in the summer, whereas in the winter, electric heating and dishwashers substantially increased consumption levels.

Granger, C.W.J.; Engle, R.F.; Ramanathan, R.; Andersen, A.

1978-02-01T23:59:59.000Z

51

Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes  

SciTech Connect

The US Department of Energy's Building America residential systems research project uses an analysis-based systems research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analytical approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-saving goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

Anderson, R.; Christensen, C.; Horowitz, S.

2006-01-01T23:59:59.000Z

52

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most  

E-Print Network (OSTI)

A new database of residential building measures and estimated costs helps the U.S. building at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures with using various measures to improve the efficiency of residential buildings. This database offers

53

Breakeven Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities (Report Summary) (Presentation)  

DOE Green Energy (OSTI)

"Break-even cost" for photovoltaic (PV) technology is defined as the point where the cost of PV-generated electricity equals the cost of electricity purchased from the grid. Break-even cost is expressed in $/W of an installed system. Achieving break-even cost is a function of many variables. Consequently, break-even costs vary by location and time for a country, such as the United States, with a diverse set of resources, electricity prices, and other variables. In this presentation, we introduce an analysis of PV break-even costs for residential customers in the United States, including an evaluation of some of the key drivers of PV breakeven both regionally and over time. This presentation includes our methodology and presents results for both near-term residential breakeven costs(2009) and future market sensitivities of break-even costs (2015). See also the the report "Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities". Presentation for NREL/TP-6A2-45991.

Denholm, P.; Margolis, R. M.; Ong, S.; Roberts, B.

2009-12-01T23:59:59.000Z

54

Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling  

E-Print Network (OSTI)

This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric power needs. This paper provides projections of unit sales expected in 5-year intervals for the years 1995, 2000, 2005, and 2010, Such projections help to determine the maximum amount o f energy that could be displaced by this technology in the future. This study also found that price incentives offered to households must be varied dramatically by region for residential cool storage systems to be economically competitive relative to conventional systems. Under the most likely scenario, this analysis estimated that residential cool storage units will eventually capture about one-half of the central air conditioning (A/C) market.

Weijo, R. O.; and Brown, D. R.

1988-01-01T23:59:59.000Z

55

Estimating the market penetration of residential cool storage technology using economic cost modeling  

DOE Green Energy (OSTI)

This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric power needs. This paper provides projections of unit sales expected in 5-year intervals for the years 1995, 2000, 2005, and 2010. Such projections help to determine the maximum amount of energy that could be displaced by this technology in the future. This study also found that price incentives offered to households must be varied dramatically by region for residential cool storage systems to be economically competitive relative to conventional systems. Under the most likely scenario, this analysis estimated that residential cool storage units will eventually capture about one-half of the central air conditioning (A/C) market. 14 refs., 2 figs., 8 tabs.

Weijo, R.O.; Brown, D.R.

1988-06-01T23:59:59.000Z

56

Residential Energy and Cost Analysis Methodology | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

types. National energy savings are reported, in addition to economic metrics by state and climate zone. In considering cost-effectiveness, longer term energy savings are balanced...

57

Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States  

SciTech Connect

Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2013-07-01T23:59:59.000Z

58

Climate Change Impacts on Residential and Commercial Loads in the Western U.S. Grid  

SciTech Connect

This report presents a multi-disciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in 10 major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration of the air conditioning (a/c) system in this area is likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads.

Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Xie, YuLong; Leung, Lai R.; Correia, James; Wong, Pak C.; Mackey, Patrick S.; Paget, Maria L.

2008-09-30T23:59:59.000Z

59

Spoilt for Choice? The Costs and Benefits of Opening UK Residential Markets  

E-Print Network (OSTI)

Residential Energy Markets Catherine Waddams Price, CentreResidential Energy Markets Catherine Waddams Price * Centre

Waddams Price, Catherine

2004-01-01T23:59:59.000Z

60

Cost Effectiveness for Solar Control Film for Residential Applications  

E-Print Network (OSTI)

For the existing housing, retrofitting single or double glazed clear glass window with solar films can be an effective measure to reduce their peak power demand, and large scale application of the same on national level can be an effective tool for demand side management. This paper analyses the field performance data of a solar control film, retrofitted in a Kuwait villa, for establishing its technical viability and cost effectiveness. The paper concludes that the solar film, besides enhancing the thermal comfort, reduced the peak cooling demand and the peak power demand by 6.7% and 4.7%, respectively, during the peak summer period.

Al-Taqi, H. H.; Maheshwari, G. P.; Alasseri, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Effects of electric utility residential conservation programs on hourly load profiles  

SciTech Connect

This paper discusses the potential of using hourly energy simulation models to determine load shape changes resulting from energy conservation activities. It is determined that shifts in the time and the day of the monthly peak demand may occur as the level of conservation increases. The shifting of the peak was from weather-sensitive periods to less-weather-sensitive periods. Seasonal load profile changes resulting from energy conservation were demonstrated. A statistically significant quadratic relationship was identified between the annual percent reduction and annual percent energy conserved for the different distribution systems examined. The relationships are examined between different levels of residential energy conservation from weatherization and heat pumps on the hourly load profiles of different power distribution systems within the TVA power service area.

Harper, J.P.; Sieber, R.E.

1983-01-01T23:59:59.000Z

62

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

267 267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-48267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett Prepared under Task No. IDHW9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

63

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

NLE Websites -- All DOE Office Websites (Extended Search)

8267 8267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-48267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett Prepared under Task No. IDHW9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

64

Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 December 2009 Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities Paul Denholm, Robert M. Margolis, Sean Ong, and Billy Roberts National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46909 December 2009 Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities Paul Denholm, Robert M. Margolis, Sean Ong, and Billy Roberts Prepared under Task No. PVD9.1210 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

65

Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions -- Technical Support Document  

NLE Websites -- All DOE Office Websites (Extended Search)

2068 2068 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions - Technical Support Document V Mendon R Lucas S Goel April 2013 PNNL-22068 Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions - Technical Support Document V Mendon R Lucas S Goel April 2013 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Executive Summary This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP). DOE supports the

66

Microturbines - an economic and reliability evaluation for commercial, residential, and remote load applications  

Science Conference Proceedings (OSTI)

Most distributed self-generation operates base loaded and in parallel with the electric utility system (1) to minimize peak loads, (2) to improve reliability, (3) to eliminate the need for reserve margin (standby) and (4) may or may not sell back excess generation. This paper examines the economics of distributed microturbine generation operating isolated from the electric utility system and having enough reserve margin to either match or improve the existing reliability of service provided by central station generation and the T and D system. This analysis shows the isolated operation of microturbines with a reserve margin can provide the same or a higher level of reliability as the electric utility, yet the costs can be lower. Sensitivity analysis for different investment costs, O and M costs, fuel costs, reliability, load shapes (load factors), and alternative fuels were performed and the economic comparisons are made in terms of {cents}/kWh. This analysis shows a strong economic preference in applying microturbines to high load factor commercial loads. The cost of standby (from the utility) was found to be from .52 to 2.09{cents}/kWh greater than if the microturbine generation provided its own standby through a built in reserve margin.

Davis, M.W.; Gifford, A.H.; Krupa, T.J.

1999-11-01T23:59:59.000Z

67

End-Use Load and Consumer Assessment Program: Analysis of residential refrigerator/freezer performance  

SciTech Connect

The Bonneville Power Administration (Bonneville) is conducting a large end-use data acquisition program in an effort to understand how energy is utilized in buildings with permanent electric space heating equipment in the Pacific Northwest. The initial portion of effort, known as the End-Use Load and Consumer Assessment Program (ELCAP), was conducted for Bonneville by the Pacific Northwest Laboratory (PNL). The collection of detailed end-use data provided an opportunity to analyze the amount of energy consumed by both refrigerators and separate freezers units located in residential buildings. By obtaining this information, the uncertainty of long- term regional end-use forecasting can be improved and potential utility marketing programs for new appliances with a reduced overall energy demand can be identified. It was found that standby loads derived from hourly averages between 4 a.m. and 5 a.m. reflected the minimum consumption needed to maintain interior refrigerator temperatures at a steady-state condition. Next, an average 24-hour consumption that included cooling loads from door openings and cooling food items was also determined. Later, analyses were conducted to develop a model capable of predicting refrigerator standby loads and 24-hour consumption for comparison with national refrigerator label ratings. Data for 140 residential sites with a refrigeration end-use were screened to develop a sample of 119 residences with pure refrigeration for use in this analysis. To identify those refrigerators that were considered to be pure (having no other devices present on the circuit) in terms of their end-use classification, the screening procedure used a statistical clustering technique that was based on standby loads with 24-hour consumption. 5 refs., 18 figs., 4 tabs.

Ross, B.A.

1991-09-01T23:59:59.000Z

68

A discussion on life-cycle costs of residential photovoltaic systems  

DOE Green Energy (OSTI)

This paper discusses the characteristics and needed improvements/enhancements required for the expansion of the grid-tied residential power systems market. The purpose of the paper is to help establish a common understanding, between the technical community and the customers of the technology, of value and costs and what is required in the longer term for reaching the full potential of this application.

THOMAS,MICHAEL G.; CAMERON,CHRISTOPHER P.

2000-04-11T23:59:59.000Z

69

Residential heating costs: a comparison of geothermal, solar and conventional resources  

DOE Green Energy (OSTI)

The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

1980-08-01T23:59:59.000Z

70

Operation and maintenance cost data for residential photovoltaic modules/panels  

DOE Green Energy (OSTI)

Burt Hill Kosar Rittelmann Associates has conducted a study to identify and estimate costs associated with the operation and maintenance of residential photovoltaic modules and arrays. Six basic topics related to operation and maintenance to photovoltaic arrays were investigated - General (Normal) Maintenance, Cleaning, Panel Replacement, Gasket Repair/Replacement, Wiring Repair/Replacement, and Termination Repair/Replacement. The effects of the mounting types - Rack Mount, Stand-Off Mount, Direct Mount, and Integral Mount - and the installation/replacement type - Sequential, Partial Interruption, and Independent - have been identified and described. Recommendation on methods of reducing maintenance costs are made.

None

1980-07-01T23:59:59.000Z

71

Residential Energy Usage Comparison: Findings  

Science Conference Proceedings (OSTI)

The load shapes of major residential electric and gas appliances were compared in an integrated load and market research project in southern California. The energy consumption data provide a benchmark for comparing the costs of alternative technologies; the market research data relate customer attitudes with appliance load shapes.

1991-08-19T23:59:59.000Z

72

Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities  

DOE Green Energy (OSTI)

Grid parity--or break-even cost--for photovoltaic (PV) technology is defined as the point where the cost of PV-generated electricity equals the cost of electricity purchased from the grid. Break-even cost is expressed in $/W of an installed system. Achieving break-even cost is a function of many variables. Consequently, break-even costs vary by location and time for a country, such as the United States, with a diverse set of resources, electricity prices, and other variables. In this report, we analyze PV break-even costs for U.S. residential customers. We evaluate some key drivers of grid parity both regionally and over time. We also examine the impact of moving from flat to time-of-use (TOU) rates, and we evaluate individual components of the break-even cost, including effect of rate structure and various incentives. Finally, we examine how PV markets might evolve on a regional basis considering the sensitivity of the break-even cost to four major drivers: technical performance, financing parameters, electricity prices and rates, and policies. We find that local incentives rather than ?technical? parameters are in general the key drivers of the break-even cost of PV. Additionally, this analysis provides insight about the potential viability of PV markets.

Denholm, P.; Margolis, R. M.; Ong, S.; Roberts, B.

2009-12-01T23:59:59.000Z

73

Low-cost load research for electric utilities  

Science Conference Proceedings (OSTI)

Golden Valley Electric Association (GVEA) developed two pragmatic approaches to meet most load-research objectives at a substantially lower cost than would be incurred with traditional techniques. GVEA serves three customer classes, with most of its load in the Fairbanks area. GVEA's new approaches simulate load curves for individual customer classes to the degree necessary to meet most load-research objectives for the utility, including applications to cost-of-service analysis, rate design, demand-side management, and load forecasting. These approaches make class load-shape information available to utilities that cannot otherwise afford to develop such data. Although the two approaches were developed for a small utility, they are likely to work at least as well for medium and large utilities. The first approach simulates class curves by combining load data from system feeders with information on customer mix and energy usage. GVEA's supervisory control and data acquisition system gives hourly data on feeder loads, and its billing database provides the number of customers and kilowatt-hour usage by customer class on each feeder. The second approach enhances load-research results by redefining target parameters. Data from several like-hours are used to calculate substitutes for the parameters traditionally defined from single-hour data points. The precision of peak responsibility estimates, for example, can be improved if several of the highest hourly demands in a given time period are used rather than the single highest hourly demand. Arguably, use of several highest hourly demands can also improve the reliability of the allocation of responsibility.

Gray, D.A.; Butcher, M.

1994-08-01T23:59:59.000Z

74

Development of an Energy-Savings Calculation Methodology for Residential Miscellaneous Electric Loads: Preprint  

SciTech Connect

In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.

Hendron, R.; Eastment, M.

2006-08-01T23:59:59.000Z

75

Residential Humidity Control Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Humidity Control Strategies Residential Humidity Control Strategies Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control goals  Comfort, and Indoor Air Quality  Control indoor humidity year-around, just like we do temperature  Durability and customer satisfaction  Reduce builder risk and warranty/service costs 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control challenges 1. In humid cooling climates, there will always be times of the year when there is little sensible cooling load to create thermostat demand but humidity remains high * Cooling systems that modify fan speed and temperature set point based on humidity can help but are still limited

76

Determining the Cost of Cycling and Varied Load Operations: Methodology  

Science Conference Proceedings (OSTI)

For many reasons—heightened wholesale electricity competition under deregulation, new market rules, growing capacity due to additions of new gas-fired capacity, environmental pressures on coal units—the power industry must operate power plants differently. In particular, many generating units that formerly ran around the clock must adjust operations to cycle or to follow load (demand). This report describes a new methodology for estimating the long-term wear and tear costs that inevitably acc...

2002-11-22T23:59:59.000Z

77

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

C-1 Residential Electricity Price Forecast (AEOC.1.2 Residential Electricity Price Forecast (AEO 2003) AEOdoes not require electricity price trends and discount

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

78

Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes: Preprint  

Science Conference Proceedings (OSTI)

The U. S. Department of Energy's Building America residential systems research project uses an analysis-based system research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analysis approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-savings goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

Anderson, R.; Christensen, C.; Horowitz, S.

2006-04-01T23:59:59.000Z

79

Evaluation of solar gain through skylights for inclusion in the SP53 residential building loads data base  

DOE Green Energy (OSTI)

The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and cooling loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.

Hanford, J.W.; Huang, Y.J.

1993-12-01T23:59:59.000Z

80

Evaluation on Cooling Energy Load with Varied Envelope Design for High-Rise Residential Buildings in Malaysia  

E-Print Network (OSTI)

With the development of the economy in the recent years, Malaysia is maintaining a high economic growth and therefore, its energy consumption increases dramatically. Residential buildings are characterized by being envelope-load dominated buildings, hence are greatly influenced by the outside climatic conditions. Due to the hot humid climate of Malaysia, air conditioning system accounts for more than 45% of the total electricity used in the residential sector which is required to remove substantial amount of gained heat due to poor thermal envelope performance. This paper uses Ecotect software to analyze the impact of building envelope design on energy cooling load for residential building in Penang, Malaysia, which include area ratio of window to floor, exterior wall thermal insulation, and several kinds of shading system. This paper describes an integrated passive design approach to reduce the cooling requirement for high-rise apartments through an improved building envelope design. Comparing with the other passive strategies investigated in this paper, the results indicated that exterior wall thermal insulation is the best strategy to decrease both annual cooling energy load and peak cooling load which achieved a reduction of 10.2% and 26.3% respectively. However, the other passive strategies applied also have some marginal effect on decreasing the cooling load.

Al-Tamimi, N.; Fadzil, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

NLE Websites -- All DOE Office Websites (Extended Search)

Break-even Cost for Residential Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Technical Report NREL/TP-6A20-48986 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Prepared under Task No. SS10.2110 Technical Report

82

Residential heating and cooling energy cost implications associated with window type: Revision  

SciTech Connect

We present a comparative study in which residential heating and cooling energy costs are analyzed as a function of window glazing type, with a particular emphasis on the performance of windows having low-emittance coatings. The DOE-2.1B energy analysis simulation program was used to generate a data base of the heating and cooling energy requirements of a prototypical single-family ranch-style house. Algebraic expressions derived by multiple regression techniques permitted a direct comparison of those parameters that characterize window performance: orientation, size, conductance, and solar transmission properties. We use these equations to discuss the energy implications of conventional double- and triple-pane window designs and newer designs in which number and type of substrate, low-emittance coating type and location and gas fill are varied. Results are presented for the heating-dominated climate of Madison, WI, and cooling-dominated locations of Lake Charles, LA, and Phoenix, AZ. The analysis shows the potential for substantial savings but suggests that both heating and cooling energy should be examined when evaluating the performance of different fenestration systems. Coating and substrate properties and the location of the coating in the glazing system are shown to have moderate effects as a function of orientation and climate. In addition, with the low-conductance glazing units, the window frame becomes a contributor to overall residential energy efficiency. 4 refs., 10 figs., 1 tab.

Sullivan, R.; Selkowitz, S.

1986-11-01T23:59:59.000Z

83

Residential heating and cooling energy cost implications associated with window type  

SciTech Connect

A comparative study is presented in which residential heating and cooling energy costs are analyzed as a function of window glazing type, with a particular emphasis on the performance of windows having low-emittance coatings. The DOE-2.1B energy analysis simulation program was used to generate a data base of the heating and cooling energy requirements of a prototypical single-family ranch-style house. Algebraic expressions derived by multiple regression techniques permitted a direct comparison of those parameters that characterize window performance: orientation, size, conductance, and solar transmission properties. These equations are used to discuss the energy implications of conventional double- and triple-pane window designs and newer designs in which number and type of substrate, low-emittance coating type and location and gas fill are varied. Results are presented for the heating-dominated climate of Madison, WI, and cooling-dominated locations of Lake Charles, LA, and Phoenix, AZ. The analysis shows the potential for substantial savings but suggests that both heating and cooling energy should be examined when evaluating the performance of different fenestration systems. Coating and substrate properties and the location of the coating in the glazing system are shown to have moderate effects as a function of orientation and climate. In addition, with the low-conductance glazing units, the window frame becomes a contributor to overall residential energy efficiency.

Sullivan, R.; Selkowitz, S.

1986-11-01T23:59:59.000Z

84

A Field Study on Residential Air Conditioning Peak Loads During Summer in College Station, Texas  

E-Print Network (OSTI)

Severe capacity problems are experienced by electric utilities during hot summer afternoons. Several studies have found that, in large part, electric peak loads can be attributed to residential airconditioning use. This air-conditioning peak depends primarily on two factors: (i) the manner in which the homeowner operates his air-conditioner during the hot summer afternoons, and (ii) the amount by which the air-conditioner has been over-designed. Whole-house and air-conditioner electricity use data at 15 minute time intervals have been gathered and analyzed for 8 residences during the summer of 1991, six of which had passed the College Station Good Cents tests. Indoor air temperatures were measured by a mechanical chart recorder, while a weather station located on the main campus of Texas A&M university provided the necessary climatic data, especially ambient temperature, relative humidity and solar radiation. The data were analysed to determine the extent to which air-conditioning over-sizing and homeowner intervention contributes to peak electricity use for newer houses in College Station, Texas.

Reddy, T. A.; Vaidya, S.; Griffith, L.; Bhattacharyya, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

85

Optimizing Load Control For A Residential Microgrid In A Collaborative Environment.  

E-Print Network (OSTI)

??Rosenberger, Jay This research is aimed to develop an analytical model for a Residential Microgrid under a collaborative environment. In order to maximize profit, Collaborative… (more)

Ahmadi, Majid

2013-01-01T23:59:59.000Z

86

Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020  

SciTech Connect

The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

2013-08-01T23:59:59.000Z

87

Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices  

DOE Green Energy (OSTI)

This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

Not Available

1979-06-01T23:59:59.000Z

88

SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS  

SciTech Connect

The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

GEUTHER J; CONRAD EA; RHOADARMER D

2009-08-24T23:59:59.000Z

89

Online Load Balancing on Unrelated Machines with Startup Costs  

E-Print Network (OSTI)

Motivated by applications in energy-efficient scheduling in data centers, Khuller, Li, and Saha introduced the {\\em machine activation} problem as a generalization of the classical optimization problems of set cover and load balancing on unrelated machines. In this problem, a set of $n$ jobs have to be distributed among a set of $m$ (unrelated) machines, given the processing time of each job on each machine, where each machine has a startup cost. The goal is to produce a schedule of minimum total startup cost subject to a constraint $\\bf L$ on its makespan. While Khuller {\\em et al} considered the offline version of this problem, a typical scenario in scheduling is one where jobs arrive online and have to be assigned to a machine immediately on arrival. We give an $(O(\\log (mn)\\log m), O(\\log m))$-competitive randomized online algorithm for this problem, i.e. the schedule produced by our algorithm has a makespan of $O({\\bf L} \\log m)$ with high probability, and a total expected startup cost of $O(\\log (mn)\\lo...

Azar, Yossi

2012-01-01T23:59:59.000Z

90

Observed Temperature Effects on Hourly Residential Electric Load Reduction in Response to an Experimental Critical Peak Pricing Tariff  

E-Print Network (OSTI)

means of decreasing residential energy consumption. Journalreductions gained through residential CPP rates, with or7. Hypothetical effects of residential CPP rates with and

Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

2005-01-01T23:59:59.000Z

91

Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Buildings in California  

E-Print Network (OSTI)

This  baseline  load  profile  (BLP)  is  key  to to  as  the  baseline  load  profile  or  BLP  and  is  key actual  and  estimated  load  profiles  look,  Figure  1 

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-01-01T23:59:59.000Z

92

Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Buildings in California  

E-Print Network (OSTI)

energy  use  for  space  conditioning,  non? weather Physically,  space?conditioning  loads  are  affected  by 

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-01-01T23:59:59.000Z

93

Energy and Cost Implications of the Florida Energy Star Residential HVAC Rebate Program.  

E-Print Network (OSTI)

??In July 2010, the Florida’s Governors Energy Office released the Florida ENERGY STAR Residential HVAC Rebate Program. The program was funded by a grant from… (more)

Strauss, Kurt

2012-01-01T23:59:59.000Z

94

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

SciTech Connect

This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

Cassard, H.; Denholm, P.; Ong, S.

2011-02-01T23:59:59.000Z

95

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network (OSTI)

Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

Meier, Alan K.

2008-01-01T23:59:59.000Z

96

Statistical Analysis of Baseline Load Models for Non-Residential Buildings  

E-Print Network (OSTI)

estimation of the baseline load profile. In this paper, weDemand response, Baseline load profile, Impacts estimationto as the baseline load profile (or baseline) and is key to

Coughlin, Katie

2012-01-01T23:59:59.000Z

97

Perpetual and low-cost power meter for monitoring residential and industrial appliances  

Science Conference Proceedings (OSTI)

The recent research efforts in smart grids and residential power management are oriented to monitor pervasively the power consumption of appliances in domestic and non-domestic buildings. Knowing the status of a residential grid is fundamental to keep ... Keywords: active ORing, energy harvesting, energy measuring, smart metering, wireless sensor networks

Danilo Porcarelli, Domenico Balsamo, Davide Brunelli, Giacomo Paci

2013-03-01T23:59:59.000Z

98

Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Buildings in California  

E-Print Network (OSTI)

Protocols  for  Demand  Response  Load  Impacts  Estimates, Potter  2006.     The  Demand  Response Baseline, v.1.75.   Assessment  of  Demand  Response  and  Advanced  Metering, 

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-01-01T23:59:59.000Z

99

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

SciTech Connect

Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-03-01T23:59:59.000Z

100

Load-curve responsiveness to weather and the cost-effectiveness of conservation  

SciTech Connect

A cost-benefit analysis of home-weatherization projects using average incremental power costs instead of peak or off-peak costs shows that some programs are no longer cost-effective. Weatherization improves the energy efficiency of houses and reduces demand on the utility, but a study of how monthly load curves at a Pacific Northwest utility responded to weather over a 12-month period indicates that abnormal weather shifts the entire load curve. 1 figure. (DCK)

Hellman, M.M.

1982-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems  

SciTech Connect

Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

Feldman, D.; Friedman, B.; Margolis, R.

2013-10-01T23:59:59.000Z

102

Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California  

SciTech Connect

Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load variability, all BLPmodels perform reasonably well in accuracy. - For customer accounts withhighly variable loads, we found that no BLP model produced satisfactoryresults, although averaging methods perform best in accuracy (but notbias). These types of customers are difficult to characterize withstandard BLP models that rely on historic loads and weather data.Implications of these results for DR program administrators andpolicymakersare: - Most DR programs apply similar DR BLP methods tocommercial and industrial sector customers. The results of our study whencombined with other recent studies (Quantum 2004 and 2006, Buege et al.,2006) suggests that DR program administrators should have flexibility andmultiple options for suggesting the most appropriate BLP method forspecific types of customers.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

2008-01-01T23:59:59.000Z

103

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

104

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

additional first cost of energy efficiency design optionsS. Meyers, Cost and Energy Consumption of Energy Efficiencyadditional first cost of energy efficiency design options

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

105

Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions – Technical Support Document  

SciTech Connect

This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy’s (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of efficient residential and commercial building energy codes. These codes set the minimum requirements for energy efficient building design and construction and ensure energy savings on a national level. This analysis focuses on one and two family dwellings, townhomes, and low-rise multifamily residential buildings. For these buildings, the basis of the energy codes is the International Energy Conservation Code (IECC). This report does not address commercial and high-rise residential buildings, which reference ANSI/ASHRAE/IES Standard 90.1.

Mendon, Vrushali V.; Lucas, Robert G.; Goel, Supriya

2012-12-04T23:59:59.000Z

106

A degree-day method for residential heating load calculations specifically incorporating the utilization of solar gains  

DOE Green Energy (OSTI)

A simple and well known method of estimating residential heating loads is the variable base degree-day method, in which the steady-state heat loss rate (UA) is multiplied by the degree-days based from the balance temperature of the structure. The balance temperature is a function of the UA as well as the average rate of internal heat gains, reflecting the displacement of the heating requirements by these gains. Currently, the heat gains from solar energy are lumped with those from appliances to estimate an average rate over the day. This ignores the effects of the timing of the gains from solar energy, which are more highly concentrated during daytime hours, hence more frequently exceeding the required space heat and less utilizable than the gains from appliances. Simulations or specialized passive solar energy calculation methods have previously been required to account for this effect. This paper presents curves of the fraction of the absorbed solar energy utilized for displacement of space heat, developed by comparing heating loads calculated using a variable base degree-day method (ignoring solar gains) to heating loads from a large number of detailed DOE-2 simulations. The difference in the loads predicted by the two methods can be interpreted as the utilized solar gains. The solar utilization decreases as the thermal integrity increases, as expected, and the solar utilizations are similar across climates. They can be used to estimate the utilized fraction of the absorbed solar energy and, with the load predicted by the variable base degree-day calculation, form a modified degree-day method that closely reproduces the loads predicted by the DOE-2 simulation model and is simple enough for hand calculations. 6 refs., 6 figs., 2 tabs.

Lucas, R.G.; Pratt, R.G.

1990-09-01T23:59:59.000Z

107

Statistical Analysis of Baseline Load Models for Non-Residential Buildings  

SciTech Connect

Policymakers are encouraging the development of standardized and consistent methods to quantify the electric load impacts of demand response programs. For load impacts, an essential part of the analysis is the estimation of the baseline load profile. In this paper, we present a statistical evaluation of the performance of several different models used to calculate baselines for commercial buildings participating in a demand response program in California. In our approach, we use the model to estimate baseline loads for a large set of proxy event days for which the actual load data are also available. Measures of the accuracy and bias of different models, the importance of weather effects, and the effect of applying morning adjustment factors (which use data from the day of the event to adjust the estimated baseline) are presented. Our results suggest that (1) the accuracy of baseline load models can be improved substantially by applying a morning adjustment, (2) the characterization of building loads by variability and weather sensitivity is a useful indicator of which types of baseline models will perform well, and (3) models that incorporate temperature either improve the accuracy of the model fit or do not change it.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-11-10T23:59:59.000Z

108

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

of separate costs for natural gas or oil, and electricity.receives oil-fired boilers INPUTS First Cost Inputs The flowfurnaces, and oil-fired furnaces, we scaled the cost for

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

109

The Potential of Vegetation in Reducing Summer Cooling Loads in Residential Buildings  

Science Conference Proceedings (OSTI)

The potential of trees and other vegetation to reduce building cooling loads has been recorded in a number of studies but the meso- and microclimate changes producing such savings are not well understood. This paper describes a preliminary ...

Y. J. Huang; H. Akbari; H. Taha; A. H. Rosenfeld

1987-09-01T23:59:59.000Z

110

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

E-Print Network (OSTI)

Average statewide residential electricity rates were takenElectricity price escalation rates for the residentialelectricity rate that is 20% higher than the average statewide residential

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

111

Residential implementation of critical-peak pricing of electricity  

E-Print Network (OSTI)

Modeling alternative residential peak-load electricity rateKeywords: electricity rates, residential electricity, demandrates be targeted to the largest residential users of electricity,

Herter, Karen

2006-01-01T23:59:59.000Z

112

Residential implementation of critical-peak pricing of electricity  

E-Print Network (OSTI)

L.R. Modeling alternative residential peak-load electricitydemand response to residential critical peak pricing (CPP)analysis of California residential customer response to

Herter, Karen

2006-01-01T23:59:59.000Z

113

Cost and economic impact of tire reserve load requirements. Final report, July-October 1980  

Science Conference Proceedings (OSTI)

Inadequate maintenance of proper tire inflation by consumers and low tire reserve loads by auto manufacturers have contributed to unsafe driving conditions and tire failure. This report assesses the cost and economic impact of increased minimum tire reserve load requirements on the auto and tire industries, and the feasibility of regulation implementation for 3, 5, 7, 10, and 12% tire reserve loads. These are analyzed for the years 1981 through 1984. The costs and projections are based on the conditions found in the 1980 vehicle fleet and tire population and upon industry projections of future conditions.

Viergutz, O.; Marek, S.; Kelley, C.; Wakeley, H.

1980-10-01T23:59:59.000Z

114

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

115

Building Energy Software Tools Directory: Right-Suite Residential for  

NLE Websites -- All DOE Office Websites (Extended Search)

Right-Suite Residential for Windows Right-Suite Residential for Windows Right-Suite Residential for Windows logo. All-in-one HVAC software performs residential loads calculations, duct sizing, energy analysis, equipment selection, cost comparison calculations, and geothermal loop design. Also allows you to design your own custom proposals. Used for system design, for sales representation, and for quotation preparations. Buy only what you need. Unused functions are shipped as demos, so the program can grow with your needs. Keywords residential loads calculations, duct sizing, energy analysis, HVAC equipment selection, system design Validation/Testing N/A Expertise Required Knowledge of general HVAC concepts. High level of computer literacy not required. Users Over 10,000 users of Right-J loads.

116

EMPS-2.1 Computer Program for Residential Building Energy Analysis, Engineering Manual  

Science Conference Proceedings (OSTI)

Evaluating the projected energy efficiency of residential building designs and equipment options requires a sophisticated analytic methodology. Techniques described in this manual analyze building thermal loads, heating and cooling systems, water heaters, and life-cycle costs and electric rates.

1988-02-08T23:59:59.000Z

117

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

SciTech Connect

In 2001, the U.S. Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered.

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers,Steve; McMahon, James

2004-01-20T23:59:59.000Z

118

Consumer thermal energy storage costs for residential hot water, space heating and space cooling systems  

DOE Green Energy (OSTI)

The cost of household thermal energy storage (TES) in four utility service areas that are representative for hot water, space heating, and space cooling systems in the United States is presented. There are two major sections of the report: Section 2.0 is a technology characterization of commercially available and developmental/conceptual TES systems; Section 3.0 is an evaluation of the consumer cost of the three TES systems based on typical designs in four utility service areas.

None

1976-11-30T23:59:59.000Z

119

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

120

Alternative wind power modeling methods using chronological and load duration curve production cost models  

DOE Green Energy (OSTI)

As an intermittent resource, capturing the temporal variation in windpower is an important issue in the context of utility production cost modeling. Many of the production cost models use a method that creates a cumulative probability distribution that is outside the time domain. The purpose of this report is to examine two production cost models that represent the two major model types: chronological and load duration cure models. This report is part of the ongoing research undertaken by the Wind Technology Division of the National Renewable Energy Laboratory in utility modeling and wind system integration.

Milligan, M R

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Exploring Cost-Effective, High Performance Residential Retrofits for Affordable Housing in the Hot Humid Climate  

E-Print Network (OSTI)

In 2009, a Department of Energy Building America team led by the Florida Solar Energy Center began working with partners to find cost-effective paths for improving the energy performance of existing homes in the hot humid climate. A test-in energy audit and energy use modeling of the partner’s proposed renovation package was performed for 41 affordable and middle income foreclosed homes in Florida and Alabama. HERS1 Indices ranged from 92 to 184 with modeled energy savings ranging from 3% to 50% (average of 26%). Analyses and recommendations were discussed with partners to encourage more efficient retrofits, highlight health and safety issues, and gather feedback on incremental cost of high performance measures. Ten completed renovations have modeled energy savings ranging from 9% to 48% (average 31%.) This paper presents the project’s process including our findings thus far and highlights of the first home to meet the target HERS Index of 70.

McIlvaine, J.; Sutherland, K.; Chandra, S.; Schleith, K.

2010-08-01T23:59:59.000Z

122

Residential passive solar systems: regional sensitivity to system performance costs, and alternative prices  

DOE Green Energy (OSTI)

The economic potential of two passive space heating configurations are analyzed. These are a masonry thermal storage wall (Trombe) and a direct gain system - both with night insulation. A standard tract home design for each of the two passive systems is being used throughout the analysis to allow interregional comparisons. The economic performance of these two systems is evaluated on a regional basis (223 locations) throughout the United States. For each of the two conventional energy types considered (electricity and natural gas), sensitivity analysis is conducted to determine the impact of alternative fuel price escalation rates and solar costs upon feasibility of the two solar systems. Cost goals for solar system prices are established under one set of future fuel prices and stated economic conditions. (MOW)

Kirschner, C.; Ben-David, S.; Roach, F.

1979-01-01T23:59:59.000Z

123

Exploring Cost-Effective, High Performance Residential Retrofits for Affordable Housing in the Hot Humid Climate  

SciTech Connect

In 2009, a Department of Energy Building America team led by the Florida Solar Energy Center began working with partners to find cost-effective paths for improving the energy performance of existing homes in the hot humid climate. A test-in energy audit and energy use modeling of the partner's proposed renovation package was performed for 41 affordable and middle income foreclosed homes in Florida and Alabama. HERS1 Indices ranged from 92 to 184 with modeled energy savings ranging from 3% to 50% (average of 26%). Analyses and recommendations were discussed with partners to encourage more efficient retrofits, highlight health and safety issues, and gather feedback on incremental cost of high performance measures. Ten completed renovations have modeled energy savings ranging from 9% to 48% (average 31%.) This paper presents the project's process including our findings thus far and highlights of the first home to meet the target HERS Index of 70.

McIlvaine, Janet; Sutherland, Karen; Schleith, Kevin; Chandra, Subrato

2010-08-27T23:59:59.000Z

124

Load Management: Opportunity or Calamity?  

E-Print Network (OSTI)

After the change in the economics of generating electricity which took place in 1973, many utilities are examining options to hold down their costs. One fact which is clear is that the difference between peak and off peak generating costs is much larger now than prior to 1973. Utilities are examining two options which can be termed load management. One option is to control discretionary loads during peak periods. Cycling of residential water heaters or shutting off industrial electric furnaces during peak periods are both examples of load control which lower the costs borne by the utility. The other option is the use of seasonal surcharges or time-of-day rates to induce customers to alter their usage patterns. Both these load management options focus on reducing utility costs overall without regard to the cost to the consumers affected by the load management options. The issue, then, is whether industrial customers can find opportunities to lower their costs under load management.

Males, R.; Hassig, N.

1981-01-01T23:59:59.000Z

125

THE COST OF MAINTENANCE TRANSFER UNDER LOAD TAP OF THE TRANSFORMERS POWER OF EXTRA HIGH VOLTAGE THE ELETRONORTE.  

E-Print Network (OSTI)

??In this work a methodology for reduction of maintenance cost in the on-load tap changers (OLTC) of extra high voltage is proposed. The methodology is… (more)

RAIMUNDO NONATO ROSA FILHO

2005-01-01T23:59:59.000Z

126

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

127

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

128

Non-Hardware (SoftŽ) Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013…2020  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Hardware ("Soft") Cost- Non-Hardware ("Soft") Cost- Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020 Kristen Ardani 1 , Dan Seif 2 , Robert Margolis 1 , Jesse Morris 2 , Carolyn Davidson 1 , Sarah Truitt 1 , and Roy Torbert 2 1 National Renewable Energy Laboratory 2 Rocky Mountain Institute NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-7A40-59155 August 2013 Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

129

Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code  

Science Conference Proceedings (OSTI)

The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

130

Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options  

E-Print Network (OSTI)

Field-proven solutions already exist to reduce the loss of gas production when liquid loading begins to occur. However, the choice of remedial technique, its feasibility, and its cost, vary considerably depending on a field's location, size export route, and the individual operator's experience. The selection of the best remedial technique and the timeframe within which the remedial action is undertaken are critical to a project's profitability. Although there are literature reviews available regarding solutions to liquid loading problems in gas wells, a tool capable of helping an operator select the best remedial option for a specific field case still does not exist. This thesis proposes a newly developed decision matrix to screen the possible remedial options available to the operator. The matrix can not only provide a critical evaluation of potential solutions to the problem of liquid loading in gas wells vis-a?-vis the existing technical and economic constraints, but can also serve as a reference to operators for investment decisions and as a quick screening tool for the selection of production optimisation strategies. Under its current status of development, this new tool consists of a decision algorithm built around a decision tree. Unlike other data mining techniques, decision trees quickly allow for subdividing large initial datasets into successively smaller sets by a series of decision rules. The rules are based on information available in the public domain. The effectiveness of the matrix is now ready to be tested against real field datasets.

Park, Han-Young

2008-05-01T23:59:59.000Z

131

Residential Energy Disclosure (Hawaii)  

Energy.gov (U.S. Department of Energy (DOE))

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

132

Residential Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Performance: guidelines, analysis and measurements of window and skylight performance Windows in residential buildings consume approximately 2% of all the energy used...

133

Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)  

Science Conference Proceedings (OSTI)

Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

2011-09-01T23:59:59.000Z

134

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

SciTech Connect

In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-10-10T23:59:59.000Z

135

Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff  

SciTech Connect

The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

2005-11-14T23:59:59.000Z

136

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

J.E. 1986. The LBL Residential Energy Model. LawrenceInc. MEANS. 1992. Residential Cost Data: 11th Annual EditionInstitute. 1989. Residential End-Use Energy Consumption: A

Wenzel, T.P.

2010-01-01T23:59:59.000Z

137

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

E-Print Network (OSTI)

higher average state electricity rates, which increase thethe average state retail electricity rate, meaning thatsensitivities on state retail electricity rates, O&M costs,

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

138

building load data | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

139

electric load data | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

140

commercial load | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear power: least cost option for base-load electricity in Finland  

E-Print Network (OSTI)

As a result of the outstanding operating experience and the low electricity production costs of the existing Finnish nuclear power plants, energy-intensive process industries in particular have a strong belief in nuclear power. There is a potential interest in building more nuclear capacity, the fifth unit, in order to guarantee for Finnish industry the availability of cheap electrical energy in the future. In any case more baseload generation capacity will be needed by 2010 to meet the future growth of electricity consumption in Finland. Nuclear power generation matches excellently with the long-duration load profile of the Finnish power system. The good performance of Finnish nuclear power has yielded benefits also to consumers through its contribution to decreasing the electricity price. Furthermore, the introduction of nuclear power has resulted in a clear drop in the carbon dioxide emissions from electricity generation during the 1970s and 1980s, as shown in Figure 1. In 1999 the four Finnish nuclear power units at Loviisa and Olkiluoto generated 22.1 TWh of electricity, roughly equivalent to one third of the total

Risto Tarjanne; Sauli Rissanen

2000-01-01T23:59:59.000Z

142

Residential Gateways and Controllers  

Science Conference Proceedings (OSTI)

Energy companies are exploring two-way residential communications to help reduce the cost of providing standard energy-related services, such as itemized billing or demand reduction, as well as to provide nontraditional services, such as diagnostic services and e-mail. This report covers the key to development of these services -- residential gateways and controllers. The report was prepared with both technical and financial energy company managers in mind, for use as a reference tool and strategic plann...

1999-08-31T23:59:59.000Z

143

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

E-Print Network (OSTI)

was used to forecast electricity prices into the future (Case forecasts residential electricity prices to decline to

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-01-01T23:59:59.000Z

144

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

145

OpenEI Community - load data  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

146

OpenEI Community - electric load data  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

147

OpenEI Community - building load  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

148

OpenEI Community - commercial load  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

149

OpenEI Community - building load data  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

150

Non-Intrusive Load Monitoring (NILM)Technologies for End-Use Load Disaggregation: Laboratory Evaluation I  

Science Conference Proceedings (OSTI)

This report presents the results of a laboratory evaluation to assess the cost versus accuracy performance of residential non-intrusive load monitoring (NILM) technology. NILM is an evolving technology that can be deployed for utility and customer applications, such as end-use load disaggregation, energy audits, real-time customer information and appliance or load diagnostics. Commercial NILM products for utility and customer applications continue to emerge, although most products available today ...

2013-05-22T23:59:59.000Z

151

Energy Data Sourcebook for the U.S. Residential Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Sourcebook for the U.S. Residential Sector Data Sourcebook for the U.S. Residential Sector Title Energy Data Sourcebook for the U.S. Residential Sector Publication Type Report LBNL Report Number LBNL-40297 Year of Publication 1997 Authors Wenzel, Thomas P., Jonathan G. Koomey, Gregory J. Rosenquist, Marla C. Sanchez, and James W. Hanford Date Published 09/1997 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA ISBN Number LBNL-40297, UC-1600 Keywords Enduse, Energy End-Use Forecasting, EUF Abstract Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment; historical and current appliance and equipment market shares; appliance and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl.gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

152

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

153

Regional Residential  

Gasoline and Diesel Fuel Update (EIA)

upward pressure from crude oil markets, magnified by a regional shortfall of heating oil supplies, residential prices rose rapidly to peak February 7. The problem was...

154

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

155

Low-Cost NIALMS Technology: Market Issues & Product Assessment  

Science Conference Proceedings (OSTI)

Non-Intrusive Appliance Load Monitoring System (NIALMS) provides the ability to submeter residential loads from the meter, without intruding into the home. It utilizes a meter recorder installed between the meter socket and a meter, eliminating the need for additional sensors and dataloggers. NIALMS is now a commercially available product, used primarily for load research by utilities. The issues surrounding the proliferation of NIALMS in the meter industry have always involved cost and functionality. Bu...

1997-09-30T23:59:59.000Z

156

Testing and Analysis of Low Cost Composite Materials Under Spectrum Loading and High Cycle Fatigue Conditions  

E-Print Network (OSTI)

papers cited are available through the Sandia National Laboratories website: www.sandia.gov/Renewable_Energy/wind_energy-year experimental study of low- cost composite materials for wind turbine blades. Wind turbines are subjected to 109 in and potential interactions between failure modes. Wind turbine design codes typically assume a Miner's rule

157

Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Efficiency Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Commercial Heating & Cooling Program Info State Iowa Program Type Utility Grant Program Rebate Amount 50% of cost, up to $100 Provider Farmers Electric Cooperative Farmers Electric Cooperative (FEC) offers a grant program which splits the cost of simple energy efficient improvements to the home. The utility will cover 50% of the cost of eligible improvements made by the participating member. Grants are limited to $100 per year. A variety of measures and

158

Residential Energy Audits  

E-Print Network (OSTI)

A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where the RCS program is considered very successful; however, the majority of utilities have found that the costs far exceed the benefits. Typically, the response rates are low (less than 1% per year for Texas utilities), the audits primarily reach upper income persons, and consumers only implement the low-cost recommendations. The Texas PUC is on record as being opposed to the RCS as well as the Commercial and Apartment Conservation Service (CACS) and now requires Energy Efficiency Plans with detailed cost and savings information on utility end user programs.

Brown, W.

1985-01-01T23:59:59.000Z

159

Berkshire Gas - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization - Single Family: 75% of cost Weatherization - Multi-Family: 50% of cost Weatherization - Low-Income: 100% of cost Furnaces: $500 - $800 Boilers: $1,000 - $1,500 Combined Boiler/Water Heater: $1,200

160

While-you-wait window load study predicts costs of comparative glazings  

SciTech Connect

This paper presents a brief-case packaged program, networked by phone to a central computer which provides an on-the-spot window load study and printout. This commercial energy simulation report (ESPCOM), five pages long, can predict actual window energy consumption in commercial buildings to within two percent annually. It is designed for buildings which have at least 5000 square feet of surface glass. ESPCOM considers a building's architectural, engineering and operational data, then determines the five-year estimated savings which can be expected of the present glazing system versus the system enhanced with any three of a series of 17 professional grade insulating films.

1984-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alameda Municipal Power - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Program Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Maximum Rebate Single family, duplex, or triplex: $960 per unit Multi-family dwelling (four or more units): $480 per unit. Program Info State California Program Type Utility Grant Program Rebate Amount Weatherization: 80% of the cost Do-It-Yourself Weatherization: 70% of the cost Provider Alameda Municipal Power Alameda Municipal Power (AMP) offers a grant to help its residential customers who have electric heat weatherize homes to increase efficiency.

162

PQ TechWatch: Understanding and Managing Residential Power Quality  

Science Conference Proceedings (OSTI)

This PQ TechWatch examines the changing face of the appliances providing the largest share of the power consumption in residential sites, and then it looks on the horizon at new additions to the residential load profile.

2009-12-11T23:59:59.000Z

163

Residential Programmable Communicating Thermostats  

Science Conference Proceedings (OSTI)

Residential programmable communicating thermostats (PCTs) enable demand response and offer a convenient energy management option for the consumer. PCTs allow customers to program and control temperature set-points remotely, primarily through the Internet. Additionally, some of these thermostats can be remotely controlled by utilities or third parties to curtail heating and cooling loads during periods of peak electricity demand. This Technology Brief, prepared for the Energy Efficiency Initiative, presen...

2007-12-05T23:59:59.000Z

164

Detailed residential electric determination  

DOE Green Energy (OSTI)

Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

Not Available

1984-06-01T23:59:59.000Z

165

Cost-Effective Integration of Efficient Low-Lift Base Load Cooling Equipment  

Science Conference Proceedings (OSTI)

The long-term goal of DOE’s Commercial Buildings Integration subprogram is to develop cost-effective technologies and building practices that will enable the design and construction of net Zero Energy Buildings — commercial buildings that produce as much energy as they use on an annual basis — by 2025. To support this long-term goal, DOE further called for — as part of its FY07 Statement of Needs — the development by 2010 of “five cost-effective design technology option sets using highly efficient component technologies, integrated controls, improved construction practices, streamlined commissioning, maintenance and operating procedures that will make new and existing commercial buildings durable, healthy and safe for occupants.” In response, PNNL proposed and DOE funded a scoping study investigation of one such technology option set, low-lift cooling, that offers potentially exemplary HVAC energy performance relative to ASHRAE Standard 90.1-2004. The primary purpose of the scoping study was to estimate the national technical energy savings potential of this TOS.

Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Armstrong, Peter R.

2008-01-14T23:59:59.000Z

166

Cookeville Electric Department - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cookeville Electric Department - Residential Energy Efficiency Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Utility Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Energy Audit Suggested Measures: $500 Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $100 Energy Audit Suggested Measures: 50% of cost Provider Cookeville Electric Department Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'' rebate program. Rebates

167

Residential Energy Display Devices  

Science Conference Proceedings (OSTI)

Residential energy display devices provide direct feedback to consumers about their electricity use and cost, direct feedback that potentially can help customers manage electricity consumption. EPRI tested five different stand-alone display devices in its Energy Efficiency and Demand Response Living Laboratory to assess whether devices functioned according to manufacturer specifications. In addition to providing results of these tests, this Technology Brief describes how display devices operate, summariz...

2008-06-20T23:59:59.000Z

168

Lane Electric Cooperative- Residential and Commercial Weatherization Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a residential cash grant for 25% of measure costs up to $1,000,...

169

National Grid (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Grid (Electric) - Residential Energy Efficiency Rebate National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Other Commercial Weatherization Manufacturing Appliances & Electronics Program Info State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $30 Multifamily Energy Evaluation: Free assessment, installation of up to ten CFLs/unit, water efficiency measures, hot water pipe and tank wrap, and a $300 rebate for refrigerator replacement costs. Provider National Grid Residential Upstate Efficiency Programs National Grid residential electric customers in Upstate New York are

170

New Mexico Gas Company - Residential Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Programs Residential Efficiency Programs New Mexico Gas Company - Residential Efficiency Programs < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Insulation: $500 Program Info State New Mexico Program Type Utility Rebate Program Rebate Amount ENERGY STAR Qualifying Home: $750 New Mexico Energy$mart Income Qualifying Weatherization: Free Tankless Water Heater: $300 Insulation: 25% of cost up to $500 The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding

171

Guidelines for residential commissioning  

E-Print Network (OSTI)

Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics” Lawrence

Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

172

Non-residential | OpenEI  

Open Energy Info (EERE)

05 05 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278105 Varnish cache server Non-residential Dataset Summary Description Natural gas consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009. Source California Energy Commission Date Released Unknown Date Updated Unknown Keywords annual energy consumption Energy Consumption Natural Gas Non-residential Residential Data text/csv icon Natural Gas Consumption By County (csv, 17 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006-2009 License License Other or unspecified, see optional comment below

173

Austin Energy's Residential Solar Rate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leslie Libby Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW Municipal and Schools - 1.0 MW TOTAL - 9.4 MW $0 $2 $4 $6 $8 $10 $12 $14 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 Installed Cost ($/Watt-DC) Residential Commercial Municipal Residential Rebate $2.00/Watt Average Installed Cost $3.75/Watt - SEIA Q2 2012 Report - Austin had the lowest installed cost in the nation ($3.88/W-DC)

174

U.S. Residential Electricity Use Trends  

Science Conference Proceedings (OSTI)

This report summarizes electricity end use in the residential sector, with national level and regional level data. Load shapes for residential energy use are also provided, with focus on two example U.S. Census region divisions: East South Central and Mountain.

2008-08-29T23:59:59.000Z

175

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

176

load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

177

Residential implementation of critical-peak pricing of electricity  

E-Print Network (OSTI)

residential peak-load electricity rate structures. Journalefficiency efforts. Keywords: electricity rates, residentialmust suffer higher electricity rates to pay for the bill

Herter, Karen

2006-01-01T23:59:59.000Z

178

Residential Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Building Renovations Residential Building Renovations Residential Building Renovations October 16, 2013 - 4:57pm Addthis Renewable Energy Options Residential Building Renovations Photovoltaics Daylighting Solar Water Heating Geothermal Heat Pumps (GHP) Biomass Heating In some circumstances, Federal agencies may face construction or renovation of residential units, whether single-family, multi-family, barracks, or prisons. Based on typical domestic energy needs, solar water heating and photovoltaic systems are both options, depending on the cost of offset utilities. These systems can be centralized for multi-family housing to improve system economics. Daylighting can reduce energy costs and increase livability of units. Geothermal heat pumps (GHP) are a particularly cost-effective option in

179

Baseline data for the residential sector and development of a residential forecasting database  

SciTech Connect

This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

1994-05-01T23:59:59.000Z

180

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy lossesgains that when combined will be offset by a building's heatingcooling system...

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Air-Source Heat Pumps for Residential and Light Commercial Space Conditioning Applications  

Science Conference Proceedings (OSTI)

This technology brief provides the latest information on current and emerging air-source heat pump technologies for space heating and space cooling of residential and light commercial buildings. Air-source heat pumps provide important options that can reduce ownership costs while reducing noise and enhancing reliability and customer comfort. The tech brief also describes new air-source heat pumps with an important load shaping and demand response option.

2008-12-15T23:59:59.000Z

182

Power Quality for Satisfied Commercial and Residential Customers Field Test Plan: Monitoring Residential Power Quality  

Science Conference Proceedings (OSTI)

Residential customers are purchasing more and more microprocessor-based appliances. Many of the traditional residential loads, such as heating and air-conditioning equipment, washers and dryers, stoves and cook tops, and audio/video equipment, now have microprocessor technology incorporated into their designs. These appliances tend to be more sensitive than their predecessors, and it is of interest to understand the level of power quality that is experienced at the residential level. EPRI's three-year st...

2000-11-28T23:59:59.000Z

183

Air Barriers for Residential and Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

184

Air Barriers for Residential and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

185

Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications  

DOE Patents (OSTI)

A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

1998-01-01T23:59:59.000Z

186

Realized and projected impacts of U.S. federal efficiency standards for residential appliances  

E-Print Network (OSTI)

11 Appliance Prices and Incremental Costs ofDue to Appliance Standards . . . . . . . . . . . . .Standards for Residential Appliances Stephen Meyers, James

Meyers, Stephen; McMahon, James; McNeil, Michael; Liu, Xiaomin

2002-01-01T23:59:59.000Z

187

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

188

Anaheim Public Utilities - Residential Home Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Home Efficiency Rebate Residential Home Efficiency Rebate Program Anaheim Public Utilities - Residential Home Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Duct Repair: $300 Ceiling Fan: 3 fans Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Refrigerator Recycling: $50 Dishwasher: $50 Room A/C: $50 Central A/C: $100/ton High Performance windows: $1/sq ft Air Duct Repair: 50% of repair cost Ceiling Fan: $20 Whole House Fan: $100

189

Berkshire Gas - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy efficiency rebates. Berkshire Gas will pay residential customers that use gas to heat their homes 75% of the installed cost (up to 2,000) of certain pre-determined energy...

190

Residential photovoltaic worth : a summary assessment  

E-Print Network (OSTI)

Two critical perspectives have been addressed by the analyses of residential photovoltaic worth. For the researcher and designer have been established allowable costs. For the homeowner and institutional decision-makers ...

Dinwoodie, Thomas L.

1982-01-01T23:59:59.000Z

191

Fielding a Plug Load Self Audit -- A Case Study  

Science Conference Proceedings (OSTI)

This report summarizes the efforts of the Snohomish County Public Utility District and the Electric Power Research Institute (EPRI) in developing a low-cost and accurate plug load study. This project had the following three objectives: To use low-cost, self-installed metering equipment to collect and analyze end-use load data for a large number of residential customers, To develop a list of lessons learned about collecting end-use data that could be shared with other utility members conducting similar p...

2011-11-24T23:59:59.000Z

192

City Utilities of Springfield - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Utilities of Springfield - Residential Energy Efficiency City Utilities of Springfield - Residential Energy Efficiency Rebate Program City Utilities of Springfield - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heating Heat Pumps Appliances & Electronics Maximum Rebate Varies by equipment and type of residence Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: $250 - $800 Energy Star Home Rating: 50% of certification cost, up to $400 Programmable Thermostat: $15 Insulation Upgrade: 20% of cost up $300 Natural Gas Furnace: $400 Natural Gas Furnace Tune-Up: $30

193

East Central Electric Cooperative - Residential Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Cooling Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Replacement ground source heat pump - $150 per ton Complete system (unit and ground loop) - $750 per ton Electric water heater - $150 Energy Star Room AC - $50 Energy Star clothes washer - varies depending on cost Energy Star dishwasher - varies depending on cost Provider East Central Electric Cooperative East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water

194

Property For Homeowners- Residential  

E-Print Network (OSTI)

Targets improvements on certain types of property that will save energy when compared to the property which they replaced. • Provides for a uniform credit of 30 percent of the cost of qualifying improvements. • Cap for all tax years is now $1,500, three times the prior legislation provided. • Temporarily can rely on existing manufacturer certifications or appropriate Energy Star labels for purchasing qualified products. For Homeowners- Expanded Energy Efficient Property Tax Credit for Residences • Residential energy efficient property credit has expanded to include more alternate energy equipment.

Tom Sheaffer; Stakeholder Liaison; New Clean Renewable Energy Bonds

2009-01-01T23:59:59.000Z

195

Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount $175 incentive toward the cost of a high-performance AC tune-up of a system size 5 tons or less $200 incentive toward the cost of a high-performance AC tune-up of a system size over 5 tons Tier 1 Home Energy Survey --- Survey $75 discount

196

load profile | OpenEI Community  

Open Energy Info (EERE)

load profile Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 13:03 Commercial and Residential Hourly Load Data Now Available on OpenEI building load building...

197

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

using total residential load profile, for the referencevalues, many customers’ load profiles are either more orparticularly flat or peaky load profiles who would be much

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

198

Residential demand response using reinforcement learning  

E-Print Network (OSTI)

Abstract — We present a novel energy management system for residential demand response. The algorithm, named CAES, reduces residential energy costs and smooths energy usage. CAES is an online learning application that implicitly estimates the impact of future energy prices and of consumer decisions on long term costs and schedules residential device usage. CAES models both energy prices and residential device usage as Markov, but does not assume knowledge of the structure or transition probabilities of these Markov chains. CAES learns continuously and adapts to individual consumer preferences and pricing modifications over time. In numerical simulations CAES reduced average end-user financial costs from 16 % to 40 % with respect to a price-unaware energy allocation. I.

Marco Levorato; Andrea Goldsmith; Urbashi Mitra

2010-01-01T23:59:59.000Z

199

Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities  

DOE Green Energy (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

Goodrich, A.; James, T.; Woodhouse, M.

2012-02-01T23:59:59.000Z

200

Preliminary economic assessment or residential passive solar cooling potential in the United States  

DOE Green Energy (OSTI)

In many areas of the continental United States, residential cooling loads are equal to or greater than energy used for residential space heating. Offsetting part of the cooling load could yield considerable dollar savings to the consumer as well as total energy savings. The physical performances of three passive cooling designs are used to estimate the dollar value of first-year fuel savings (excluding heating benefits) and a maximum affordable design cost. The designs include natural ventilation, forced ventilation, and evaoprative cooling concepts. Because economic performance is primarily governed by the level of electricity prices, dollars savings are greatest in regions that show both good physical performance of the cooling design and high electricity prices. Physical and economic performance summaries are presented in mapped form for 220 solar regions within the continental United States.

Kirschner, C.; Mangeng, C.; Yemans, M.; Roach, F.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

San Isabel Electric Association - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Isabel Electric Association - Residential Energy Efficiency San Isabel Electric Association - Residential Energy Efficiency Rebate Program San Isabel Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Marathon Water Heaters: $175 Marathon Water Heaters w/ SIEA Load Control Program: $425 Electric Water Heater (minimum 30 gallon): $100 Washers: $80 Dryer w/ Moisture Sensor: $50 Dishwashers: $60 Refrigerators: $90 Freezers: $90 ETS Room Units: $72 - $180 ETS Furnaces: $432 - $768 Provider San Isabel Electric Association San Isabel Electric Association (SIEA) provides incentives for its residential customers to install energy efficient equipment. Rebates are

202

Energy Efficiency & On-Bill Financing for Samll Business & Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency & On-Bill Financing For Small Businesses & Residential Presentation for: The Second US-China Energy Efficiency Forum Berkeley, California 05/06/2011 May 5-6, 2011|Lawrence Berkeley National Laboratory, Berkeley, California Connecticut Energy Efficiency Fund (CEEF) Connecticut's Energy Efficiency Programs are funded by a Charge on Customer's electric bills. The Programs are designed to help customers manage their energy usage and cost. May 5-6, 2011|Lawrence Berkeley National Laboratory, Berkeley, California Small Business Objective  PROVIDE > COST-EFFECTIVE, turn-key CONSERVATION and LOAD MANAGEMENT SERVICES to SMALL C&I CUSTOMERS.  What qualifies as a SMALL BUSINESS?

203

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

204

Southwest Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Electric Cooperative - Residential Energy Efficiency Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Cooling Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Energy Audit Repairs: $500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump (New Units): $750/ton Geothermal Heat Pump (Replacement Units): $200/ton Dual Fuel Heat Pump: $150/ton Room AC: $50 Energy Audit Repairs: 50% of cost Provider Southwest Electric Cooperative Southwest Electric Cooperative offers rebates to its customers that purchase energy efficient heating and air conditioning equipment . This

205

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

206

The Effects of Prevaling Wage Requirements on the Cost of Low-Income Housing  

E-Print Network (OSTI)

Infill Residential Project Cost Site and Structure CostEstimates of increased project costs un- der Davis-BaconWage Differential (%) Project Cost Increase (%) Source:

Dunn, Sarah; Quigley, John M.; Rosenthal, Larry A.

2005-01-01T23:59:59.000Z

207

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $80-$120 Boilers: $100 Storage Water Heater: $25-$90 Tankless Water Heater: $100 Attic/Wall Insulation, Sealing and Weatherstripping: 20% of cost Energy Audits: $60-$120 Home Performance with ENERGY STAR: average rebate amount is $710 Provider Xcel Energy Xcel Energy residential customers in Colorado can qualify for cash

208

Mississippi Power - EarthCents Residential Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Power - EarthCents Residential Efficiency Rebate Mississippi Power - EarthCents Residential Efficiency Rebate Program Mississippi Power - EarthCents Residential Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Heat Pump Conversion: $150 - $200 Ductless HVAC System (Whole House): $250 Geothermal Heat Pump: $500 Water Heater Conversions: $150 Heat Pump Water Heater: $300 Provider Efficiency Programs Mississippi Power offers rebates to its residential customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps, HVAC systems,

209

Columbia Gas of Massachusetts - Residential Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Massachusetts - Residential Energy Efficiency Columbia Gas of Massachusetts - Residential Energy Efficiency Programs Columbia Gas of Massachusetts - Residential Energy Efficiency Programs < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Insulation Weatherization: 75% of project cost Energy Star homes: $350 - $8,000, varies by number of units and efficiency Warm Air Furnace: $500 - $800 Gas Boiler: $1,000 - $1,500 Integrated Water Heater/Boiler: $1,200

210

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

211

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Maximum Rebate Ceiling Insulation: $200 Program Info Start Date 1/1/2013 Expiration Date 12/31/2013 State Missouri Program Type Utility Rebate Program Rebate Amount Furnace: $200 (Owner Occupied); $300 (Landlord) Boiler: $100 - $150 (Owner Occupied); $150 - $300 (Landlord) Programmable Thermostat: $25 or 50% of cost Ceiling Insulation: $0.008 x sq ft Comprehensive Audit Measures: Varies widely

212

Peoples Gas - Residential Rebate Program (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Water Heating Maximum Rebate 100% of project cost Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Furnace: $300 -$500 Boiler: varies, depending on size and efficiency Boiler Controls: $100/unit Complete HVAC System Replacement: $650 - $1,000 Water Heater (Tankless): $450 Water Heater (Indirect): $275 Water Heater (Storage Tank): $100 Attic Insulation: $0.10/sq ft Programmable Thermostat: $50

213

Cedar Falls Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Appliance Recycling: 2 rebates per residential account, per appliance type annually Ceiling Fan Light Kits: $20 per light kit; 6 per account per year Central A/C: $400 Air Source Heat Pump: $600 Attic/Ceiling Insulation: $1,000 Air Sealing/Caulking/Weather Stripping: $200 CFL: 50% of cost, up to $5 (10 per customer per year)

214

Ames Electric Department - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ames Electric Department - Residential Energy Efficiency Rebate Ames Electric Department - Residential Energy Efficiency Rebate Programs Ames Electric Department - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Maximum Rebate Appliances: 50% of the equipment cost Programmable Thermostats: 3 per household Room AC: 2 per household Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Star New Home: $500 Energy Audit: FREE Lighting: $2 - $16 per fixture Lighting Sensors: $10 per unit Refrigerators: $25 - $100 Freezers: $50 Dishwashers: $50

215

Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Residential Energy Efficiency Oregon Residential Energy Efficiency Rebate Program Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Forced Air Furnaces and Boilers: $200 Programmable Thermostats: $50 Windows: $2.25/sq. ft. Insulation: 50% of cost Provider Avista Utilities Avista Utilities offers a variety of equipment rebates to Oregon residential customers. Rebates are available for boilers, furnaces, insulation measures, windows and programmable thermostats. All equipment must meet certain energy efficiency standards listed on the program web

216

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

217

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

218

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

219

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

plug loads  [1] DOE "Residential Requirements", slide 12  [LBNL assumption  [11] DOE "Residential Requirements", slide 2 default  [14] DOE "Residential requirements, slide 14,16; 

Al-Beaini, S.

2010-01-01T23:59:59.000Z

220

Peak load management: Potential options  

SciTech Connect

This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ashland Electric Utility - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Residential Energy Efficiency Rebate Ashland Electric Utility - Residential Energy Efficiency Rebate Programs Ashland Electric Utility - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Washing Machines: $35 - $100 Dishwashers: $25 - $60 Refrigerators: $25 - $35 Refrigerator Recycling: $30 Water Heaters: $65 Ductwork: 80% of the cost up to $300 Insulation: Up to 70% of the cost Windows: $6.00 per square foot High-Efficiency Heat Pumps: $600

222

Empire District Electric - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Program (Arkansas) Empire District Electric - Residential Energy Efficiency Rebate Program (Arkansas) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Maximum Rebate Central Air Conditioner: $500 Weatherization Measures: Total cost of measures eligible for rebate cannot exceed $2,964 Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Energy Audits: Varies Weatherization Measures: 25% - 50% of cost Central Air Conditioner: $400 - $500 Programmable Thermostat: $25

223

Residential energy usage comparison project: An overview  

SciTech Connect

This report provides an overveiw of the residential energy usage comparison project, an integrated load and market research project sponsored by EPRI and the Southern California Edison Company. Traditional studies of the relative energy consumption of electric and gas household appliances have relied on laboratory analyses and computer simulations. This project was designed to study the appliance energy consumption patterns of actual households. Ninety-two households in Orange County, California, southeast of Los Angeles, served as the study sample. Half of the households received new electric space-conditioning, water-heating, cooking, and clothes-drying equipment; the other half received gas equipment. The electric space-conditioning and water-heating appliances were heat pump technologies. All of the appliances were metered to collect load-shape and energy consumption data. The households were also surveyed periodically to obtain information on their energy needs and their acceptance of the appliances. The metered energy consumption data provide an important benchmark for comparing the energy consumption and costs of alternative end-use technologies. The customer research results provide new insights into customer preferences for fuel and appliance types. 15 figs., 3 tabs.

Smith, B.A.; Uhlaner, R.T.; Cason, T.N. (Quantum Consulting, Inc., Berkeley, CA (USA))

1990-10-01T23:59:59.000Z

224

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

225

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

Not Available

2012-01-01T23:59:59.000Z

226

Impact of residential photovoltaics on electric utilities: some evidence from field test and simulation  

SciTech Connect

The adoption of residential photovoltaics will affect the load profile of electric utilities, the adequacy and reliability of their capacity, and their consumption of fuels. Impacts are examined by a comparison of the actual load profile facing a Texas utility with solar outputs from both TRNSYS simulations and a test array in Fort Worth. Array output is scaled up parametrically to represent different levels of solar penetration. The reductions in peak load and loss-of-load probability indicate that the adoption of 5 kW arrays by 50% of the residences reduces capacity requirements by only 4%. The value of utility savings will exceed the cost of the PV systems before 1990. The field test results are more favorable than the simulation.

Katzman, M.T.

1981-01-01T23:59:59.000Z

227

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

228

Analysis of Residential Demand Response and Double-Auction Markets  

Science Conference Proceedings (OSTI)

Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

2011-10-10T23:59:59.000Z

229

Energy data sourcebook for the US residential sector  

Science Conference Proceedings (OSTI)

Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

1997-09-01T23:59:59.000Z

230

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Study: Window % of Consumption 1. Categorize component loads

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

231

Residential Duct Design Guide  

Science Conference Proceedings (OSTI)

To provide comfortable levels of heating or cooling, a space-conditioning system must be properly sized and carefully installed. Movement of air and passages through which air is moved are vitally important for comfort. An inadequate system can cause uncomfortable drafts, may fail to move sufficient air to meet space heating and cooling loads, or may result in excessive energy costs. The best way to avoid problems is to prevent them in the design stage. This guide gives HVAC specialists basic information...

2000-11-02T23:59:59.000Z

232

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

233

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Attic Insulation: 40% of cost, up to $450 Wall/Ceiling Insulation: 40% of cost, up to $450 Duct Sealing: Total cost, up to $400 Boilers: $300 Furnace: $150 - $275 Programmable Thermostat: $20 Provider Vectren Energy Delivery of Indiana Vectren Energy Delivery offers its residential natural gas customers in Indiana rebates for the installation of certain high efficiency natural gas

234

Residential photovoltaic module and array requirements study. Final report  

SciTech Connect

Burt Hill Kosar Rittelmann Associates has conducted a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Building codes and referenced standards were reviewed for their applicability to residential photovoltaic array installations. Four installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Installation costs were developed for these mounting types as a function of panel/module size. cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in residential arrays. However, there is no applicable building code category for residential photovolttaic modules and arrays and early additional work is needed with standards writing organizations to develop residential module and array requirements.

1979-06-01T23:59:59.000Z

235

Residential Heating, Ventilating, and Air Conditioning Research Workshop  

Science Conference Proceedings (OSTI)

The residential HVAC load contributes $23 billion to electric utility energy sales and significantly to peak demands. Participants at this 1986 workshop identified fifteen areas of research needed to improve HVAC components, systems, and applications.

1987-09-18T23:59:59.000Z

236

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

as building’s energy load profile, city’s solar radiationthe buildings’ energy load profiles. The annual energythe buildings’ energy load profiles. The Chinese residential

Feng, Wei

2013-01-01T23:59:59.000Z

237

Burlington Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Burlington Electric Department - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Appliances &...

238

Columbia Rural Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home...

239

Ozarks Electric Cooperative - Residential Energy Efficiency Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility Residential Savings...

240

Kootenai Electric Cooperative - Residential Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kootenai Electric Cooperative - Residential Efficiency Rebate Program Kootenai Electric Cooperative - Residential Efficiency Rebate Program Eligibility Residential Savings For Home...

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Southwest Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

242

Kirkwood Electric - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kirkwood Electric - Residential Energy Efficiency Rebate Program Kirkwood Electric - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating &...

243

Central Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Central Electric Cooperative - Residential Energy Efficiency Rebate Programs Eligibility Construction Residential Savings For Other...

244

Cherokee Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Eligibility Residential...

245

Marietta Power & Water - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power & Water - Residential Energy Efficiency Rebate Program Marietta Power & Water - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

246

SRP - Residential Energy Efficiency Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRP - Residential Energy Efficiency Rebate Program SRP - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial...

247

Barron Electric Cooperative - Residential Energy Resource Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Barron Electric Cooperative - Residential Energy Resource Conservation Loan Program Eligibility Residential Savings For Home...

248

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

249

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

250

Minnesota Valley Electric Cooperative -Residential Energy Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Eligibility Residential Savings...

251

Lake Region Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

252

USDA - High Energy Cost Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Cost Grant Program USDA - High Energy Cost Grant Program Eligibility Commercial Industrial Institutional Local Government Municipal Utility Nonprofit Residential...

253

PPL Electric Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program PPL Electric Utilities - Residential Energy Efficiency Rebate Program Eligibility Multi-Family Residential Residential Savings For Home...

254

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

255

Atmos Energy (Gas) - Residential Efficiency Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling...

256

Benton PUD - Residential Energy Efficiency Rebate Programs |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Benton PUD - Residential Energy Efficiency Rebate Programs Eligibility Multi-Family Residential Residential Savings For Appliances &...

257

Status of load management storage demonstrations  

DOE Green Energy (OSTI)

DOE is funding a nationwide demonstration of electric load management through the use of utility-controlled, customer-side thermal energy storage for residential space conditioning. The general concept of the projects was developed with the assistance of a broadly based working group drawn from the utility industry. This paper presents the current status of these demonstrations. Ten demonstrations are underway - five heat storage and five cool storage - using between 30 and 50 near-commercial thermal storage devices. The installations and experimental program are designed to: (1) collect reliable load research data for assessing the impact on the utility system; (2) delineate and solve installation problems; (3) establish maintainability; (4) illuminate customer and utility acceptance; and (5) generate cost data. The results obtained are expected to assist utilities in making local load-management decisions, to assist DOE in establishing priorities for R and D efforts in load management, and to provide objective information related to the electric system impact, energy conservation, and cost-effectiveness of this form of load management.

Long, H M; Mohre, D L

1979-01-01T23:59:59.000Z

258

load data | OpenEI Community  

Open Energy Info (EERE)

51 51 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234851 Varnish cache server load data Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 12:03 Commercial and Residential Hourly Load Data Now Available on OpenEI! building load building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: application/zip icon System Advisor Model Tool for Downloading Load Data

259

Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace/Boiler: $400 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft. ENERGY STAR rated homes: $650 - $900 Replacement of Electric Straight Resistance Space Heat: $750 Provider

260

Wakefield Municipal Gas and Light Department - Residential Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wakefield Municipal Gas and Light Department - Residential Wakefield Municipal Gas and Light Department - Residential Conservation Services Program Wakefield Municipal Gas and Light Department - Residential Conservation Services Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate Energy Audit Recommended Measures: $300 Programmable Thermostats: 2 units Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Energy Audit Recommended Measures: 25% of total cost Refrigerators: $50 Clothes Washer: $50 Dishwasher: $50 Room AC: $50

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

City of Tallahassee Utilities - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Tallahassee Utilities - Residential Energy Efficiency City of Tallahassee Utilities - Residential Energy Efficiency Rebate Program City of Tallahassee Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Maximum Rebate Energy Star Home: $2000t Ceiling Insulation: $400 ($500 for income-qualified customers) Program Info State Florida Program Type Utility Rebate Program Rebate Amount Energy Star Home: $1/square foot Ceiling Insulation: 80% of installation cost (100% for income-qualified customers) Electric Rebates Refrigerators: $75 Freezers: $40 Clothes Washers: $100 Central Air Conditioner: $100 or $350 Heat Pump: $100 - $350

262

SourceGas - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program SourceGas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Insulation/Air Sealing: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Insulation/Air Sealing: 30% of cost

263

Columbia River PUD - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Manufacturing Heat Pumps Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: rebate amounts cannot exceed 50% of the total project cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Electric Clothes Washers: $50 Gas, Oil or Propane Clothes Washers: $20 Refrigerators/Freezers: $15 Duct Sealing: $400 Ductless Heat Pumps: $1,000 Air-source Heat Pumps: $700 - $1,100

264

Progress Energy Carolinas - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Carolinas - Residential Energy Efficiency Rebate Progress Energy Carolinas - Residential Energy Efficiency Rebate Program Progress Energy Carolinas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Duct sealing and replacement: 50% of cost, up to $190 Air sealing and upgrading insulation: $0.375/Sq Ft, up to $500 Heat Pump Water Heater: $350 HVAC Audit: $100 Central Air Conditioner/Heat Pump: $300 Geothermal Replacement: $300 Room Air Conditioners: $25

265

Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Riverland Energy Cooperative - Residential Energy Efficiency Rebate Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Construction Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount General Lighting: $1 - $15 LED Bulbs: $2/unit Occupancy Sensors: $5 Clothes Washers: $25 Dishwashers: $25 Dehumidifiers: $25 Refrigerators: $25 Room Air Conditioners: $25 Refrigerator/Freezer Recycling: $25 Room Air Conditioner Recycling: $25 Central Air Conditioner: $40 - $80/Ton Electric Water Heater: $50 - $300 Water Heater Installation Cost: $20 - $150

266

Southwest Gas Corporation - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Southwest Gas Corporation - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Appliances: Maximum of 2 units per equipment type per customer Weatherization: 1 rebate per type per customer Rebate amount cannot exceed 75% of the purchase and installation cost of weatherization measures. Program Info State Nevada Program Type Utility Rebate Program Rebate Amount All SWG Customers Natural Gas Tankless Water Heater: $350 Natural Gas Clothes Dryer: $30 Smart Low-flow Showerhead: $20 Lavatory Faucet: $50 Windows: $1/SqFt

267

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost. Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Replacement of Electric Straight Resistance: $750 Air Source Heat Pump: $100 Variable Speed Motor: $100 Refrigerator/Freezer Recycling: $30 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

268

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

269

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives will not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Variable Speed Motor: $100 Water Heater: $30 Replacement of Electric Straight Resistance: $750 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

270

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Water Heating Maximum Rebate Insulation: $750 Weather-Stripping and Caulking: $200 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Evaluation: Free Clothes Washers: $100 Dishwashers: $20 Replacement Furnaces: $250 - $400 Replacement Boilers: $150 or $400 Duct Repair/Sealing: $200 Duct Insulation (R-8): $150 Insulation/Weather-Stripping/Caulking: 70% of project cost

271

FirstEnergy (Potomac Edison) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potomac Edison) - Residential Energy Efficiency Rebate Potomac Edison) - Residential Energy Efficiency Rebate Program FirstEnergy (Potomac Edison) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Room AC/Room AC Recycling: Limit 3 All Other Appliances: Limit 1 per household Home Performance Programs: 15% of cost for insulation Program Info Expiration Date 12/31/2014 State Maryland Program Type Utility Rebate Program Rebate Amount Refrigerator-Freezers: Up to $150 Freezers: $75 Room AC: $25 Clothes Washer: Up to $100

272

Hercules Municipal Utility - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hercules Municipal Utility - Residential Energy Efficiency Rebate Hercules Municipal Utility - Residential Energy Efficiency Rebate Program Hercules Municipal Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Sunscreens: 50% of cost, Maximum rebate of $100 Insulation (ceiling): Up to $150 per home Insulation (walls): Up to $200 per home Insulation (floor): Up to $75 per home Program Info State California Program Type Utility Rebate Program Rebate Amount Windows: $1 per sq. ft. Insulation (ceiling): $150 per home Insulation (walls): $200 per home Insulation (floor): $75 per home Sunscreens: $1 per sq. ft. Refrigerators: $100 Clothes Washers: $75

273

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

This consumer fact sheet provides an overview of battery power for residential solar electric systems, including sizing, estimating costs, purchasing, and performing maintenance.

Not Available

2002-10-01T23:59:59.000Z

274

Residential Price - Marketers  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

275

Essays on residential desegregation  

E-Print Network (OSTI)

Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

Wong, Maisy

2008-01-01T23:59:59.000Z

276

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

277

Kansas City Power and Light - Cool Homes Residential Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas City Power and Light - Cool Homes Residential Rebate Program Kansas City Power and Light - Cool Homes Residential Rebate Program Kansas City Power and Light - Cool Homes Residential Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Missouri Program Type Utility Rebate Program Rebate Amount SEER 14/15: $650 SEER 16/Greater: $850 Provider Kansas City Power and Light Kansas City Power and Light (KCP&L) offers rebates to residential customers to help offset the cost of replacing inefficient central AC and heat pump systems with newer, more efficient models. In order to qualify for a rebate, the system being replaced must have an EER of 8.0 or less, as tested by a CheckMe!-trained HVAC contractor. The replacement of "dead"

278

Cooling load estimation methods  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

279

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

and 2% of total natural gas usage in the residential sector.ignition systems, which will decrease gas usage andincrease electricity usage for gas ranges. Figure 11.4. Cost

Wenzel, T.P.

2010-01-01T23:59:59.000Z

280

Kansas City Power & Light- Cool Homes Residential Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Kansas City Power and Light (KCP&L) offers rebates to residential customers to help offset the cost of replacing inefficient central AC and heat pump systems with newer, more efficient models....

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Residential Air-Conditioning System with Smart-Grid Functionality.  

E-Print Network (OSTI)

??This thesis sets forth a novel intelligent residential air-conditioning (A/C) system controller that provides optimal thermal comfort and electricity cost trade-offs for a household resident… (more)

Thomas, Auswin George

2012-01-01T23:59:59.000Z

282

Residential Duct Design: A Practical Handbook  

Science Conference Proceedings (OSTI)

Well-designed and properly installed air distribution ductwork is essential for optimum performance of residential space-conditioning systems. This handbook is both a practical study guide and a ready reference work that can help students, designers, and installers of ductwork deliver a high level of comfort with trouble-free, low-cost maintenance.

1991-08-01T23:59:59.000Z

283

National Residential Efficiency Measures Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Efficiency Measures Database National Residential Efficiency Measures Database This photo shows a man in a white hazardous materials suit blowing insulation inside of an attic. He is wearing a headlamp on his head and the beam shines in the general direction of the insulation tube he is holding. Home improvement can be expensive. The good news is that many energy efficiency improvements quickly pay for themselves in energy savings. Having accurate and consistent performance and cost data for energy efficiency measures enables researchers and the building industry to determine the most cost-effective means of improving existing homes all across the nation. The National Residential Efficiency Measures Database is a centralized resource of residential building retrofit measures and associated estimated

284

Sawnee EMC - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sawnee EMC - Residential Energy Efficiency Rebate Program Sawnee EMC - Residential Energy Efficiency Rebate Program Sawnee EMC - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Attic Insulation Upgrades: $200 HVAC Tune-Up: $25 HVAC Tune-Up with Duct Sealing: $100 Energy Star Home: $500 Program Info Expiration Date 12/31/2012 State Georgia Program Type Utility Rebate Program Rebate Amount Attic Insulation Upgrades: 50% of project cost up to $200 Refrigerator/Freezer Recycling: $30 Hybrid Water Heater: $100 HVAC Tune-Up: 50% of cost, up to $25 HVAC Tune-Up with Duct Sealing: $100

285

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

286

Duke Energy - Non-Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Non-Residential Energy Efficiency Rebate Program - Non-Residential Energy Efficiency Rebate Program Duke Energy - Non-Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: 50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Fluorescent Lighting and Reduced Wattage: $3-$50/fixture

287

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

288

Residential conservation service program support. Final report  

SciTech Connect

Five tasks conducted by the Mid-American Solar Energy Center to research and prepare information for various constituents of the Residential Conservation Program are described. The tasks are: preparing cost data on renewable program (specifically solar) measure; designing and publishing a consumer agency guide to advise consumers of preventive and corrective actions to take when contracting for home improvements; providing a report on financing residential energy improvements; designing solar industry information releases, specifically on solar water heaters; and preparing a brochure, Your Place in the Sun - Solar Options Available to Homeowners. (MCW)

Not Available

1981-09-01T23:59:59.000Z

289

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

rates, and (2) monthly electricity bill impacts for a typical residentialElectricity Rate Impacts by RPS Cost Study Study - Incremental RPS Target % Figure 6. Typical Residential

Chen, Cliff

2009-01-01T23:59:59.000Z

290

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Air Sealing/Weatherization: $350 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Forced-air furnaces: $150-$400 Natural gas boiler: $300 Natural gas condensing boiler: $500 Natural gas water heater: $70-$100 Storage tank indirect water heater: $200 Attic Air Sealing: 50% of cost, up to $200 Attic/Wall Insulation: 50% of cost, up to $150 Energy Audit: Reduced Cost

291

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

DOE Green Energy (OSTI)

Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

Kuss, M.; Markel, T.; Kramer, W.

2011-01-01T23:59:59.000Z

292

Solar Photovoltaic Financing: Residential Sector Deployment  

DOE Green Energy (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

293

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

294

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

295

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

296

Residential propane prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

297

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

298

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

299

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

300

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assessment of Residential Energy Management Systems for Demand Response Applications  

Science Conference Proceedings (OSTI)

This Technical Update provides a description of what a residential energy management system comprises, with a focus on demand response applications. It includes findings from a survey of residential energy management system technology vendors; system pricing and availability; an overview of technology components and features; customer load monitoring and control capabilities; utility demand response control functions; communications protocols and technologies supported; and options for demand response si...

2009-12-22T23:59:59.000Z

302

Transparent Cost Database | Transparent Cost Database  

Open Energy Info (EERE)

Hide data for this chart (-)Show data for this chart (+) Loading data... Transparent Cost Database Generation Showing: Historical Projections Year Published: Release mouse to...

303

APS - Residential Energy Efficient Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APS - Residential Energy Efficient Rebate Program APS - Residential Energy Efficient Rebate Program APS - Residential Energy Efficient Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Windows, Doors, & Skylights Maximum Rebate Duct Repairs: $250 Sealing Air Leaks: $250 Attic Insulation: $250 Pool Pumps: $200 Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Heat Pumps/AC Units: $270 Insulation, Duct Repair and Air Sealing: 75% of cost Refrigerator Recycling: $30 Lighting: Store Discounts APS offers a $270 rebate to its residential customers who upgrade their AC units or heat pumps. AC units must meet both the SEER and EER values and be

304

Residential Alternative Energy System Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit < Back Eligibility Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Home Weatherization Water Water Heating Wind Maximum Rebate $500 per individual taxpayer; up to $1,000 per household Program Info Start Date 1/1/2002 Expiration Date none State Montana Program Type Personal Tax Credit Rebate Amount 100% Provider Montana Department of Environmental Quality Residential taxpayers who install an energy system using a recognized non-fossil form of energy on their home after December 31, 2001 are eligible for a tax credit equal to the amount of the cost of the system and

305

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Maximum Rebate 30% of cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Refrigerator/freezer Recycling: $50 Furnaces: $50-$125 Boilers: $75-$100 Provider Nevada Energy - Northern '''As of November 30, 2011, furnace and boiler rebates have been suspended until further notice. View the program web site for additional details and contact information.''' NV Energy offers rebates for the installation of high efficiency stand-alone gas furnaces and gas boilers for residential customers in

306

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

307

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

308

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

309

Xcel Energy - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Xcel Energy - Residential Energy Efficiency Rebate Programs Xcel Energy - Residential Energy Efficiency Rebate Programs Xcel Energy - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info Start Date 4/15/2011 Expiration Date 12/31/2012 State North Dakota Program Type Utility Rebate Program Rebate Amount Boiler: $100 Furnace: $75-$100 Tank Water Heater: $40-$60 Tankless Water Heater: $100 Home Energy Audit: 70% off cost In addition to home energy audits, Xcel Energy offers rebates to North Dakota residential customers for the purchase of energy efficient heating and water heating technologies. Xcel offers rebates to homeowners for natural gas furnaces and boilers and natural gas water heaters. Through the

310

Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro Electric Company - Residential and Small Commercial Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Maine Program Type Utility Rebate Program Rebate Amount Mini-Split Heat Pumps: $600; plus 7.75% financing if necessary Provider Bangor Hydro Electric Company Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover the initial cost of the heat pump purchase. Financing is offered at 7.75% APR, for up to

311

Analytical study of residential building with reflecting roofs  

SciTech Connect

This report presents an analysis of the effect of roof solar reflectance on the annual heating (cooling) loads, peak heating (cooling) loads, and roof temperatures of the residential buildings. The annual heating (cooling) loads, peak heating (cooling) loads, and exterior roof temperatures for a small compact ranch house are computed using the Thermal Analysis Research Program (TARP). The residential models, with minor modifications in the thermal envelope for different locations, are subjected to hourly weather data for one year compiled in the Weather Year for Energy Calculation (WYEC) for in the following locations: Birmingham, Alabama; Bismarck, North Dakota; Miami, Florida; Phoenix, Arizona; Portland, Maine; and, Washington, D.C. Building loads have been determined for a full factorial experimental design that varies the following parameters of the residential model: solar reflectance of the roof, ceiling thermal resistance, attic ventilation, and attic mass framing area. The computed results for annual heating (cooling) loads and peak heating (cooling) loads are illustrated graphically, both globally for all cities and locally for each geographic location. The effect of peak parameter is ranked (highest to lowest) for effect on annual heating and cooling loads, and peak heating and cooling loads. A parametric study plots the building loads as a function of roof solar reflectance for different levels of ceiling thermal resistances and for each geographic location.

Zarr, R.R.

1998-10-01T23:59:59.000Z

312

Technical support documentation for the Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 2  

SciTech Connect

The Automated Residential Energy Standard (ARES) program is designed to identify levels of thermal integrity (e.g., insulation levels, glazing layers, equipment efficiencies, etc.) that are cost effective for typical residential structures and to create a residential energy standard based on these levels. This document contains technical background the explains the data and the algorithms used by the program.

NONE

1989-09-01T23:59:59.000Z

313

Reading Municipal Light Department - Residential ENERGY STAR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential ENERGY STAR Appliance Rebate Program Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program Eligibility Residential Savings For Heating &...

314

Chicopee Electric Light - Residential Solar Rebate Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Solar Rebate Program Chicopee Electric Light - Residential Solar Rebate Program Eligibility Residential Savings For Solar Buying & Making...

315

Lane Electric Cooperative - Residential Energy Efficiency Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Loan Programs Lane Electric Cooperative - Residential Energy Efficiency Loan Programs Eligibility Multi-Family Residential Residential Savings For Home...

316

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn Better Buildings Residential Network (BBRN) members must be supportive of residential...

317

Residential Mobility and Latino Political Mobilization  

E-Print Network (OSTI)

Brians, Craig Leonard. 1997. “Residential Mobility, VoterHighton, Benjamin. 2000. "Residential Mobility, Community2003. “ Language Choice, Residential Stability and Voting

Ramirez, Ricardo

2005-01-01T23:59:59.000Z

318

Evaluation of evolving residential electricity tariffs  

E-Print Network (OSTI)

Evaluation of evolving residential electricity tariffs JudyEvaluation of evolving residential electricity tariffs Judyjdonadee@andrew.cmu.edu Abstract Residential customers in

Lai, Judy

2011-01-01T23:59:59.000Z

319

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network (OSTI)

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

320

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related  to  Residential  Ventilation  Requirements”.  Rudd,  A.   2005.   “Review  of  Residential  Ventilation and  Matson  N.E. ,  “Residential  Ventilation  and  Energy 

Sherman, Max

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

New Smyrna Beach - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Smyrna Beach - Residential Energy Efficiency Rebate Program New Smyrna Beach - Residential Energy Efficiency Rebate Program New Smyrna Beach - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Insulation Design & Remodeling Windows, Doors, & Skylights Maximum Rebate Insulation: $375 Cool Roof: $375 Window Solar Screen: $375 Program Info Expiration Date 09/30/2013 State Florida Program Type Utility Rebate Program Rebate Amount Insulation: $0.125 per sq. ft. Window Solar Screen: $2 per sq. ft. Duct Leak Repair: 50% of cost, up to $200 AC/Heat Pump: $400 - $600 Cool Roof: $0.14/sq ft Solar Attic Fan: 25% of the cost, up to $200 Provider

322

Seattle City Light - Multi-Family Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seattle City Light - Multi-Family Residential Energy Efficiency Seattle City Light - Multi-Family Residential Energy Efficiency Rebate Program Seattle City Light - Multi-Family Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting: 85% discount on installation costs Insulation: 50% discount on installation costs Window Replacement: $3 - $5/sq. ft. Provider Seattle City Light Seattle City Light provides incentives for its multi-family housing customers to increase their energy efficiency. Rebates are offered for common area lighting and weatherization measures including the installation

323

National Residential Efficiency Measures Database | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » National Residential Efficiency Measures Database Jump to: navigation, search Tool Name National Residential Efficiency Measures Database Tool Author National Renewable Energy Laboratory Regional Focus National Focus Area Building Energy Efficiency Implementation Phase Evaluate Effectiveness and Revise as Needed Type CommunityEnergyToolType Modeling Tool Cost Free User Interface Website, Other Website http://www.nrel.gov/ap/retrofits/index.cfm Tool Users The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry.

324

NW Natural (Gas) - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program NW Natural (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Air Sealing: $275 Duct Sealing: $325 Duct Insulation: $100 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air/Duct Leakage Test: $35 Air/Duct Sealing: 50% of cost Duct Insulation: 50% of cost Windows: $2.25 (U-Value 0.26 - 0.30) or $3.50/sq. ft. (U-Value 0.25 or less) Window Installation Bonus: $100 Attic/Ceiling Insulation: $0.25/sq. ft.

325

NREL: National Residential Efficiency Measures Database Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Residential Efficiency Measures Database National Renewable Energy Laboratory National Residential Efficiency Measures Database National Renewable Energy Laboratory The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Learn more about the database. By accessing the database, the user agrees to the terms and conditions of use. View Data Now Supporting Resources The following resources provide more information about the data and allow you to download the data. Data dictionary XML file download Simulation Protocols Glossary

326

Residential ventilation standards scoping study  

SciTech Connect

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

327

National Fuel - Large Non-Residential Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Custom Rebates: $200,000 Industrial Custom Rebates: $5,000,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings or 50% of the total project cost Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25

328

Montgomery County - Residential Energy Conservation Property Tax Credits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Montgomery County - Residential Energy Conservation Property Tax Credits Montgomery County - Residential Energy Conservation Property Tax Credits < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Other Design & Remodeling Windows, Doors, & Skylights Construction Manufacturing Heat Pumps Solar Buying & Making Electricity Maximum Rebate $250 per fiscal year Program Info Start Date 07/01/2008 State Maryland Program Type Property Tax Incentive Rebate Amount 100% of eligible costs Provider Department of Finance Note: As originally enacted, this program offer property tax credits for the installation of solar and geothermal energy devices in addition to

329

About Residential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » About Residential Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to developing innovative whole-house energy efficiency solutions through Building America research projects. We also provide guidelines and tools for researchers conducting building related research projects. Promoting a trusted, whole-house process for upgrading existing homes with

330

Shared inverter residential photovoltaic system concept  

SciTech Connect

A residential photovoltaic system concept involving a number of separate roof-mounted arrays all connected to a single utility-interactive inverter is proposed and analyzed in comparison to systems employing one inverter for each array. The conclusion of significance is that such shared inverter systems offer a costs savings of approximately 10 percent. It is observed that other substantial benefits might derive from a reduction in the number of tie-in points between distributed generators and the electric utility grid.

Kern, E.C.; Solman, F.J.

1981-11-01T23:59:59.000Z

331

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

332

Residential duct system leakage; Magnitude, impacts, and potential for reduction  

Science Conference Proceedings (OSTI)

This paper discusses the issues associated with leakage in residential air distribution systems, touching on the prevalence of duct leakage, the impacts of duct leakage, and on the techniques available for sealing duct systems. The issues examined in detail are: present techniques for measuring the leakage area of ducts existing data bases of duct leakage area measurements, the impacts of duct leakage on space-conditioning energy consumption and peak demand, and the ventilation impacts of duct leakage. The paper also includes a brief discussion of techniques for sealing duct systems in the field. The results derived from duct leakage are and driving pressure measurements indicate that in regions in which distribution systems pass through unconditioned spaces, air infiltration rates will typically double when the distribution fan is turned on, and that the average annual air infiltration rate is increased by 30% to 70% due to the existence of the distribution system. Estimates based upon a simplified analysis of leakage-induced energy losses also indicate the peak electricity demands due to duct leakage can be as high as 4 kW in Sacramento, California, and West Palm Beach, Florida, and that peak loads on the order of 1 to 2 kW are highly likely in these locations. Both peak loads and annual energy impacts are found to be strongly dependent on the location of the return duct, and attic return costing approximately 1500 kWh more energy than a crawlspace return in the two climates examined.

Modera, M.P. (Lawrence Berkeley Lab., Berkeley, CA (US))

1989-01-01T23:59:59.000Z

333

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

334

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

335

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

336

OpenEI Community - load profile  

Open Energy Info (EERE)

/0 en Commercial and /0 en Commercial and Residential Hourly Load Data Now Available on OpenEI! http://en.openei.org/community/blog/commercial-and-residential-hourly-load-data-now-available-openei <span class=Load data" src="http://en.openei.org/community/files/load_data_figure_small.jpg" style="width:527px; height:285px" title="" />Image source: NREL 

Files: 
application/zip icon

337

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

338

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

339

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

340

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

342

Firelands Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility...

343

South Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program South Alabama Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility...

344

Central Alabama Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

345

Cookeville Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program Eligibility Commercial...

346

Lane Electric Cooperative - Residential and Commercial Weatherization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Commercial Weatherization Grant Program Lane Electric Cooperative - Residential and Commercial Weatherization Grant Program Eligibility Commercial Low-Income Residential...

347

Lane Electric Cooperative - Residential Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Rebate Program Lane Electric Cooperative - Residential Efficiency Rebate Program Eligibility Residential Savings For Appliances & Electronics Home Weatherization...

348

Austin Energy - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Austin Energy - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial Weatherization Heating & Cooling...

349

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

350

Maximizing Information from Residential Measurements of Volatile...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Information from Residential Measurements of Volatile Organic Compounds Title Maximizing Information from Residential Measurements of Volatile Organic Compounds...

351

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

352

Southern Pine Electric Power Association - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program <...

353

Energy Smart - Residential Energy Efficiency Rebate Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Residential Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility...

354

Ozark Border Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ozark Border Electric Cooperative - Residential Energy Efficiency Rebate Program Ozark Border Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

355

Central New Mexico Electric Cooperative - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Mexico Electric Cooperative - Residential Energy Efficiency Rebate Program Central New Mexico Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility...

356

Implications of Cost Effectiveness Screening Practices in a Low...  

NLE Websites -- All DOE Office Websites (Extended Search)

Implications of Cost Effectiveness Screening Practices in a Low Natural Gas Price Environment: Case Study of a Midwestern Residential Energy Upgrade Program NOTICE Due to the...

357

Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities  

SciTech Connect

This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

Ashdown, BG

2004-08-04T23:59:59.000Z

358

Development of a Residential Integrated Ventilation Controller  

SciTech Connect

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

359

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

360

Utility-impacts assessment of residential passive-solar systems. Final report  

SciTech Connect

This report summarizes a project undertaken to provide the electric-utility industry with a tool to use in analyzing the advantages and disadvantages for themselves and their customers of passive-solar residential construction within their service areas. A methodology to accomplish this was created and then tested in cooperation with seven participating utilities. Results indicate that passive solar homes and well-insulated homes are more economic to both utilities and homeowners than conventional homes insulated to ASHRAE 90-75 standards, still the norm for building construction in many parts of the country. Further indications are that passive-solar homes may have lower life-cycle costs for heating and cooling than well-insulated homes in areas of the country where the annual heating load predominates over the annual cooling load, and where there is an adequate amount of sunshine during the heating season. The methodology developed also has the capability of simulating and comparing the performance of a wide variety of non-solar electrical heating and cooling systems. As a result, it can be adapted by utilities for a broad range of residential energy analyses.

Wood, R.A.; Siegel, M.D.

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Willmar Municipal Utilities - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Willmar Municipal Utilities - Residential Energy Efficiency Rebate Willmar Municipal Utilities - Residential Energy Efficiency Rebate Program Willmar Municipal Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Refrigerator: 50 Clothes Washer: 50 Dishwasher: 50 Central A/C: 200 Water Heater: 1.25/gallon (bonus 100 to convert to an electric water heater from another fuel source) Provider Willmar Municipal Utilities Willmar Municipal Utilities offer rebates on Energy Star rated appliances and air conditioners and Marathon water heaters. In addition to these rebates, WMU also offers a Load Sharing Program. Participating customers

362

South Kentucky RECC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heat Pumps Maximum Rebate Button Up (weatherization): $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Caulking: Free Button Up (weatherization): $20 for every 1,000 BTU reduced in heating load Geothermal Heat Pump with Touchstone Energy Home: $500 Air-Source Heat Pump with Touchstone Energy Home: $300 Touchstone Energy Manufactured Home: $250 Geothermal Heat Pump: $200 Heat Pump/Furnace Tune-Up: $75

363

National Grid (Electric) - Non-Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential Energy Efficiency Non-Residential Energy Efficiency Program (Upstate New York) National Grid (Electric) - Non-Residential Energy Efficiency Program (Upstate New York) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Large Business Energy Initiative Program: Technical Service, Financial Services, and 50% of the project cost Custom Engineering Study: Up to 50% of the project cost Custom Small Business: Up to 70% of project costs: remaining share financed by National Grid with a 0% interest loan: payback time of up to 24 months. Linear/Parabolic/Recessed Fluorescent Fixtures: $15-$50/fixture

364

Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program Grays Harbor PUD - Non-Residential Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Verifiable Savings: up to 70% of project cost Heat Pumps/Air Conditioners: 50% of actual project cost Economizers: 50% of actual economizer system installed cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Verifiable Savings: $0.17/kWh, based upon annual kilowatt-hours saved Heat Pumps/Air Conditioners: $200 per ton X minimum or actual SEER

365

History of Residential Grounding  

Science Conference Proceedings (OSTI)

This report describes the development of residential electrical service grounding practices in the United States. The report focuses on the history of the National Electrical Code (NEC), which prescribes standards for wiring practices in residences, including grounding of the building electrical service.

2002-09-19T23:59:59.000Z

366

Photovoltaics for residential applications  

DOE Green Energy (OSTI)

Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

Not Available

1984-02-01T23:59:59.000Z

367

The Impact of Blowing Agents on Residential Water Heater Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Blowing Agents on Residential Water Heater Performance The Impact of Blowing Agents on Residential Water Heater Performance Title The Impact of Blowing Agents on Residential Water Heater Performance Publication Type Report LBNL Report Number LBNL-47352 Year of Publication 2001 Authors Lekov, Alexander B., James D. Lutz, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-47352 Date Published January 12 Abstract The National Appliance Energy Conservation Act of 1987 (NAECA) requires the U.S. Department of Energy (DOE) to consider amendments to the energy conservation standards to increase energy efficiency in residential water heaters. A driving force affecting efficiency is the ozone-depletion regulation regarding blowing agents for insulation in all water heater fuel types. This paper presents results of cost and efficiency impacts of three potential blowing agents. Residential water heaters are typically insulated with polyurethane foam in the space between the tank and the jacket. Currently, water heater manufacturers use HCFC-141b, an ozone-depleting substance, as a blowing agent. After 2003, as a result of the Montreal Protocol (1993), manufacturers must use blowing agents that do not deplete the ozone layer. The analysis presented in this paper considers three replacement candidates, HFC-245fa, HFC-134a, and cyclopentane by comparing their efficiency and cost effectiveness when applied to water heater insulation. This analysis used computer simulation models and other analytical methods to investigate the efficiency improvements due to different design options, when alternative blowing agents are applied. The calculations were based on the DOE test procedure for residential water heaters. The analysis used average manufacturer, retailer, and installer costs to calculate the total consumer costs. Consumer operating expenses were calculated based on modeled energy consumption under test procedure conditions and U.S. average energy prices. With this information, a cost-efficiency relationship was developed to show the average manufacturer and consumer cost to achieve increased efficiency.

368

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

369

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

370

Louisville Gas and Electric - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisville Gas and Electric - Residential Energy Efficiency Rebate Louisville Gas and Electric - Residential Energy Efficiency Rebate Program (Kentucky) Louisville Gas and Electric - Residential Energy Efficiency Rebate Program (Kentucky) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $300 Refrigerator: $100 Freezer: $50 Clothes Washer: $75 Dishwasher: $50 Window Film: 50% of material cost, up to $200 Central AC: $100, plus $100 for each SEER above minimum federal high efficiency standard Air-Source Heat Pump: $100, plus $100 for each SEER above minimum federal

371

Cape Light Compact - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cape Light Compact - Residential Energy Efficiency Rebate Program Cape Light Compact - Residential Energy Efficiency Rebate Program Cape Light Compact - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Windows, Doors, & Skylights Solar Water Heating Maximum Rebate Home Energy Assessment/Weatherization: $2,000 Income Eligible Weatherization Measures: $2,000 - $3,000 Program Info State Massachusetts Program Type Local Rebate Program Rebate Amount Home Energy Assessment/Weatherization: 75% Single Family Energy Star Home: $750 - $8,000 Multi-Family Energy Star Home: $350 - $4,000/unit Income Eligible Weatherization Measures: 100% of cost

372

Austin Energy - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy - Residential Energy Efficiency Rebate Program Austin Energy - Residential Energy Efficiency Rebate Program Austin Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Up to 20% of the cost of improvements, up to $1,575 Bonus incentives up to $700 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Central AC/Heat Pump: $350 - $600 Package Unit AC/Heat Pump: $400 - $550 Weatherization Bonus: $250 - $500 Solar Screens/Solar Film: $1/sq. ft. Attic Insulation to R-38: varies by original R-value Radiant Barrier: $0.10/sq. ft. of accessible attic space

373

Otter Tail Power Company - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Otter Tail Power Company - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Refrigeration/Cooking/Lighting: rebate will not exceed 75% of project cost Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Water Heaters: $150 - $300 Thermal Storage Units: $20 - $40/KW Insulation: up to $300 Refrigerator Recycling: $50 Air-Source Heat Pumps: $240/ton Geothermal Heat Pumps: $600/ton Lighting: In-store discount Provider Customer Service Otter Tail Power Company Rebate Program offers rebates to qualifying

374

Taunton Municipal Lighting Plant - Residential and Non-Profit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taunton Municipal Lighting Plant - Residential and Non-Profit Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) < Back Eligibility Nonprofit Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Maximum Rebate General: $500 Each customer will be eligible for one rebate per the three year project window. Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to 50% of total cost: Attic insulation Wall insulation Rim joist insulation Air-sealing measures Window treatments Pipe/duct insulation Provider Customer Care Taunton Municipal Lighting Plant (TMLP) offers the 'House N Home' Thermal

375

Residential Alternative Energy Tax Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Alternative Energy Tax Deduction Residential Alternative Energy Tax Deduction Residential Alternative Energy Tax Deduction < Back Eligibility Residential Savings Category Bioenergy Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Maximum Rebate 5,000 per year; 20,000 total deduction Program Info State Idaho Program Type Personal Deduction Rebate Amount 40% in the first year; 20% per year for next three years Provider Idaho Tax Commission This statute allows taxpayers an income tax deduction of 40% of the cost of a solar, wind, geothermal, and certain biomass energy devices used for heating or electricity generation. Taxpayers can apply this 40% deduction in the year in which the system is installed and can also deduct 20% of the

376

Long Island Power Authority - Residential Solar Water Heating Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

377

Riverside Public Utilities - Non-Residential PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program Riverside Public Utilities - Non-Residential PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate Whichever is less: 50% of project cost or specific dollar limits which vary according to the rate schedule of the applicant Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently on hold. See below for more information. Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014.''''' The non-residential photovoltaic (PV) rebate program provides financial incentives for Riverside Public Utilities' business customers to install

378

Grand Marais PUC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFLs: $2/bulb or up to 50% of cost LEDs: $10 - $15/bulb Lighting Fixtures: $15 - $20/fixture Refrigerators: $25, plus $50 for recycling an old, working unit Freezers: $25, plus $50 for recycling an old, working unit Dishwashers: $25 Clothes Washers: $50 Dehumidifiers: $65 Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings

379

Idaho Falls Power - Residential Energy Efficiency Loan Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Falls Power - Residential Energy Efficiency Loan Program Idaho Falls Power - Residential Energy Efficiency Loan Program Idaho Falls Power - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Heat Pumps: $7,500 Weatherization: $5000 Appliances: $2,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount $100-$7500 Provider Idaho Falls Power Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the actual cost of eligible measures for qualifying customers. Electric appliances eligible for financing include, but are not limited to, the following:

380

Rochester Public Utilities - Residential Conserve and Save Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rochester Public Utilities - Residential Conserve and Save Rebate Rochester Public Utilities - Residential Conserve and Save Rebate Rochester Public Utilities - Residential Conserve and Save Rebate < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Dehumidifier: $65 Custom measures: contact RPU for consultation Dishwashers: $25 Refrigerators/Freezers: $25, plus $15 bonus if properly recycled Room Air Conditioners: $25, plus $15 bonus if properly recycled Compact Fluorescent Light Bulbs: 50% of cost CFL Light Fixtures: $15 LED Bulbs: $10 - $15 LED Fixtures: $20 Central AC/Ductless Mini Split( Furnace Fan Motors: $50

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kentucky Utilities Company - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Utilities Company - Residential Energy Efficiency Rebate Kentucky Utilities Company - Residential Energy Efficiency Rebate Program (Kentucky) Kentucky Utilities Company - Residential Energy Efficiency Rebate Program (Kentucky) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $300 Refrigerator: $100 Freezer: $50 Clothes Washer: $75 Dishwasher: $50 Window Film: 50% of material cost, up to $200 Central AC: $100, plus $100 for each SEER above minimum federal high efficiency standard Air-Source Heat Pump: $100, plus $100 for each SEER above minimum federal

382

New Energy Efficiency Standards for Residential Clothes Washers and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Efficiency Standards for Residential Clothes Washers and New Energy Efficiency Standards for Residential Clothes Washers and Dishwashers to Save Consumers Billions on Energy Bills New Energy Efficiency Standards for Residential Clothes Washers and Dishwashers to Save Consumers Billions on Energy Bills May 16, 2012 - 1:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's focus on taking sensible steps to save families money while also reducing energy consumption, the Department of Energy today announced common-sense energy efficiency standards for residential clothes washers and dishwashers that will save consumers $20 billion in energy and water costs. The new standards for both clothes washers and dishwashers were informed by important feedback from manufacturers, consumer groups and environmental

383

Chicopee Electric Light - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Energy Efficiency Rebate Chicopee Electric Light - Residential Energy Efficiency Rebate Program Chicopee Electric Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate Insulation: $300 maximum rebate Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $50 Freezer: $50 Dishwasher: $25 Heat Pump Water Heater: $300 Central A/C: Up to $500 Ductless Mini-Split AC: Up to $500 Air Source Heat Pump: Up to $500 Insulation: 30% of installed cost Provider EFI Municipal Rebates Chicopee Electric Light (CEL) offers a variety of incentives for its

384

EPUD - Residential Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPUD - Residential Energy Efficiency Rebate Program EPUD - Residential Energy Efficiency Rebate Program EPUD - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 - $70 Electric Water Heater: $30 Refrigerator/Freezer: $15 Refrigerator Recycling: $30 Air-Source Heat Pump: $800 - $1,900 Ductless Heat Pump: $1,000 Energy Star Northwest Home: Up to $2,000 Energy Star Manufactured Home: $600 Weatherization Measures Insulation: $0.50/sq ft, up to 70% of project cost Duct Sealing: up to $400

385

Tax Incentives for Residential Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1,

386

Independent review of estimated load reductions for PJM's small customer load response pilot project  

SciTech Connect

This study describes the results of a low-cost approach used to measure reported load reductions from a residential electric water heater (EWH) load control program operated as part of PJM Interconnection's Demand Response small customer pilot program. Lawrence Berkeley National Laboratory (LBNL) conducted this independent review of the engineering estimates for EWH load control reported by a Curtailment Service Provider (CSP) at PJM's request. LBNL employed low-cost measurement and verification (M&V) approaches that utilized existing interval metering equipment to monitor results for a series of load control tests. The CSP collected hourly load data for two substations and several hundred households over a six-week period in October and November 2003. During this time period, the CSP operated its electric water heater load control program during pre-specified test periods in the morning, afternoon and early evening. LBNL then analyzed substation and premise-level data from these tests in order to verify the diversified demand reductions claimed by the CSP for customers participating in the EWH load control program. We found that the observed load reductions for the premise-level data aggregated over all households in the two participating electric cooperatives were, respectively, 40 percent-60 percent less and 3 percent less-10 percent higher than the estimated diversified demand reduction values assumed by the CSP, depending on whether observed or normalized results are considered. We also analyzed sub-station level data and found that the observed load reductions during the test periods were significantly lower than expected, although confounding influences and operational problems signifiogram during pre-specified test periods in the morning, afternoon and early evening. LBNL then analyzed substation and premise-level data from these tests in order to verify the diversified demand reductions claimed by the CSP for customers participating in the EWH load control program. We found that the observed load reductions for the premise-level data aggregated over all households in the two participating electric cooperatives were, respectively, 40 percent-60 percent less and 3 percent less-10 percent higher than the estimated diversified demand reduction values assumed by the CSP, depending on whether observed or normalized results are considered. We also analyzed sub-station level data and found that the observed load reductions during the test periods were significantly lower than expected, although confounding influences and operational problems significantly limit our ability to differentiate between control-related and non-control related differences in substation-level load shape data. The usefulness and accuracy of the results were hampered by operational problems encountered during the measurement period as well as in sufficient number of load research grade interval meters at one cooperative. Given the larger sample size at one electric cooperative and more statistically-robust results, there is some basis to suggest that the Adjusted Diversified Demand Factor (ADDF) values used by the CSP somewhat over-state the actual load reductions. Given the results and limitations of the M&V approach as implemented, we suggest several options for PJM to consider: (1) require load aggregators participating in ISODR programs to utilize formal PURPA-compliant load research samples in their M&V plans, and (2) continue developing lower cost M&V approaches for mass market load control programs that incorporate suggested improvements described in this study.

Heffner, G.; Moezzi, M.; Goldman, C.

2004-06-01T23:59:59.000Z

387

Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota  

SciTech Connect

The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

2005-03-04T23:59:59.000Z

388

The Load Leveling Approach to Removing Appliance Features from Home Electricity Usage Profiles.  

E-Print Network (OSTI)

??For the past twenty years, researchers have developed a class of algorithms that are capable of disaggregating a residential electric load into its set of… (more)

McLaughlin, Stephen

2011-01-01T23:59:59.000Z

389

Atmos Energy - Residential Natural Gas and Weatherization Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Eligibility Residential...

390

CenterPoint Energy (Gas) - Residential Efficiency Rebates (Oklahoma...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Rebates (Oklahoma) CenterPoint Energy (Gas) - Residential Efficiency Rebates (Oklahoma) Eligibility Residential Savings For Heating & Cooling Commercial...

391

Central Georgia EMC - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Central Georgia EMC - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial...

392

MidAmerican Energy (Electric) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings...

393

Clark Public Utilities - Residential Weatherization Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Loan Program Weatherization Loan Program Clark Public Utilities - Residential Weatherization Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Windows, Doors, & Skylights Maximum Rebate $15,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount up to $15,000 Provider Clark Public Utilities Loans of up to $15,000 at a 5.25% interest are available through Clark Public Utilities' Weatherization Loan Program. The loans can pay for the average local cost of eligible measures, based on recently completed projects. Customers have up to seven years to repay the loans, but monthly payments will be at least $25. The utility charges a $225 or $350 loan set-up fee, depending on the loan amount, which can be paid up front or

394

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

395

National Residential Efficiency Measures Database Reduces Risk for Home Retrofit Industry (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most cost-effective means of improving efficiency of existing homes.

Not Available

2011-05-01T23:59:59.000Z

396

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

397

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

398

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

399

Revised management plan, milestone plan, cost plan, and manpower plan. Sixth and seventh monthly status reports, October 1-November 30, 1978  

DOE Green Energy (OSTI)

The following are included: project background and discussion, technical progress reports for all subtasks, contract management summary report, milestone schedule and status report, milestone log, cost plans, cost management reports, manpower plans, and manpower management reports. The following appendices are included: selection of heat pumps simulation locations, economic computations, fuel costs, system studies, recommended methodology for calculating residential load models, potential performance of heat pumps, data required from cooling contractors, cooling locations, thermal outputs: cooling, recommended inputs for the 25 ton advanced cooling simulation study, meteorological data, and contract modification. (MHR)

None,

1978-01-01T23:59:59.000Z

400

OG&E - Residential Energy Efficiency Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OG&E - Residential Energy Efficiency Program OG&E - Residential Energy Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling Commercial...

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I  

Science Conference Proceedings (OSTI)

The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

Robert A. Zogg

2011-03-14T23:59:59.000Z

402

Atlanta residential energy consumption. Final report  

SciTech Connect

Energy consumption in Atlanta, Ga., was analyzed for single - family, townhouse, low - rise, and high - rise structures for 1955, which was selected as a typical weather year. A two - step procedure was employed in calculating energy requirements. In the first step, hourly heating and cooling loads were determined for each dwelling unit. In the second step, monthly and annual energy required to meet heating and cooling loads was calculated using specific heating, cooling, and ventilation systems. Design and structural features considered important in defining the residential structures were construction details and materials, heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels. Lifestyle parameters incorporated in the analysis included thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans. The computer program for determining heating and cooling loads, or heat delivery / removal requirements, for each residence involved subroutines for ascertaining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The low - rise type of structure had a cooling load that was more than twice as large as the heating load. The other structures had cooling loads about 1.5 times as large as heating loads. Energy - conserving modifications, involving both structural and comfort control system changes, resulted in the following: single - family and townhouse residences achieved a 32 - percent annual heating load reduction and a 16 - percent cooling load reduction through structural modifications; and low - rise and high - rise residences achieved a 43 - percent reduction in primary energy consumption. Supporting data, illustrative layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-08-01T23:59:59.000Z

403

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

404

Riverside Public Utilities - Residential PV Incentive Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentive Program PV Incentive Program Riverside Public Utilities - Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 13,000 or 50% of project cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014. ''''' The Residential Photovoltaic (PV) System rebate program provides incentives to Riverside Public Utilities customers who purchase and install qualifying photovoltaic systems on their homes. For Fiscal Year 2013, the rebate amount was $2.00 per watt AC and cannot exceed 50% of the total system cost

405

Analysis of Distribution Level Residential Demand Response  

SciTech Connect

Control of end use loads has existed in the form of direct load control for decades. Direct load control systems allow a utility to interrupt power to a medium to large size commercial or industrial customer a set number of times a year. With the current proliferation of computing resources and communications systems the ability to extend the direct load control systems now exists. Demand response systems now have the ability to not only engage commercial and industrial customers, but also the individual residential customers. Additionally, the ability exists to have automated control systems which operate on a continual basis instead of the traditional load control systems which could only be operated a set number of times a year. These emerging demand response systems have the capability to engage a larger portion of the end use load and do so in a more controlled manner. This paper will examine the impact that demand response systems have on the operation of an electric power distribution system.

Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

2009-03-23T23:59:59.000Z

406

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

407

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

408

Residential ventilation standards scoping study  

E-Print Network (OSTI)

of new residences. The Hawaii Model Energy Code (HMEC) is aHawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Residential Energy Code

McKone, Thomas E.; Sherman, Max H.

2003-01-01T23:59:59.000Z

409

Natural Gas Residential Choice Programs  

U.S. Energy Information Administration (EIA)

Status of Natural Gas Residential Choice Programs by State as of December 2008 (Click on a State or its abbreviation for more information about that ...

410

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

411

Residential Price - Local Distribution Companies  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per ...

412

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

413

Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations  

SciTech Connect

This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

2013-01-01T23:59:59.000Z

414

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

concentrated solar power (CSP), and wind penetrations in thePV from residential Other RE CSP + storage PV Wind Referencesolar PV, wind, and solar CSP, respectively (all costs are

Barbose, Galen

2013-01-01T23:59:59.000Z

415

New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

416

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network (OSTI)

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings and commercial buildings, characteristics such as the cooling load in summer and the storey height must be considered in the design of the air-conditioning system, and the cold storage equipment and the cold supplying means must be properly selected. The option of establishing centralized air-conditioning equipment with cold storage and supplying unified cold in high-rise residential buildings is analyzed objectively with technical and economical methods in this paper. It is not true that the option of supplying unified cold can save energy all the time. CACS with cold storage will not always be economical. Based on a 27-floor building, the running costs in summer and the first costs are both compared between CACS with and without cold storage refrigeration. The cold storage method selected will significantly impact the residents.

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

417

Utility load management and solar energy. Study background and preliminary market potential analysis  

DOE Green Energy (OSTI)

The large-scale use of electrically assisted solar heating and hot water (solar/electric HHW) systems can have a substantial effect on electric utilities. Under some conditions, peak loads may be increased causing electricity generation costs to rise. However, with appropriate control and thermal storage equipment tied to the HHW system, the timing of the delivery of electricity to the HHW system can be controlled so that it is accomplished during those times of the day when utility supply costs are lowest. In this study various load management schemes for these applications are being investigated to determine their effect on the cost of generating the back-up electric power and on the cost of the required control and storage system. Solar/electric HHW systems are compared to electric-only systems for several utilities and several HHW system designs. The issues underlying the study, the methods of investigation, and the results of the first phase of the study are described. In this phase a preliminary analysis of the maximum market potential for night-time precharge electric-only hot water systems in either utilities was conducted. This analysis indicated that if about 20 to 40 percent of the residential customers used these appliances in a load managed mode, the 10 PM--8 AM valley in the utility load curve would be filled. For combined electric heating and hot water, the corresponding fraction is 6 to 12 percent. It is estimated that in each case, roughly twice the number of residential customers could be accommodated in the valley if solar/electric systems were used instead.

Davitian, H; Bright, R N; Marcuse, W

1978-01-01T23:59:59.000Z

418

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project description * Subdivision energy efficiency features * Home energy monitoring * Demand side management * Feeder loading * Battery Energy Storage System * Future Work Team Members Project Objective and Methodology * The main objective is to reduce peak power demand of a housing subdivision by 65% (compared to housing development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic Diagram Project Physical Location: Las Vegas, NV Red Rock Hotel/Casino

419

Practical Diagnostics for Evaluating Residential Commissioning Metrics  

SciTech Connect

In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

2002-06-11T23:59:59.000Z

420

Residential Sector Demand Module 1997, Model Documentation  

Reports and Publications (EIA)

This is the third edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System. It reflects changes made to the moduleover the past year for the Annual Energy Outlook 1997. Since last year, a subroutinewas added to the model which allows technology and fuel switching when space heaters,heat pump air conditioners, water heaters, stoves, and clothes dryers are retired in bothpre-1994 and post-1993 single-family homes. Also, a time-dependant function forcomputing the installed capital cost of equipment in new construction and the retail costof replacement equipment in existing housing was added.

John H. Cymbalsky

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Evaluation of evolving residential electricity tariffs  

E-Print Network (OSTI)

evolving residential electricity tariffs Judy Lai, Nicholasevolving residential electricity tariffs Judy Lai – Seniortariffs and explanation of baseline Until the middle of 2001, PG&E employed a two-tiered pricing structure for residential electricity

Lai, Judy

2011-01-01T23:59:59.000Z

422

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

423

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

424

Deep Residential Retrofits in East Tennessee  

SciTech Connect

Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is also monitored, with temperature and humidity measured in all conditioned zones, attics, crawlspaces, and unconditioned basements. In some homes, heat flux transducers are installed on the basement walls to help determine the insulating qualities of the technologies and practices. EnergyGauge is used to estimate the pre-retrofit and post-retrofit home energy rating system (HERS) index and reduction in energy consumption and energy bill. In a follow-up report, data from the installed sensors will be presented and analyzed as well as a comparison of the post-retrofit energy consumption of the home to the EnergyGauge model of the post-retrofit home. Table ES1 shows the retrofits that were completed at the eight households where some or all of the recommended retrofits were completed. Home aliases are used to keep the homeowners anonymous. Some key findings of this study thus far are listed as follows. Some homeowners (50%) are not willing to spend the money to reach 30 50% energy savings. Quality of retrofit work is significantly variable among contractors which impact the potential energy savings of the retrofit. Challenges exist in defining house volume and floor area. Of the five homes that completed all the recommended retrofits, energy bill savings was not the main driver for energy retrofits. In no case were the retrofits cost neutral given a 15 year loan at 7% interest for the retrofit costs.

Boudreaux, Philip R [ORNL; Hendrick, Timothy P [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

2012-04-01T23:59:59.000Z

425

California load management research 1977: a first year report to the Federal Energy Administration on the FEA/California Electric Utilities Demonstration Project. Annual report for 1977  

SciTech Connect

The California Electric Utilities Demonstration Project (EUDP) seeks to identify cost effective ways to implement load management. The three-year, six-million-dollar project will involve 24 field experiments, four electric utilities, and 7000 residential, commercial and industrial utility customers. Each experiment tries to measure how the tested management measure reduces system peak demand and shifts kilowatt-hour use in both customer and system load curves. Results of three experiments are given. The four participating utilities (Southern California Edison, Pacific Gas and Electric, Sacramento Municipal Utility District, and San Diego Gas and Electric) are described. A load curve data catalog is discussed. An appendix to the report shows how to select load management equipment. Another discusses both United States and European load management experiences.

Hairston, R.

1977-10-01T23:59:59.000Z

426

Minneapolis residential energy consumption. Final report  

SciTech Connect

This report deals with residential energy consumption in single - family, townhouse, low - rise, and high - rise structures in Minnapolis, Minn., with the year 1957 chosen as a typical weather year for the area. Design and structural features considered important in defining the residences were structural parameters (construction details, dimensions, and materials), energy consumption parameters (heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels), and lifestyle parameters (thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated using a time - response computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The heating load was significantly higher than the cooling load for single - family and townhouse residences, as would be expected for the cold Minneapolis climate. Due to increased internal heat generation, low - rise and high - rise cooling and heating loads were similar in magnitude. Energy - conserving modifications involving both structural and comfort control system changes resulted in the following: single - family residences consumed 47 percent, townhouse residences consumed 52 percent, low - rise residences consumed 53 percent, and high - rise residences consumed 34 percent of the primary energy required by the characteristic residence. Supporting data, layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-11-01T23:59:59.000Z

427

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

428

Detroit Public Lighting Department - Residential Energy Wise...  

Open Energy Info (EERE)

Multi-Family Residential, Residential Eligible Technologies Ceiling Fan, Lighting, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

429

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

430

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

431

Energy Efficiency Report: Chapter 3: Residential Sector  

U.S. Energy Information Administration (EIA)

3. The Residential Sector Introduction. More than 90 million single-family, multifamily, and mobile home households encompass the residential sector.

432

CONTAM Libraries - Appendix C2: Miscellaneous Residential ...  

Science Conference Proceedings (OSTI)

... item, C2. CPEN_RAV, Residential, HVAC ceiling penetration, typical value, ELA4, 5 cm 2 /item, C2. CPEN_RMN, Residential, ...

433

Peak Electricity Impacts of Residential Water Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak Electricity Impacts of Residential Water Use Title Peak Electricity Impacts of Residential Water Use Publication Type Report LBNL Report Number LBNL-5736E Year of Publication...

434

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

435

Performance Criteria for Residential Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria for Residential Zero Energy Windows Title Performance Criteria for Residential Zero Energy Windows Publication Type Conference Paper LBNL Report Number...

436

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011  

E-Print Network (OSTI)

RESIDENTIAL WEATHERIZATION SPECIFICATIONS August 30, 2011 Index to Sections Section Page I. GENERAL............................................................................................35 #12;1 I. GENERAL SPECIFICATIONS 1. These specifications apply to existing residential (retro

437

Residential Code Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Code Development Subscribe to updates To receive news and updates about code development activities subscribe to the BECP Mailing List. The model residential building...

438

Residential Commissioning: A Review of Related Literature  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Commissioning: A Review of Related Literature Title Residential Commissioning: A Review of Related Literature Publication Type Report LBNL Report Number LBNL-44535 Year...

439

NREL: Energy Systems Integration - Residential and Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential and Commercial Integration Energy systems integration R&D at the small-scale, residential and commercial integration level encompasses diverse technologies such as...

440

Residential Sector Demand Module 1995, Model Documentation  

Reports and Publications (EIA)

This updated version of the NEMS Residential Module Documentation includes changesmade to the residential module for the production of the Annual Energy Outlook 1995.

John H. Cymbalsky

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Minnesota Energy Resources (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy...

442

Avista Utilities (Electric) - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

residential customers to save energy in eligible homes. Offers apply to residential homeowners in Idaho who heat homes primarily with Avista electricity Incentives vary depending...

443

National Grid (Electric) - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs (Upstate New York) National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) Eligibility Installer...

444

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

Sherman, Max

2011-01-01T23:59:59.000Z

445

Residential energy gateway system in smart grid.  

E-Print Network (OSTI)

??This project discusses about the residential energy gateway in the Smart Grid. A residential energy gateway is a critical component in the Home Energy Management… (more)

Thirumurthy, Vinod Govindswamy

2010-01-01T23:59:59.000Z

446

Residential Retail - Wisconsin  

U.S. Energy Information Administration (EIA)

... and new cost categories were ... using algorithms to estimate daily usage as opposed to using expensive telemetering equipment. 12/00. Wisconsin ...

447

Waverly Light and Power - Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebates Energy Efficiency Rebates Waverly Light and Power - Residential Energy Efficiency Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Water Heating Maximum Rebate Appliance Recycling: $150 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Star New Home: $1,300 Heat Pump Water Heater: $500 LED Lighting: 50% of cost, up to $200 Central AC: $150 Air-Source Heat Pump: $150 Geothermal Heat Pump: $450 Clothes Washer: $75 Refrigerator: $50 Appliance Recycling: $75 Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for the purchase and

448

Load sensing system  

DOE Patents (OSTI)

A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

1999-05-04T23:59:59.000Z

449

Technical Update: Load Modeling in Power System Studies  

Science Conference Proceedings (OSTI)

EPRI has been engaged in load modeling research since the 1980’s. In the past, EPRI conducted significant research in the area of load modeling and worked together with the Western Electricity Coordinating Council (WECC) Load Modeling Task Force in the development of the new composite load model developed and currently to be deployed in WECC. This work included extensive testing of various load components, such as residential air-conditioners, in the EPRI laboratories in Knoxville, TN. In ...

2013-12-10T23:59:59.000Z

450

Evaluation of energy efficiency standards for residential clothes dryers in  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency standards for residential clothes dryers in energy efficiency standards for residential clothes dryers in the USA Title Evaluation of energy efficiency standards for residential clothes dryers in the USA Publication Type Journal Article Year of Publication 2013 Authors Lekov, Alexander B., Victor H. Franco, and Stephen Meyers Journal Energy Efficiency Date Published 05/2013 Keywords appliance standards, energy efficiency Abstract This article describes the analysis of monetary and energy savings attributable to various energy efficiency levels considered as potential US federal standards for residential clothes dryers. The analysis examined benefits to both consumers and the nation as a whole. Benefits to consumers were evaluated based on the life-cycle cost of affected appliances and the payback period associated with increased first costs. Benefits to the nation incorporate both energy and financial savings associated with each potential efficiency standard. The analysis incorporated the most current information on field use of clothes dryers, which shows that dryer usage and the moisture in clothes are less than previously thought. The analysis found that high-efficiency heat pump clothes dryers would be cost-effective for nearly one fifth of US households. However, for both electric standard and gas clothes dryers, standards that improve efficiency by 5 % appear to be the highest levels that have a positive net present value of consumer benefit.

451

Characterizing Household Plug Loads through Self-Administered Load Research  

Science Conference Proceedings (OSTI)

Household miscellaneous loads, which include consumer electronics, are the fastest growing segment of household energy use in the United States. Although the relative energy intensity of applications such as heating and cooling is declining, the DOEAnnual Energy Outlook forecasts that the intensity of residential miscellaneous end uses will increase substantially by 2030. Studies by TIAX and Ecos Consulting reveal that miscellaneous devices8212smaller devices in terms of energy draw but growing in usage8...

2009-12-09T23:59:59.000Z

452

Advancing Residential Energy Retrofits  

Science Conference Proceedings (OSTI)

To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

2012-01-01T23:59:59.000Z

453

Geothermal Energy: Residential Space Heating  

DOE Green Energy (OSTI)

The purpose of this study, which was carried out under the auspices of the DGRST, was to determine the best way to use geothermal hot water for residential space heating. It quickly became apparent that the type of heating apparatus used in the housing units was most important and that heat pumps could be a valuable asset, making it possible to extract even more geothermal heat and thus substantially improve the cost benefit of the systems. Many factors play a significant role in this problem. Therefore, after a first stage devoted to analyzing the problem through a manual method which proved quite useful, the systematic consideration of all important aspects led us to use a computer to optimize solutions and process a large number of cases. The software used for this general study can also be used to work out particular cases: it is now available to any interested party through DGRST. This program makes it possible to: (1) take climatic conditions into account in a very detailed manner, including temperatures as well as insolation. 864 cases corresponding to 36 typical days divided into 24 hours each were chosen to represent the heating season. They make it possible to define the heating needs of any type of housing unit. (2) simulate and analyze the behavior in practice of a geothermal heating system when heat is extracted from the well by a simple heat exchanger. This simulation makes it possible to evaluate the respective qualities of various types of heating apparatus which can be used in homes. It also makes it possible to define the best control systems for the central system and substations and to assess quite accurately the presence of terminal controls, such as radiators with thermostatically controlled valves. (3) determine to what extent the addition of a heat pump makes it possible to improve the cost benefit of geothermal heating. When its average characteristics and heating use conditions (price, coefficient of performance, length of utilization, electrical rates, etc.) are taken into account, the heat pump should not be scaled for maximum heating power. Consequently, the program considers several possible sizes, with different installation schemes, and selects for each case the value which corresponds to the lowest cost of heating.

None

1977-03-01T23:59:59.000Z

454

Long-run marginal costs lower than average costs  

SciTech Connect

The thesis of this article is that the long-run marginal costs of electricity are not always greater than the present average costs, as is often assumed. As long as short-run costs decrease with new plant additions, the long-run marginal cost is less than long-run average cost. When average costs increase with new additions, long-run marginal costs are greater than long-run average costs. The long-run marginal costs of a particular utility may be less than, equal to, or greater than its long-run average costs - even with inflation present. The way to determine which condition holds for a given utility is to estimate costs under various combinations of assumptions: probable load growth, zero load growth, and load growth greater than expected; and changes in load factor with attendant costs. Utilities that can demonstrate long-run marginal costs lower than long-run average costs should be encouraged to build plant and increase load, for the resulting productivity gains and slowing of inflation. Utilities that face long-run marginal costs greater than long-run average costs should discourage growth in sales through any available means.

Hunter, S.R.

1980-01-03T23:59:59.000Z

455

Load cell  

DOE Patents (OSTI)

A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

Spletzer, B.L.

1998-12-15T23:59:59.000Z

456

Load cell  

DOE Patents (OSTI)

A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

Spletzer, Barry L. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

457

Load cell  

DOE Patents (OSTI)

A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

Spletzer, Barry L. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

458

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Commercial Lighting Lighting Water Heating Maximum Rebate Level II Audit (For-profit organizations): $400 Level I Audit (For-profit organizations): $250 Programmable Thermostat: 50% of cost Steam Traps: $250 Boiler Tune Up: $500 Vent Damper: $500 O2 Trim Control: $5,000 Gas boiler 300,000 to 9,999,999 Btu/hr output: $750 - $5,000

459

GE Nucleus for Residential Energy Use Education, Home Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

GE Nucleus for Residential Energy Use Education, Home Energy GE Nucleus for Residential Energy Use Education, Home Energy Management/Control, Residential Energy Integration Speaker(s): William Watts Date: August 4, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page Home Energy Gateways offer a single point of access to the AMI Smart Meter into the home. The Nucleus is GE's home energy management gateway. The GE Nucleus securely communicates to a Smart Meter and delivers real-time whole home energy consumption data for display to the Consumer. The Consumer is able to visualize their energy usage habits on a Client that is connected via TLS encryption to the WiFi or Ethernet interface of the Nucleus. The Nucleus records history of the consumer's usage and cost data for tracking of energy consumption habits. GE has a suite of Smart Appliances that

460

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler |  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler This invention disclosure describes a system for gas compression to ultra-high pressures, which is required in many industrial and automotive processes. Gas compression, to pressures above about 100 psig, generally requires cooling to remove heat of compression and may require many stages of compression for efficient operation. Also most piston-type compressors require lubrication between the piston and cylinder, and lubricant may be entrained in the compressed gas, thereby requiring efficient oil removal means downstream of the compressor. This invention describes a system that addresses these requirements in a cost effective system suitable for residential and light industrial applications.

Note: This page contains sample records for the topic "residential load cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Residential Energy Efficiency Rebate AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) < Back Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Attic or Sidewall Insulation: $300 Basement or Crawl Space Insulation: $200 HVAC Maintenance: $100 Duct Sealing: $100 Envelope Air Infiltration Reduction: $200 Program Info Funding Source ApCo HomeSMART Program Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount HVAC Maintenance: 50% of cost Insulation: $0.30/sq ft Air Source Heat Pump (replacing electric furnace): $100 or $200

462

GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0  

SciTech Connect

1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

2008-07-31T23:59:59.000Z

463

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network (OSTI)

comfort, and alternative cooling strategies”. Occupants veryNon-Compressor Cooling Alternatives for Reducing Residential

Meier, Alan K.

2008-01-01T23:59:59.000Z

464

Today in Energy - Residential Consumption & Efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent residential consumption and efficiency issues and trends

465

Reducing indoor residential exposures to outdoor pollutants  

E-Print Network (OSTI)

combustion in motor vehicles, electricity generation and industrial processes, as well as residential fireplaces and wood

Sherman, Max H.; Matson, Nance E.

2003-01-01T23:59:59.000Z

466

Residential Census Maps - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Home >>Energy Users > Residential Home Page > Census Maps . U. S. Census Regions and Divisions: Contact: James ...

467

Financing Non-Residential Photovoltaic Projects: Options and Implications  

Science Conference Proceedings (OSTI)

Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years.ii Specifically, due to financial innovation, non-residential entities interested in PV no longer face prohibitively high up-front costs, no longer need to be able to absorb Tax Benefits in order to make the economics pencil out, no longer need to be able to operate and maintain the system, and no longer need to accept the risk that the system does not perform as expected.

Bolinger, Mark

2009-01-09T23:59:59.000Z

468

HVAC Right-Sizing Part 1: Calculating Loads  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Presented by: Mike Gestwick - National Renewable Energy Laboratory Arlan Burdick, Anthony Grisolia - IBACOS, a Building America Research Team HVAC Right-Sizing Part 1: Calculating Loads Thursday, April 28 11:00 a.m. - 12:00 p.m. Eastern Building Technologies Program Mike Gestwick michael.gestwick@nrel.gov Building America: Introduction April 28, 2011 Introduction to Building America * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies www.buildingamerica.gov 15 Industry Research Teams Habitat Cost Effective Energy Retrofit Program

469

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

470

Post-Retrofit Residential Assessments  

SciTech Connect

This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

2012-04-30T23:59:59.000Z

471

Estimating Marginal Residential Energy Prices in the Analysis of Proposed  

NLE Websites -- All DOE Office Websites (Extended Search)

Marginal Residential Energy Prices in the Analysis of Proposed Marginal Residential Energy Prices in the Analysis of Proposed Appliance Energy Efficiency Standards Title Estimating Marginal Residential Energy Prices in the Analysis of Proposed Appliance Energy Efficiency Standards Publication Type Report LBNL Report Number LBNL-44230 Year