National Library of Energy BETA

Sample records for residential integrated ventilation

  1. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  2. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  3. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  4. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  5. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels You are...

  6. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels Authors:...

  7. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  8. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Make Residential Ventilation More Effective? Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  9. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  10. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) Mission/Vision The Residential Buildings Integration (RBI) program's mission: To accelerate energy performance improvements in residential buildings by developing, demonstrating, and deploying a suite of cost-effective technologies, tools, and solutions to achieve peak performance in new and existing homes. RBI Vision,

  11. Energy and IAQ Implications of Residential Ventilation Cooling

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  12. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ventilation Standards The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural...

  13. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much...

  14. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  15. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  16. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    SciTech Connect (OSTI)

    Phillips, E.G.; Bradley, L.C. ); Chant, R.E. ); Fisher, D.R.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  17. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  18. You Are My Sunshine: Integrating Residential Solar and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Are My Sunshine: Integrating Residential Solar and Energy Efficiency (301) You Are My Sunshine: Integrating Residential Solar and Energy Efficiency (301) October 15...

  19. Residential Buildings Integration Program Logic Model

    Energy Savers [EERE]

    widely promote value of energy efficiency in products, services, & typical market transactions with homeowners The Residential Integration Program accelerates energy improvements in existing and new residential buildings by reducing technical and market barriers to spur investment and achieve high performance homes. External Influences: DOE budget, Construction industry, Energy prices, Real estate market, Market incentives, State/local policies, Regulation Objectives Activities / Partners

  20. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Residential Buildings Integration Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. <br><a href="http://www.solardecathlon.gov/">Learn More</a> Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By

  1. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  2. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  3. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, Eric

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  4. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  5. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    SciTech Connect (OSTI)

    Sherman, Max; Logue, Jennifer; Singer, Brett

    2010-06-01

    The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

  6. Energy Impact of Residential Ventilation Norms in the UnitedStates

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2007-02-01

    The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

  7. Development of an Outdoor Temperature Based Control Algorithm for Residential Mechanical Ventilation Control

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-08-01

    The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  8. Building America Case Study: Sealed Crawlspace with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate Ithaca, New York PROJECT INFORMATION Project Name: Holly Creek Townhouses Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, ithacanhs.org Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Ventilation, sealed crawl space Application: New and/or retrofit; single- and multifamily Year Tested: 2014-2015 Climate Zones: Cold (5-6) PERFORMANCE DATA Sealed crawl spaces can: *

  9. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect (OSTI)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  10. Smart Ventilation - RIVEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary Ventilation Activity Inputs Control Ventilation to Ensure Acceptable Indoor Air Quality Outputs  Required air flows  Weather  DR / price signal  Occupancy / schedule  Outdoor air quality Residential Integrated VEntilation Control System Contact: Dr. Iain S. Walker, iswalker@lbl.gov Lawrence Berkeley National Laboratory Smart Ventilation - RIVEC 2014 Building Technologies Office Peer Review Project Summary Timeline: Start date: 2011 Planned end date: 2016 Key Milestones

  11. Residential Buildings Integration Program Overview - 2015 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2015 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. VIEW THE PRESENTATION PDF icon Residential Buildings Integration Program Overview -

  12. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  13. Residential Buildings Integration Program Overview - 2014 BTO Peer Review |

    Energy Savers [EERE]

    Department of Energy Buildings Integration Program Overview - 2014 BTO Peer Review Residential Buildings Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the presentation PDF icon

  14. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  15. Buildings Technology Office Residential Buildings Integration (RBI) 2015 plenary presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 14, 2015 RBI Mid-term and Long-term Goals Goals: Residential Buildings Integration Demonstrate at scale market-relevant strategies offering existing 2020 home savings of 20% Existing Demonstrate at scale market-relevant strategies offering existing 2025 Buildings home savings of 25% or more by 2030 Demonstrate at scale market-relevant strategies offering existing

  16. Airflow reduction during cold weather operation of residential heat recovery ventilators

    SciTech Connect (OSTI)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs, were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.

  17. You Are My Sunshine - Integrating Residential Solar and Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    (301) | Department of Energy Residential Network Peer Exchange Call Series: You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301), October 15, 2015, call slides and discussion summary. PDF icon Call Slides and Discussion Summary More Documents & Publications Think Again! A Fresh Look at Home Performance Business Models and Service Offerings (301) Baby It's Cold Outside: Best Practices for Chilly Climes (101) The Other 15%: Expanding Energy Efficiency to Rural

  18. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  19. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  20. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  1. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  2. Residential Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2015 Peer Review provided an...

  3. Residential Buildings Integration Program Overview - 2014 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer Review provided an...

  4. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  5. Technology Solutions Case Study: Sealed Crawl Space with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    W. Zoeller, J. Williamson, and S. Puttagunta

    2015-09-01

    The Building America team Consortium for Advanced Residential Buildings (CARB) investigated a hybrid ventilation method that included the exhaust air from the crawl space as part of an ASHRAE 62.2-compliant whole-house ventilation strategy. The CARB team evaluated this hybrid ventilation method through long-term field monitoring of temperature, humidity, and pressure conditions within the crawl spaces of two homes (one occupied and one unoccupied) in New York state.

  6. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MacDonald and D.L. White. Oak Ridge National Laboratory. ORNLCON-304.(5-91) InfiltrationVentilation Measurements in RCDP Manufactured Homes. Pacific Northwest Laboratory, D....

  7. Integrating affordability, energy and environmental efficiency, air quality and disaster resistance into residential design and construction

    SciTech Connect (OSTI)

    Cook, G.D.

    1995-12-31

    Much has been researched and written about the individual qualities of good home design and construction in terms of: energy efficiency; affordability; indoor air quality; sustainability; and wind, fire, and flood resistance. The real challenge is to integrate all these characteristics into the ideal house. The purpose of this paper is to review the characteristics of each of the above features and explore the integration of them into the ideal residential structure. The house would take the shape of a compact two story structure. A geometrically compact structure uses less construction materials per floor area, presents less area for improved thermal efficiency, and less profile for wind and flood resistance. The first floor would be constructed using insulated strong high thermal mass masonry system resistant to flood, wind, fire, and termite damage. The second story would be constructed using a lighter reinforced wood frame system with between stud insulation coupled with exterior insulated sheathing to minimize thermal bridging across studs. Optimizing floor plan such as separating living and sleeping areas present opportunities for efficient split HVAC zoning, natural ventilation, and solar passive adaptation. The design would emphasize the 4, 8, and 12 foot dimensioning for waste reduction; selection of environmentally friendly building materials, such as cellulose insulation; and efficient lighting and appliances. Features providing improved indoor air quality such as prudent duct selection, design and location, use of radon barriers, omission of carpeting, and control of moisture would be addressed. The design philosophy, concepts and rationale for the integration of these and many other features of the ideal residence will be addressed and illustrated.

  8. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  9. Smart Ventilation (RIVEC)- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Iain Walker, Lawrence Berkeley National Laboratory The objective of this project is to minimize the energy required to provide acceptable indoor air quality. High-performance homes built with tight envelopes will benefit most from this technology. Their mechanical ventilation systems dominate for energy use; as the foundation, wall, and roof work together. Smart ventilation is expected to save at least 40% on energy and peak demand. The project is seeking to create an industry partnership to commercialize the current Residential Integrated Ventilation Controller (RIVEC) and is collaborating with Building America’s research teams to improve its control algorithms.

  10. Integrated emissions control system for residential CWS furnace

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  11. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  12. Better Buildings Residential Network Peer Exchange Call Series: You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301), October 15, 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301) October 15, 2015 Call Slides and Discussion Summary Call Participants: Residential Network Members  Boulder County, CO  Building Doctors  California Center for Sustainable Energy  City of Sunnyvale, California  Civic Works  Duke Carbon Offsets Initiative  Ecolibrium3  Elevate Energy  Energize NY  Energy Conservation Works  Energy Efficiency Specialists, LLC  EnergySmart  Enhabit

  13. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  14. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  15. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  16. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt whole-house building simulations.

  17. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttafunta, Srikanth

    2015-07-30

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent

  18. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttagunta, Srikanth

    2015-07-01

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace.

  19. Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993

    SciTech Connect (OSTI)

    Breault, R.W.; McLarnon, C.

    1993-03-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

  20. Ventilation technologies scoping study

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  1. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect (OSTI)

    Moore, Murray E.

    2014-04-15

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the wind tunnel for testing HEPA filters (cf. ASTM F1471 and ASME N511). This project involves three systems that were developed for testing the 24*24*11 (inch) HEPA filters (i.e. the already mentioned mixer, diluter and metric). Prototypes of the mixer and the diluter have been built and individually tested on a preliminary basis. However, the third system (the HEPA metric method) has not been tested, since that requires complete operability of the aerosol wind tunnel device. (The experimental wind tunnel has test aerosol injection, control and measurement capabilities, and can be heated for temperature dependent measurements.) Benefits: US DOE facilities that use HEPA filters and/or require exhaust stacks from their nuclear facility buildings will benefit from access to the new hardware (mixer and diluter) and performance-based metric (for HEPA filter air flow).

  2. Better Buildings Residential Network Financing & Revenue Peer Exchange Call Series: Effective Loan Program Design and Integration with Contractors July 24, 2014 Call Slides and Discussion Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective Loan Program Design and Integration with Contractors July 24, 2014 Call Slides and Discussion Summary Agenda  Call Logistics and Introductions  Residential Network and Peer Exchange Call Overview  Featured Speakers  Jeremy Epstein, Senior Associate at Harcourt Brown & Carey  Peter Krajsa, CEO at AFC First (Residential Network Member)  Discussion  What challenges have you found with contractor integration?  What tips do you have for better integrating

  3. All-AC, building integrated PV system for mass deployment of residential PV systems

    SciTech Connect (OSTI)

    Kevin Cammack; Joe Augenbraun; Dan Sun

    2011-05-17

    Project Objective: Solar Red is developing novel PV installation methods and system designs that lower costs dramatically and allow seamless integration into the structure of any sloped roof using existing construction tools and processes. The overall objective of this project is to address the greatest barriers to massive adoption of residential and small commercial rooftop solar scalability of installation and total cost of ownership - by moving Solar Reds snap-in/snap-out PV installation method from the pre-prototype design phase to the development and construction of a deployed prototype system. Financial Summary: ? Funded through ARRA, DOE and Match Funding ? Original Project Budget: $229,310 o DOE/ARRA Funding: $150,000 o Match Funding: $79,310 ? Actual Cost: $216,598 o DOE/ARRA Funding: $150,000 o Match Funding: $120,087 Project Summary: Develop snap-in/snap-out mounting system for low-cost, thin-film solar panels Lower installation cost Lower sales costs Lower training/expertise barriers

  4. Building America Webinar: Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar was presented by research team Consortium for Advanced Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques.

  5. Technology Solutions Case Study: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    2014-12-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the normal leakage paths through the building envelope disappear. Researchers from the Consortium for Advanced Residential Buildings (CARB) found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. In this project, the CARB team evaluated the four different strategies for providing make-up air to multifamily residential buildings and developed guidelines to help contractors and building owners choose the best ventilation systems.

  6. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE goals call for zero energy ready homes that are 50% more efficient than the 2009 IECC and whole-house retrofits that reduce energy use 25% in existing homes by 2025. By specifying minimum ventilation rates, ASHRAE 62.2 is a critical enabling innovation that will contribute to DOE's long-term goal of saving the nation $2.2 trillion in energy-related costs through a 50% reduction in building energy consumption. BUILDING AMERICA TOP INNOVATIONS 2014 PROFILE Building America research and support

  7. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    SciTech Connect (OSTI)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi; Russell, Marion L.; Maddalena, Randy L.; Singer, Brett C.

    2013-01-01

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levels and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange

  8. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  9. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-

    Energy Savers [EERE]

    Rise Residential Buildings - Building America Top Innovation | Department of Energy ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation "Build tight, ventilate right" is a universal mantra of high performance home designers and scientists. Tight construction is

  10. Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990

    SciTech Connect (OSTI)

    Balsavich, J.C.; Breault, R.W.

    1990-10-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

  11. Building America Case Study: Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    SciTech Connect (OSTI)

    2015-09-01

    "9One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace. Additionally, CARB worked with NREL to perform multi-point tracer gas testing on six separate ventilation strategies - varying portions of 62.2 required flow supplied by the crawlspace fan and an upstairs bathroom fan. The intent of the tracer gas testing was to identify effective Reciprocal Age of Air (RAoA), which is equivalent to the air change rate in well-mixed zones, for each strategy while characterizing localized infiltration rates in several areas of the home.

  12. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  13. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  14. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To further satisfy KTI agreements RDTME 3.01 and 3.14 (Reamer and Williams 2001a) by providing the source documentation referred to in the KTI Letter Report, ''Effect of Forced Ventilation on Thermal-Hydrologic Conditions in the Engineered Barrier System and Near Field Environment'' (Williams 2002). Specifically to provide the results of the MULTIFLUX model which simulates the coupled processes of heat and mass transfer in and around waste emplacement drifts during periods of forced ventilation. This portion of the model report is presented as an Alternative Conceptual Model with a numerical application, and also provides corroborative results used for model validation purposes (Section 6.3 and 6.4).

  15. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  16. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. <a href="/node/1265726">Learn more about ventilation</a>. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also

  17. Integrated emissions control system for residential CWS furnace. Annual status report No. 2, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  18. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... available in the market Supporting local jobs focused on energy efficiency - Energy ... Eric Werling Technical Project Officer * Steve Dunn (GO) Technical Associate * Betsy ...

  19. Remote Duct Sealing in Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance," Lawrence Berkeley National Laboratory, presented by Dr. Mark Modera, staff scientist, Environmental Energy Technologies Division. PDF icon LBNL Duct Sealing Presentation More Documents & Publications Ventilation in Multifamily Buildings

  20. Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    can improve the effectiveness of natural and whole-house ventilation by removing indoor air pollution andor moisture at its source. Spot ventilation includes the use of...

  1. Better Buildings Residential Network Data & Evaluation Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solution Center Better Buildings ... Test, Learn, Adapt * Integrated Technology Platform * ... savings to meet Illinois Home Performance with ENERGY STAR ...

  2. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  3. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufactured Housing - Building America Top Innovation | Department of Energy Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Photo of workers on the roof of a home. This Top Innovation profile describes research by Building America Partnership for Improved Residential Construction team to diagnose

  4. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Ventilation Ventilation This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde,

  5. Module Embedded Microinverter Smart Grid Ready Residential Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System Module ... module integration and packaging, and integration with a new intelligent circuit breaker. ...

  6. VENTILATION MODEL REPORT

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  7. Whole-House Ventilation

    Broader source: Energy.gov [DOE]

    Tight, energy-efficient homes require mechanical -- usually whole-house -- ventilation to maintain a healthy, comfortable indoor environment.

  8. READ THIS: Before You Ventilate

    SciTech Connect (OSTI)

    2006-12-08

    This document reviews ventilation strategies for different climate zones and includes schematic drawings and photographs of various ventilation installations.

  9. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  10. Ventilation System Basics

    Broader source: Energy.gov [DOE]

    Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide.

  11. Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems

    Broader source: Energy.gov [DOE]

    This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development.

  12. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Environmental Management (EM)

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  13. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  14. Natural Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Ventilation Natural Ventilation Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their

  15. Ventilation Model Report

    SciTech Connect (OSTI)

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To asses the impacts of moisture on the ventilation efficiency.

  16. Ventilation | Department of Energy

    Office of Environmental Management (EM)

    uniformly. Natural ventilation depends on a home's airtightness, outdoor temperatures, wind, and other factors. During mild weather, some homes may lack sufficient natural...

  17. Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques.

  18. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

  19. Residential Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  20. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  1. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  2. Energy Savings Potential and RD&D Opportunities for Residential Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems | Department of Energy Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical

  3. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  4. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  5. Guide to Home Ventilation

    SciTech Connect (OSTI)

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  6. Building America Research Teams: Spotlight on Alliance for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... expertise to bridge cool energy house.jpg the gap between research and market integration. ... resulted in the implementation of the Residential Green and Energy Efficiency Addendum. ...

  7. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: Energy.gov (indexed) [DOE]

    sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control...

  8. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Ventilation Strategies in New Construction Multifamily Buildings New York, New York PROJECT INFORMATION Project Name: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings Location: New York, NY Consortium for Advanced Residential Buildings (CARB): http://carb-swa.com Application: New construction; multifamily Building Component: Mechanical Ventilation Date completed: 2013 Climate Zone: Mixed-humid In multifamily buildings, particularly in the Northeast,

  9. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements - Sean Maxwell Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization...

  10. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization ... webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, ...

  11. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements This ...

  12. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  13. Technology Solutions Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York

    SciTech Connect (OSTI)

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the "normal leakage paths through the building envelope" disappear. Consortium for Advanced Residential Buildings researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. This research effort included several weeks of building pressure monitoring to validate system performance of the different strategies for providing make-up air to apartments.

  14. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  15. Why We Ventilate

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  16. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buoyancy-Driven Ventilation of Hydrogen from Buildings C. Dennis Barley, Keith Gawlik, Jim Ohi, Russell Hewett National Renewable Laboratory U.S. DOE Hydrogen Safety, Codes & Standards Program Presented at 2 nd ICHS, San Sebastián, Spain September 11, 2007 NREL/PR-550-42289 Scope of Work * Safe building design * Vehicle leak in residential garage * Continual slow leak * Passive, buoyancy-driven ventilation (vs. mechanical) * Steady-state concentration of H 2 vs. vent size Prior Work *

  17. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  18. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  19. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  20. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential 2014 Building Technologies Office Peer Review Danielle Sass Byrnett danielle.byrnett@ee.doe.gov U.S. Department of Energy 2 Project Summary: Better Buildings Residential (BBR) Timeline: Start date: FY11 Planned end date: ongoing Key Milestones 1. Better Buildings Neighborhood Program, Fall 2010 2. Home Energy Score, 2011 3. Home Performance with ENERGY STAR to DOE, Oct. 2011 4. Better Buildings Residential Network, April 2013 5. Better Buildings Residential Program Solution Center

  1. Indoor Air Quality and Ventilation in Residential Deep Energy...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 99 GENERAL AND MISCELLANEOUS Word Cloud...

  2. Advanced Controls for Residential Whole-House Ventilation Systems...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 99 GENERAL AND MISCELLANEOUS...

  3. Benefits of Better Buildings Residential Network Reporting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation Webinar Nothing But Networking for Residential Network Members...

  4. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential InstallersContractors Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Equipment Insulation Water Heaters...

  5. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  6. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional ...

  7. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  8. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented ...

  9. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  10. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  11. NREL: National Residential Efficiency Measures Database - Retrofit Measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit Questions/Comments Retrofit Measures This page provides the types for all retrofit measures available in the National Residential Efficiency Measures Database. Select a component type below to see the retrofit measure data. For more information, read about the database, learn about the cost data, and see the glossary. Airflow Air Leakage Mechanical Ventilation Ceilings/Roofs Finished Roof Radiant Barrier Roof Material Unfinished Attic Foundation/Floors Crawlspace Slab Unfinished Basement

  12. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  13. Residential Building Activities

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  14. Residential Building Audits and Retrofits

    Broader source: Energy.gov [DOE]

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues.

  15. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-07-01

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.

  16. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate Cocoa, Florida PROJECT INFORMATION Project Name: Flexible Residential Test Facility Location: Cocoa, FL Partners: Florida Energy Systems Consortium www.floridaenergy.ufl.edu/ Building America Partnership for Improved Residential Construction, www.ba-pirc.org Building Components: Infiltration and ventilation Application: Single-family Year Tested: 2012-2013 Applicable Climate

  17. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  18. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.39 per gallon, up 1 cent from last week, and down 55.3

  19. Variable-Speed, Low-Cost Motor for Residential HVAC Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Variable-Speed, Low-Cost Motor for Residential HVAC Systems Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed Electric Motor Improves Energy Efficiency In 2011, the U.S. industrial, commercial, and residential sectors consumed ~13.5 quad of electricity, of which an estimated 7.8 quad (58%) was consumed by applications using electric motors in machinery; process cooling; and refrigeration, space heating, ventilation, and air-conditioning. As energy

  20. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. In this project, researchers at the National Renewable Energy Laboratory (NREL) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, the team tested the part load performance of four residential dehumidifiers in NRELs Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  1. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  2. Module Embedded Microinverter Smart Grid Ready Residential Solar Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System GE logo.png This project is developing and demonstrating a cost-reduction approach for an alternating-current (AC) photovoltaic (PV) module that is driven by innovations in microinverter design, module integration and packaging, and integration with a new intelligent circuit breaker. GE Global Research

  3. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    SciTech Connect (OSTI)

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

  4. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  5. Ventilation by stratification and displacement

    SciTech Connect (OSTI)

    Skaaret, E.

    1983-03-01

    Ventilation effectiveness is not one single index which can be used for classifying ventilating systems. It is shown that a system has different effectivenesses depending on the characteristics of the pollution sources. A transient ventilation effectiveness can be used to generally characterize the system behavior during transient conditions. This index is, for a given system, dependent only on the thermal conditions. Using the different concepts of ventilation effectiveness and knowledge of the nature of the diffusion process it is concluded that the mixing principle in ventilation is not the best one. The displacement principle working vertical-up (air supply directly to the zone of occupation) is generally working much better. Density stratification improves the efficiency. Conditions for stable thermal stratification is dealt with. Room heating systems are concluded to be based on the radiant heating principle. A no recirculating displacement solution using a heat exchanger is claimed to be energy efficient. Research work which substantiated the different conclusions is referenced.

  6. Whole-House Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    systems provide a controlled way of ventilating a home while minimizing energy loss. They reduce the costs of heating ventilated air in the winter by transferring heat...

  7. Building America Technologies Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technologies Solutions Case Study: Ventilation System ...

  8. Building America Technology Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested ...

  9. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on ...

  10. Residential Energy Tax Credit

    Broader source: Energy.gov [DOE]

    Note: ODOE filed new permanent rules for the Residential Energy Tax Credit program. The rule changes include a 50 percent incentive cap for all category one eligible devices (as specified under HB...

  11. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes two levels that can be achieved by completing various energy efficiency measures: Base Level and High Performance Level. Projects meeting the req...

  12. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  13. Residential | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  14. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  15. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price decreases The average retail price for propane is $2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.85 per gallon, down 1.2 cents from last week, and down 63.2

  16. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    6, 2014 Residential propane price decreases The average retail price for propane fell to $3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.06 a gallon, down 24.8 cents from last week, but up $1.28 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  17. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    05, 2014 Residential propane price decreases The average retail price for propane fell to $2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 8-tenths of a cent from last week, and down 1.9

  18. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price virtually unchanged The average retail price for propane is $2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenths of a cent from last week, and down 39.8

  19. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 6-tenths of a cent from last week, and down 40 cents

  20. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 6-tenths of a cent from last week, and down 41 cents

  1. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 1-tenth of a cent from last week, and down 90.5

  2. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, down 7-tenths of a cent from last week, and down 40 cents

  3. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane virtually unchanged The average retail price for propane is $2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 1-tenth of a cent from last week, and down 38.8

  4. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.6 cents from last week, and down 49.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  5. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    1, 2015 Residential propane price increases The average retail price for propane is $1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.38 per gallon, up 1.1 cents from last week, and down 53 cents from a year ago. This is Marcela Rourk

  6. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 2.6 cents from last week, and down 53.2

  7. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.2 cents from last week, and down 54.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  8. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 1 cent from last week, and down 52.8 cents from a year ago.

  9. Residential propane prices decreases

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane prices decreases The average retail price for propane fell to $3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.83 a gallon, down 36.8 cents from last week, but up $2.05 from a year ago. This is Amerine Woodyard

  10. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane price decreases The average retail price for propane fell to $3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.78 a gallon, down 27.9 cents from last week, but up 99.3

  11. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    2, 2014 Residential propane price decreases The average retail price for propane fell to $3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.60 a gallon, down 18.5 cents from last week, but up 88.1

  12. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    9, 2014 Residential propane price decreases The average retail price for propane fell to $3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.48 a gallon, down 10.7 cents from last week, but up 69.7

  13. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/)

  14. Fact Sheet: Better Buildings Residential Network | Department...

    Energy Savers [EERE]

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

  15. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  16. Ventilation in Multifamily Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    integration approach * "Do no harm": Ensure safety, health and durability are ... (increase static pressure) * Dynamically self-adjust to changes in the system (automatic ...

  17. The WIPP Underground Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ventilation system provides a continuous flow of fresh air to the underground tunnels and rooms that make up the disposal facility at WIPP. Air is supplied to the...

  18. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  19. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  20. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners...

  1. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

  2. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Residential Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management ...

  3. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2014. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation...

  4. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  5. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential...

  6. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  7. About Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to

  8. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  9. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 8-tenths of a cent from last week, and down 44.4 cents

  10. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.29 per gallon, down 3.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.80 per gallon, down 2.4 cents from last week

  11. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.32 per gallon, down 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.82 per gallon, down 2.4 cents from last week. This is Marcela Rourk,

  12. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.01 per gallon, up 1.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, up 9-tenths of a cent from last week, and down 44.8

  13. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenth of a cent from last week, and down 43

  14. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.03 per gallon, up 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 9-tenths of a cent from last week, and down 40.7

  15. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.43 per gallon, up 1.3 cents from last week, and down 51.7

  16. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.97 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 7-tenths of a cent from last week, and down 50.

  17. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 4-tenths of a cent from last week, and down 49.7

  18. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $1.94 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon. This is Marcela Rourk, with EIA, in Washington.

  19. Building America Webinar: Ventilation Strategies for High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines Building America Webinar: Ventilation Strategies for High Performance Homes, ...

  20. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  1. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Ventilation Systems for Cooling Ventilation Systems for Cooling Proper ventilation helps you save energy and money. | Photo courtesy of <a href="http://www.flickr.com/photos/jdhancock/3802136698/">JD Hancock</a>. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to

  2. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide...

  3. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  4. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  5. C-106 tank process ventilation test

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-20

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

  6. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  7. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  8. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 3-tenths of a cent from last week, and down 47.9 cents

  9. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.39 per gallon, up 3.9 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 8-tenths of a cent from last week, and down 63.1 cents

  10. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decrease The average retail price for propane is $2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.93 per gallon, down 3-tenths of a cent from last week, and down 39.6 cents

  11. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.38 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 4-tenths of a cent from last week, and down $2.29 cents

  12. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.37 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.4 cents from last week, and down $1.93 cents

  13. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 4-tenths of a cent from last week, and down $1.67 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  14. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.1 cents from last week, and down $1.43 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  15. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 3-tenths of a cent from last week, and down $1.18 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  16. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.86 per gallon, down 1.6 cents from last week, and down 72.7 cents from a year ago. This is Marcela Rourk,

  17. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.39 per gallon, down 2.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 1.3 cents from last week, and down 17.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  18. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.00 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 4-tenths of a cent from last week, and down 46.2

  19. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 7-tenths of a cent from last week, and down 43.3

  20. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 2-tenths of a cent from last week, and down 41.9

  1. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 1.8 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 6-tenths of a cent from last week, and down 52.9 cents

  2. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 2-tenths of a cent from last week, and down 12.7 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  3. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 6-tenths of a cent from last week, and down 48.2

  4. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.99 per gallon, up 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 2-tenths of a cent from last week, and down 47.6

  5. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.9 cents from a week ago to $2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.32 a gallon, up 3.8 cents from last week, and up 59

  6. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.5 cents from a week ago to $2.83 per gallon. That's up 56 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.36 a gallon, up 3.9 cents from last week, and up 62.3

  7. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose to $2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 a gallon, up 2.9 cents from last week, and up 2.6 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  8. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to $2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.11 per gallon, up 3.4 cents per gallon from last week, and up 39.6

  9. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 9.1 cents from a week ago to $2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.22 a gallon, up 11 cents from last week, and up 50.8 cents from a year ago

  10. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 4.8 cents from a week ago to $2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.28 a gallon, up 6.3 cents from last week, and up 56.4

  11. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane prices stable The average retail price for propane is $2.37 per gallon. That's down 4-tenths of a penny from a week ago, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region averaged $1.89 a gallon. Down 2-tenths of a cent from last week. This is Amerine Woodyard, with EIA, in Washington.

  12. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 7-tenths of a cent from . last week, and down 8.7 cents from a year ago This is Marcela Rourk, with EIA, in Washington.

  13. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. ...

  14. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  15. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Guide to Benchmarking Residential Program Progress Webcast Slides Lessons Learned: Measuring Program Outcomes and Using Benchmarks Guide for Benchmarking

  16. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. PDF icon Solution Center Demo More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  17. Better Buildings Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Better Buildings Residential Solution Center Shares Energy Efficiency Program Strategies Solution Center Shares Energy Efficiency Program Strategies Explore the Better Buildings Residential Program Solution Center, a robust collection of nearly 1,000 examples, strategies, and resources for program administrators and home energy upgrade professionals. Read more Residential Network Connects More Than 240 Organizations Residential Network Connects More Than 240

  18. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  19. National Residential Efficiency Measures Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Development Document, v3.0 Final Draft, June 2012 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado i Executive Summary The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most

  20. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  1. Cleco- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Cleco energy efficiency program provides a number of incentives to its residential customers for energy efficiency upgrades. Rebates and cash incentives are available for qualifying Air...

  2. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the adoption of cost-effective energy...

  3. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  4. Pacific Power- Residential wattsmart Program

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program website.

  5. Effective Loan Program Design and Integration with Contractors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Program Design and Integration with Contractors Effective Loan Program Design and Integration with Contractors Better Buildings Residential Network Financing and Revenue Peer ...

  6. Chemical Emissions of Residential Materials and Products: Review of Available Information

    SciTech Connect (OSTI)

    Willem, Henry; Singer, Brett

    2010-09-15

    This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.

  7. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Better Buildings Residential Network Better Buildings Residential Network Better Buildings Residential Network EXPLORE PEER EXCHANGE CALL LESSONS LEARNED To make collaboration with a utility easier, show how energy efficiency can solve a financial, public relations, or customer service problem for the utility. Read the "Collaborating With Utilities on Residential Energy Efficiency" Peer Exchange Call summary to learn more, and see other member tips. Residential

  8. Guide for Benchmarking Residential Program Progress with Examples

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network: Guide for Benchmarking Residential Program Progress with Examples.

  9. Making PACE Work for Residential (201) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making PACE Work for Residential (201) Making PACE Work for Residential (201) February 25

  10. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region, which has the most households that use propane, averaged $1.89 a gallon. This is Marcela Rourk, with EIA, in Washington. The EIA has expanded its propane price survey to include 14 more states located mostly in the South and the West. The survey now looks at propane prices in 38

  11. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.2 cents from a week ago to $2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.40 a gallon, up 3.2 cents from last week, and up 65.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  12. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 10.3 cents from a week ago to $2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest single week increase since the heating season started in October. Propane prices in the Midwest region averaged 2.55 a gallon, up 14.9 cents from last week, and up 79.1 cents from a year ago. This is Marcela Rourk, with EIA, in

  13. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to $2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.08 per gallon, up 2.4 cents per gallon from last week, and up 36.9 cents from a year earlier. This is Marlana Anderson, with EIA, in Washington.

  14. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    propane prices surges The average retail price for propane rose to an all-time high of $4.01 a gallon, that's up $1.05 from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest weekly increase since the survey began in 1990. Propane prices in the Midwest region averaged 4.20 a gallon, up $1.66 from last week, and up $2.43 from a

  15. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    Midwest and Northeast propane prices much higher this winter than last year Households that heat with propane will pay for that propane at prices averaging 39 percent higher in the Midwest and 14 percent higher in the Northeast this winter compared with last winter.....as much colder temperatures this winter boosts heating fuel demand. Midwest residential propane is expected to average $2.41 per gallon over the winter, while propane in the Northeast will average $3.43 per gallon, according to

  16. Residential Building Industry Consulting Services | Open Energy...

    Open Energy Info (EERE)

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  17. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  18. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  19. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings ... More Documents & Publications Summary of Gaps and Barriers for Implementing Residential ...

  20. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. ...

  1. SMECO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative's (SMECO) Residential Energy Efficiency Program helps residential customers save energy by providing rebates for home weatherization and the installation of...

  2. SRP- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. See program web site for a...

  3. Residential Energy Services Network (RESNET) Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Services Network (RESNET) Conference Residential Energy Services Network (RESNET) Conference February 29, 2016 9:00AM EST to March 2, 2016 5:0

  4. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as ...

  5. Better Buildings Residential Network | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and see other member tips. Residential Network Members Residential Resources Download the Social Media Toolkit. New Materials Download the November issue of the Better Buildings...

  6. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  7. Laboratory Performance Testing of Residential Window Mounted...

    Energy Savers [EERE]

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  8. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies Program Webinar on the National Residential...

  9. Steven Winter Associates (Consortium for Advanced Residential...

    Open Energy Info (EERE)

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  10. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Some incentives, including insulation,...

  11. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2015. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  12. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary, March 27, 2014. Call Slides and Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  13. Idaho Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Idaho Power offers a variety of incentives for residential customers in Idaho and Oregon. The Heating and Cooling Program offers incentives for residential customers who purchase and have...

  14. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Members Residential Resources Download the Social Media Toolkit. New ... Successful Quality Assurance and Quality Control Programs (101) January 28, 2016 Einstein ...

  15. Sharyland Utilities- Residential Standard Offer Program

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  16. Nothing But Networking for Residential Network Members

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Nothing But Networking for Residential Network Members, Call Slides and Discussion Summary, March 12, 2015.

  17. Better Buildings Residential Network Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn MARKETING AND OUTREACH The Better Buildings Residential Network hosts a series of Peer Exchange ...

  18. Models for prediction of temperature difference and ventilation effectiveness with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    Displacement ventilation may provide better indoor air quality than mixing ventilation. Proper design of displacement ventilation requires information concerning the air temperature difference between the head and foot level of a sedentary person and the ventilation effectiveness at the breathing level. This paper presents models to predict the air temperature difference and the ventilation effectiveness, based on a database of 56 cases with displacement ventilation. The database was generated by using a validated CFD program and covers four different types of US buildings: small offices, large offices with partitions, classrooms, and industrial workshops under different thermal and flow boundary conditions. Both the maximum cooling load that can be removed by displacement ventilation and the ventilation effectiveness are shown to depend on the heat source type and ventilation rate in a room.

  19. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent. CARB researchers have found that most new high performance, multifamily housing in the Northeast use one of four strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, but there is no guarantee that those conditions will exist consistently in the finished building. In this research project, CARB evaluated the four ventilation strategies in the field to validate system performance.

  20. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Turner, William J. N.; Walker, Iain S.; Singer, Brett C.

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  1. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  2. Noble REMC- Residential Energy Efficiency Rebate Incentives

    Broader source: Energy.gov [DOE]

    Through Wabash Valley Power Association, POWER MOVES program, Noble REMC offers residential rebates.

  3. Residential Water Heaters Webinar | Department of Energy

    Energy Savers [EERE]

    Residential Water Heaters Webinar Residential Water Heaters Webinar PDF icon 20110224_residential_water_heater_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters 2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

  4. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, September 11, 2014.

  5. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, May 14, 2015.

  6. Workers Adjust Ventilation in WIPP Underground

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2014 Workers Adjust Ventilation in WIPP Underground On May 28, WIPP workers entered the underground facility to adjust the ventilation system. While underground, they adjusted a regulator on a bulkhead door and closed and taped doors at another underground location to allow more air flow through Panel 7 and better ventilation control in preparation for the planned filter change. Geotechnical experts also conducted underground inspections at several locations to make sure the ground was still

  7. Building America Case Study: Ventilation System Effectiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... particle counts for formaldehyde and other volatile organic compound (VOC) concentrations. ... In House 1, all ventilation systems reduced the formaldehyde concentration compared to the ...

  8. Confinement Ventilation and Process Gas Treatment Functional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear ...

  9. Residential Energy Efficiency Messaging | Department of Energy

    Energy Savers [EERE]

    Residential Energy Efficiency Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and discussion summary, April 9, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Nothing But Networking for Residential Network Members Social Media and Messages that Matter - Top Tips and Tools Generating Energy Efficiency Project Leads and Allocating Leads to

  10. Washington Gas- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its residential customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  11. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  12. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 2.93 per gallon, based on the residential heating fuel survey by the...

  14. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year...

  15. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

  16. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year...

  17. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information...

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year...

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

  20. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

  1. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year...

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

  3. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year...

  4. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

  6. Heating, Ventilation, and Air Conditioning Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MI -- Optimized Thermal Systems - College Park, MD Purdue prototype system Residential Cold Climate Heat Pump with Variable-Speed Technology Lead Performer: Unico Systems - St....

  7. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  8. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  9. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  10. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  11. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  12. Residential propane price is unchanged

    Gasoline and Diesel Fuel Update (EIA)

    13, 2014 Residential propane price is unchanged The average retail price for propane is $2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 7-tenths of a cent from last week, and down 6

  13. Residential Dishwashers | Department of Energy

    Energy Savers [EERE]

    Dishwashers Residential Dishwashers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Residential Dishwashers -- v3.0 More Documents & Publications Dehumidifiers

  14. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  15. Focus Series: Maine - Residential Direct Install Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine - Residential Direct Install Program Focus Series: Maine - Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct...

  16. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and ...

  17. Nothing But Networking for Residential Network Members | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nothing But Networking for Residential Network Members Nothing But Networking for Residential Network Members Better Buildings Residential Network Peer Exchange Call: Nothing But...

  18. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential ...

  19. Guide for Benchmarking Residential Program Progress with Examples...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Progress with Examples Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network: Guide for Benchmarking Residential Program ...

  20. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Publications Market Studies Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting ...

  1. New York Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pages: Average Residential Price New York Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Market Average Residential...

  2. Staged Upgrades as a Strategy for Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Strategy for Residential Energy Efficiency Staged Upgrades as a Strategy for Residential Energy Efficiency Better Buildings Residential Network Peer Exchange Call Series:...

  3. Preoperational test report, primary ventilation system

    SciTech Connect (OSTI)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  4. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  5. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  6. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  7. Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...

    Broader source: Energy.gov (indexed) [DOE]

    processing area have been cleaned, allowing for their removal from ventilation used to control contamination. Addthis Related Articles Employees cut a ventilation duct attached...

  8. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...

    Energy Savers [EERE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the ...

  9. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how ...

  10. Promising Technology: Variable-Air-Volume Ventilation System

    Broader source: Energy.gov [DOE]

    Variable-air-volume (VAV) ventilation saves energy compared to a constant-air-volume (CAV) ventilation system, mainly by reducing energy consumption associated with fans.

  11. DOE ZERH Webinar: Ventilation and Filtration Strategies with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation and Filtration Strategies with Indoor airPLUS DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS Watch the video or view the presentation ...

  12. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ​

  13. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    SciTech Connect (OSTI)

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  14. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  15. RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) | Department of Energy

    Energy Savers [EERE]

    RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) RESIDENTIAL CLOTHES WASHERS (APPENDIX J2) File Residential Clothes Washers Appendix J2 -- v2.1 More Documents & Publications Residential Clothes Washers (Appendix

  16. A critical review of displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1998-10-01

    This paper reviews several aspects of the performance of displacement ventilation: temperature distribution, flow distribution, contaminant distribution, comfort, energy and cost analysis, and design guidelines. Ventilation rate, cooling load, heat source, wall characteristics, space height, and diffuser type have major impacts on the performance of displacement ventilation. Some of the impacts can be estimated by simple equations, but many are still unknown. Based on current findings, displacement ventilation systems without cooled ceiling panels can be used for space with a cooling load up to 13 Btu/(h{center_dot}ft{sup 2}) (40 W/m{sup 2}). Energy consumed by HVAC systems depends on control strategies. The first costs of the displacement ventilation system are similar to those of a mixing ventilation system. The displacement system with cooled ceiling panels can remove a higher cooling load, but the first costs are higher as well. The design guidelines of displacement ventilation developed in Scandinavian countries need to be clarified and extended so that they can be used for US buildings. This paper outlines the research needed to develop design guidelines for US buildings.

  17. Shark Tank: Residential Energy Efficiency Edition – Episode #2 (301)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, December 3, 2015.

  18. What's Working in Residential Energy Efficiency Upgrade Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working in Residential Energy Efficiency Upgrade Programs - Promising Approaches and Lessons Learned What's Working in Residential Energy Efficiency Upgrade Programs -...

  19. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  20. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  1. Improving the efficiency of residential air-distribution systems in California, Phase 1

    SciTech Connect (OSTI)

    Modera, M.; Dickerhoff, D.; Jansky, R.; Smith, B.

    1992-06-01

    This report describes the results of the first phase of a multiyear research project. The project`s goal is to investigate ways to improve the efficiency of air-distribution systems in detached, single-family residences in California. First-year efforts included: A survey of heating, ventilating, and air conditioning (HVAC) contractors in California. A 31-house field study of distribution-system performance based on diagnostic measurements. Development of an integrated air-flow and thermal-simulation tool for investigating residential air-distribution system performance. Highlights of the field results include the following: Building envelopes for houses built after 1979 appear to be approximately 30% tighter. Duct-system tightness showed no apparent improvement in post-1979 houses. Distribution-fan operation added an average of 0.45 air changes per hour (ACH) to the average measured rate of 0.24 ACH. The simulation tool developed is based on DOE-2 for the thermal simulations and on MOVECOMP, an air-flow network simulation model, for the duct/house leakage and flow interactions. The first complete set of simulations performed (for a ranch house in Sacramento) indicated that the overall heating-season efficiency of the duct systems was approximately 65% to 70% and that the overall cooling-season efficiency was between 60% and 75%. The wide range in cooling-season efficiency reflects the difference between systems with attic return ducts and those with crawl-space return ducts, the former being less efficient. The simulations also indicated that the building envelope`s UA-value, a measurement of thermoconductivity, did not have a significant impact on the overall efficiency of the air-distribution system.

  2. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  3. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

  4. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  5. Low-rise Residential New Construction Program

    Broader source: Energy.gov [DOE]

     NYSERDA’s Low-rise Residential New Construction Programs are designed to encourage more industry involvement in the building of single-family homes and low-rise residential units that are more...

  6. Unitil (Gas)- Residential Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Until also offers rebates for residential new construction through the Natural Gas Energy Star Homes/Residential New Construction Program. To receive rebates, new homes must meet certain energy...

  7. Residential Renewable Energy Income Tax Credit

    Broader source: Energy.gov [DOE]

    The credit is available to any owner or tenant of residential property. For a newly constructed home, the credit is available to the original owner/occupant. Joint owners of a residential property...

  8. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide More Documents & Publications residential_retrofit_program_design_guide.pdf Residential Retrofit Program Design Guide Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

  9. residential_retrofit_program_design_guide.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    residential_retrofit_program_design_guide.pdf residential_retrofit_program_design_guide.pdf residential_retrofit_program_design_guide.pdf PDF icon residential_retrofit_program_design_guide.pdf More Documents & Publications Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

  10. Peer Exchange Call Series: Guide for Benchmarking Residential Program

    Energy Savers [EERE]

    Progress with Examples | Department of Energy Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples. PDF icon Guide for Benchmarking Residential Program Progress with Examples More Documents & Publications Optional Residential

  11. Fact Sheet: Better Buildings Residential Network | Department of Energy

    Office of Environmental Management (EM)

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. PDF icon BBRN Fact Sheet More Documents & Publications Fact Sheet - Better Buildings Residential Membership Criteria: Better Buildings Residential Network Better Buildings Residential Network Orientation

  12. Guide for Benchmarking Residential Energy Efficiency Program Progress |

    Office of Environmental Management (EM)

    Department of Energy for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. PDF icon Guide for Benchmarking Residential Energy Efficiency Program Progress More Documents & Publications Optional Residential Program Benchmarking Guide to Benchmarking Residential Program Progress Webcast Slides

  13. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  14. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  15. Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Buildings » Building America » Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most

  16. Shark Tank: Residential Energy Efficiency Edition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition Call Slides and Discussion Summary June 11, 2015 Agenda  Introduction and Better Buildings Residential Network Overview  Call Format  Get to Know the Sharks  Kerry O'Neill, Managing Director, Residential Programs, CT Green Bank (formerly with Connecticut Neighbor to Neighbor Energy Challenge)  Dana Fischer, Residential Program Manager, Efficiency Maine  Denee Evans, CEO, Council of Multiple Listing

  17. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  18. Designing Incentives Toolkit Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Incentives Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn T his Better Buildings Residential Network toolkit addresses the challenges and opportunities of using incentives to increase the volume of home energy upgrades. The topic was chosen as a priority by Residential Network members, who also served on a working group that reviewed this toolkit. Residential energy efficiency programs offer incentives as a way to encourage action from

  19. National Residential Efficiency Measures Database Webinar Slides |

    Energy Savers [EERE]

    Department of Energy Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies Program Webinar on the National Residential Efficiency Measures Database on January 18, 2011. PDF icon webinar_residential_efficiencydb_20110118.pdf More Documents & Publications tap_webinar_20100324_openpv_quniby.pdf Solar Energy - Capturing and Using Power and Heat from the Sun Building America

  20. Better Buildings Residential Network Social Media Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Media Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn 1 T his Better Buildings Residential Network toolkit can be used to help residential energy efficiency programs learn to engage potential customers through social media. Social media can build brand awareness concerning home energy upgrades and the entities working on them, which can lead to more energy upgrade projects taking place in the long run. Residential Network members provided input

  1. Presentation: Better Buildings Residential Program Solution Center

    Broader source: Energy.gov [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy, Better Buildings Neighborhood Program.

  2. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  3. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  4. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  5. Vehicle Testing and Integration Facility (Brochure), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Vehicle Testing and Integration Facility 3 Vehicle Energy Management with Smart Grid * Optimize vehicle energy flow with residential grids and distributed renewables * Manage ...

  6. Effective Loan Program Design and Integration with Contractors

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Financing and Revenue Peer Exchange Call Series: Effective Loan Program Design and Integration with Contractors, July 24, 2014, Call Slides and Discussion Summary.

  7. NREL to Help California Tackle Solar Energy Grid Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The residential software modeling tool, called Building Energy Optimizer for California Existing Homes, will facilitate balanced integration of energy efficiency, demand response ...

  8. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Residential Solar Valuation Rates This presentation summarizes the information discussed by Rabago Energy during the Best Practices in the Design of Utility Solar Programs Webinar on Sept. 27, 2012. PDF icon utility_design_rabago_energy.pdf More Documents & Publications Austin Energy's Residential Solar Rate QER - Comment of Energy Innovation 1 QER - Comment of Energy Innovation 8

  9. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation can help keep your home cool during hot days. To avoid heat buildup in your home, plan ahead by landscaping your lot to shade your house. If you replace your roof,...

  10. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  11. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Energy Savers [EERE]

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. PDF icon webinar_hybrid_insulation_20111130.pdf More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for

  12. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, Robb; Arena, Lois

    2013-02-01

    In an effort to improve housing options near Las Vegas, Nevada, the Clark County Community Resources Division (CCCRD) performs substantial renovations to foreclosed homes. After dramatic energy, aesthetic, and health and safety improvements are made, homes are rented or sold to qualified residents. This report describes the evaluation and selection of ventilation systems for these homes, including key considerations when selecting an ideal system. The report then describes CCCRD’s decision process with respect to ventilation.

  13. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    SciTech Connect (OSTI)

    Barringer, C.G.; McGugan, C.A. )

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration, exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.

  14. Residential propane price decreases slightly

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases slightly The average retail price for propane is $2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.93 per gallon, down one cent from last week, and down 35.5

  15. Ventilation efficiencies of a desk-edge-mounted task ventilation system

    SciTech Connect (OSTI)

    Faulkner, David; Fisk, William J.; Sullivan, Douglas P.; Lee, Seung Min

    2002-03-01

    In chamber experiments, we investigated the effectiveness of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air at the mannequin's face) ranged from 1.4 to 2.7, which is higher than typically reported for commercially available task ventilation or displacement ventilation systems.

  16. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  17. Residential Conservation Service: a retrospective

    SciTech Connect (OSTI)

    Praul, C.G.; Gunther, A.; Maier, G.

    1981-08-01

    A background of the Residential Conservation Service (RCS) program is presented and outstanding program design issues which include effectiveness, audit effectiveness, equity concerns, anticompetitive and antitrust considerations, and general concerns in state plan development are discussed. The purpose of the review is to provide background information to legislators and other decision makers who, though not immediately involved in program administration, will be evaluating the mandate and implementation progress over the next year. (MCW)

  18. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  19. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    propane price increase slightly The average retail price for propane is $2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 5-tenths of a cent from last week, and down 10.4

  20. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  1. Residential Retrofit Program Design Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the

  2. Berkshire Gas - Residential Energy Efficiency Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    400 Storage Water Heaters: 100 Condensing Stand Alone Water Heaters: 500 Tankless Water Heaters: 500 - 800 Heat Recovery Ventilator: 500 After-Market Boiler Reset...

  3. British architectural concepts of natural ventilation

    SciTech Connect (OSTI)

    Cook, J.

    1997-12-31

    Recent large buildings in Britain are reviewed for their demonstration of programmatic determinates and architectural concepts of natural ventilation, systems that reduce electric use because they use natural convection. In size they range from the 5,000 square feet of Darwin College at Cambridge to the Inland Revenue Center at Nottingham with 400,000 square feet. The mix of passive and conventional mechanical systems of Ionica Office Building, Cambridge suggests the newest strategy of deliberate redundancy in what might better be called assisted natural ventilation. Daylighting, a distinctly different technique is typically coincident. Among the programmatic concepts are unsealed buildings, displacement ventilation, and user preference for immediate environmental control and strong contact with the outdoor environment. Architectural concepts include atriums, exhaust towers, and exposed structural concrete ceilings. These applications reinforce green policies and involve leadership from prominent architects and clients.

  4. Residential Retrofit Program Design Guide Overview Transcript.doc |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Residential Retrofit Program Design Guide Overview Transcript.doc Microsoft Office document icon Residential Retrofit Program Design Guide Overview Transcript.doc More Documents & Publications Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Design Guide Overview Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript

  5. Better Buildings Residential Network Membership Form | Department of Energy

    Office of Environmental Management (EM)

    Network Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network. File BBRN Membership Form More Documents & Publications Better Buildings Residential Network Orientation Fact Sheet: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network

  6. Building America Webinar: National Residential Efficiency Measures Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unveiled | Department of Energy National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview of this database of residential building retrofit measures and associated estimated costs, and progress to date. File webinar_residential_efficiencydb_20110118.wmv More Documents & Publications National Residential Efficiency Measures Database Webinar Slides Building America

  7. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  8. Micro-CHP Systems for Residential Applications

    SciTech Connect (OSTI)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner. In its proposed embodiment, the system has a 2kW prime mover integrated to a furnace platform. The second version is a Micro-Trigen system with heating, cooling and power. It has the same Micro-Cogen platform integrated with a 14kW thermally activated chiller. A Stirling engine is suggested as a promising path for the prime mover. A LiBr absorption chiller is today's best technology in term of readiness level. Paybacks are acceptable for the Micro-Cogen version. However, there is no clear economically viable path for a Micro-Trigen version with today's available technology. This illustrates the importance of financial incentives to home owners in the initial stage of micro-CHP commercialization. It will help create the necessary conditions of volume demand to start transitioning to mass-production and cost reduction. Incentives to the manufacturers will help improve efficiency, enhance reliability, and lower cost, making micro-CHP products more attractive. Successful development of a micro-CHP system for residential applications has the potential to provide significant benefits to users, customers, manufacturers, and suppliers of such systems and, in general, to the nation as a whole. The benefits to the ultimate user are a comfortable and healthy home environment at an affordable cost, potential utility savings, and a reliable supply of energy. Manufacturers, component suppliers, and system integrators will see growth of a new market segment for integrated energy products. The benefits to the nation include significantly increased energy efficiency, reduced consumption of fossil fuels, pollutant and CO{sub 2} emissions from power generation, enhanced security from power interruptions as well as enhanced economic activity and job creation. An integrated micro-CHP energy system provides advantages over conventional power generation, since the energy is used more efficiently by means of efficient heat recovery. Foreign companies are readily selling products, mostly in Europe, and it is urgent to react promptly to these offerings that will soon emerge on the U.S

  9. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  10. NREL: National Residential Efficiency Measures Database - Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developer Tools Application Developer Tools Here you will find tools intended to help software application developers access the data in the National Residential Efficiency Measures Database. This database of retrofit measures and associated costs can be used by software applications that evaluate residential efficiency measures. Read more about the database and information about the cost data. Developer Tools Change log-View a list of changes to the National Residential Efficiency Measures

  11. Energy Intensity Indicators: Residential Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4) energy intensity, and 5) an overall structural component that represents "other explanatory factors." Activity: Since 1970, the number of household (occupied

  12. Better Buildings Residential Program Solution Center Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Better Buildings Residential Program Solution Center Demonstration Amanda Chiu: My name is Amanda Chiu, and I'm with Energetics, Incorporated, on behalf of the U.S. Department of Energy (DOE) Better Buildings Residential Program. Thank you for joining us today, and welcome to a demonstration of the Better Buildings Residential Program's Solution Center. We have with us today Danielle Byrnett with the U.S. Department of Energy. Danielle is the supervisor for the Better Buildings

  13. Building America Partnership for Improved Residential Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnership for Improved Residential Construction Building America Partnership for Improved Residential Construction In addition to occupied test homes, research will be conducted in highly instrumented laboratories with simulated occupancy. Shown here are the two identical, side-by-side test homes that comprise FSEC's Flexible Residential Test Facility. Photo courtesy of Florida Solar Energy Center. In addition to occupied test homes, research will be conducted in

  14. Stochastic Optimal Scheduling of Residential Appliances with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources National Renewable Energy Laboratory Contact NREL About This Technology ...

  15. Florida Public Utilities- Residential HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers rebates to electric residential customers who improve the efficiency of homes. Central air conditioners and heat pumps which meet program requirements are eligible...

  16. Mass Save (Electric)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Mass Save organizes residential energy conservation services for programs administered by Massachusetts electric companies, gas companies, and municipal aggregators. Rebates for various energy...

  17. Mass Save (Gas)- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Mass Save, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts gas companies. These gas providers include Columbia Gas of Massachusetts,...

  18. Duke Energy - Residential Efficiency Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Pool Pumps: 300 HVACs: up to 200 Ductwork: 175 Attic Insulation: 250 Summary The Smart aver program offers incentives for residential customers to increase the energy...

  19. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  20. TEP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Tucson Electric Power (TEP) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to the...

  1. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  2. Tampa Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

  3. Midstate Electric Cooperative- Residential Conservation Rebates

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative offers its residential customers a variety of cash rebates for energy efficient improvements and new energy efficient homes. Rebates are awarded for the installation...

  4. Questar Gas- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Questar Gas provides rebates for residential customers who make their homes more energy efficient by installing certain energy saving appliances, efficient heating equipment, and certain...

  5. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  6. MassSAVE (Gas)- Residential Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

  7. Lane Electric Cooperative - Residential and Commercial Weatherization...

    Broader source: Energy.gov (indexed) [DOE]

    Washer: 75 Solar Water Heater: 500 Summary Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a...

  8. Austin Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives to its residential customers to encourage the use of energy efficient equipment and measures. Rebates are available for qualified HVAC equipment and weatherization...

  9. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  10. Charlottesville Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for...

  11. Clallam County PUD- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Clallam County PUD offers a variety of rebates for residential customers for energy efficiency improvements. Eligible measures and incentives include window upgrades, insulation, air and duct...

  12. Better Buildings Residential Network Program Sustainability Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Featuring Host: Rich Dooley, Arlington County, VA Call ... Moderator: Jonathan Cohen, DOE Host: Rich Dooley, Arlington County, VA ...

  13. Oklahoma Natural Gas - Residential Efficiency Rebates | Department...

    Broader source: Energy.gov (indexed) [DOE]

    250 Clothes Dryer: up to 500 Summary To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential...

  14. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes.

  15. SCE- Non-Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Southern California Edison (SCE) offers incentives for non-residential customers, regardless of size and energy usage. Express Efficiency rebates for lighting, refrigeration, food service,...

  16. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  17. Meade County RECC- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Meade County RECC offers rebates to residential members who install energy-efficient systems and equipment. New homebuilders can also access rebates for installing energy-efficient equipment...

  18. PSNH - Residential Energy Efficiency Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    collaboration with nhsaves, provides incentives for residential customers to increase the energy efficiency of participating homes. Prescriptive rebates are available for the...

  19. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  20. Xcel Energy (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category Geothermal Heat Pumps RefrigeratorsFreezers Lighting Lighting ControlsSensors Furnaces Heat Pumps Air conditioners Programmable Thermostats DuctAir...

  1. SMUD- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Sacramento Municipal Utility District offers financing to help residential customers finance energy efficient home improvements. Applicant for a loan must be the vested owner of the property where...

  2. Longmont Power & Communications - Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    50 per appliance Residential: 1 clothes washer and 1 dishwasher per year Commercial: 3 clothes washers and 3 dishwashers per year Program Info Sector Name Utility...

  3. Minnesota Power - Residential New Construction Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Savings Category Solar Photovoltaics Geothermal Heat Pumps Clothes Washers RefrigeratorsFreezers Dehumidifiers Water Heaters Heat Pumps Air conditioners...

  4. Consumers Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Residential Income Qualified Energy Efficiency Program is working with existing Michigan Weatherization Assistance Program delivery to support weatherization providers with more funding for...

  5. Consumers Energy (Electric)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Residential Income Qualified Energy Efficiency Program is working with existing Michigan Weatherization Assistance Program delivery to support weatherization providers with more funding for...

  6. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  7. Better Buildings Residential Program Solution Center Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript The Better Buildings Residential Program Solution Center is a robust online collection of nearly 1,000 examples, strategies, and resources from Better Buildings...

  8. Emerald PUD- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) offers several incentives for its residential customers to increase the energy efficiency of homes. Emerald PUD offers rebates for ENERGY STAR rated...

  9. Entergy New Orleans- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Home Performance with ENERGY STAR Program provides ENO residential customers with home energy assessments, recommendations for energy savings and incentives towards the cost of those upgrades...

  10. Building America Residential Energy Efficiency Stakeholders Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report and presentations ...

  11. Building America Residential Energy Efficiency Technical Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and ...

  12. Building America Residential Energy Efficiency Research Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and ...

  13. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for:

  14. Residential Transportation Historical Publications reports, data...

    U.S. Energy Information Administration (EIA) Indexed Site

    May 2008 The Energy Information Administration conducts several core consumption surveys. Among them was the Residential Transportation Energy Consumption Survey (RTECS)....

  15. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  16. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and air conditioners. To qualify for the...

  17. West Virginia Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Appalachian Residential Consortium for Energy Efficiency (ARCEE), WV Partner: Marshall University’s Center for Business and Energy Research—Huntington, WV

  18. Waseca Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Develops innovative products and services to help them deliver value to customers. With help from SMMPA, Waseca Utilities provides incentives for residential and commercial customers to improve t...

  19. Emerald PUD- Residential Energy Efficiency Loan Programs

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) has a loan program through First Tech Credit Union to help residential customers improve the energy efficiency of their homes. Through the Weatherization...

  20. National Residential Efficiency Measures Database - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database - Building America Top Innovation Image of a man insulating the ceiling of a home. Robust cost data for energy-efficiency measures ...

  1. Duquesne Light Company- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Duquesne Light provides rebates to its residential customers for purchasing and installing energy-saving equipment. Eligible equipment includes dehumidifiers, freezers, refrigerators, air conditi...

  2. Residential Energy Efficiency Messaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nothing But Networking for Residential Network Members Social Media and Messages that Matter - Top Tips and Tools Generating Energy Efficiency...

  3. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  4. NIPSCO (Gas & Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    and Air Sealing: 40% of total cost up to 450 Lighting: Varies Summary Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install...

  5. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  6. Benefits of Better Buildings Residential Network Reporting

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network All-Member Peer Exchange Call: Member Reporting and Benefits, Call Slides and Discussion Summary, May 22, 2014.

  7. El Paso Electric Company- Residential Solutions Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric Residential Solutions Program offers El Paso Electric customers and participating contractors cash and non-cash incentives for implementing energy efficiency improvements in...

  8. AEP SWEPCO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SWEPCO Arkansas offers a variety of rebates to residential customers in its service territory. Eligible equipment includes central ac units, heat pumps, insulation, air sealing, duct sealing,...

  9. OTEC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

  10. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  11. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

  12. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square...

  13. Presentation: Better Buildings Residential Program Solution Center...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy's Better Buildings Neighborhood Program, April 2014. Solution Center Overview...

  14. Idaho Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Idaho Power offers a variety of incentives for the installation of heating and cooling systems for residential customers living in both Oregon and Idaho.

  15. Farmers Electric Cooperative - Residential/Agricultural Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Agricultural Savings Category Solar Photovoltaics Wind (All) Geothermal Heat Pumps Water Heaters Lighting Heat Pumps CaulkingWeather-stripping Building Insulation...

  16. Piedmont EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and LED lighting in eligible homes. Rebates are available...

  17. Presentation: Better Buildings Residential Program Solution Center

    Broader source: Energy.gov [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy's Better Buildings Neighborhood Program, April 2014.

  18. Residential Energy Efficiency Research Planning Meeting Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings and outcomes...

  19. Lincoln Electric System (Residential)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers several rebates to their residential customers who are interested in upgrading to energy efficient household equipment. 

  20. Better Buildings Residential Network Case Study: Partnerships

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  1. ,"New York Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Residential Consumption (MMcf)",1,"Monthly","92015" ,"Release...

  2. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  3. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in their homes. Full details are available on the program website.

  4. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program...

  5. CPS Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  6. Xcel Energy - Residential Energy Efficiency Rebate Program |...

    Broader source: Energy.gov (indexed) [DOE]

    ResidentialSolutionsRebates... Expiration Date 12312014 State New Mexico Program Type Rebate Program Rebate Amount Draft Check Kits and Power Check Meters:...

  7. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect (OSTI)

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  8. Property:Building/FloorAreaResidential | Open Energy Information

    Open Energy Info (EERE)

    BuildingFloorAreaResidential Jump to: navigation, search This is a property of type Number. Floor area for Residential Pages using the property "BuildingFloorAreaResidential"...

  9. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  10. Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines

    Broader source: Energy.gov [DOE]

    This webinar, held on Aug. 26, 2015, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than traditional construction.

  11. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    SciTech Connect (OSTI)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  12. Chapter 17: Residential Behavior Protocol

    SciTech Connect (OSTI)

    Stewart, J.; Todd, A.

    2015-01-01

    Residential behavior-based (BB) programs use strategies grounded in the behavioral social sciences to influence household energy use. Strategies may include providing households with real-time or delayed feedback about their energy use; supplying energy-efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5%.

  13. 2014-02-06 Issuance: Energy Conservation Standards for Residential...

    Office of Environmental Management (EM)

    6 Issuance: Energy Conservation Standards for Residential Conventional Cooking Products; Request for Information 2014-02-06 Issuance: Energy Conservation Standards for Residential ...

  14. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  15. Residential Network Members Support New Data-Driven Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Residential Network Members Support New Data-Driven Initiative SEED logo. Better Buildings Residential Network members the Institute for Market Transformation...

  16. Colorado Springs Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

  17. Financing Residential Energy Efficiency with Carbon Offsets Transcript...

    Energy Savers [EERE]

    Financing Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript...

  18. Duke Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver program offers incentives for residential customers to increase residential energy efficiency. Incentives are provided for qualifying heating and cooling equipment installation and...

  19. 2014-04-11 Issuance: Test Procedures for Residential Clothes...

    Office of Environmental Management (EM)

    1 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed ...

  20. Better Buildings Summit Residential Sessions Engage Energy Pros...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking ...

  1. Kissimmee Utility Authority- Residential & Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kissimmee Utility Authority (KUA) offers several rebates to residential customers for energy efficiency improvements. Residential customers can earn a $75 rebate for repairing duct leaks in...

  2. Holyoke Gas & Electric- Residential Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    The Holyoke Gas & Electric (HG&E) Residential Energy Conservation Program provides residential customers with loans to help make energy saving improvements to eligible homes. The loan...

  3. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends ...

  4. RESIDENTIAL NETWORK MEMBERS UNITE TO FORM GREEN BANK NETWORK...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and Development Authority, have helped ...

  5. DOE Webinar … Residential Geothermal Heat Pump Retrofits (Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Residential Geothermal Heat Pump Retrofits (Presentation) DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Presented at the U.S. Department of ...

  6. Regional Variation in Residential Heat Pump Water Heater Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States ...

  7. Field Testing of Pre-Production Prototype Residential Heat Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Provides and overview of ...

  8. Large-Scale Residential Energy Efficiency Programs Based on CFLs...

    Open Energy Info (EERE)

    Large-Scale Residential Energy Efficiency Programs Based on CFLs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Large-Scale Residential Energy Efficiency Programs Based...

  9. Presentation Slides: Solar Finance for Residential and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Slides: Solar Finance for Residential and Commercial Customers and Potential Roles of State and Local Government Presentation Slides: Solar Finance for Residential and ...

  10. Break-out Discussion i: Modeling Consumer Behavior Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Break-out Discussion i: Modeling Consumer Behavior Residential Scale Break-out Discussion i: Modeling Consumer Behavior Residential Scale This presentaion summarizes the ...

  11. Creative Financing Approaches for Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Creative Financing Approaches for Residential Energy Efficiency Programs, call slides and discussion summary.

  12. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies ...

  13. Better Buildings Residential Network: Lessons Learned: Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer...

  14. Santee Cooper- Residential Energy Efficiency Existing Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Santee Cooper provides rebates to residential and multi-family residential customers. Rebates are available on air source heat pumps, solar water heaters, weatherization measures, programmable...

  15. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  16. Texas Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb...

  17. NREL Residential Buildings Group Partners - Datasets - OpenEI...

    Open Energy Info (EERE)

    NREL Residential Buildings Group Partners This spreadsheet contains a list of all the companies with which NREL's Residential Buildings Group has formed a partnership. The two...

  18. Oklahoma Municipal Power Authority- WISE Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers residential customers rebates on a variety of HVAC equipment through its WISE Rebate program. This program encourages residential customers and...

  19. Poudre Valley REA- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential heat pumps, air conditioners...

  20. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean ...