National Library of Energy BETA

Sample records for residential home retrofit

  1. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

  2. Existing Homes Retrofit Case Study: Consortium for Advanced Residential Buildings (CARB), Washington, D.C.

    SciTech Connect (OSTI)

    2009-09-01

    This is a Building America fact sheet describing Consortium for Advanced Residential Buildiings (CARB) whole building retrofit process to renovate a 145-year-old home in Washington, D.C.

  3. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide More Documents & Publications residential_retrofit_program_design_guide.pdf Residential Retrofit Program Design Guide Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

  4. residential_retrofit_program_design_guide.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    residential_retrofit_program_design_guide.pdf residential_retrofit_program_design_guide.pdf residential_retrofit_program_design_guide.pdf PDF icon residential_retrofit_program_design_guide.pdf More Documents & Publications Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Home Performance with ENERGY STAR -- 10 Years of Continued Growth!

  5. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  6. Residential Building Audits and Retrofits

    Broader source: Energy.gov [DOE]

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues.

  7. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  8. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide...

  9. Deep Residential Retrofits in East Tennessee

    SciTech Connect (OSTI)

    Boudreaux, Philip R; Hendrick, Timothy P; Christian, Jeffrey E; Jackson, Roderick K

    2012-04-01

    Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is also monitored, with temperature and humidity measured in all conditioned zones, attics, crawlspaces, and unconditioned basements. In some homes, heat flux transducers are installed on the basement walls to help determine the insulating qualities of the technologies and practices. EnergyGauge is used to estimate the pre-retrofit and post-retrofit home energy rating system (HERS) index and reduction in energy consumption and energy bill. In a follow-up report, data from the installed sensors will be presented and analyzed as well as a comparison of the post-retrofit energy consumption of the home to the EnergyGauge model of the post-retrofit home. Table ES1 shows the retrofits that were completed at the eight households where some or all of the recommended retrofits were completed. Home aliases are used to keep the homeowners anonymous. Some key findings of this study thus far are listed as follows. Some homeowners (50%) are not willing to spend the money to reach 30 50% energy savings. Quality of retrofit work is significantly variable among contractors which impact the potential energy savings of the retrofit. Challenges exist in defining house volume and floor area. Of the five homes that completed all the recommended retrofits, energy bill savings was not the main driver for energy retrofits. In no case were the retrofits cost neutral given a 15 year loan at 7% interest for the retrofit costs.

  10. Advancing Residential Retrofits in Atlanta

    SciTech Connect (OSTI)

    Jackson, Roderick K; Kim, Eyu-Jin; Roberts, Sydney; Stephenson, Robert

    2012-07-01

    This report will summarize the home energy improvements performed in the Atlanta, GA area. In total, nine homes were retrofitted with eight of the homes having predicted source energy savings of approximately 30% or greater based on simulated energy consumption.

  11. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide This Residential Retrofit Program Design Guide focuses on the key elements and design...

  12. Post-Retrofit Residential Assessments

    SciTech Connect (OSTI)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

  13. Building America Whole-House Solutions for Existing Home: Retrofitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home: Retrofitting a 1960s Split-Level Cold-Climate Home The U.S. Department of Energy Building America team Consortium for Advanced Residential Buildings (CARB) partnered with...

  14. Residential Retrofit Program Design Guide Overview Transcript.doc |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Residential Retrofit Program Design Guide Overview Transcript.doc Microsoft Office document icon Residential Retrofit Program Design Guide Overview Transcript.doc More Documents & Publications Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Design Guide Overview Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript

  15. Residential Retrofit Program Design Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the

  16. DOE Webinar Â… Residential Geothermal Heat Pump Retrofits (Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Residential Geothermal Heat Pump Retrofits (Presentation) DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Presented at the U.S. Department of ...

  17. Financing Residential Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofits June 25, 2010 - 3:32pm Addthis Rancho Cucamonga, east of Los Angeles, received a 1.6 million Energy Efficiency and Conservation Block grant from the U.S....

  18. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    SciTech Connect (OSTI)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  19. Designing Effective Incentives to Drive Residential Retrofit Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participation | Department of Energy Incentives to Drive Residential Retrofit Program Participation Designing Effective Incentives to Drive Residential Retrofit Program Participation This webinar covered retrofit program incentive contests, decision points to consider when designing an incentive program, and examples of incentive structures. Transcript PDF icon Presentation More Documents & Publications Designing Effective Renewables Programs How to Design a Community Energy Alliance

  20. DOE Webinar Â… Residential Geothermal Heat Pump Retrofits (Presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar Â… Residential Geothermal Heat Pump Retrofits (Presentation) DOE Webinar Â… Residential Geothermal Heat Pump Retrofits (Presentation) Presented at the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE) Webinar Series on Dec. 14, 2010. PDF icon DOE Webinar- Residential Geothermal Heat Pump Retrofits (Presentation) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source

  1. Building Energy Model Development for Retrofit Homes

    SciTech Connect (OSTI)

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

  2. NREL: National Residential Efficiency Measures Database Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Learn more about the database. By accessing the database, the user agrees to the terms and conditions of use. View Data Now

  3. Designing Effective Incentives to Drive Residential Retrofit Program Participation (Text Version)

    Broader source: Energy.gov [DOE]

    Transcript of the webinar, "Designing Effective Incentives to Drive Residential Retrofit Program Participation."

  4. Community-Scale Attic Retrofit and Home Energy Upgrade Data Mining

    SciTech Connect (OSTI)

    Berman, M.; Smith, P.; Jackson, J.

    2015-05-01

    Residential retrofit is an essential element of any comprehensive strategy for improving residential energy efficiency, yet remains a challenging proposition to sell to homeowners due to low levels of awareness and lack of financial incentive. The Alliance for Residential Building Innovation (ARBI) implemented a project to increase residential retrofits in Davis, CA called Retrofit Your Attic developed and appropriate data sets were uploaded to the Building America Field Data Repository (BAFDR). Two key conclusions are a broad based public awareness campaign is needed to increase understanding of the makeup and benefits of residential retrofits and a dramatic shift is needed so that efficient homes are appraised and valued at higher levels. The SAVE Act, proposed bipartisan federal legislation [S.1106], offers one way to accomplish this.

  5. Proven Performance of Seven Cold Climate Deep Retrofit Homes

    SciTech Connect (OSTI)

    Osser, R.; Neuhauser, K.; Ueno, K.

    2012-06-01

    Seven test homes located in Massachusetts are examined within this report. The retrofit strategies of each home are presented along with a comparison of the pre- and post-retrofit airtightness achieved by the group. Pre- and post-retrofit utility bills were collected; energy models were used to estimate pre-retrofit energy use when bills were unavailable.

  6. Pilot Demonstration of Phased Retrofits in Florida Homes (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Pilot Demonstration of Phased Retrofits in Florida Homes PROJECT INFORMATION Project Name: Pilot Demonstration of Phased Retrofits in Existing Florida Homes Partners: Building America Partnership for Improved Residential Construction, www.ba-pirc.org Florida Power & Light, www.fpl.com Location: Brevard, Collier, and Palm Beach Counties, Florida Application: Retrofit; Single-family Number of Homes: 60 Age Range: 1958-2006 Applicable Climate Zone(s): Hot-humid Year Tested: 2012-2013

  7. Building America Whole-House Solutions for Existing Home: Retrofitting a

    Energy Savers [EERE]

    1960s Split-Level Cold-Climate Home | Department of Energy Whole-House Solutions for Existing Home: Retrofitting a 1960s Split-Level Cold-Climate Home Building America Whole-House Solutions for Existing Home: Retrofitting a 1960s Split-Level Cold-Climate Home The U.S. Department of Energy Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders and the owners of a 1960s split-level home in Westport, Connecticut, to evaluate and implement a

  8. NREL: National Residential Efficiency Measures Database - Retrofit Measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit Questions/Comments Retrofit Measures This page provides the types for all retrofit measures available in the National Residential Efficiency Measures Database. Select a component type below to see the retrofit measure data. For more information, read about the database, learn about the cost data, and see the glossary. Airflow Air Leakage Mechanical Ventilation Ceilings/Roofs Finished Roof Radiant Barrier Roof Material Unfinished Attic Foundation/Floors Crawlspace Slab Unfinished Basement

  9. Residential Geothermal Heat Pump Retrofit Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Projects » Residential Geothermal Heat Pump Retrofit Webinar Residential Geothermal Heat Pump Retrofit Webinar Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Erin Anderson's Dec. 14, 2010, presentation about geothermal heat pump (GHP) technology options, applications, and installation costs for residences. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for Consumers Grants. You can also read the

  10. Comparison of Home Retrofit Programs in Wisconsin

    SciTech Connect (OSTI)

    Cunningham, Kerrie; Hannigan, Eileen

    2013-03-01

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results-program cost and energy savings-to help understand the overall strengths and weaknesses or challenges of each model.

  11. Comparison of Home Retrofit Programs in Wisconsin

    SciTech Connect (OSTI)

    Cunningham, K.; Hannigan, E.

    2013-03-01

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

  12. Existing Whole-House Solutions Case Study: Pilot Demonstration of Phased Retrofits in Florida Homes - Central and South Florida Homes

    SciTech Connect (OSTI)

    2014-08-01

    In this pilot project, the Building America Partnership for Improved Residential Construction and Florida Power and Light are collaborating to retrofit a large number of homes using a phased approach to both simple and deep retrofits. This project will provide the information necessary to significantly reduce energy use through larger community-scale projects in collaboration with utilities, program administrators and other market leader stakeholders.

  13. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  14. Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Program Design Guide Play BookTEAM 4 FINAL.docx Microsoft Word - T4VEICTO2 Sub3Residential Retrofit Program Design Guide Play BookTEAM 4 FINAL.docx PDF icon ...

  15. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Determining Optimal Residential Energy Efficiency Retrofit Packages B. Polly, M. Gestwick, M. Bianchi, R. Anderson, S. Horowitz, C. Christensen, and R. Judkoff National Renewable Energy Laboratory April 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

  16. Building America Case Study: Retrofitting a 1960s Split-Level, Cold-Climate Home, Westport, Connecticut (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofitting a 1960s Split-Level Cold-Climate Home Westport, Connecticut PROJECT INFORMATION Construction: Existing home Type: Single-family, split-level Partners: General Contractor: Preferred Builders, preferredbuilders.biz Consortium for Advanced Residential Buildings, carb-swa.com Size: 1,712 ft 2 Date Completed: 1960 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index: Pre-retrofit = 114 Post-retrofit: * With PV = 26 * Without PV = 56 Validated annual energy cost savings: * With PV = $4,032

  17. Building America Technology Solutions for Existing Homes: Retrofit Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Embedded Wood Member in Insulated Mass Masonry Walls | Department of Energy Existing Homes: Retrofit Measures for Embedded Wood Member in Insulated Mass Masonry Walls Building America Technology Solutions for Existing Homes: Retrofit Measures for Embedded Wood Member in Insulated Mass Masonry Walls In this project, the Building Science Corporation team studied a historic brick building in Lawrence, Massachusetts, which is being renovated into 10 condominium units and adding insulation to

  18. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  19. Next Step Toward Widespread Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    McIlvaine, J.; Saunders, S.; Bordelon, E.; Baden, S.; Elam, L.; Martin, E.

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  20. The Next Step Toward Widespread Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    McIlvaine, J.; Martin, E.; Saunders, S.; Bordelon, E.; Baden, S.; Elam, L.

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  1. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  2. Existing Homes Retrofit Case Study: SMUD's Energy Efficient Remodel Demonstration Project

    SciTech Connect (OSTI)

    2010-10-01

    Building America worked with SMUD on this 1980s retrofit home to cut energy use by 104 points from a pre-retrofit California HERS score of 182 to a post retrofit score of 78.

  3. Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide Play Book_TEAM 4 FINAL.docx | Department of Energy Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design Guide Play Book_TEAM 4 FINAL.docx Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design Guide Play Book_TEAM 4 FINAL.docx PDF icon residential_retrofit_program_design_guide.pdf More Documents & Publications Microsoft Word - Horizon Wind Energy Comments.docx Reporting Pre-guidance Announcement 06-02-2011 Letter to SEP Recipients on Changes to

  4. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Performance of a Hot-Dry Climate Whole-House Retrofit Stockton, California PROJECT INFORMATION Construction: Whole-house retrofit Type: Single-family, affordable Partners: Builder: Green Home Solutions, greenbygrupe.com Alliance for Residential Building Innovation, http://arbi.davisenergy.com Size: 2,152 ft 2 Date completed: 2011 Climate Zone(s): Hot-Dry PERFORMANCE DATA HERS Index: Pre-retrofit rating = 314; post-retrofit rating = 156 Projected annual energy cost savings: $837 Incremental

  5. Pilot Demonstration of Phased Retrofits in Florida Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The Florida Solar Energy Center (FSEC) and Florida Power and Light are pursuing a collaborative energy research/utility partnership to retrofit a large number of homes using a phased approach. The project is creating detailed data on the energy and economic performance of two levels of home retrofit - simple and deep. Acting as a pilot, this project is expected to provide the information necessary to significantly reduce energy use through much larger community-scale projects in collaboration with utilities, program administrators and other market leader stakeholders.

  6. Wyandotte Neighborhood Stabilization Program: Retrofit of Two Homes

    SciTech Connect (OSTI)

    Lukachko, A.; Grin, A.; Bergey, D.

    2013-04-01

    The Wyandotte NSP2 project aims to build 20 new houses and retrofit 20 existing houses in Wyandotte, MI. This report will detail the retrofit of 2 existing houses in the program. Wyandotte is part of a Michigan State Housing Development Authority-led consortium that is funded by HUD under the NSP2 program. The City of Wyandotte has also been awarded DOE EE&CBG funds that are being used to develop a district GSHP system to service the project. This draft report examines the energy efficiency recommendations for retrofit construction at these homes. The report will be of interest to anyone planning an affordable, high performance retrofit of an existing home in a Cold Climate zone. Information from this report will also be useful to retrofit or weatherization program staff as some of the proposed retrofit solutions will apply to a wide range of projects. Preliminary results from the first complete house suggest that the technology package employed (which includes spray foam insulation and insulating sheathing) does meet the specific whole house water, air, and thermal control requirements, as well as, the project's affordability goals. Monitoring of the GSHP system has been recommended and analysis of this information is not yet available.

  7. Existing Homes Retrofit Case Study: SMUD's 32nd Avenue Remodel Demonstration Program, Sacramento, CA

    SciTech Connect (OSTI)

    none,

    2011-03-01

    This case study describes a retrofit project between SMUD and Building America to create a high-performance home.

  8. Byggmeister Test Home. Analysis and Initial Results of Cold Climate Wood-Framed Home Retrofit

    SciTech Connect (OSTI)

    Gates, C.

    2013-01-01

    BSC seeks to further the energy efficiency market for New England area retrofit projects by supporting projects that are based on solid building science fundamentals that will benefit the homeowner through a combination of energy savings, improved durability, and occupant comfort. This report describes a deep retrofit project of a two-family wood-framed home in Belmont, Massachusetts, and examines the retrofit measures for the enclosure amd mechanical systems and reviews the decision-making process that took place during planning.

  9. Existing Homes Retrofit Case Study: SMUD's Jean Avenue Remodel Demonstration Program, Sacramento, CA

    SciTech Connect (OSTI)

    none,

    2011-03-01

    This case study describes how SMUD teamed with Building America partners to retrofit aging, foreclosed homes into high-performance homes.

  10. Retrofitting America: A 1970s Home Energy Efficiency Analysis

    SciTech Connect (OSTI)

    2010-11-17

    This paper describes a modeling tool that Building America research team CARB developed to identify the energy benefits of various retrofit energy efficiency measures for a typical 1970’s ranch home in ten cities across four climate zones in the United States.

  11. Wyandotte Neighborhood Stabilization Program: Retrofit of Two Homes

    SciTech Connect (OSTI)

    Lukachko, A.; Grin, A.; Bergey, D.

    2013-04-01

    The Wyandotte NSP2 project aims to build 20 new houses and retrofit 20 existing houses in Wyandotte, MI. Wyandotte is part of a Michigan State Housing Development Authority-led consortium that is funded by HUD under the NSP2 program. The City of Wyandotte has also been awarded DOE EE&CBG funds that are being used to develop a district ground source heat pump (GSHP) system to service the project. This report details the retrofit of two existing houses in the program, and examines the energy efficiency recommendations for the homes. The report will be of interest to anyone planning an affordable, high performance retrofit of an existing home in a cold climate zone. Information from this report will also be useful to retrofit or weatherization program staff as some of the proposed retrofit solutions will apply to a wide range of projects. Preliminary results from the first complete house suggest that the technology package employed (which includes spray foam insulation and insulating sheathing) does meet the specific whole house water, air, and thermal control requirements, as well as, the project’s affordability goals. Monitoring of the GSHP system has been recommended and analysis of this information is not yet available.

  12. Cost Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    SciTech Connect (OSTI)

    Fairey, Philip

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous United States. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  13. Strategy Guideline. Mitigation of Retrofit Risk Factors

    SciTech Connect (OSTI)

    Berman, M.; Smith, P.; Porse, E.

    2012-12-01

    The Alliance for Residential Building Innovation (ARBI) Building America team is currently developing strategies designed to promote and achieve increased energy savings and promote upgrades in the residential retrofit sector. These strategies are targeted to retrofit program managers, retrofit contractors, policy makers, academic researchers, and non-governmental organizations. This report focuses on four key areas to promote home energy upgrades: fostering accurate energy savings projections; understanding consumer perceptions for energy savings; measuring energy savings, and ensuring quality control for retrofit installations.

  14. Strategy Guideline: Mitigation of Retrofit Risk Factors

    SciTech Connect (OSTI)

    Berman, M.; Smith, P.; Porse, E.

    2012-12-01

    The Alliance for Residential Building Innovation (ARBI) is currently developing strategies designed to promote and achieve increased energy savings and promote upgrades in the residential retrofit sector. These strategies are targeted to retrofit program managers, retrofit contractors, policy makers, academic researchers, and non-governmental organizations. This report focuses on four key areas to promote home energy upgrades: fostering accurate energy savings projections; understanding consumer perceptions for energy savings; measuring energy savings, and ensuring quality control for retrofit installations.

  15. Building America Case Study: Sunnyvale Marine Climate Deep Retrofit, Sunnyvale, California (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sunnyvale Marine Climate Deep Retrofit Sunnyvale, California PROJECT INFORMATION Construction: Retrofit Type: Single-family Partners: Builder: One Sky Homes of San Jose, CA, oneskyhomes.com Alliance for Residential Building Innovation, arbi.davisenergycom Size: 1,658 ft 2 Vintage: 1957 Date completed: 2013 Climate Zone: Marine PERFORMANCE DATA Source energy savings: 54 MMBtu/yr (40%) Annual energy cost savings: $500 Incremental cost of energy-efficiency measures: $21,000 The U.S. Department of

  16. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy

  17. Measured Cooling Performance and Potential for Buried Duct Condensation in a 1991 Central Florida Retrofit Home

    SciTech Connect (OSTI)

    Chasar, Dave; Withers, Charles R.

    2013-02-01

    FSEC conducted energy performance monitoring of two existing residences in Central Florida that were undergoing various retrofits. These homes were occupied by FSEC researchers and were fully instrumented to provide detailed energy, temperature, and humidity measurements. The data provided feedback about the performance of two levels of retrofit in two types of homes in a hot-humid climate. This report covers a moderate-level retrofit and includes two years of pre-retrofit data to characterize the impact of improvements. The other home is a 'deep energy retrofit' (detailed in a separate report) that has performed at near zero energy with a photovoltaic (PV) system and extensive envelope improvements.

  18. Building America Whole-House Solutions for Existing Homes: Group Home Energy Efficiency Retrofit for 30% Energy Savings (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This project studies the specification, implementation, and energy savings from an energy efficiency retrofit in a group home, with an energy savings goal of 30%.

  19. Existing Homes Retrofit Case Study: Yakama Nation Housing Authority, Wapato, WA

    SciTech Connect (OSTI)

    2009-09-01

    This is a Building America fact sheet describing the Yakama Nation Housing Authority's retrofit of 25 homes on the reservation to make them more energy efficient.

  20. Building America Whole-House Solutions for Existing Homes: Evaluation of a Multifamily Retrofit

    Broader source: Energy.gov [DOE]

    Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

  1. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect (OSTI)

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  2. Covered Product Category: Residential Whole-Home Gas Tankless...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition ...

  3. Evaluation of DOE's Partnership in Low-Income Residential Retrofit (PILIRR) Program

    SciTech Connect (OSTI)

    Callaway, J.W.; Lee, A.D.

    1989-05-01

    In July 1986, the US Department of Energy (DOE) awarded competitive grants to five states to conduct pilot projects to establish partnerships and use resource leveraging to stimulate support for low-income residential energy retrofits. The projects were conducted under DOE's Partnerships in Low-Income Residential Retrofit (PILIRR) Program. These projects have been monitored and analyzed through a concurrent process evaluation conducted by the Pacific Northwest Laboratory (PNL). This study reports the findings of that evaluation. The overriding goal of the PILIRR Program was to determine whether the states could stimulate support for low-income residential energy improvements from non-federal sources. The goal for the process evaluation was to conduct an assessment of the processes used by the states and the extent to which they successfully established partnerships and leveraged resources. Five states were selected to participate in the program: Florida, Iowa, Kentucky, Oklahoma and Washington. Each state proposed a different approach to promote non-federal support for low-income residential weatherization. Three of the five states--Florida, Iowa, and Washington--established partnerships that led to retrofits during the monitoring period (October 1986--October 1988). Kentucky established its partnership during the monitoring period, but did not accomplish its retrofits until after monitoring was complete. Oklahoma completed development of its marketing program and had begun marketing efforts by the end of the monitoring period. 16 refs., 7 figs., 1 tab.

  4. Retrofitting Vegas: Implementing Energy Efficiency in Two Las Vegas Test Homes

    SciTech Connect (OSTI)

    Puttagunta, S.

    2013-04-01

    In 2009, the state of Nevada received nearly forty million dollars in Neighborhood Stabilization Funds from the Department of Housing and Urban Development. The purpose of this funding was to stabilize communities that have suffered from foreclosures and abandonment. In an effort to provide guidance to local officials and maximize how effectively this NSP funding is utilized in retrofitting homes, CARB provided design specifications, energy modeling, and technical support for the Building America Retrofit Alliance (BARA) team and its local partners - Better Building Performance, Nevada Energy Star Partners Green Alliance, and Home Free Nevada - for two retrofit test homes. One home was to demonstrate a modest retrofit and the other a deep energy retrofit. Through this project, CARB has provided two robust solution packages for retrofitting homes built in this region between the 1980s and early 1990s without substantially inconveniencing the occupants. The two test homes, the Carmen and Sierra Hills, demonstrate how cost-effectively energy efficient upgrades can be implemented in the hot, dry climate of the Southwest. In addition, the homes were used as an educational experience for home performance professionals, building trades, remodelers, and the general public. In-field trainings on air-sealing, HVAC upgrades, and insulating were provided to local contractors during the retrofit and BARA documented these retrofits through a series of video presentations, beginning with a site survey and concluding with the finished remodel and test out.

  5. Evaluation of Retrofit Delivery Packages

    SciTech Connect (OSTI)

    Berman, M.; Smith, P.; Porse, E.

    2013-07-01

    Residential energy retrofit activities are a critical component of efforts to increase energy efficiency in the U.S. building stock; however, retrofits account for a small percentage of aggregate energy savings at relatively high per unit costs. This report by Building America research team, Alliance for Residential Building Innovation (ARBI), describes barriers to widespread retrofits and evaluates opportunities to improve delivery of home retrofit measures by identifying economies of scale in marketing, energy assessments, and bulk purchasing through pilot programs in portions of Sonoma, Los Angeles, and San Joaquin Counties, CA. These targeted communities show potential and have revealed key strategies for program design, as outlined in the report.

  6. Applying Best Practices to Florida Local Government Retrofit Programs, Central Florida (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-House Solutions for Existing Homes Applying Best Practices to Florida Local Government Retrofit Programs Central Florida During 2009, 2010, and 2011, researchers of the U.S. Department of Energy's research team Building America Partnership for Improved Residential Construction (BA-PIRC) provided analysis and recommendations to eight affordable housing entities conduct- ing comprehensive renovations in 70 distressed, foreclosed homes in central Florida. Partners achieved a mutually agreed

  7. Retrofitting Las Vegas. Implementing Energy Efficiency in Two Las Vegas Test Homes

    SciTech Connect (OSTI)

    Puttagunta, S.

    2013-04-01

    In 2009, the state of Nevada received nearly $40 million in Neighborhood Stabilization Funds from the Department of Housing and Urban Development to use to stabilize communities that have suffered from foreclosures and abandonment. In order to provide guidance to local officials and maximize how effectively this NSP funding is used in retrofitting homes, the CARB team provided design specifications, energy modeling, and technical support for the BARA team and its local partners—Better Building Performance, Nevada Energy Star Partners Green Alliance, and Home Free Nevada—for two retrofit test homes. One home demonstrated a modest retrofit and the other a deep energy retrofit. This report describes the retrofit packages, which were used as an educational experience for home performance professionals, building trades, remodelers, and the general public.

  8. Byggmeister Test Home: Analysis and Initial Results of Cold Climate Wood-Framed Home Retrofit

    SciTech Connect (OSTI)

    Gates, C.

    2013-01-01

    BSC seeks to further the energy efficiency market for New England area retrofit projects by supporting projects that are based on solid building science fundamentals and verified implementation. With the high exposure of energy efficiency and retrofit terminology being used in the general media at this time, it is important to have evidence that measures being proposed will in fact benefit the homeowner through a combination of energy savings, improved durability, and occupant comfort. There are several basic areas of research to which the technical report for these test homes can be expected to contribute. These include the combination of measures that is feasible, affordable and acceptable to homeowners as well as expectations versus results. Two Byggmeister multi-family test homes in Massachusetts are examined with the goal of providing case studies that could be applied to other similar New England homes.

  9. Building America Efficient Solutions for Existing Homes Case Study: Retrofit of 1915 Home, Dayton, Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, this two-story, three-bedroom home with an unfinished basement and 2,600 ft 2 of living space is typical of many older homes found in eastern Washington. Through the U.S. Department of Energy's Building America program, researchers from the Pacific Northwest National Laboratory worked with local energy rater Energy Incentives, Inc., to assist the home owners in cost-effectively reducing their energy use by over 50%. The researchers used Energy Gauge USA simulation software to model retrofit

  10. DOE Zero Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, First DOE Zero Energy Ready Home Retrofit, Garland, TX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Homes & Carl Franklin Homes First DOE Zero Energy Ready Home Retrofit Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building

  11. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry

    SciTech Connect (OSTI)

    David Roberts

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures.

  12. Retrofitting a 1960s Split-Level, Cold-Climate Home

    SciTech Connect (OSTI)

    Puttagunta, Srikanth

    2015-07-01

    National programs such as Home Performance with ENERGY STAR® and numerous other utility air sealing programs have brought awareness to homeowners of the benefits of energy efficiency retrofits. Yet, these programs tend to focus on the low-hanging fruit: air-sealing the thermal envelope and ductwork where accessible, switch to efficient lighting, and low-flow fixtures. At the other end of the spectrum, deep-energy retrofit programs are also being encouraged by various utilities across the country. While deep energy retrofits typically seek 50% energy savings, they are often quite costly and most applicable to gut-rehab projects. A significant potential for lowering energy usage in existing homes lies between the low hanging fruit and deep energy retrofit approaches - retrofits that save approximately 30% in energy over the existing conditions. A key is to be non-intrusive with the efficiency measures so the retrofit projects can be accomplished in occupied homes. This cold climate retrofit project involved the design and optimization of a home in Connecticut that sought to improve energy savings by at least 30% (excluding solar PV) over the existing home's performance. This report documents the successful implementation of a cost-effective solution package that achieved performance greater than 30% over the pre-retrofit - what worked, what did not, and what improvements could be made.

  13. Existing Homes Retrofit Case Study: Asdal Builders, LLC, Pittsburgh, PA

    SciTech Connect (OSTI)

    None

    2009-09-01

    This Building America fact sheet describes a retrofit to improve efficiency of a 1930s era bungalow in Pittsburgh.

  14. Measured energy savings and economics of retrofitting existing single- family homes: An update of the BECA-B database

    SciTech Connect (OSTI)

    Cohen, S.D.; Goldman, C.A.; Harris, J.P.

    1991-02-01

    These appendices are the companion volume to report number LBL--28147 Vol.1, with the same title. The summary data tables include physical characteristics, energy consumption, savings, and the retrofit measures installed and their costs for each retrofit project. Each existing single family residential building'' retrofit project in the BECA-B database is described. 99 refs. (BM)

  15. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  16. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    SciTech Connect (OSTI)

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-09-01

    This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

  17. Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    SciTech Connect (OSTI)

    Fairey, P.; Parker, D.

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  18. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    Broader source: Energy.gov [DOE]

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal...

  19. Test Methods and Protocols for Environmental and Safety Hazards Associated with Home Energy Retrofits

    SciTech Connect (OSTI)

    Cautley, D.; Viner, J.; Lord, M.; Pearce, M.

    2012-12-01

    A number of health hazards and hazards to the durability of homes may be associated with energy retrofitting and home renovation projects. Among the hazards associated with energy retrofit work, exposure to radon is thought to cause more than 15,000 deaths per year in the U.S., while carbon monoxide poisoning results in about 20,000 injuries and 450 deaths per year. Testing procedures have been developed for identifying and quantifying hazards during retrofitting. These procedures commonly include a battery of tests to screen combustion appliances for safe operation, including worst case depressurization measurement, backdrafting (spillage) under depressurized or normal conditions, and carbon monoxide production.

  20. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes — First DOE Zero Energy Ready Home Retrofit, Garland, TX

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder was honored with an Affordable Builder award in the 2014 Housing Innovation Awards, for the first retrofit home certified to the DOE Zero Energy Ready home requirements.The 60-year-old, three-bedroom ranch home is expected to save its homeowner more than $1,000 a year in utility bills compared to a home built to the current 2009 International Energy Conservation Code.

  1. Retrofitting a 1960s Split-Level, Cold-Climate Home

    SciTech Connect (OSTI)

    Puttagunta, Srikanth

    2015-07-13

    National programs such as Home Performance with ENERGY STAR® and numerous other utility air-sealing programs have made homeowners aware of the benefits of energy-efficiency retrofits. Yet these programs tend to focus only on the low-hanging fruit: they recommend air sealing the thermal envelope and ductwork where accessible, switching to efficient lighting and low-flow fixtures, and improving the efficiency of mechanical systems (though insufficient funds or lack of knowledge to implement these improvements commonly prevent the implementation of these higher cost upgrades). At the other end of the spectrum, various utilities across the country are encouraging deep energy retrofit programs. Although deep energy retrofits typically seek 50% energy savings, they are often quite costly and are most applicable to gut-rehab projects. A significant potential for lowering energy use in existing homes lies between the lowhanging fruit and deep energy retrofit approaches—retrofits that save approximately 30% in energy compared to the pre-retrofit conditions. The energy-efficiency measures need to be nonintrusive so the retrofit projects can be accomplished in occupied homes.

  2. The Retrofit Challenge: Master Specification for Affordable Housing Renovation Programs

    Energy Savers [EERE]

    Retrofit Challenge: Master Specifications for Affordable Housing Renovation Programs Hot Humid Climate - Zones 1, 2, and 3 Janet McIlvaine Florida Solar Energy Center Research Institute of the University of Central Florida Building America Partnership for Improved Residential Construction Context Building America Partnership for Improved Residential Construction Hot-Humid Climate Zone Existing Homes Research Take the Retrofit Challenge! www.ba-pirc.org/retrofit Context * 2009 - BA-PIRC expanded

  3. Group Home Energy Efficiency Retrofit for 30% Energy Savings: Washington, D.C. (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes - such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study's results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

  4. Community-Scale Attic Retrofit and Home Energy Upgrade Data Mining

    SciTech Connect (OSTI)

    Berman, M.; Smith, P.; Jackson, J.

    2015-05-07

    The U.S. Department of Energy’s Building America research team, Alliance for Residential Building Innovation (ARBI), implemented a project to increase residential retrofits in Davis, California. The project used a neighborhood-focused strategy for implementation and a low-cost retrofit program that focused on upgraded attic insulation and duct sealing. ARBI worked with a community partner, the not-for-profit Cool Davis Initiative, as well as selected area contractors to implement a strategy that sought to capitalize on the strong local expertise of partners and the unique aspects of the Davis, California, community. Working with community partners also allowed ARBI to collect and analyze data about effective messaging tactics for community-based retrofit programs.

  5. Deep Energy Retrofit Case Studies: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Energy Retrofit Case Studies: Lessons Learned. Alea German Alliance for Residential Building Innovation June 25, 2014 Davis Energy Group | June 25, 2014 ‹#› Agenda * Background / motivation * Results from 3 CA retrofits - Sonoma Passive House Retrofit - Stockton Hot Dry Retrofit - Sunnyvale Marine Deep Retrofit Davis Energy Group | June 25, 2014 ‹#› Background * >60 million homes in the U.S. over 30 yrs old * Huge potential - Energy savings ‹#› Davis Energy Group | June 25,

  6. Building America Webinar: Results from Phased Deep Retrofits in Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phased Deep Retrofits in Florida D. Parker, D. Chasar, K. Sutherland, J. Montemurno, J. Kono Florida Solar Energy Center June, 2014 Phased Deep Retrofit (PDR) Project * Detailed residential field metering project in FPL Service Territory * Cooperative project between U.S. DOE and FPL * Sixty heavily metered homes evaluated over 2 years * Shallow retrofit in all & then deep retrofits in 10 * Collecting data of unique value to FPL/DOE PDR: Extensive end-use metering * January - July 2013: 60

  7. Short-Term Test Results. Multifamily Home Energy Efficiency Retrofit

    SciTech Connect (OSTI)

    Lyons, James

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. This report describes the Bay Ridge project, a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). Findings from the short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach.

  8. Measured heating system efficiency retrofits in eight manufactured (HUD-code) homes

    SciTech Connect (OSTI)

    Siegel, J.; Davis, B.; Francisco, P.; Palmiter, L.

    1998-07-01

    This report presents the results of field measurements of heating efficiency performed on eight all-electric manufactured homes sited in the Pacific Northwest with forced-air distribution systems. These homes, like more than four million existing manufactured homes in the US, were constructed to thermal specifications that were mandated by the US Department of Housing and Urban Development in 1976. The test protocol compares real-time measurements of furnace energy usage with energy usage during periods when zonal heaters heat the homes to the same internal temperature. By alternating between the furnace and zonal heaters on 2 hour cycles, a short-term coheat test is performed. Additional measurements, including blower door and duct tightness tests, are conducted to measure and characterize the home's tightness and duct leakage so that coheat test results might be linked to other measures of building performance. The testing was done at each home before and after an extensive duct sealing retrofit was performed. The average pre-retrofit system efficiency for these homes was 69%. After the retrofit, the average system efficiency increased to 83%. The average simple payback period for the retrofits ranges from 1 to 5 years in Western Oregon and 1 to 3 years in colder Eastern Oregon.

  9. Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit

    SciTech Connect (OSTI)

    Lyons, J.

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ? 50% compared to pre-retrofit, and the short-term testing supports this estimate.

  10. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  11. Existing Whole-House Solutions Case Study: Greenbelt Homes, Inc. Pilot Retrofit Project

    SciTech Connect (OSTI)

    2015-06-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc., (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. With the community upgrade fully funded by the cooperative through their membership without outside subsidies, this project presents a unique opportunity to evaluate and prioritize the wide range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects that include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy-savings benefits of improvements. Phase 1—baseline evaluation for a representative set of 28 homes sited in seven buildings; Phase 2—installation of the building envelope improvements and continued monitoring of the energy consumption for the heating season; Phase 3—energy simulations supporting recommendations for HVAC and water heating upgrades.

  12. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect (OSTI)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

  13. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect (OSTI)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing mechanical ventilation.

  14. Greenbelt Homes Pilot Program: Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    SciTech Connect (OSTI)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. It presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements.

  15. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    SciTech Connect (OSTI)

    Kim, S. -K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Lieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

    2014-09-01

    This project report details activities and results of the "Market Characterization" project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University, and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within the Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as "archetypes" by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market.

  16. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect (OSTI)

    Burdick, A.

    2014-12-01

    ?Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  17. Group Home Energy Efficiency Retrofit for 30% Energy Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding was gener- ously provided by Walmart and the Home Builder's Care Foundation. The incre- mental cost was 22,678, with annual energy savings of 4,750 and a simple payback ...

  18. Home Retrofits Save Money, Add Value | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tanya Narath, of Santa Rosa, Calif., was already taking advantage of renewable energy and green building techniques - her home has had solar panels on its roof for years, and solar ...

  19. Existing Whole-House Solutions Case Study: Retrofitting a 1960s Split-Level Cold-Climate Home

    SciTech Connect (OSTI)

    S. Puttagunta

    2015-08-01

    ??National programs such as Home Performance with ENERGY STAR® and numerous other utility air sealing programs have brought awareness to homeowners of the benefits of energy efficiency retrofits. Yet, these programs tend to focus on the low-hanging fruit: air-sealing the thermal envelope and ductwork where accessible, switch to efficient lighting, and low-flow fixtures. At the other end of the spectrum, deep-energy retrofit programs are also being encouraged by various utilities across the country. While deep energy retrofits typically seek 50% energy savings, they are often quite costly and most applicable to gut-rehab projects. A significant potential for lowering energy usage in existing homes lies between the low hanging fruit and deep energy retrofit approaches - retrofits that save approximately 30% in energy over the existing conditions.

  20. Existing Whole-House Solutions Case Study: Retrofit of 1915 Home, Dayton, Washington

    SciTech Connect (OSTI)

    none,

    2011-12-01

    This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 1915 home in eastern Washington audited by Pacific Northwest National Laboratory for an energy retrofit. The asbestos covered diesel boiler was left in place in the basement and a new SEER 16, HSPF 9.4 ductless heat pump with four inside heads was added to cut energy costs over $2,000/year.

  1. Building America Case Study: Greenbelt Homes, Inc. Pilot Retrofit Project, Greenbelt, Maryland (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenbelt Homes, Inc. Pilot Retrofit Project Greenbelt, Maryland PROJECT INFORMATION Construction: Existing homes Builder: Greenbelt Homes, Inc., ghi.coop Type: Single-family, configured primarily in sets of 2, 4, or 6 attached homes Pilot Retrofit Project: Envelope upgrade study based on 7 4-unit buildings Size: 800-1,200 ft 2 Price Range: About $70,000-$300,000 Study Period: 2010-2014 Climate Zone: Mixed-humid (IECC climate zone 4A) PERFORMANCE DATA Average per Pilot Home, Normalized Season

  2. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    SciTech Connect (OSTI)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  3. An Experimental and Analytical Evaluation of Wall And Window Retrofit Configurations: Supporting the Residential Retrofit Best Practices Guide

    SciTech Connect (OSTI)

    Stovall, Therese K; Petrie, Thomas; Kosny, Jan; Childs, Phillip W; Atchley, Jerald Allen; Hulvey, Kimberly D

    2007-11-01

    A Retrofit Best Practices Guide was developed to encourage homeowners to consider energy conservation issues whenever they modify their siding or windows. In support of this guide, an experimental program was implemented to measure the performance of a number of possible wall siding and window retrofit configurations. Both thermal and air-leakage measurements were made for a 2.4 x 2.4 m (8 x 8 ft) wall section with and without a 0.9 x 1.2 m (3 x 4 ft) window. The windows tested were previously well-characterized at a dedicated window test facility. A computer model was also used to provide information for the Best Practices Guide. The experimental data for walls and windows were used in conjunction with this model to estimate the total annual energy savings for several typical houses in a number of different locations.

  4. Home Performance with Energy Star (Existing Residential)

    Broader source: Energy.gov [DOE]

    Efficiency Vermont works with homeowners on comprehensive energy efficiency projects and offers several incentives. Single-family homes, as well as multifamily properties with up to four units are...

  5. Town of Babylon- Long Island Green Homes Program

    Broader source: Energy.gov [DOE]

    The Long Island Green Homes Program is a self-financing residential retrofit program designed to support a goal of upgrading the energy efficiency of existing homes in the Town of Babylon. The...

  6. Home retrofitting for energy conservation and solar considerations

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This manual explains both the key concepts behind our need for and our impact on energy usage, as well as a nuts-and-bolts explanation of how to improve the energy efficiency of your home. By reviewing both the concepts and practices of energy conservation, the manual presents a comprehensive picture of how home energy use is effected by the inhabitants and by the structure itself. The manual begins with an explanation of why we are looking at energy, then proceeds to explain how the heat transfer occurs between houses and humans. Next is a chapter on energy audits and how to use them, followed by a comprehensive section on energy conservation actions to do now to reduce energy use. Conservation actions include low cost/no cost measures, schemes to reduce infiltration, how to increase insulation, and what to do with windows and doors, heating and heat distribution systems, and water heaters. Solar energy options are then briefly explained, as well as the all important issues of financing and tax credits. The manual concludes with a bibliography to direct the reader to more sources of information.

  7. Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    one-and-a-half-story, two-bedroom home with a half-basement is typical of 100-year-old homes in Portland, Oregon. The home had no insulation, an unfinished basement, old appliances and air leaks everywhere when purchased by its current owner in 2010. The owners performed a full deep energy retrofit, including air sealing and insulating exterior walls and attic and installing new, efficient appliances. Building America researchers from the Pacific Northwest National Laboratory audited the home

  8. Existing Whole-House Solutions Case Study: Group Home Energy Efficiency Retrofit for 30% Energy Savings, Washington, D.C.

    SciTech Connect (OSTI)

    2013-11-01

    Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes – such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study’s results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

  9. Occupant-in-Place Energy Efficiency Retrofit in a Group Home for 30% Energy Savings in Climate Zone 4

    SciTech Connect (OSTI)

    Moore, M.

    2013-08-01

    Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes - such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study's results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

  10. Occupant-in-Place Energy Efficiency Retrofit in a Group Home for 30% Energy Savings in Climate Zone 4

    SciTech Connect (OSTI)

    Moore, Mike

    2013-08-01

    Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes – such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study’s results will be used to identify cost-effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

  11. Evaluation of Early Performance Results for Massachusetts Homes in the National Grid Pilot Deep Energy Retrofit Program

    SciTech Connect (OSTI)

    Neuhauser, K.; Gates, C.

    2013-11-01

    This research project evaluates post-retrofit performance measurements, energy use data and construction costs for 13 projects that participated in the National Grid Deep Energy Retrofit Pilot program. The projects implemented a package of measures defined by performance targets for building enclosure components and building enclosure air tightness. Nearly all of the homes reached a post-retrofit air tightness result of 1.5 ACH 50. Homes that used the chainsaw retrofit technique along with roof insulation, and wall insulation applied to the exterior had the best air tightness results and the lowest heating and cooling source energy use. Analysis of measure costs and project objectives yielded a categorization of costs relative to energy performance objectives. On average about ½ of the energy-related measure costs correspond primarily to energy-related objectives, and 20% of energy-related measure costs relate primarily to non-energy objectives.

  12. Field Assessment of Energy Audit Tools for Retrofit Programs

    SciTech Connect (OSTI)

    Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home’s energy performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Rating systems based on energy performance models, the focus of this report, can establish a home’s achievable energy efficiency potential and provide a quantitative assessment of energy savings after retrofits are completed, although their accuracy needs to be verified by actual measurement or billing data. Ratings can also show homeowners where they stand compared to their neighbors, thus creating social pressure to conform to or surpass others. This project field-tested three different building performance models of varying complexity, in order to assess their value as rating systems in the context of a residential retrofit program: Home Energy Score, SIMPLE, and REM/Rate.

  13. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with

  14. Building America Whole-House Solutions for Existing Homes: Performance of a

    Energy Savers [EERE]

    Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) | Department of Energy Performance of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Performance of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) The Alliance for Residential Building Innovation (ARBI) team conducted a deep retrofit project within Stockton's Large-Scale Retrofit Program that expanded on the

  15. Energy Efficient Crawlspace Foundation Retrofit: Mixed Humid Climate

    SciTech Connect (OSTI)

    Del Bianco, M.; Wiehagen, J.

    2013-01-01

    Residential quality management systems have most often been designed for new home construction. To address quality in existing homes in the form of Scopes of Work (SOW), the NAHB Research Center began with a new construction scope of work and applied it to an existing home project. This document is intended to outline the steps of translating a new home construction SOW to SOW for retrofit and addressed crawlspace foundations in a mixed-humid climate.

  16. Energy Efficient Crawlspace Foundation Retrofit: Mixed Humid Climate

    SciTech Connect (OSTI)

    Del Bianco, M.; Wiehagen, J.; Wood, A.

    2013-01-01

    Residential quality management systems have most often been designed for new home construction. To address quality in existing homes in the form of Scopes of Work (SOW), the NAHB Research Center began with a new construction scope of work and applied it to an existing home project. This document is intended to outline the steps of translating a new home construction SOW to SOW for retrofit.

  17. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    SciTech Connect (OSTI)

    Kim, S. K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Bieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

    2014-09-01

    This project report details activities and results of the 'Market Characterization' project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as 'archetypes' by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market. Key research activities included; literature review, statistical analysis of national and regional data of the American Housing Survey (AHS) collected by the U.S. Census Bureau, analysis of Michigan specific data, development of a housing taxonomy of architectural styles, case studies of two local markets (i.e., Ann Arbor and Grand Rapids in Michigan) and development of a suggested framework (or process) for characterizing local markets. In order to gain a high level perspective, national and regional data from the U.S. Census Bureau was analyzed using cross tabulations, multiple regression models, and logistic regression to characterize the housing stock and determine dominant house types using 21 variables.

  18. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    5 Single-Family Residential Renovations, by Project and Vintage Pre-1946 1946-60 1961-73 1974-80 1981-98 1999 or later Kitchen Remodeled 60% 57% 54% 60% 44% 8% Bathroom Remodeled 59% 52% 59% 55% 40% 4% Add Room(s) 29% 18% 14% 24% 21% 15% Exterior Improvement 21% 15% 15% 16% 9% 4% Basement Room Finished 14% 10% 6% 12% 16% 65% Redesign/Restructure 14% 8% 11% 10% 5% 4% Bathroom Added 8% 7% 6% 7% 6% 27% Sun room Added 4% 6% 3% 4% 5% 8% Note(s): Source(s): Year Home was Built Data based on a

  19. Four-State Residential Retrofit and Energy Labeling Project: Process Evaluation and Results Webinar

    Broader source: Energy.gov [DOE]

    The State Energy Offices in Alabama, Massachusetts, Virginia, and Washington recently completed a multi-year residential energy efficiency pilot program funded by a competitive State Energy Program...

  20. Assessing 116 Deep Retrofits Across the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASSESSING 116 DEEP RETROFITS ACROSS THE U.S. By: Brennan Less & Iain Walker, LBNL, Residential Building Systems ACI National Home Performance Conference, Detroit, MI, 04/30/2014 Defining a Deep Energy Retrofit- Variable and Flexible 2  Comprehensive upgrades to the building enclosure, heating, cooling and hot water equipment.  Often incorporates appliance and lighting upgrades, plug load reductions, renewable energy and occupant conservation. % Reduction >50% Absolute Reduction

  1. Stand-Off Furring in Deep Energy Retrofits, Syracuse, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Stand-Off Furring in Deep Energy Retrofits Syracuse, New York PROJECT INFORMATION Project Name: Deep Energy Retrofit Location: Syracuse, NY Project Partners: GreenHomes America, www.greenhomesamerica.com/ IBACOS, www.ibacos.com Building Component: Building envelope Application: Single-family retrofit Year Tested: 2012 Applicable Climate Zone(s): Cold PERFORMANCE DATA Cost of energy efficiency measure (including labor): $23,518 Projected energy savings: Approximately 50% overall savings Exterior

  2. Building America Case Study: Retrofitting a 1960s Split-Level, Cold-Climate Home, Westport, Connecticut; Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    ??National programs such as Home Performance with ENERGY STAR(R) and numerous other utility air sealing programs have brought awareness to homeowners of the benefits of energy efficiency retrofits. Yet, these programs tend to focus on the low-hanging fruit: air-sealing the thermal envelope and ductwork where accessible, switch to efficient lighting, and low-flow fixtures. At the other end of the spectrum, deep-energy retrofit programs are also being encouraged by various utilities across the country. While deep energy retrofits typically seek 50% energy savings, they are often quite costly and most applicable to gut-rehab projects. A significant potential for lowering energy usage in existing homes lies between the low hanging fruit and deep energy retrofit approaches - retrofits that save approximately 30% in energy over the existing conditions. A key is to be non-intrusive with the efficiency measures so the retrofit projects can be accomplished in occupied homes. This cold climate retrofit project involved the design and optimization of a home in Connecticut that sought to improve energy savings by at least 30% (excluding solar PV) over the existing home's performance. This report documents the successful implementation of a cost-effective solution package that achieved performance greater than 30% over the pre-retrofit - what worked, what did not, and what improvements could be made. Confirmation of successfully achieving 30% source energy savings over the pre-existing conditions was confirmed through energy modeling and comparison of the utility bills pre- and post- retrofit.

  3. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Harmon, Anna C.

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  4. Santee Cooper- Residential Energy Efficiency Existing Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Santee Cooper provides rebates to residential and multi-family residential customers. Rebates are available on  air source heat pumps, solar water heaters, weatherization measures, programmable...

  5. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Harmon, Anna C.

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  6. Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design Guide Play Book_TEAM 4 FINAL.docx

    Office of Environmental Management (EM)

    Technical Assistance Program Residential Retrofit Program Design Guide May 2011 2 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the

  7. Hygric Redistribution in Insulated Assemblies. Retrofitting Residential Envelopes Without Creating Moisture Issues

    SciTech Connect (OSTI)

    Smegal, J.; Lstiburek, J.

    2013-01-01

    The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. ¾-in. foil faced polyisocyanurate) in cold climates.

  8. Role of Highly Insulating Windows in Achieving 50% Energy Savings in Residential Retrofits

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What emerging innovations are the key to future homes?"

  9. Residential Research Leading to Net-Zero Energy Homes and Communities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    This fact sheet describes the Advanced Residential Buildings Research at the National Renewable Energy Laboratory and how the group is working to achieve net-zero energy homes and communities.

  10. Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of

  11. Building America Case Study: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test House 1: * Pre-retrofit Btu/h: 82,502 * Post-retrofit Btu/h: 32,123 Test House 2: * Pre-retrofit Btu/h: 56,172 * Post-retrofit Btu/h: 22,591 Test House 3: * Pre-retrofit Btu/h: 97,560 * Post-retrofit Btu/h: 50,490 The U.S. Department of Energy Building America team, IBACOS, in collabora- tion with GreenHomes America, Inc. (GHA), contracted with the New York State Energy Research and Development Authority to research exterior wall insulation strategies that could be implemented as a part of

  12. Building America Case Study: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Heating and Cooling Peak Load Reduction Test House 1: * Pre-retrofit Btu/h: 114,989 * Post-retrofit Btu/h: 44,398 Test House 2: * Pre-retrofit Btu/h: 80,572 * Post-retrofit Btu/h: 31,330 Test House 3: * Pre-retrofit Btu/h: 139,744 * Post-retrofit Btu/h: 69,188 The U.S. Department of Energy Building America team, IBACOS, in collabora- tion with GreenHomes America, Inc. (GHA), contracted with the New York State Energy Research and Development Authority to research exterior wall insulation

  13. Existing Homes Retrofit Case Study: Chesapeake Habitat for Humanity, Baltimore, MD

    SciTech Connect (OSTI)

    2009-09-01

    This is a Building America fact sheet on the Chesapeake Habitat for Humanity's rowhouse retrofit project, where four row houses in Baltimore, Maryland, were made energy efficient for low-income residents.

  14. Energy Impacts of Oversized Residential Air Conditioners— Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home, which can result in significant energy penalties. However, the reason for this was due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters.

  15. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    SciTech Connect (OSTI)

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  16. Concord Four Square Retrofit

    SciTech Connect (OSTI)

    2010-07-09

    This case study describes the retrofit of a home in West Concord, Massachusetts that proved that a 50% reduction in home energy use could be met today in existing housing.

  17. Building America Case Study: Whole-House Solutions for Existing Homes: Greenbelt Homes, Inc. Pilot Retrofit Program; Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-06-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. With the community upgrade fully funded by the cooperative through their membership without outside subsidies, this project presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements. Phase 1: baseline evaluation for a representative set of 28 homes sited in seven buildings; Phase 2: installation of the building envelope improvements and continued monitoring of the energy consumption for the heating season and energy simulations supporting recommendations for HVAC and water heating upgrades to be implemented in Phase 3.

  18. Building America Technology Solutions for New and Existing Homes: Insulated

    Energy Savers [EERE]

    Siding Retrofit in a Cold Climate, New Paltz, New York | Department of Energy Insulated Siding Retrofit in a Cold Climate, New Paltz, New York Building America Technology Solutions for New and Existing Homes: Insulated Siding Retrofit in a Cold Climate, New Paltz, New York In this study, the U.S. Department of Energy's team Building America Partner-ship for Improved Residential Construction (BA-PIRC) worked with Kinsley Construction Company to evaluate the real-world performance of insulated

  19. Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep Retrofit |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, and upgrading the heating and cooling system. PDF icon Sunnyvale Marine Climate Deep Retrofit, Sunnyvale, California More Documents &

  20. Field Assessment of Energy Audit Tools for Retrofit Programs

    SciTech Connect (OSTI)

    Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home's asset performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Home rating systems can help motivate homeowners in several ways. Ratings can clearly communicate a home's achievable energy efficiency potential, provide a quantitative assessment of energy savings after retrofits are completed, and show homeowners how they rate compared to their neighbors, thus creating an incentive to conform to a social standard. An important consideration is how rating tools for the retrofit market will integrate with existing home energy service programs. For residential programs that target energy savings only, home visits should be focused on key efficiency measures for that home. In order to gain wide adoption, a rating tool must be easily integrated into the field process, demonstrate consistency and reasonable accuracy to earn the trust of home energy technicians, and have a low monetary cost and time hurdle for homeowners. Along with the Home Energy Score, this project also evaluated the energy modeling performance of SIMPLE and REM/Rate.

  1. Building America Case Study: Insulated Siding Retrofit in a Cold Climate. New Paltz, New York (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulated Siding Retrofit in a Cold Climate New Paltz, New York PROJECT INFORMATION Project Name: Insulated Siding Retrofit in a Cold Climate Location: New Paltz, NY Partners: Builder: Kinsley Construction Company, rkinsley.com Building America Partnership for Improved Residential Construction, ba-pirc.org Building Component: Building envelope-exterior cladding and water- resistive barrier Application: Retrofit, single-family Year Tested: 2012-2013 Climate Zones: Cold/very cold (4, 5, 6)

  2. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for whole-home gas tankless water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most

  3. Building America Technology Solutions for New and Existing Homes: Steam

    Energy Savers [EERE]

    System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) | Department of Energy Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) The Partnership for Advanced Residential Retrofit (PARR), a U.S. Department of Energy Building

  4. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  5. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, J.; Podorson, D.

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  6. Byggmeister Test Home. Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis

    SciTech Connect (OSTI)

    Wytrykowska, H.; Ueno, K.; Van Straaten, R.

    2012-09-01

    This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

  7. Byggmeister Test Home: Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis

    SciTech Connect (OSTI)

    Wytrykowska, H.; Ueno, K.; Van Straaten, R.

    2012-09-01

    This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

  8. Performance of a Hot-Dry Climate Whole-House Retrofit

    SciTech Connect (OSTI)

    Weitzel, E.; German, A.; Porse, E.

    2014-06-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  9. Performance of a Hot-Dry Climate Whole-House Retrofit

    SciTech Connect (OSTI)

    Weitzel, E.; German, A.; Porse, E.

    2014-06-01

    The Stockton house retrofit is a two-story Tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  10. Anaheim Public Utilities- Residential Home Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Upon request, Anaheim Public Utilities will perform a free home efficiency inspection, in which they will recommend energy saving improvements, rebates and provide some free energy saving devices....

  11. Existing Whole-House Case Study: Sunnyvale Marine Climate Deep Retrofit - Sunnyvale, California

    SciTech Connect (OSTI)

    2015-03-01

    In this project, the Building America team Alliance for Residential Building Innovation and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, and upgrading the heating and cooling system.

  12. A Method for Determining Optimal Residential Energy Efficiency Packages

    SciTech Connect (OSTI)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  13. Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs- Central Florida (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from Building America Partnership for Improved Residential Construction worked with the City of Melbourne, Florida, to develop and implement best practices for renovating distressed homes to achieve annual energy savings of 15%-30% and higher

  14. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  15. Strategy Guideline. Application of a Construction Quality Process to Existing Home Retrofits

    SciTech Connect (OSTI)

    Mallay, D.; Del Bianco, M.

    2013-08-01

    The Partnership for Home Innovation developed a construction quality process for new and existing high performance homes (HPH) in which high performance goals are established, specifications to meet those goals are defined, and construction monitoring points are added to the construction schedule so that critical energy efficiency details are systematically reviewed, documented, and tested in a timely manner. This report follows the evolution of the construction quality process from its development for new homes, to its application in the construction of a high performance home with enhanced specifications, and its application in a crawlspace renovation.

  16. Strategy Guideline: Application of a Construction Quality Process to Existing Home Retrofits

    SciTech Connect (OSTI)

    Mallay, D.; Del Bianco, M.

    2013-08-01

    The Home Innovation Research Labs developed a construction quality process for new and existing high performance homes (HPH) in which high performance goals are established, specifications to meet those goals are defined, and construction monitoring points are added to the construction schedule so that critical energy efficiency details are systematically reviewed, documented, and tested in a timely manner. This report follows the evolution of the construction quality process from its development for new homes, to its application in the construction of a high performance home with enhanced specifications, and its application in a crawlspace renovation.

  17. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    7 2009 Home Improvement Spending by Household Income ($2010) Income Under $40,000 $40-79,999 $80-119,999 120,000 and Over Note(s): Source(s): 13,005 4,097 16,531 67,731 Home improvements include room additions, remodeling, replacements of household systems and appliances, porches and garages, additions and replacements of roofing, siding, window/doors, insulation, flooring/paneling/ceiling, and disaster repairs. Joint Center for Housing Studies of Harvard University, A New Decade of Growth for

  18. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    3 2007 and 2009 Professional Home Improvements, by Project ($2010) Total Mean Total Mean Projects Expenditures Expenditures Projects Expenditures Expenditures Repair/Improvement (thousand) ($million) ($) (thousand) ($million) ($) Room Additions, Alterations, and Remodelings Kitchen Bathroom Bedroom Other Systems and Equipment Plumbing (Pipes and Fixtures) Electrical System HVAC Appliance/Major Equipment Exterior Additions and Replacements Roof Siding Windows/Doors Interior Additions and

  19. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    1 Value of Residential Building Improvements and Repairs, by Sector ($2010 Billion) (1) Total 1980 72.2 35.2 107.4 1985 82.3 65.3 147.6 1990 91.4 85.5 176.9 1995 105.8 63.8 169.6 2000 138.2 52.7 191.0 2003 156.2 51.9 208.0 2004 169.2 57.9 227.1 2005 179.0 59.7 238.6 2006 187.4 57.2 244.6 2007 (2) 178.7 57.0 235.7 Note(s): Source(s): Improvements Maintenance and Repairs 1) Improvements includes additions, alterations, reconstruction, and major replacements. Repairs include maintenance. 2) The US

  20. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)

    SciTech Connect (OSTI)

    ARBI

    2014-09-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  1. Buildings Energy Data Book: 2.6 Residential Home Improvement

    Buildings Energy Data Book [EERE]

    4 2007 and 2009 Do-It-Yourself Home Improvements, by Project ($2010) Total Mean Total Mean Projects Expenditures Expenditures Projects Expenditures Expenditures Repair/Improvement (thousand) ($million) ($) (thousand) ($million) ($) Room Additions, Alterations, and Remodelings Kitchen Bathroom Bedroom Other Systems and Equipment Plumbing (Pipes and Fixtures) Electrical System HVAC Appliance/Major Equipment Exterior Additions and Replacements Roof Siding Windows/Doors Interior Additions and

  2. Existing Homes Retrofit Case Study: SMUD's Energy Efficient Remodel Demonstration Project: Sacramento, CA

    SciTech Connect (OSTI)

    2010-10-01

    Sacramento Municipal Utility District (SMUD) worked with DOE's Building America Program to cut energy use by more than 50% in a rehab of a 1950s tract home in Sacramento.

  3. Building America Research Teams: Spotlight on Home Innovation and PARR |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Spotlight on Home Innovation and PARR Building America Research Teams: Spotlight on Home Innovation and PARR April 9, 2015 - 10:55am Addthis This article continues our series of profiles about the Building America research teams-multidisciplinary industry partnerships that work to make high performance homes a reality for all Americans. This month's article focuses on Partnership for Home Innovation and Partnership for Advanced Residential Retrofits-leaders in research

  4. Home Performance with ENERGY STAR -- 10 Years of Continued Growth! |

    Energy Savers [EERE]

    Department of Energy with ENERGY STAR -- 10 Years of Continued Growth! Home Performance with ENERGY STAR -- 10 Years of Continued Growth! Provides an overview of the HPwES program, HPwES successes, and information on how to become a HPwES sponsor. PDF icon Home Performance with ENERGY STAR Presentation More Documents & Publications Home Performance with Energy Star Home Performance with ENERGY STAR - 2014 BTO Peer Review Residential Building Audits and Retrofits

  5. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  6. Deep Energy Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance High Performance Enclosure Strategies: Part I Existing Home Part I, Existing Home Deep Energy Retrofits Anastasia Herk IBACOS Project Partners Manufacturers, Contractors, NYSERDA, Engineers 2 Goals of Research Project: * Evaluate cost and performance trade offs between: - Spray-foam exterior walls - Rigid foam exterior walls - Home Performance with Energy Star Home (HPwES) on steroids * 50% peak load and annual heating load reduction * R-30Target for Center of Wall * .25 CFM50

  7. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    SciTech Connect (OSTI)

    Neuhauser, Ken

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago—a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area, in which high heating energy use typical in these buildings threaten housing affordability, and uninsulated mass masonry wall assemblies are uncomfortable for residents. In this project, the Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by DOE to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  8. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    SciTech Connect (OSTI)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  9. Sustainable Energy Resources for Consumers Webinar on Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pump Retrofit Transcript Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Transcript for a U.S. Department ...

  10. Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example

    SciTech Connect (OSTI)

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

  11. Weatherization and Workforce Guidelines for Home Energy Upgrades Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy fact sheet provides essential information about the 2011 publication of the Residential Retrofit Workforce Guidelines, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work, their public review, and the JTAs/KSAs (job-task analyses/knowledge, skills, and abilities) that they encompass. PDF icon Weatherization and Workforce Guidelines for Home Energy Upgrades More Documents &

  12. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect (OSTI)

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  13. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect (OSTI)

    Kosny, Jan; Miller, William A; Childs, Phillip W; Biswas, Kaushik

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  14. Building America Whole-House Solutions for Existing Homes: Greenbelt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenbelt Homes, Inc. Pilot Retrofit Project - Greenbelt, Maryland Building America Whole-House Solutions for Existing Homes: Greenbelt Homes, Inc. Pilot Retrofit Project - ...

  15. CALIFORNIA MEMBER MARCHES IN JULY 4TH PARADE TO PROMOTE HOME ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPGRADES | Department of Energy CALIFORNIA MEMBER MARCHES IN JULY 4TH PARADE TO PROMOTE HOME ENERGY UPGRADES CALIFORNIA MEMBER MARCHES IN JULY 4TH PARADE TO PROMOTE HOME ENERGY UPGRADES Photo of people marching in a parade with signs, wearing matching shirts. Residential Network member Community Home Energy Retrofit Project (CHERP) marched in the Claremont, California, Independence Day parade on July 4, 2015, to raise community awareness of home energy upgrades. An email campaign sent prior

  16. Retrofitting the Southeast: The Cool Energy House

    SciTech Connect (OSTI)

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  17. Retrofitting the Southeast. The Cool Energy House

    SciTech Connect (OSTI)

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings research team has provided the technical engineering and building science support for a highly visible demonstration home that was unveiled at the National Association of Home Builders' International Builders Show on Feb. 9, 2012, in Orlando, FL. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This report describes the deep energy retrofit of the Cool Energy House (CEH), which began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  18. Conway Street Apartments: A Multifamily Deep Energy Retrofit...

    Office of Scientific and Technical Information (OSTI)

    CONSORTIUM FOR ADVANCED RESIDENTIAL BUILDINGS; MULTIFAMILY; RETROFIT; ZERO ENERGY; SOLAR THERMAL; DRAIN WATER RECOVERY SYSTEM; DEMAND-CONTROLLED RECIRCULATION SYSTEM; BRICK;...

  19. Building America Whole-House Solutions for Existing Homes: Cascade Apartments- Deep Energy Multifamily Retrofit (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In December of 2009-10, King County Housing Authority implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units.

  20. Quantifying the Financial Benefits of Multifamily Retrofits

    SciTech Connect (OSTI)

    D. Philbrick; Scheu, R.; Brand, L.

    2016-01-01

    The U.S. Department of Energy’s Building America research team Partnership for Advanced Residential Retrofit analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy-efficiency retrofits and financial performance on three levels: building, city, and community.

  1. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MacDonald and D.L. White. Oak Ridge National Laboratory. ORNLCON-304.(5-91) InfiltrationVentilation Measurements in RCDP Manufactured Homes. Pacific Northwest Laboratory, D....

  2. National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    National Grid Deep Energy Retrofit Pilot Massachusetts and Rhode Island PROJECT INFORMATION Construction: Deep energy retrofit (DER) Type: 37 comprehensive retrofits, 5 partial retrofits Housing Type: 31 single-family, 8 two- family, and 3 three-family dwellings Pilot Program Sponsor: National Grid, www.nationalgridus.com Technical Support Partner: Building Science Corporation, www.buildingscience.com Contractors: Various Projects Completed: 2009-2012 Climate Zone: Cold POST-RETROFIT PERFORMANCE

  3. Building America Expert Meeting: Retrofit Implementation - A Neighborhood

    Energy Savers [EERE]

    at a Time | Department of Energy Retrofit Implementation - A Neighborhood at a Time Building America Expert Meeting: Retrofit Implementation - A Neighborhood at a Time This report provides information about a Building America expert meeting hosted by research team Consortium for Advanced Residential Buildings on October 25, 2011, in New York City. The meeting discussed several community residential retrofit projects underway across the United States, and included representatives from

  4. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Safety Using Appliances for Indoor Air (Fact Sheet) | Department of Energy Building America Technology Solutions for New and Existing Homes: Combustion Safety Using Appliances for Indoor Air (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Combustion Safety Using Appliances for Indoor Air (Fact Sheet) In this case study, the Partnership for Advanced Residential Retrofit team provides guidance on how to assess and carry out the combustion safety

  5. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke; Nakashima, Eichi; Lave, Matthew

    2011-11-01

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  6. Housing Stock Characterization Study: An Innovative Approach to Measuring Retrofit Impact

    SciTech Connect (OSTI)

    Jones, P.; Taylor, N.; Kipp, J.

    2012-09-01

    A residential energy efficiency retrofit loan program depends on a self-sustaining finance option and optimized retrofit measures that recoup their unsubsidized costs through energy bill savings alone within the useful life of the retrofit. A first step in evaluating retrofit options is to measure and verify their energy savings. This report evaluates Orlando Utilities Commission (OUC) residential energy-efficiency demand side management (DSM) programs to assess their relative energy and economic performance.

  7. Housing Stock Characterization Study. An Innovative Approach to Measuring Retrofit Impact

    SciTech Connect (OSTI)

    Jones, P.; Taylor, N.; Kipp, J.

    2012-09-01

    A residential energy efficiency retrofit loan program depends on a self-sustaining finance option and optimized retrofit measures that recoup their unsubsidized costs through energy bill savings alone within the useful life of the retrofit. A first step in evaluating retrofit options is to measure and verify their energy savings. This report evaluates Orlando Utilities Commission (OUC) residential energy-efficiency demand side management (DSM) programs to assess their relative energy and economic performance.

  8. Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect (OSTI)

    Stecher, Dave; Poerschke, Andrew

    2014-02-01

    In this study, the Building America team, IBACOS, sought to determine cost-effective, energy-efficient solutions for heating and cooling houses. To this end, the team performed field testing in a retrofit unoccupied test house in Fresno, California, to evaluate three air-based heating, ventilation, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. These included a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  9. Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect (OSTI)

    Stecher, D.; Poerschke, A.

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems -- a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms -- were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  10. Steam Systems, Retrofit Measure Packages, Hydronic Systems

    Energy Savers [EERE]

    Program www.buildingamerica.gov Decker Homes Buildings Technologies Program Steam Systems, Retrofit Measure Packages, Hydronic Systems Russell Ruch Elevate Energy Peter Ludwig Elevate Energy July 16, 2014 Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings Contents * Retrofit Measure Packages for steam and hydronic MF buildings that save 25-30% * System Balancing * Steam * Hydronic 2 | Building America Program www.buildingamerica.gov Background

  11. Building America Webinar: A National Summary of Deep Energy Retrofits...

    Energy Savers [EERE]

    Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) 2015 Race to Zero Competition Winner Team Summaries...

  12. Building America Case Study: Retrofit Measure for Embedded Wood...

    Energy Savers [EERE]

    Existing Homes Building America Case Study Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls Lawrence, Massachusetts PROJECT INFORMATION Project Name: The...

  13. Building America Case Study: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Retrofit Foundation Insulation Strategies Minneapolis, Minnesota PROJECT INFORMATION Project Name: Innovative Retrofit Foundation Insulation Strategies for Concrete Masonry Foundations Location: Minneapolis, MN NorthernSTAR Building America Partnership Building Component: Concrete block masonry foundation Application: Retrofit Year Tested: 2013 Climate Zones: Cold (6 and 7) PERFORMANCE DATA Cost of energy-efficiency measure (including labor): $4,600 Projected energy savings: 8.8% site

  14. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Retrofit Integrated Space and Water Heating: Field Assessment Minneapolis, Minnesota PROJECT INFORMATION Project Name: Retrofit Integrated Space and Water Heating: Field Assessment Location: Minneapolis, MN Partners: Center for Energy and Environment, www.mncee.org/ Sustainable Resources Center, www.src-mn.org/ University of Minnesota, www.bbe.umn.edu/index.htm NorthernSTAR Building America Partnership Building Component: HVAC Application: Retrofit; single family Year Tested: 2012 Climate

  15. Building America Case Study: Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate, Brevard and Volusia Counties, Florida (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate Brevard and Volusia Counties, Florida PROJECT INFORMATION Project Name: Phased Deep Retrofit: Phase II Location: Central Florida Partners: Florida Power & Light, fpl.com Building America Partnership for Improved Residential Construction, ba-pirc.org Building Component: HVAC Application: Retrofit, single-family Year Tested: 2014-2015 Applicable Climate Zone: Hot-humid PERFORMANCE DATA Average home living area: 1,872 ft 2

  16. Building America Webinar: A National Summary of Deep Energy Retrofits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A National Summary of Deep Energy Retrofits Building America Webinar: A National Summary of Deep Energy Retrofits This presentation by Brennan Less is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. PDF icon BA Webinar_less_6-25-14.pdf More Documents & Publications Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet)

  17. Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, Call Slides and Discussion Summary, December 11, 2014Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, Call Slides and Discussion Summary, December 11, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combining Solar and Home Performance Services December 11th, 2014 Call Slides and Discussion Summary Agenda  Introductory Polls  Residential Network and Peer Exchange Call Overview  Polls on Solar and Home Performance Topics  Featured Speakers  Ria Langheim, Center for Sustainable Energy  Tim Harvey, Austin Energy  Discussion  What are the benefits of pursuing solar and home performance goals simultaneously? Disadvantages?  What are some examples of solar and home

  18. Building America Whole-House Solutions for Existing Homes: Greenbelt Homes,

    Energy Savers [EERE]

    Inc. Pilot Retrofit Project - Greenbelt, Maryland | Department of Energy Greenbelt Homes, Inc. Pilot Retrofit Project - Greenbelt, Maryland Building America Whole-House Solutions for Existing Homes: Greenbelt Homes, Inc. Pilot Retrofit Project - Greenbelt, Maryland This multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes, to serve as a basis for decision making for the rollout of a

  19. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Thayer, Mark; Cappers, Peter

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  20. Sustainable Energy Resources for Consumers Webinar on Residential

    Energy Savers [EERE]

    Geothermal Heat Pump Retrofit Transcript | Department of Energy Geothermal Heat Pump Retrofit Transcript Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits PDF icon 20101214_geothermal_webinar_transcript.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source

  1. Building America Technology Solutions for New and Existing Homes: Advanced

    Energy Savers [EERE]

    Boiler Load Monitoring Controllers, Chicago, Illinois | Department of Energy Boiler Load Monitoring Controllers, Chicago, Illinois Building America Technology Solutions for New and Existing Homes: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing

  2. Building America Technology Solutions for New and Existing Homes: Measure

    Energy Savers [EERE]

    Guideline: Guidance on Taped Insulating Sheathing Drainage Planes | Department of Energy Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes Building America Technology Solutions for New and Existing Homes: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes This project by Building Science Corporation focuses on the field implementation of taped board insulation as the drainage plane in both new and retrofit residential applications. PDF icon

  3. Building America Technology Solutions for New and Existing Homes: Replacing

    Energy Savers [EERE]

    Resistance Heating with Mini-Split Heat Pumps | Department of Energy Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In this project, the Advanced Residential Integrated Solutions team investigated the suitability of mini-split heat pumps for multifamily retrofits. PDF icon Replacing Resistance Heating with Mini-Split Heat Pumps More Documents & Publications

  4. DOE Tour of Zero: The First DOE Zero Energy Ready Retrofit by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Green Extreme Homes and Carl Franklin Homes DOE Tour of Zero: The First DOE Zero Energy Ready Retrofit by Green Extreme Homes and Carl Franklin Homes Addthis 1 of 11 Green...

  5. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance.

  6. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Integrated Space and Water Heating-Field Assessment Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field ...

  7. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stand-off Furring in Deep Energy Retrofits Building America Technology Solutions for New and Existing Homes: Stand-off Furring in Deep Energy Retrofits This research project,...

  8. Building America Webinar: Standardized Retrofit Packages - What Works to

    Energy Savers [EERE]

    Meet Consistent Levels of Performance? | Department of Energy Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance? Building America Webinar: Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance? This webinar focused on specific Building America projects that have examined methods to consistently meet high levels of energy performance in existing homes, with a focus on retrofit packages that can be replicated across many homes.

  9. Effects on carbon monoxide levels in mobile homes using unvented kerosene heaters for residential heating

    SciTech Connect (OSTI)

    Williams, R.; Walsh, D.; White, J.; Jackson, M.; Mumford, J.

    1992-01-01

    Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.

  10. Building America Webinar: National Residential Efficiency Measures Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unveiled | Department of Energy National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview of this database of residential building retrofit measures and associated estimated costs, and progress to date. File webinar_residential_efficiencydb_20110118.wmv More Documents & Publications National Residential Efficiency Measures Database Webinar Slides Building America

  11. Better Buildings Residential Network Workforce/ Business Partners Peer Exchange Call Series: Home Performance Training & Mentoring: Lessons and Resources Call Slides and Discussion Summary, August 14, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce/ Business Partners Peer Exchange Call Series: Home Performance Training & Mentoring: Lessons and Resources Call Slides and Discussion Summary August 14, 2014 Agenda  Call Logistics and Introductions  Residential Network and Peer Exchange Call Overview  Featured Speakers  Mark Jackson, Community Housing Partners, Christiansburg, VA  Amanda Hatherly, New Mexico Energy$mart Academy, Santa Fe Community College  Tom White, Home Energy Magazine  Discussion  What

  12. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    SciTech Connect (OSTI)

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  13. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cascade Apartments - Deep Energy Multifamily Retrofit Kent, Washington PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: King County Housing Authority, Kent, Washington http://www.kcha.org/ Size: 108 units in 27 four-plexes Rent: 30% of household income Date completed: 2010 Climate Zone: Marine PERFORMANCE DATA State low-income weatherization investment: $385,850 for all 108 units $15,850 per 4-plex $3,858 per unit Site savings per unit: Billing analysis:

  14. Pacific Power- Residential wattsmart Program

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program website.

  15. Building America Performance Analysis Procedures for Existing Homes

    SciTech Connect (OSTI)

    Hendron, R.

    2006-05-01

    Because there are more than 101 million residential households in the United States today, it is not surprising that existing residential buildings represent an extremely large source of potential energy savings. Because thousands of these homes are renovated each year, Building America is investigating the best ways to make existing homes more energy-efficient, based on lessons learned from research in new homes. The Building America program is aiming for a 20%-30% reduction in energy use in existing homes by 2020. The strategy for the existing homes project of Building America is to establish technology pathways that reduce energy consumption cost-effectively in American homes. The existing buildings project focuses on finding ways to adapt the results from the new homes research to retrofit applications in existing homes. Research activities include a combination of computer modeling, field demonstrations, and long-term monitoring to support the development of integrated approaches to reduce energy use in existing residential buildings. Analytical tools are being developed to guide designers and builders in selecting the best approaches for each application. Also, DOE partners with the U.S. Environmental Protection Agency (EPA) to increase energy efficiency in existing homes through the Home Performance with ENERGY STAR program.

  16. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential 2014 Building Technologies Office Peer Review Danielle Sass Byrnett danielle.byrnett@ee.doe.gov U.S. Department of Energy 2 Project Summary: Better Buildings Residential (BBR) Timeline: Start date: FY11 Planned end date: ongoing Key Milestones 1. Better Buildings Neighborhood Program, Fall 2010 2. Home Energy Score, 2011 3. Home Performance with ENERGY STAR to DOE, Oct. 2011 4. Better Buildings Residential Network, April 2013 5. Better Buildings Residential Program Solution Center

  17. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  18. Analysis of Illinois Home Performance with ENERGY STAR® Measure Packages

    SciTech Connect (OSTI)

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit research team characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  19. Building America Whole-House Solutions for Existing Homes: Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes: Pilot Demonstration of Phased Retrofits in Florida Homes - Central and South Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Pilot ...

  20. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  1. Expert Meeting Report: Retrofit Implementation - A Neighborhood at a Time

    SciTech Connect (OSTI)

    Griffiths, D.

    2012-04-01

    This report provides information about a Building America expert meeting hosted by research team Consortium for Advanced Residential Buildings on October 25, 2011, in New York City. The meeting discussed several community residential retrofit projects underway across the United States, and included representatives from utilities, energy program implementation firms, affordable housing agencies, and the financing industry.

  2. Expert Meeting Report: Retrofit Implementation - A Neighborhood at a Time

    SciTech Connect (OSTI)

    Griffiths, Dianne

    2012-04-01

    This report provides information about a Building America expert meeting hosted by research team Consortium for Advanced Residential Buildings (CARB) on October 25, 2011, in New York City. The meeting discussed several community residential retrofit projects underway across the United States, and included representatives from utilities, energy program implementation firms, affordable housing agencies, and the financing industry.

  3. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  4. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  5. Analysis of Pre-Retrofit Building and Utility Data

    SciTech Connect (OSTI)

    Prahl, D.; Beach, R.

    2014-12-01

    IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes was modeled. The homes were in two communities—one built in the 1970s and the other in the mid-2000s.

  6. Analysis of Pre-Retrofit Building and Utility Data

    SciTech Connect (OSTI)

    Prahl, D.; Beach, R.

    2014-12-01

    IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes' was modeled. The homes were in two communities -- one built in the 1970s and the other in the mid-2000s.

  7. Building America Efficient Solutions for Existing Homes Case Study:

    Energy Savers [EERE]

    Retrofit of 1915 Home, Dayton, Washington | Department of Energy Retrofit of 1915 Home, Dayton, Washington Building America Efficient Solutions for Existing Homes Case Study: Retrofit of 1915 Home, Dayton, Washington This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 1915 home in eastern Washington audited by Pacific Northwest National Laboratory for an energy retrofit. The asbestos covered diesel

  8. Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)

    SciTech Connect (OSTI)

    Gettings, M.B.

    2003-01-27

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that each of these measures is evaluated separately in order to devise a package of measures that will result in high energy and dollar savings. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes. The National Renewable Energy Laboratory originally developed MHEA for the U.S. Department of Energy Weatherization Assistance Program. Conversion to a Windows-based program with additional modifications has been performed by the Oak Ridge National Laboratory. Many energy consumption and economic calculations resemble those found in the Computerized Instrumented Residential Audit written by Lawrence Berkeley National Laboratory and the National Energy Audit written by Oak Ridge National Laboratory. The calculations are similar in structure but have been altered to more accurately represent a manufactured home's unique energy use characteristics. Most importantly, MHEA helps meet the DOE Weatherization Assistance Program goals to increase client comfort and use federal dollars wisely.

  9. SMECO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative's (SMECO) Residential Energy Efficiency Program helps residential customers save energy by providing rebates for home weatherization and the installation of...

  10. SRP- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. See program web site for a...

  11. Sharyland Utilities- Residential Standard Offer Program

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  12. High Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  13. Building America Webinar: Results from Phased Deep Retrofits in Florida |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Results from Phased Deep Retrofits in Florida Building America Webinar: Results from Phased Deep Retrofits in Florida This presentation by Danny Parker is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. PDF icon BA Webinar_parker_6-25-14.pdf More Documents & Publications Building America Team (BA-PIRC) - 2014 BTO Peer Review Building America Whole-House Solutions for Existing Homes: Pilot Demonstration of

  14. National Residential Efficiency Measures Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Development Document, v3.0 Final Draft, June 2012 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado i Executive Summary The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most

  15. Developing an Evaluation Measurement, and Verification Plan: Residential

    Office of Environmental Management (EM)

    Retrofits | Department of Energy Measurement, and Verification Plan: Residential Retrofits Developing an Evaluation Measurement, and Verification Plan: Residential Retrofits DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean energy programs. File DOE TAP EMV Planning

  16. Better Buildings Residential Network Peer Exchange Call Series: The Future is Here Â… Smart Home Technology, Call Slides and Discussion Summary, April 9, 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future is Here - Smart Home Technology April 9, 2015 Call Slides and Discussion Summary Agenda  Call Logistics and Introductions  Opening Poll  Residential Network and Peer Exchange Call Overview  Featured Speakers  Matthew Harding, Assistant Professor at Duke University, Co-Director Duke Energy Data Analytics Lab and Associate Director Information Initiative at Duke  Jim Stewart, Principal Economist and Statistical Analysis Group Co-Manager at Cadmus  Marshall Runkel,

  17. The PNNL Lab Homes Experimental Plan, FY12−FY15

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.

    2012-05-30

    The PNNL lab homes (http://labhomes.pnnl.gov/ ) are two manufactured homes recently installed immediately south of the 6th Street Warehouse on the PNNL Richland, WA campus that will serve as a project test bed for DOE, PNNL and its research partners who aim to achieve highly energy efficient and grid-responsive homes. The PNNL Lab Homes project is the first of its kind in the Pacific Northwest region. The Energy & Environment Directorate at PNNL, working with multiple sponsors, will use the identical 1,500 square-foot homes for experiments focused on reducing energy use and peak demand. Research and demonstration primarily will focus on retrofit technologies, and the homes will offer a unique, side-by-side ability to test and compare new ideas and approaches that are applicable to site-built as well as manufactured homes. The test plan has the following objectives: • To define a retrofit solution packages for moderate to cold climates that can be cost effectively deployed in the Pacific NW to save 50% of the energy needs of a typical home while enhancing the comfort and indoor air quality. The retrofit strategies would also lower the peak demands on the grid. • To leverage the unique opportunity in the lab homes to reach out to researchers, industry, and other interested parties in the building science community to collaborate on new smart and efficient solutions for residential retrofits. • To increase PNNL’s visibility in the area of buildings energy efficiency based on the communication strategy and presentation of the unique and impactful data generated in the lab homes. This document describes the proposed test plan for the lab homes to achieve these goals, through FY15. The subsequent sections will provide a brief description of each proposed experiment, summarize the timing of the experiment (including any experiments that may be run in parallel, and propose potential contributors and collaborators. For those experiments with funding information available, it is provided.

  18. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  19. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) Mission/Vision The Residential Buildings Integration (RBI) program's mission: To accelerate energy performance improvements in residential buildings by developing, demonstrating, and deploying a suite of cost-effective technologies, tools, and solutions to achieve peak performance in new and existing homes. RBI Vision,

  20. Existing Whole-House Solutions Case Study: Performance of a Hot-Dry Climate Whole-House Retrofit, Stockton, California

    SciTech Connect (OSTI)

    2014-09-01

    The Alliance for Residential Building Innovation (ARBI) team conducted a deep retrofit project within Stockton’s Large-Scale Retrofit Program that expanded on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Post-retrofit site energy savings were 23% compared to the pre-retrofit case.

  1. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Strategies, Minneapolis, Minnesota Building America Technology Solutions for New and Existing Homes: Innovative Retrofit Foundation Insulation Strategies, ...

  2. Building America Whole-House Solutions for Existing Homes: Pilot

    Energy Savers [EERE]

    Demonstration of Phased Retrofits in Florida Homes - Central and South Florida (Fact Sheet) | Department of Energy Pilot Demonstration of Phased Retrofits in Florida Homes - Central and South Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Pilot Demonstration of Phased Retrofits in Florida Homes - Central and South Florida (Fact Sheet) In this pilot project, the Florida Solar Energy Center and Florida Power and Light are collaborating to retrofit a large

  3. BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes

    SciTech Connect (OSTI)

    Christensen, Craig; Horowitz, Scott; Maguire, Jeff; Velasco, Paulo Tabrares; Springer, David; Coates, Peter; Bell, Christy; Price, Snuller; Sreedharan, Priya; Pickrell, Katie

    2014-04-01

    This project targeted the development of a software tool, BEopt-CA (Ex) (Building Energy Optimization Tool for California Existing Homes), that aims to facilitate balanced integration of energy efficiency (EE), demand response (DR), and photovoltaics (PV) in the residential retrofit1 market. The intent is to provide utility program managers and contractors in the EE/DR/PV marketplace with a means of balancing the integration of EE, DR, and PV

  4. Analysis of Illinois Home Performance with ENERGY STAR(R) Measure Packages

    SciTech Connect (OSTI)

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  5. EECBG Success Story: Cincinnati Canvassing Spreads Retrofitting Message |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cincinnati Canvassing Spreads Retrofitting Message EECBG Success Story: Cincinnati Canvassing Spreads Retrofitting Message May 28, 2010 - 3:07pm Addthis A volunteer canvasses the Mt. Washington neighborhood in Ohio to spread awareness about home energy audits in the area. | Photo Courtesy GCEA A volunteer canvasses the Mt. Washington neighborhood in Ohio to spread awareness about home energy audits in the area. | Photo Courtesy GCEA The Greater Cincinnati Energy Alliance

  6. An analysis of predicted vs monitored space heat energy use in 83 homes. Residential Construction Demonstration Project

    SciTech Connect (OSTI)

    Downey, P.K.

    1989-08-01

    In 1983 the Northwest Power Planning Council (NWPPC) directed the Bonneville Power Administration to create the Residential Standards Demonstration Program to demonstrate actual construction using the Model Conservation Standards (MCS) and to collect cost and thermal data in residential structures. Much information was gained from that program, and as a consequence, the MCS were reevaluated and updated. A second program, the Residential Construction Demonstration Project was created to further investigate residential energy efficiency measures for both cost and thermal performance. The Residential Construction Demonstration Project was administered by the Washington State Energy Office in conjunction with the Idaho Department of Water Resources, the Montana Department of Natural Resources and Conservation, and the Oregon Department of Energy. This analysis is based upon information collected during the first phase of the Residential Construction Demonstration Project (RCDP).

  7. Unitil (Gas)- Residential Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Until also offers rebates for residential new construction through the Natural Gas Energy Star Homes/Residential New Construction Program. To receive rebates, new homes must meet certain energy...

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program FY 16-17 ASC Utility...

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discussions Access to Capital Debt Optimization Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2013 FY-2014 Rate Cases Rate Information Residential Exchange Program Surplus Power Sales Reports Cost Verification Process The Cost Verification Process for the Slice...

  13. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential...

  14. EnergyFit Nevada (formerly known as the Nevada Retrofit Initiative) final report and technical evaluation

    SciTech Connect (OSTI)

    Carvill, Anna; Bushman, Kate; Ellsworth, Amy

    2014-06-17

    The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with an average energy reduction of 32% per home. Other achievements included: ? Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 ? Achieved an overall conversation rate of 38.1%2 ? 7,089,089 kWh of modeled energy savings3 ? Total annual homeowner energy savings of approximately $525,7523 ? Efficiency upgrades completed on 1,100,484 square feet of homes3 ? $139,992 granted in loans to homeowners for energy-efficiency upgrades ? 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 ? 40 contractors trained in Nevada ? 37 contractors with Building Performance Institute (BPI) certification in Nevada ? 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.

  15. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes.

  16. Entergy New Orleans- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Home Performance with ENERGY STAR Program provides ENO residential customers with home energy assessments, recommendations for energy savings and incentives towards the cost of those upgrades...

  17. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program...

  18. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect (OSTI)

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR® (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost effectiveness.

  19. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions; Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt-recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  20. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect (OSTI)

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR(R) (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  1. Greenbuilt Retrofit Test House Final Report

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Earle, L.; Booten, C.; Tabares-Velasco, P. C.; Barker, G.; Hancock, C. E.

    2014-06-01

    The Greenbuilt house, is an all-electric, 1980's era home in the eastern Sacramento suburb of Fair Oaks that was retrofit by Greenbuilt Construction as part of Sacramento Municipal Utility District's (SMUD) Energy Efficient Remodel Demonstration (EERD) Program. The project was a joint effort between the design-build team at Greenbuilt Construction, led by Jim Bayless, SMUD and their project manager Mike Keesee, and the National Renewable Energy Laboratory (NREL). The goal of the Energy Efficient Remodel Demonstration program is to work with local builders to renovate homes with cost-effective energy efficient retrofit measures. The homes remodeled under the EERD program are intended to showcase energy efficient retrofit options for homeowners and other builders. The Greenbuilt house is one of five EERD projects that NREL has supported. NREL's main role in these projects is to provide energy analysis and to monitor the home's performance after the retrofit to verify that the energy consumption is in line with the modeling predictions. NREL also performed detailed monitoring on the more innovative equipment included in these remodels, such as an add-on heat pump water heater.

  2. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Retrofit team provides guidance on how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for...

  3. Weatherization and Workforce Guidelines for Home Energy Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This fact sheet provides essential information about the 2011 publication of the Residential Retrofit Workforce Guidelines, including their origin, their development with the help ...

  4. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Partnership for Advanced Residential Retrofit (PARR), a U.S. Department of Energy Building America team, conducted a study to identify best practices,costs, and savings...

  5. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    balancing valves, inefficient water temperature and flow levels, and owneroccupant ... In this case study , Partnership for Advanced Residential Retrofit and Elevate Energy. ...

  6. Building America Whole-House Solutions for Existing Homes: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder, Colorado More Documents & Publications Building America Expert Meeting: Retrofit Implementation - A Neighborhood at a Time Building America Residential Energy Efficiency...

  7. About Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to

  8. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    SciTech Connect (OSTI)

    Fuller, Merrian C.

    2010-09-20

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

  9. Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits

    SciTech Connect (OSTI)

    Donnelly, K.; Mahle, M.

    2012-03-01

    The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40%-45% source energy savings over the existing pre-retrofit conditions.

  10. Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits

    SciTech Connect (OSTI)

    Donnelly, K.; Mahle, M.

    2012-03-01

    The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40-45% source energy savings over the existing pre-retrofit conditions.

  11. Better Buildings Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Better Buildings Residential Solution Center Shares Energy Efficiency Program Strategies Solution Center Shares Energy Efficiency Program Strategies Explore the Better Buildings Residential Program Solution Center, a robust collection of nearly 1,000 examples, strategies, and resources for program administrators and home energy upgrade professionals. Read more Residential Network Connects More Than 240 Organizations Residential Network Connects More Than 240

  12. The reHABITAT Guide: For Energy- and Resource-Efficient Retrofit Strategies

    SciTech Connect (OSTI)

    2004-07-01

    This guide seeks to advance the goal of the U.S. Department of Energy’s Existing Residential Buildings Program (ERBP): to develop approaches that will enable the housing retrofit industry to deliver energy-efficient housing improvements.

  13. Building America Whole-House Solutions for Existing Homes: Cascade...

    Energy Savers [EERE]

    Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily...

  14. Energy-Efficient Manufactured Homes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (formerly known as mobile homes) can be designed for energy efficiency and renewable energy. You can also remodel or retrofit older manufactured homes to improve energy...

  15. Building America Whole-House Solutions for Existing Homes: Applying...

    Energy Savers [EERE]

    Retrofits in Florida Homes - Central and South Florida (Fact Sheet) Building America Efficient Solutions for Existing Homes: Case Study: Build San Antonio Green, San Antonio, Texas...

  16. Low-E Retrofit Demonstration and Educational Program

    SciTech Connect (OSTI)

    Culp, Thomas D; Wiehagen, Joseph; Drumheller, S Craig; Siegel, John; Stratmoen, Todd

    2013-11-16

    The objective of this project was to demonstrate the capability of low-emissivity (low-E) storm windows / panels and low-E retrofit glazing systems to significantly and cost effectively improve the energy efficiency of both existing residential and commercial buildings. The key outcomes are listed below: RESIDENTIAL CASE STUDIES: (a) A residential case study in two large multifamily apartment buildings in Philadelphia showed a substantial 18-22% reduction in heating energy use and a 9% reduction in cooling energy use by replacing old clear glass storm windows with modern low-E storm windows. Furthermore, the new low-E storm windows reduced the overall apartment air leakage by an average of 10%. (b) Air leakage testing on interior low-E panels installed in a New York City multifamily building over windows with and without AC units showed that the effective leakage area of the windows was reduced by 77-95%. (c) To study the use of low-E storm windows in a warmer mixed climate with a balance of both heating and cooling, 10 older homes near Atlanta with single pane windows were tested with three types of exterior storm windows: clear glass, low-E glass with high solar heat gain, and low-E glass with lower solar heat gain. The storm windows significantly reduced the overall home air leakage by an average of 17%, or 3.7 ACH50. Considerably high variability in the data made it difficult to draw strong conclusions about the overall energy usage, but for heating periods, the low-E storm windows showed approximately 15% heating energy savings, whereas clear storm windows were neutral in performance. For cooling periods, the low-E storm windows showed a wide range of performance from 2% to over 30% cooling energy savings. Overall, the study showed the potential for significantly more energy savings from using low-E glass versus no storm window or clear glass storm windows in warmer mixed climates, but it is difficult to conclusively say whether one type of low-E performed better than the other. COMMERCIAL CASE STUDIES: (a) A 12-story office building in Philadelphia was retrofitted by adding a double-pane low-E insulating glass unit to the existing single pane windows, to create a triple glazed low-E system. A detailed side-by-side comparison in two pairs of perimeter offices facing north and east showed a 39-60% reduction in heating energy use, a 9-36% reduction in cooling energy use, and a 10% reduction in peak electrical cooling demand. An analysis of utility bills estimated the whole building heating and cooling energy use was reduced by over 25%. Additionally, the retrofit window temperatures were commonly 20 degrees warmer on winter days, and 10-20 degrees cooler on summer days, leading to increased occupant comfort. (b) Two large 4-story office buildings in New Jersey were retrofitted with a similar system, but using two low-E coatings in the retrofit system. The energy savings are being monitored by a separate GPIC project; this work quantified the changes in glass surface temperatures, thermal comfort, and potential glass thermal stress. The low-E retrofit panels greatly reduced daily variations in the interior window surface temperatures, lowering the maximum temperature and raising the minimum temperature by over 20F compared to the original single pane windows with window film. The number of hours of potential thermal discomfort, as measured by deviation between mean radiant temperature and ambient air temperature by more than 3F, were reduced by 93 percent on the south orientation and over two-thirds on the west orientation. Overall, the low-E retrofit led to substantially improved occupant comfort with less periods of both overheating and feeling cold. (c) No significant thermal stress was observed in the New Jersey office building test window when using the low-E retrofit system over a variety of weather conditions. The surface temperature difference only exceeded 10F (500 psi thermal stress) for less than 1.5% of the monitored time, and in all cases, the maximum surface temperature difference never exceeded 35F (1,75

  17. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    The incentive can be paid directly to the customer or the installer. PV equipment listed on the CEC Approved Equipment list is eligible for incentives: http://www.gosolarcalifornia.org/equipment...

  18. Quality Assurance for Residential Retrofit Programs

    Broader source: Energy.gov [DOE]

    This webinar covered quality assurance and how to assure that your investment achieves a desired result of saving energy.

  19. EECBG Success Story: Financing Residential Retrofits

    Broader source: Energy.gov [DOE]

    Rancho Cucamonga, east of Los Angeles, received a $1.6 million Energy Efficiency and Conservation Block grant from the U.S. Department of Energy last year, using money authorized by the American Recovery and Reinvestment Act. Learn more.

  20. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the adoption of cost-effective energy...

  1. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota | Department of Energy Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota Building America Technology Solutions for New and Existing Homes: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota In this project, the NorthernSTAR Building America Partnership evaluated a retrofit insulation strategy for foundations that is designed for use with open-core concrete block

  2. National Grid (Gas)- Residential Gas Heating Rebate Programs

    Broader source: Energy.gov [DOE]

     National Grid offers financial incentives for various energy efficiency measures in Rhode Island homes. Incentives are available for deep energy retrofit, heaters, furnaces, boilers, and others....

  3. United Cooperative Services- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    United Cooperative Services offers a one-time rebate program for new home construction and retrofit upgrades. The following equipment are eligible under United's Rebate Program:

  4. Building America Case Study: Raised Ceiling Interior Duct System, New Smyrna, Florida (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raised Ceiling Interior Duct System New Smyrna, Florida PROJECT INFORMATION Project Name: S.E. Volusia County Habitat for Humanity Zero Energy Ready Home Location: New Smyrna, FL Partners: S. E. Volusia CO Habitat for Humanity Building America Partnership for Improved Residential Construction, ba-pirc.org Building Component: HVAC Application: New and/or retrofit; Single and/or multifamily Year Tested: 2013 Applicable Climate Zone(s): all PERFORMANCE DATA (of the measure alone, not whole house)

  5. Replacement, Variable-Speed Motors for Furnaces, Syracuse, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Replacement of Variable-Speed Motors for Furnaces Syracuse, New York PROJECT INFORMATION Project Name: Evaluation of Concept 3 BPM motors Location: Syracuse, NY Partners: New York State Energy Research and Development Authority (NYSERDA) www.nyserda.org Proctor Engineering Group (PEG) www.proctoreng.com Tag Mechanical www.taghomeperformance.com/ Consortium for Advanced Residential Buildings www.carb-swa.com Building Component: HVAC Application: Retrofit, homes with forced air distribution Year

  6. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  7. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin

    Energy Savers [EERE]

    Homes, Garland, TX | Department of Energy Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX Case study of a DOE Zero Energy Ready affordable home in Garland, TX, that was the first retrofit home certified to the DOE Zero Energy Ready home requirements. The construction team achieved a HERS

  8. Result of recent weatherization retrofit projects

    SciTech Connect (OSTI)

    Dickinson, J.B.; Lipschutz, R.D.; O'Regan, B.; Wagner, B.S.

    1982-07-01

    Pacific Gas and Electric (PG and E) and the Bonneville Power Administration (BPA) have conducted studies in their respective service areas in order to evaluate the cost-effectiveness of certain conservation retrofits. Twenty houses in Walnut Creek, California, underwent an infiltration reduction program, similar to house doctoring. Ten of these houses also received additional contractor-installed measures. BPA retrofitted 18 houses at its Midway substation in central Washington. Retrofits made to the houses included: attic and crawlspace insulation, foundation sill caulking, storm windows and doors, increased attic ventilation, and infiltration reduction. Energy consumption and weather data were monitored before and after each set of retrofits in both projects. Leakage measurements were made by researchers from the Energy Efficient Buildings Program using blower door fan pressurization, thereby allowing calculation of heating season infiltration rates. An energy use model correlating energy consumption with outside temperature was developed in order to determine improvements to the thermal conductance of the building envelope as a result of the retrofits. Energy savings were calculated based on the results of the energy use model. As a check on these findings, the Computerized Instrumented Residential Audit (CIRA) load calculation program developed at Lawrence Berkeley Laboratory provided a theoretical estimate of the savings resulting from the retrofits. At Midway, storm windows and doors were found to save the most energy. Because the Midway houses were not very leaky at the beginning of the experiment, the infiltration reduction procedures were less effective than expected. In the Walnut Creek project, the infiltration reduction procedures did decrease the leakiness of the test houses, but the effect upon energy savings was not great.

  9. Holyoke Gas & Electric- Residential Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    The Holyoke Gas & Electric (HG&E) Residential Energy Conservation Program provides residential customers with loans to help make energy saving improvements to eligible homes. The loan...

  10. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  11. Fact Sheet: Better Buildings Residential Network | Department of Energy

    Office of Environmental Management (EM)

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. PDF icon BBRN Fact Sheet More Documents & Publications Fact Sheet - Better Buildings Residential Membership Criteria: Better Buildings Residential Network Better Buildings Residential Network Orientation

  12. Strategy Guideline: Quality Management in Existing Homes - Cantilever Floor Example

    SciTech Connect (OSTI)

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented.

  13. Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program

    SciTech Connect (OSTI)

    Britt, Michelle L.; Makela, Eric J.

    2011-01-30

    Adhering to Delaware’s Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: • Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. • Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

  14. NREL: National Residential Efficiency Measures Database - Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developer Tools Application Developer Tools Here you will find tools intended to help software application developers access the data in the National Residential Efficiency Measures Database. This database of retrofit measures and associated costs can be used by software applications that evaluate residential efficiency measures. Read more about the database and information about the cost data. Developer Tools Change log-View a list of changes to the National Residential Efficiency Measures

  15. Be SMART Home Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Under the Be SMART Homes program, the Maryland Department of Housing and Community Development offers loans to homeowners for energy efficiency retrofit projects and installing ENERGY STAR produc...

  16. PNM- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PNM also offers the PNM Home Energy Checkup, which gives residential customers a snapshot of their home's electricity use and identifies opportunities to reduce electricity waste. The Home Energy...

  17. Building America Best Practices Series, Vol. 10 - Retrofit Techniques &

    Energy Savers [EERE]

    Technologies: Air Sealing, A Guide for Contractors to Share with Homeowners | Department of Energy Series, Vol. 10 - Retrofit Techniques & Technologies: Air Sealing, A Guide for Contractors to Share with Homeowners Building America Best Practices Series, Vol. 10 - Retrofit Techniques & Technologies: Air Sealing, A Guide for Contractors to Share with Homeowners This guide provides information to contractors and homeowners to identify ways to seal unwanted air leaks in homes, while

  18. Entergy Texas- Residential and Small Commercial Standard Offer Program

    Broader source: Energy.gov [DOE]

    The Hard to Reach and Residential Standard Offer Programs provides incentives for the retrofit or new construction installation of a wide range of energy efficiency measures. The program does not...

  19. NREL: National Residential Efficiency Measures Database - About the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database About the Database Here you will find more information about the purpose, audience, and uses for the National Residential Efficiency Measures Database. Purpose NREL developed this database on behalf of the U.S. Department of Energy. The purpose of this project is to provide a national unified database of residential building retrofit measures and associated costs. These data are accessible to software programs that evaluate most cost-effective retrofit measures to improve the energy

  20. Residential Water Heaters Webinar | Department of Energy

    Energy Savers [EERE]

    Residential Water Heaters Webinar Residential Water Heaters Webinar PDF icon 20110224_residential_water_heater_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters 2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

  1. Building America Whole-House Solutions for Existing Homes: Cascade

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) | Department of Energy Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) This project implemented energy retrofit improvements in the Cascade multifamily community, which resulted in annual energy cost savings of 22%, improved comfort

  2. Building America Whole-House Solutions for Existing Homes: Cascade

    Energy Savers [EERE]

    Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) | Department of Energy Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) This project implemented energy retrofit improvements in the Cascade multifamily community, which resulted in annual energy cost savings of 22%, improved comfort

  3. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

  4. Fact Sheet - Better Buildings Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet - Better Buildings Residential Fact Sheet - Better Buildings Residential Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Residential Program. PDF icon bb_residential_factsheet_12-17-14.pdf More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review Home Performance with ENERGY STAR -- 10 Years of Continued Growth! Home Performance with Energy Star

  5. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  6. Low-rise Residential New Construction Program

    Broader source: Energy.gov [DOE]

     NYSERDA’s Low-rise Residential New Construction Programs are designed to encourage more industry involvement in the building of single-family homes and low-rise residential units that are more...

  7. Residential Renewable Energy Income Tax Credit

    Broader source: Energy.gov [DOE]

    The credit is available to any owner or tenant of residential property. For a newly constructed home, the credit is available to the original owner/occupant. Joint owners of a residential property...

  8. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bay Ridge Gardens-Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit Annapolis, Maryland PROJECT INFORMATION Construction: Existing Type: Apartment building: Bay Ridge Gardens Annapolis, MD www.bayridgegardens.com Size: 12 apartment units, 713 ft 2 and 909 ft 2 each Year of construction: 1970s Date completed: 2013 Climate Zone: Mixed-humid PERFORMANCE DATA Pre-retrofit annual energy use (normalized): 28.4 kilowatt-hour per square foot (kWh/ft 2 ) Post-retrofit annual energy use

  9. Hercules Municipal Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Hercules Municipal Utility provides financial incentives for its residential members to increase the energy efficiency of participating homes. Rebates are offered for a variety of home appliances...

  10. Modesto Irrigation District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Modesto Irrigation District’s Home Rebate Program offers residential customers cash rebates for the purchase and installation of qualifying energy efficient products installed in existing homes....

  11. Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas & Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  12. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  13. Duke Energy- Residential and Builder Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart Saver program offers incentives for residential customers to increase their home’s energy efficiency. Incentives are provided for qualifying heating and cooling equipment installation or...

  14. New Hampshire Electric Co-Op - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    efficiency incentive programs for its residential members. First, members can receive a free Home Energy Analysis through the Home Performance with Energy Star Program. The...

  15. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Retrofitting Central Space Conditioning Strategies for ... Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

  16. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented ...

  17. Assessment of Residential GSHP System

    SciTech Connect (OSTI)

    Liu, Xiaobing

    2010-09-01

    This report first briefly reviews geothermal heat pump (GHP) technology and the current status of the GHP industry in the United States. Then it assesses the potential national benefits, in terms of energy savings, reduced summer peak electrical demand, consumer energy cost savings, and reduced CO{sub 2} emissions from retrofitting the space heating, space cooling, and water heating systems in existing U.S. single-family homes with state-of-the-art GHP systems. The investment for retrofitting typical U.S. single-family homes with state-of-the-art GHP systems is also analyzed using the metrics of net present value and levelized cost.

  18. Tillamook County PUD- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Tillamook PUD offers residential customers a variety of rebates and loans to make energy efficiency improvements to participating homes.

  19. Better Buildings Residential Network Data & Evaluation Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solution Center Better Buildings ... Test, Learn, Adapt * Integrated Technology Platform * ... savings to meet Illinois Home Performance with ENERGY STAR ...

  20. Partner With DOE and Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of organizations to improve the energy efficiency of residential buildings. Home builders, governments, researchers, and universities have several opportunities to work with the Building Technologies Office and other DOE projects. Home Builders Home builders who want to be recognized for building high performance homes can find

  1. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  2. Deep Energy Retrofits & State Applications

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications

  3. Building America Partnership for Improved Residential Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnership for Improved Residential Construction Building America Partnership for Improved Residential Construction In addition to occupied test homes, research will be conducted in highly instrumented laboratories with simulated occupancy. Shown here are the two identical, side-by-side test homes that comprise FSEC's Flexible Residential Test Facility. Photo courtesy of Florida Solar Energy Center. In addition to occupied test homes, research will be conducted in

  4. Retrofit Financial Analysis Tool

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Street and Parking Facility Lighting Retrofit Financial Analysis Tool was developed by a partnership of the DOE Municipal Solid-State Street Lighting Consortium, the Clinton Climate Initiative (CCI)/C40, and the Federal Energy Management Program (FEMP), for the financial analysis of retrofitting street and parking facility lighting with more efficient alternatives. Property owners, city and other government agencies, utilities, and energy efficiency organizations can use this tool to compute annualized energy and energy-cost savings, maintenance savings, greenhouse gas reductions, net present value, and simple payback associated with potential lighting upgrades.

  5. Short-Term Test Results. Transitional Housing Energy Efficiency Retrofit in the Hot Humid Climate

    SciTech Connect (OSTI)

    Sutherland, K.

    2013-02-01

    This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30%-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

  6. Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate

    SciTech Connect (OSTI)

    Sutherland, K.; Martin, E.

    2013-02-01

    This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

  7. Florida Public Utilities- Residential HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Public Utilities offers rebates to electric residential customers who improve the efficiency of homes. Central air conditioners and heat pumps which meet program requirements are eligible...

  8. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  9. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  10. Midstate Electric Cooperative- Residential Conservation Rebates

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative offers its residential customers a variety of cash rebates for energy efficient improvements and new energy efficient homes. Rebates are awarded for the installation...

  11. Questar Gas- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Questar Gas provides rebates for residential customers who make their homes more energy efficient by installing certain energy saving appliances, efficient heating equipment, and certain...

  12. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  13. Oklahoma Natural Gas - Residential Efficiency Rebates | Department...

    Broader source: Energy.gov (indexed) [DOE]

    250 Clothes Dryer: up to 500 Summary To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential...

  14. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  15. PSNH - Residential Energy Efficiency Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    collaboration with nhsaves, provides incentives for residential customers to increase the energy efficiency of participating homes. Prescriptive rebates are available for the...

  16. SMUD- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Sacramento Municipal Utility District offers financing to help residential customers finance energy efficient home improvements. Applicant for a loan must be the vested owner of the property where...

  17. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  18. Emerald PUD- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) offers several incentives for its residential customers to increase the energy efficiency of homes. Emerald PUD offers rebates for ENERGY STAR rated...

  19. Emerald PUD- Residential Energy Efficiency Loan Programs

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) has a loan program through First Tech Credit Union to help residential customers improve the energy efficiency of their homes. Through the Weatherization...

  20. National Residential Efficiency Measures Database - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database - Building America Top Innovation Image of a man insulating the ceiling of a home. Robust cost data for energy-efficiency measures ...

  1. Piedmont EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and LED lighting in eligible homes. Rebates are available...

  2. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in their homes. Full details are available on the program website.

  3. CPS Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  4. Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

  5. Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance: Midwest Energy Efficiency Alliance

    Energy Savers [EERE]

    Building America Webinar Series Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance: Midwest Energy Efficiency Alliance Scott Yee March 19 th , 2014 1 Midwest Energy Efficiency Alliance (MEEA) Midwest Energy Efficiency Alliance 2 MEEA is a collaborative network whose purpose is to advance energy efficiency to support sustainable economic development and environmental preservation. Partnership for Advanced Residential Retrofit (PARR) Midwest Energy Efficiency

  6. GreenHomes America | Open Energy Information

    Open Energy Info (EERE)

    GreenHomes America Jump to: navigation, search Name: GreenHomes America Place: Irvine, CA Website: www.greenhomesamerica.com References: Residential Energy Efficiency Stakeholders...

  7. NREL: National Residential Efficiency Measures Database - Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protocols Simulation Protocols One overarching objective in providing this publicly-available, centralized resource of residential building retrofit measures is to improve the technical consistency and accuracy of the results of software programs. To this end, NREL has also developed a set of recommendations regarding modeling inputs and assumptions derived from two decades of residential buildings research via the Building America Research Program. Section III of the Building America House

  8. Attic Retrofits Using Nail-Base Insulated Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attic Retrofits Using Nail-Base Insulated Panels Attic Retrofits Using Nail-Base Insulated Panels Photo courtesy of the Structural Insulated Panel Association. Photo courtesy of the Structural Insulated Panel Association. Lead Performer: Home Innovation Research Labs-Upper Marlboro, MD Partners: Structural Insulated Panel Association, American Chemistry Council, Forest Products Laboratory, DuPont, APA-The Engineered Wood Association, Insurance Institute for Business and Home Safety, Remodeling

  9. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  10. From Energy Audits to Home Performance: 30 Years of Articles in Home Energy Magazine

    SciTech Connect (OSTI)

    Meier, Alan

    2014-08-11

    Home Energy Magazine has been publishing articles about residential energy efficiency for 30 years. Its goal has been to disseminate technically reliable and neutral information to the practitioners, that is, professionals in the business of home energy efficiency. The articles, editorials, letters, and advertisements are a kind of window on the evolution of energy conservation technologies, policies, and organizations. Initially, the focus was on audits and simple retrofits, such as weatherstripping and insulation. Instrumentation was sparse sometimes limited to a ruler to measure depth of attic insulation and a blower door was exotic. CFLs were heavy, awkward bulbs which might, or might not, fit in a fixture. Saving air conditioning energy was not a priority. Solar energy was only for the most adventurous. Thirty years on, the technologies and business have moved beyond just insulating attics to the larger challenge of delivering home performance and achieving zero net energy. This shift reflects the success in reducing space heating energy and the need to create a profitable industry by providing more services. The leading edge of the residential energy services market is becoming much more sophisticated, offering both efficiency and solar systems. The challenge is to continue providing relevant and reliable information in a transformed industry and a revolutionized media landscape.

  11. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America...

  12. Building America Whole-House Solutions for Existing Homes: National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Massachusetts and Rhode Island (Fact Sheet) Building Science Corporation developed a package of high-efficiency measures for retrofit of 42 homes sponsored by National Grid,...

  13. Building America Performance Analysis Procedures for Existing Homes

    SciTech Connect (OSTI)

    Hendron, Robert

    2006-05-01

    This report provides a proposed set of guidelines for estimating the energy savings achieved by a package of retrofits or an extensive rehabilitation of an existing home.

  14. Combi Systems for Low Load homes | Department of Energy

    Energy Savers [EERE]

    America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field Assessment Building America Expert Meeting: Recommendations for...

  15. Cowlitz County PUD- Residential Weatherization Plus Program

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD offers an incentive to residential customers who weatherize their homes. Eligible residences can be either site-built or manufactured homes, but must have a permanently installed...

  16. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 2.93 per gallon, based on the residential heating fuel survey by the...

  17. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year...

  18. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

  19. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year...

  20. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information...

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year...

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

  3. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

  4. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year...

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

  6. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year...

  7. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

  9. Energy Efficiency Trends in Residential and Commercial Buildings - August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 | Department of Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends and energy use in commercial and residential buildings, including environmental impacts of buildings and trends in select product specification and market insights. PDF icon building_trends_2010.pdf More Documents & Publications Business Case for Energy Efficient Building Retrofit and

  10. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  11. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  12. Geothermal Energy Retrofit

    SciTech Connect (OSTI)

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  13. Building America Technology Solutions for New and Existing Homes: Stand-off

    Energy Savers [EERE]

    Furring in Deep Energy Retrofits | Department of Energy Stand-off Furring in Deep Energy Retrofits Building America Technology Solutions for New and Existing Homes: Stand-off Furring in Deep Energy Retrofits This research project, conducted by IBACOS and GreenHomes America, investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and

  14. Building America Whole-House Solutions for Existing Homes: National Grid

    Energy Savers [EERE]

    Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) | Department of Energy National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) Building Science Corporation developed a package of high-efficiency measures for retrofit of 42 homes sponsored by National Grid, resulting in energy use of

  15. New Jersey Landlord, Tenants See Benefits of Retrofits | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Jersey Landlord, Tenants See Benefits of Retrofits New Jersey Landlord, Tenants See Benefits of Retrofits April 9, 2010 - 2:32pm Addthis Joshua DeLung Some might think that only single-family homes are being weatherized across America, but eligible renters in Newark, N.J., are taking advantage of the increases in savings, safety and comfort that come with weatherization. Sunny Uberio is the owner of Realty Management Systems LLC in Newark, N.J., where he had his three apartment

  16. Existing Whole-House Case Study: Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois

    SciTech Connect (OSTI)

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR® (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations.

  17. Building America Expert Meeting: Interior Insulation Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit...

  18. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on ...

  19. EECBG Success Story: Lighting Retrofit Improving Visibility,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Improving Visibility, Saving Energy EECBG Success Story: Lighting Retrofit Improving Visibility, Saving Energy August 27, 2010 - 10:05am Addthis New LED lighting fixtures...

  20. Designing Incentives Toolkit Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Incentives Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn T his Better Buildings Residential Network toolkit addresses the challenges and opportunities of using incentives to increase the volume of home energy upgrades. The topic was chosen as a priority by Residential Network members, who also served on a working group that reviewed this toolkit. Residential energy efficiency programs offer incentives as a way to encourage action from

  1. Better Buildings Residential Network Social Media Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Media Toolkit BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn 1 T his Better Buildings Residential Network toolkit can be used to help residential energy efficiency programs learn to engage potential customers through social media. Social media can build brand awareness concerning home energy upgrades and the entities working on them, which can lead to more energy upgrade projects taking place in the long run. Residential Network members provided input

  2. Building America Efficient Solutions for Existing Homes Case Study: Deep

    Energy Savers [EERE]

    Energy Retrofit of 1910 House, Portland, Oregon | Department of Energy Deep Energy Retrofit of 1910 House, Portland, Oregon Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 100-year-old home in Portland, Oregon, audited by Pacific Northwest National Laboratory for a deep energy

  3. Building America Whole-House Solutions for Existing Homes: Exterior

    Energy Savers [EERE]

    Insulation Pre- and Post-Retrofit, Syracuse, New York | Department of Energy Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York Building America Whole-House Solutions for Existing Homes: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York IBACOS, in collaboration with GreenHomes America, Inc., was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions for enclosure upgrades. This case study describes

  4. Retrofit California Overview and Final Reports

    SciTech Connect (OSTI)

    Choy, Howard; Rosales, Ana

    2014-03-01

    Energy efficiency retrofits (also called upgrades) are widely recognized as a critical component to achieving energy savings in the building sector to help lower greenhouse gas (GHG) emissions. To date, however, upgrades have accounted for only a small percentage of aggregate energy savings in building stock, both in California and nationally. Although the measures and technologies to retrofit a building to become energy efficient are readily deployed, establishing this model as a standard practice remains elusive. Retrofit California sought to develop and test new program models to increase participation in the energy upgrade market in California. The Program encompassed 24 pilot projects, conducted between 2010 and mid-2013 and funded through a $30 million American Recovery and Reinvestment Act (ARRA) grant from the U.S. Department of Energy’s (DOE) Better Buildings Neighborhood Program (BBNP). The broad scope of the Program can be seen in the involvement of the following regionally based Grant Partners: Los Angeles County (as prime grantee); Association of Bay Area Governments (ABAG), consisting of: o StopWaste.org for Alameda County o Regional Climate Protection Authority (RCPA) for Sonoma County o SF Environment for the City and County of San Francisco o City of San Jose; California Center for Sustainable Energy (CCSE) for the San Diego region; Sacramento Municipal Utilities District (SMUD). Within these jurisdictions, nine different types of pilots were tested with the common goal of identifying, informing, and educating the people most likely to undertake energy upgrades (both homeowners and contractors), and to provide them with incentives and resources to facilitate the process. Despite its limited duration, Retrofit California undoubtedly succeeded in increasing awareness and education among home and property owners, as well as contractors, realtors, and community leaders. However, program results indicate that a longer timeframe will be needed to transform the market and establish energy retrofits as the new paradigm. Innovations such as Flex Path, which came about because of barriers encountered during the Program, have already shown promise and are enabling increased participation. Together, the pilots represent an unprecedented effort to identify and address market barriers to energy efficiency upgrades and to provide lessons learned to shape future program planning and implementation. The statistics reflects the scope of the marketing and outreach campaigns, which tested a variety of approaches to increase understanding of the benefits of energy upgrades to drive participation in the Program. More traditional methods such as TV and radio advertisements were complimented by innovative community based social marketing campaigns that sought to leverage the trusted status of neighborhood organizations and leaders in order to motivate their constituents to undertake retrofits. The remainder of this report provides an overview of Retrofit California including brief summaries of the pilots’ main components and highlights, followed by the major findings or takeaway lessons from the approaches that were tested. Eleven of the pilots will be continued, with modifications, under the ratepayer-funded Regional Energy Networks. Involvement in the RENS by many of the Retrofit California partners will ensure that early lessons learned are carried forward to guide future programs for energy upgrades in California.

  5. Building America Whole-House Solutions for Existing Homes: Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Community-Scale Energy Modeling ... To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy ...

  6. Insulation for New Home Construction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ultra-efficient home design. It is more cost-effective to add insulation during construction than to retrofit it after the house is finished. To properly insulate a new home,...

  7. Strengthening Building Retrofit Markets

    SciTech Connect (OSTI)

    Templeton, Mary; Jackson, Robert

    2014-04-15

    The Business Energy Financing (BEF) program offered commercial businesses in Michigan affordable financing options and other incentives designed to support energy efficiency improvements. We worked through partnerships with Michigan utilities, lenders, building contractors, trade associations, and other community organizations to offer competitive interest rates and flexible financing terms to support energy efficiency projects that otherwise would not have happened. The BEF program targeted the retail food market, including restaurants, grocery stores, convenience stores, and wholesale food vendors, with the goal of achieving energy efficiency retrofits for 2 percent of the target market. We offered low interest rates, flexible payments, easy applications and approval processes, and access to other incentives and rebates. Through these efforts, we sought to help customers strive for energy savings retrofits that would save 20 percent or more on their energy use. This program helped Michigan businesses reduce costs by financing energy efficient lighting, heating and cooling systems, insulation, refrigeration, equipment upgrades, and more. Businesses completed the upgrades with the help of our authorized contractors, and, through our lending partners, we provided affordable financing options.

  8. Existing Whole-House Solutions Case Study: Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado

    SciTech Connect (OSTI)

    2013-11-01

    In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

  9. MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above...

  10. Residential Network Members Impact More Than 42,000 Households

    Broader source: Energy.gov [DOE]

    Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades during 2013 as part of the Residential Network’s first reporting cycle. In addition, 13 Better...

  11. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Residential Buildings Integration Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. <br><a href="http://www.solardecathlon.gov/">Learn More</a> Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By

  12. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  13. Building America Webinar: Retrofitting Central Space Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Multifamily Buildings - Steam Systems, Retrofit Measure Packages, Hydronic Systems | Department of Energy Steam Systems, Retrofit Measure Packages, Hydronic Systems Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Steam Systems, Retrofit Measure Packages, Hydronic Systems This presentation is included in the July 16, 2014, and provides information about best practices, costs, and savings associated with optimizing steam

  14. Clean Energy Works Portland: A Model For Retrofit Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Works Portland: A Model For Retrofit Projects Clean Energy Works Portland: A Model For Retrofit Projects June 4, 2010 - 4:34pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs What does this mean for me? Clean Energy Works Portland (CEWP) seeks to cut energy costs for residents, create green jobs and slash greenhouse gases by retrofitting 500 homes in the Portland area by this fall. A program developed by the city of Portland, Ore., is proving to be

  15. Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  16. Cool Energy House - An Intro to the Cool Energy House Retrofit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Project Webinar | Department of Energy Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar Slides from the Building America webinar on November 14, 2011. PDF icon webinar_cool_ehouse_20111130.pdf More Documents & Publications Building America Overview - 2014 BTO Peer Review Building America Roadmap to High Performance Homes Automated Sealing of

  17. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) | Department of Energy Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners

  18. The Future is Here - Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here - Smart Home Technology The Future is Here - Smart Home Technology Better Buildings Residential Network Peer Exchange Call Series: The Future is Here - Smart...

  19. Training on Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Multifamily Retrofits » Training on Multifamily Retrofits Training on Multifamily Retrofits Training on Multifamily Retrofits Ensure the people making decisions and installing measures in your buildings are properly trained to deal with multifamily properties by taking advantage of our national training network. DOE's Weatherization Assistance Program supports full-service training centers that specialize in multifamily retrofit training. These organizations offer professional training to

  20. Retrofit Ventilation Strategies in Multifamily Buildings Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4

  1. Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings,

  2. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  3. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  4. Empire District Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Empire District Electric Company (EDEC) offers rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances. ...

  5. Farmers Electric Cooperative- Residential/Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers incentives for its residential and agricultural members to increase the energy efficiency of eligible homes and facilities. In order to receive rebates,...

  6. Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for ENERGY STAR clothes washers,...

  7. Burlington Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Burlington Electric Department offers a variety of rebate incentives that encourage residential customers to upgrade to energy efficient equipment in the their homes.. Rebates are available for...

  8. Residential Energy Efficiency Rebate (Offered by Several Cooperative Utilities)

    Broader source: Energy.gov [DOE]

    Associated Electric Cooperative and many of its member cooperatives offer rebates to residential customers who purchase and install energy efficient equipment for the home. Eligible equipment...

  9. Lodi Electric Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. 

  10. New Smyrna Beach- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    New Smyrna Beach offers residential customers incentives for improving the energy efficiency of eligible homes. Eligible measures include insulation upgrades, window solar screens, duct repairs,...

  11. Beaches Energy Services- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Beaches Energy Services offers rebates to residential customers as an incentive to install qualifying energy-efficient equipment and measures in existing homes. New construction does not qualify...

  12. Duke Energy Progress- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides incentives for residential customers to increase home energy efficiency. Rebates are provided for certain heating and cooling products, duct sealing and repairs, air...

  13. Peninsula Light Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

  14. Concord Municipal Light Plant- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Concord Municipal Light Plant (CMLP) offers residential customers rebates on home weatherization, air conditioning system upgrades, and the purchase of LED bulbs.

  15. NorthWestern Energy (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Incentives are available for heating equipment, insulation,...

  16. City Utilities of Springfield- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City Utilities of Springfield Missouri provides incentives for residential customers to increase the efficiency of eligible homes. Rebates are available for programmable thermostats, insulation...

  17. Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

  18. Alameda Municipal Power- Residential Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power (AMP) offers a grant to help residential customers with electricheat weatherize their homes. To participate in the weatherization program, customers must complete and send...

  19. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  20. AEP (Central and North)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Residential Standard Offer Program and Hard to Reach Standard Offer Program provide incentives to Project Sponsor contractors for installing energy efficiency measures at the homes of...

  1. Central Lincoln People's Utility District- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Municipal Utility District (CLPUD) offers a variety of energy efficiency programs for residential customers to save energy in eligible homes. Rebates are available for...

  2. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. EPA Agenda Agenda Review and Residential Network ... Demonstrate Market Viability Foster Business Models ...existing-home-sales 2 Harvard Joint Center for Housing ...

  3. Plumas-Sierra REC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra Rural Electric Cooperative (PSREC) offers several financial incentives for residential customers to improve the efficiency of their homes by upgrading to energy saving appliances and...

  4. Columbia River PUD- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Columbia River PUD offers a variety of rebates to residential customers for making energy efficient improvements to electrically heated homes. Rebates are available for Energy Star manufactured...

  5. Riverside Public Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Riverside Public Utilities offers incentives for residential customers to upgrade the efficiency of a variety of equipment within eligible homes. In order to receive rebates, all equipment...

  6. Middle Tennessee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Middle Tennessee Electric Membership Corporation (MTEMC) and the Tennessee Valley Authority (TVA) offer incentives for residential customers through the In-Home Energy Evaluation Program. This...

  7. Inspiring and Building the Next Generation of Residential Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Zero energy ready home concepts will be introduced to students, teachers, and consumers in ... In the residential sector, industry is trending toward a need to construct more zero ...

  8. Norwich Public Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $3000 for...

  9. CPS Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  10. Guidelines for Home Energy Professionals Project: Benefits for Home Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workers | Department of Energy for Home Energy Workers Guidelines for Home Energy Professionals Project: Benefits for Home Energy Workers Photo of a weatherization worker putting on personal protective equipment to prepare for adding insulation to this home. The Guidelines for Home Energy Professionals project fosters the growth of a high-quality residential energy upgrade market and a skilled, credentialed workforce. As a result, home energy workers can: Stand out during job interviews and

  11. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  12. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  13. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  14. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  15. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  16. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  17. Building America Efficient Solutions for Existing Homes: Case Study: Build San Antonio Green, San Antonio, Texas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    researchers provided technical assistance to Build San Antonio Green (BSAG, www.buildsagreen.org) for three of their deep energy and green retrofits. BSAG is a well established non-profit organization in the community that has certified more than 710 new homes as well as 15 retrofits through its Green Retrofit Program to date. Technical assistance provided by the Pacific Northwest National Laboratory (PNNL) team included retrofitting strategy assessments, performance testing, quality assurance,

  18. Avista Utilities (Gas)- Oregon Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Avista Utilities also provides a free in-home inspection to evaluate the cost and benefits associated with weatherizing your home. This free analysis is available to qualified Oregon residential...

  19. SoCalGas- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Southern California Gas Company (SoCalGas) offers The Home Energy Upgrade Financing (HEUF) program to its residential customers interested in making energy efficient improvements to their homes...

  20. MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Iowa Energy Efficiency Rebate Information For Your Home brochure...

  1. Central Georgia EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes.  This year,...

  2. PSEG Long Island- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PSEG Long Island offers a variety of incentives which help residential customers upgrade to more energy efficient equipment and appliances in their homes. Incentives are available for home energy...

  3. Rocky Mountain Power- WattSmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Full details are available on the program website. 

  4. Washington Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas provides a number of rebates to residential customers who utilize energy efficient equipment and measures in the home. Rebates are limited to natural gas furnaces and programmable...

  5. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help residential members increase the energy efficiency of homes. Loans up to $17,000 are available for the...

  6. Lakeland Electric- Residential Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers a conservation program for residential customers to save energy in homes. Rebates are available for Heat Pumps, HVAC tune-ups, attic insulation upgrades, and Energy Star...

  7. Austin Energy- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers three types of loans to residential customers to finance energy efficient improvements in eligible homes. Option One requires you to make all mandatory energy efficiency...

  8. Kirkwood Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

  9. Chicopee Electric Light- Residential Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light offers rebates to residential customers who install solar photovoltaic (PV) systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per...

  10. Monmouth Power & Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Monmouth Power & Light offers a wide range of energy efficiency rebates that encourage residential customers to save energy in their homes. To qualify for these incentives electricity must be...

  11. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil prices virtually unchanged The average retail price for home heating oil rose 2-tenths of a cent from a week ago to 4.24 per gallon. That's up 8.2 cents...

  12. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 4.23 per gallon. That's up 5.1 cents from a year...

  13. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 4.23 per gallon. That's up 14.9 cents from a year...

  14. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 3.1 cents from a week ago to 4.20 per gallon. That's up 13.6 cents from a year ago,...

  15. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.2 cents from a week ago to 4.12 per gallon. That's up 9.4 cents from a year...

  16. Building America Top Innovations 2012: National Residential Efficiency Measures Database

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes the DOE-sponsored National Residential Efficiency Measures Database, which contains performance characteristics and cost estimates for nearly 3,000 energy retrofit measures. To date, it is used in four prominent DOE software packages to help optimize energy-efficiency recommendations.

  17. National Residential Efficiency Measures Database- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes the DOE-sponsored National Residential Efficiency Measures Database, which contains performance characteristics and cost estimates for nearly 3,000 energy retrofit measures. To date, it is used in four prominent DOE software packages to help optimize energy-efficiency recommendations.

  18. Deep Energy Retrofit Guidance for the Building America Solutions Center

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services and miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs.

  19. Residential Buildings Integration Program Logic Model

    Energy Savers [EERE]

    widely promote value of energy efficiency in products, services, & typical market transactions with homeowners The Residential Integration Program accelerates energy improvements in existing and new residential buildings by reducing technical and market barriers to spur investment and achieve high performance homes. External Influences: DOE budget, Construction industry, Energy prices, Real estate market, Market incentives, State/local policies, Regulation Objectives Activities / Partners

  20. Tax Incentives for Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Incentives for Residential Buildings Tax Incentives for Residential Buildings On this page you'll find information about incentives for: purchasing and installing energy efficient products in existing homes; purchasing and installing renewable energy technologies in new and existing homes; and constructing new energy efficient homes. Purchasing and Installing Energy Efficient Products Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 10% of the cost

  1. NREL Job Task Analysis: Retrofit Installer Technician

    Broader source: Energy.gov [DOE]

    A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

  2. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Retrofitting Central Space Conditioning Strategies for ... Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction ...

  3. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control strategies to improve hydronic space heating performance Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Control ...

  4. Retrofit Existing Buildings | Department of Energy

    Energy Savers [EERE]

    Commercial Buildings » Retrofit Existing Buildings Retrofit Existing Buildings Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or

  5. Installation on Multifamily Retrofits | Department of Energy

    Office of Environmental Management (EM)

    Multifamily Retrofits » Installation on Multifamily Retrofits Installation on Multifamily Retrofits Over the last thirty years, DOE's Weatherization Assistance Program has cultivated the most experienced and connected group of whole-building energy retrofit professionals in the nation. The Weatherization Program has weatherized nearly 300,000 multifamily units since Graphic describing the Weatherization workforce as trained, equipped, and accountable. 2010. Many groups within the Weatherization

  6. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  7. Building America Technology Solutions for New and Existing Homes: Durable

    Energy Savers [EERE]

    Interior Foundation Insulation Retrofits for Cold Climates, Cloquet, Minnesota | Department of Energy Durable Interior Foundation Insulation Retrofits for Cold Climates, Cloquet, Minnesota Building America Technology Solutions for New and Existing Homes: Durable Interior Foundation Insulation Retrofits for Cold Climates, Cloquet, Minnesota Thermal and moisture problems in existing basements create a unique challenge as the exterior face of the wall is not easily or inexpensively accessible.

  8. Combining Solar and Home Performance Services

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, call slides and discussion summary, December 11, 2014.

  9. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  10. Boston solar retrofits: studies of solar access and economics

    SciTech Connect (OSTI)

    Shapiro, M.

    1980-11-01

    Studies of solar access and solar retrofit economics are described for residential applications in the City of Boston. The study of solar access was based upon a random sample of 94 buildings; the sample was stratified to ensure a broad geographic representation from the city's various sections. Using available data on the heights and orientations of the sampled structures and surrounding buildings, each building's hourly access to sunlight was computed separately for the roof and south facing walls. These data were then aggregated by broad structural classifications in order to provide general measures of solar access. The second study was a comparative analysis of the economics of several solar heating and hot water systems. An active hot water system, installed using pre-assembled, commercially purchased equipment, was selected as a reference technology. A variety of measures of economic performance were computed for this system, with and without existing tax credits and under various financing arrangements. Next, a number of alternative approaches for solar space and water heating were identified from interviews with individuals and groups involved in solar retrofit projects in the Boston area. The objective was to identify approaches that many of those interviewed believe to be low-cost means of applying solar energy in residential settings. The approaches selected include thermal window covers, wall collectors, bread box water heaters, and sun spaces. Preliminary estimates of the performance of several representative designs were developed and the economics of these designs evaluated.

  11. Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community

    SciTech Connect (OSTI)

    Gates, C.; Neuhauser, K.

    2014-03-01

    Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent 'package' of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach to implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

  12. National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent "package" of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach to implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

  13. Building America Whole-House Solutions for Existing Homes: Applying Best

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) | Department of Energy Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) In this project, researchers from Building America Partnership for

  14. Building America Whole-House Solutions for Existing Homes: Applying Best

    Energy Savers [EERE]

    Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) | Department of Energy Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) In this project, researchers from Building America Partnership for

  15. Building America Whole-House Solutions for Existing HomesBay Ridge Gardens

    Energy Savers [EERE]

    - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) | Department of Energy HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) Building America Whole-House Solutions for Existing HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) Approximately 43% energy savings are achieved in a 1970s multifamily

  16. Evaluation of Northern Illinois Residential Retrofit Delivery Practices

    SciTech Connect (OSTI)

    Rowley, P.; Kerr, R.; Brand, L.

    2012-11-01

    Using a detailed BEopt analysis, PARR has developed packages of measures following a 'loading order' appropriate for cold climates at increasing levels of savings. Packages of measures to provide 'good, better, best' energy savings were determined based on predicted source energy savings, safety issues, program costs and simple payback for customers.

  17. Evaluation of Northern Illinois Residential Retrofit Delivery Practices

    SciTech Connect (OSTI)

    Rowley, P.; Kerr, R.; Brand, L.

    2012-10-01

    Using a detailed BEopt analysis, PARR has developed packages of measures following a 'loading order' appropriate for cold climates at increasing levels of savings. Packages of measures to provide 'good, better, best' energy savings were determined based on predicted source energy savings, safety issues, program costs and simple payback for customers.

  18. Data Center Airflow Management Retrofit

    Broader source: Energy.gov [DOE]

    Case study bulletin describes the data center airflow management retrofit. The study includes information about how the data center energy densities (measured in power-use per square foot), increase energy savings for cooling, and how it can be realized by optimizing airflow pathways within the data center.

  19. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star homes....

  20. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star homes. To...

  1. Flathead Electric Cooperative- New and Manufactured Home Incentive Program

    Broader source: Energy.gov [DOE]

    Flathead Electric encourages its residential customers to occupy energy efficient homes. Owners and builders of new homes which meet the "Montana Homes" requirements listed on the program web site...

  2. Philadelphia Gas Works- Home Rebates Program

    Broader source: Energy.gov [DOE]

    PGW’s Home Rebate program is available for residential customers within the PGW service territory. To participate in the program, the homeowner must first obtain a discounted home energy audit from...

  3. Residential Energy Efficiency Customer Service Best Practices | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Customer Service Best Practices, call slides and discussion summary, January 22, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Program Automation The Future is Here - Smart Home Technology Staged Upgrades as a Strategy for Residential Energy Efficiency

  4. Better Buildings Summit Residential Sessions Engage Energy Pros |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking place May 27 to 29, 2015, will be the first to engage the residential sector with targeted sessions for home performance professionals. Join us in Washington, D.C., to network with other Better Buildings Residential Network members and discuss a vision for the coming year, including how to overcome

  5. About the Better Buildings Residential Network | Department of Energy

    Energy Savers [EERE]

    About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Better Buildings Residential programs and partners have invested more than $3 billion from federal funding and local resources to build more energy-efficient communities across the United States. The U.S.

  6. Focus Series: Maine - Residential Direct Install Program | Department of

    Energy Savers [EERE]

    Energy Maine - Residential Direct Install Program Focus Series: Maine - Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof. PDF icon Focus Series: Maine More Documents & Publications Better Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Spotlight on Maine: Transition to a

  7. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  8. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    SciTech Connect (OSTI)

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  9. Newporter Apartments. Deep Energy Retrofit Short Term Results

    SciTech Connect (OSTI)

    Gordon, Andrew; Howard, Luke; Kunkle, Rick; Lubliner, Michael; Auer, Dan; Clegg, Zach

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost-effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960’s vintage low-rise multi-family apartment community (120 units in three buildings).

  10. Newporter Apartments: Deep Energy Retrofit Short-Term Results

    SciTech Connect (OSTI)

    Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

  11. Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

    2012-10-01

    Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

  12. Inspiring and Building the Next Generation of Residential Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professionals | Department of Energy Inspiring and Building the Next Generation of Residential Energy Professionals Inspiring and Building the Next Generation of Residential Energy Professionals April 29, 2014 - 3:31pm Addthis Challenge Home Student Design Competition 1 of 10 Challenge Home Student Design Competition Teams and judges participating in the Challenge Home Student Design Competition stand front of the LEED Platinum CAFE at the National Renewable Energy Laboratory in Golden,

  13. Cogeneration as a retrofit strategy

    SciTech Connect (OSTI)

    Meckler, M.

    1996-06-01

    The paper describes the retrofitting of cogeneration in industrial plants. The paper describes a cost analysis, feasibility analysis, prime movers, induction generation, developing load profile, and options and research. The prime movers discussed include gas turbines, back-pressure turbines, condensing turbines, extraction turbines, and single-stage turbines. A case history of an institutional-industrial application illustrates the feasibility and benefits of a cogeneration system.

  14. Existing Whole-House Solutions Case Study: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York

    SciTech Connect (OSTI)

    2015-05-01

    In this study, IBACOS, in collaboration with GreenHomes America, Inc., was contracted by the New York State Energy Research and Development Authority (NYSERDA) to research exterior wall insulation solutions for enclosure upgrades. This case study describes the deep energy retrofit of three test homes in the Syracuse, New York area and represent these enclosure strategies: rigid foam insulation; spray foam insulation, and a control house that follows Home Performance with ENERGY STAR (HPwES) guidelines.

  15. DEMCO- Touchstone Energy Home Program

    Broader source: Energy.gov [DOE]

    DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

  16. Guidelines for Home Energy Professionals

    SciTech Connect (OSTI)

    None

    2011-12-16

    The U.S. Department of Energy's (DOE's) Guidelines for Home Energy Professionals project (hereafter the Guidelines) fosters the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

  17. Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

  18. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  19. Biodiesel + SCR Retrofit Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    + SCR Retrofit Testing Biodiesel + SCR Retrofit Testing This work retrofitted an in-use engine with urea SCR and measured NOx reductions versus blend levels of ULSD, B20, and B100 PDF icon deer09_robertson.pdf More Documents & Publications DPF Performance with Biodiesel Blends Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report

  20. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Energy Savers [EERE]

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. PDF icon webinar_hybrid_insulation_20111130.pdf More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for