Powered by Deep Web Technologies
Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Laclede Gas Company- Residential High Efficiency Heating Rebate Program  

Broader source: Energy.gov [DOE]

Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

2

Guide for Benchmarking Residential Energy Efficiency Program...  

Energy Savers [EERE]

Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential...

3

Efficiency Maine Residential Lighting Program  

Broader source: Energy.gov [DOE]

Efficiency Maine's Residential Lighting Program works directly with retailers and manufacturers to encourage residential customers to purchase energy-efficient lighting. Rebate amounts average $1...

4

Empire District Electric- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

5

Citizens Gas- Residential Efficiency Rebates  

Broader source: Energy.gov [DOE]

Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

6

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

7

Analysis of highly-efficient electric residential HPWHs  

SciTech Connect (OSTI)

A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

Baxter, Van D [ORNL; Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Shen, Bo [ORNL; Gao, Zhiming [ORNL

2011-09-01T23:59:59.000Z

8

El Paso Electric Company- Residential Efficiency Program (New Mexico)  

Broader source: Energy.gov [DOE]

EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

9

National Residential Efficiency Measures Database Webinar Slides...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

10

Building America Webinar: National Residential Efficiency Measures...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

11

Conference Agenda: Residential Energy Efficiency Solutions 2012...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general...

12

Simulation of Dehumidification Characteristics of High Efficiency Residential Central Air-Conditioners in Hot and Humid Climates  

E-Print Network [OSTI]

This study assesses the dehumidifying performance of the high efficiency residential central air conditioners (CAC) in hot/humid climates typified by that of Houston and Galveston. The performance study is based on such factors as: (i) weather (ii...

Katipamula, S.; O'Neal, D.; Somasundram, S.

1988-01-01T23:59:59.000Z

13

High SEER Residential AC  

SciTech Connect (OSTI)

This article discusses the new offerings of residential air conditioning systems with very high Seasonal Energy Efficiency Ratio (SEER) ratings, the two regional areas dictating operations standards ("hot, humid" and "hot, dry"), and the potential energy savings these new systems can provide. The article concludes with a brief review of current market potential.

Hastbacka, Mildred; Dieckmann, John; Brodrick, James

2012-07-31T23:59:59.000Z

14

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect (OSTI)

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

15

Unitil- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

16

NYSEG (Gas)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as...

17

Questions Asked during the Financing Residential Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

18

Residential Energy Efficiency Customer Service Best Practices...  

Energy Savers [EERE]

Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

19

Building America Residential Energy Efficiency Technical Update...  

Energy Savers [EERE]

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

20

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these...

22

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

23

Kentucky Power- Residential Efficient HVAC Rebate Program  

Broader source: Energy.gov [DOE]

Kentucky Power's High Efficiency Heat Pump Program offers a $400 rebate to residential customers living in existing (site-built) homes who upgrade electric resistance heating systems with a new,...

24

National Residential Efficiency Measures Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

25

EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

26

Building America Residential Energy Efficiency Research Planning...  

Broader source: Energy.gov (indexed) [DOE]

Research Planning meeting in October 2011, held in Washington, D.C. Residential Energy Efficiency Planning Meeting Summary Report More Documents & Publications Residential Energy...

27

High efficiency battery converter with SiC devices for residential PV Cam Pham, Remus Teodorescu, Tamas Kerekes and Laszlo Mathe  

E-Print Network [OSTI]

High efficiency battery converter with SiC devices for residential PV systems Cam Pham, Remus, where the generated energy price is relatively high. Smart PV systems with internal battery storage launched a financial support program for residential PV systems with battery storage [2]. Furthermore

Teodorescu, Remus

28

Vectren Energy Delivery of Indiana (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Vectren Energy Delivery offers its residential natural gas customers in Indiana rebates for the installation of certain high efficiency natural gas appliances and insulation measures. Rebates are...

29

Vectren Energy Delivery of Ohio (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Vectren Energy Delivery offers residential natural gas customers in Ohio rebates for the installation of certain high efficiency natural gas appliances and building insulation. Rebates are...

30

CenterPoint Energy (Gas)- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in eligible homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial...

31

Omaha Public Power District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Omaha Public Power District (OPPD) offers energy credit refunds to its residential customers for installing high-efficiency heat pumps through the Energy Conservation Program. Newly constructed...

32

Sawnee EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

33

Questar Gas- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Questar Gas provides rebates for residential customers who make their homes more energy efficient by installing certain energy saving appliances, efficient heating equipment, and certain...

34

StationaryEnvironment ResidentialTransportation Premium Power Advanced High Efficiency, Quick Start Fuel  

E-Print Network [OSTI]

Premium Power Agenda STARTM (1999-2003) ­ Substrate based Transportation application Autothermal ReformerEnvironment Residential Stationary Premium Power STAR Fuel Processor · Autothermal reformer · Substrate-based catalysts

35

EnergyUnited- Residential Energy Efficient Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program...

36

Ameren Illinois (Gas)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

37

Entergy Arkansas- Residential Energy Efficiency Program (Arkansas)  

Broader source: Energy.gov [DOE]

Entergy Arkansas offers the Home Energy Solutions Program to help residential customers understand and make energy efficiency improvements in participating homes. Customers can call a toll-free...

38

Collaborating With Utilities on Residential Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Collaborating With Utilities on Residential Energy Efficiency, Call Slides and Discussion Summary, June 12, 2014. Call Slides and Discussion Summary More Documents & Publications...

39

Building America Residential Energy Efficiency Stakeholders Meeting...  

Broader source: Energy.gov (indexed) [DOE]

2011, held in Atlanta, Georgia. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting More Documents & Publications Summary of...

40

CPS Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential Energy Efficiency Research Planning Meeting Summary...  

Broader source: Energy.gov (indexed) [DOE]

Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings and outcomes from the U.S. Department of Energy's...

42

Tampa Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

43

Vermont Gas- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Equipment Replacement program offers rebates for residential customers who replace existing heating equipment or water heater with a more energy efficient one. Rebates vary depending on...

44

Tacoma Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power offers a variety of incentives for residential customers to improve the energy efficiency in participating homes. Prescriptive rebates are available for equipment such as heat pumps,...

45

Entergy New Orleans- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

46

OTEC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

47

PSNH- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Public Service of New Hampshire, in collaboration with [http://www.nhsaves.com/ nhsaves], provides incentives for residential customers to increase the energy efficiency of participating homes....

48

Ameren Illinois (Electric)- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

49

Residential Energy Efficiency Stakeholders Meeting: March 2011...  

Broader source: Energy.gov (indexed) [DOE]

Stakeholders Meeting: March 2011 Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report and presentations for the Building...

50

Residential Energy Efficiency Technical Update Meeting: August...  

Broader source: Energy.gov (indexed) [DOE]

Technical Update Meeting: August 2011 Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and presentations for the...

51

Residential Energy Efficiency Research Planning Meeting: October...  

Broader source: Energy.gov (indexed) [DOE]

Meeting: October 2011 Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and presentations for the Building...

52

Energy Efficiency Trends in Residential and Commercial Buildings...  

Energy Savers [EERE]

Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building...

53

2011 Residential Energy Efficiency Technical Update Meeting Summary...  

Energy Savers [EERE]

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary...

54

Efficient Residential Water Heaters Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Efficient Residential Water Heaters Webinar Efficient Residential Water Heaters Webinar On Feb. 22, 2011, Jerone Gagliano,...

55

Financing Residential Energy Efficiency with Carbon Offsets Transcript...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript for the...

56

Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters  

SciTech Connect (OSTI)

In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

Freeman, S.L.

1997-01-01T23:59:59.000Z

57

Otter Tail Power Company- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Otter Tail Power Company Rebate Program offers rebates to qualifying residential customers for the installation of high-efficiency equipment upgrades. See the program web site for applicability and...

58

CenterPoint Energy (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers residential high-efficiency heating system and water heater rebates to Minnesota customers. These systems can greatly enhance savings and performance in residences which...

59

CoServ Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CoServ Electric Cooperative's "Think Green Rebate Program" provides a range of incentives encouraging its residential customers to upgrade to high efficiency equipment in their homes. Rebates are...

60

Texas Gas Service- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Texas Gas Service offers an incentive for its residential customers within the Austin and Sunset Valley city limits to install new central furnaces, hydronic water heaters, high efficiency gas...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Interstate Power and Light (Alliant Energy) offers a number of rebates for energy efficiency for Minnesota residential customers a variety of high efficiency heating and cooling measures, including...

62

New England Gas Company- Residential and Commercial Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying energy efficient gas boilers, furnaces, high efficiency water heaters,...

63

Energy Efficiency & On-Bill Financing for Samll Business & Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

64

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

65

Xcel Energy- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In addition to home energy audits, Xcel Energy offers rebates to North Dakota residential customers for the purchase of energy efficient heating and water heating technologies. Xcel offers rebates...

66

Kirkwood Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

67

Connexus Energy- Residential Efficient HVAC Rebate Program  

Broader source: Energy.gov [DOE]

Connexus Energy offers rebates for residential customers to improve the energy efficiency of homes. Rebates are available for air source heat pumps, ductless heat pumps and ground-source heat pumps...

68

Clark Energy- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Clark Energy offers a free energy audit to provide residential customers with suggestions on ways to improve the energy efficiency of participating homes. Rebates are available for customers who...

69

Unitil (Gas)- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Unitil offers its New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Home Performance with Energy Star Program can help to improve the energy...

70

Berkshire Gas- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Berkshire Gas offers all commercial customers various energy efficiency rebates. Berkshire Gas will pay residential customers that use gas to heat their homes 75% of the installed cost (up to $2...

71

PNM- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

PNM offers incentives for residential customers to improve the efficiency of eligible homes. PNM will provide a $50 rebate for the proper recycling of old refrigerators or freezers. Customers who...

72

Colorado Springs Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

73

Black Hills Energy (Electric)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Black Hills Energy (BHE) offers rebates for residential Colorado customers who purchase energy efficient residential equipment. This program offers rebates for customers who purchase and install...

74

Cape Light Compact- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

75

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period  

Broader source: Energy.gov [DOE]

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

76

EECLP Webinar Series - #4 Residential Energy Efficiency Deep...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Series - 4 Residential Energy Efficiency Deep Dive, Part Two EECLP Webinar Series - 4 Residential Energy Efficiency Deep Dive, Part Two December 18, 2014 3:00PM to 4:00PM EST...

77

EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings  

Broader source: Energy.gov [DOE]

The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

78

Silicon Valley Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

79

Residential GSHPs: Efficiency With Short Payback Periods  

SciTech Connect (OSTI)

This article discusses ground source heat pumps (GSHPs) for residential application as an alternative to conventional HVAC systems. A listing of current space heating energy sources are presented which are then followed by a technology overview as advances have made GSHPs more efficient. The article concludes with potential energy savings offered by GSHPs and a brief market overview.

Cooperman, Alissa; Dieckmann, John; Brodrick, James

2012-04-30T23:59:59.000Z

80

Highly Insulating Residential Windows Using Smart Automated Shading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Efficiency United (Gas)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

The Efficiency United program is intended to provide assistance and incentives to customers who employ energy efficient measures. Programs offer rebates on natural gas water heaters, clothes...

82

Columbia Gas of Massachusetts- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Columbia Gas of Massachusetts participates in energy efficiency programs that reward eligible residential natural gas customers for utilizing energy efficient equipment or measures. The program...

83

Energy Efficiency Fund (Electric and Gas)- Residential New Construction Program  

Broader source: Energy.gov [DOE]

The Energy Efficiency Fund offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing...

84

Lodi Electric Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. Through the Energy Efficient Home...

85

Puget Sound Energy- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Puget Sound Energy's (PSE) Residential Energy Efficiency Rebate Programs offer a variety of incentives for customers who purchase energy efficient appliances and equipment. Rebates include furnaces...

86

Energy Efficiency & On-Bill Financing for Samll Business & Residential  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & On-Bill Financing For Small Businesses & Residential Presentation for: The Second US-China Energy Efficiency Forum Berkeley, California 05062011 May 5-6,...

87

NIPSCO (Gas and Electric)- Residential Natural Gas Efficiency Rebates  

Broader source: Energy.gov [DOE]

Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency...

88

NorthWestern Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Customers who purchase or implement energy efficient...

89

Identifying Cost-Effective Residential Energy Efficiency Opportunities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the...

90

Central Georgia EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes. This year,...

91

Columbia Rural Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Rural Electric Association offers its residential customers a variety of rebates for the purchase of energy efficient equipment and measures. Eligible equipment includes efficient clothes...

92

EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

93

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above...

94

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above...

95

Hercules Municipal Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Hercules Municipal Utility provides financial incentives for its residential members to increase the energy efficiency of participating homes. Rebates are offered for a variety of home appliances...

96

Anoka Municipal Utility- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Anoka Municipal Utilities (AMU) offers incentives for residential customers to install energy-efficient appliances and light bulbs in eligible homes. Rebates are available for Energy Star qualified...

97

Residential Energy Efficiency Rebate (Offered by Several Cooperative Utilities)  

Broader source: Energy.gov [DOE]

Associated Electric Cooperative and many of its member cooperatives offer rebates to residential customers who purchase and install energy efficient equipment for the home. Eligible equipment...

98

Farmers Electric Cooperative- Residential/Agricultural Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Farmers Electric Cooperative offers incentives for its residential and agricultural members to increase the energy efficiency of eligible homes and facilities. In order to receive rebates,...

99

Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

100

Florida Power and Light- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Florida Power and Light (FPL) offers rebates to residential customers who implement certain energy efficiency improvements in eligible homes. HVAC rebates are available for the replacement of air...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Empire District Electric- Residential Energy Efficiency Rebate Program (Arkansas)  

Broader source: Energy.gov [DOE]

Empire District Electric Company (EDEC) offers rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances....

102

Cookeville Electric Department- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'...

103

Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

104

San Isabel Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

San Isabel Electric Association (SIEA) provides incentives for its residential customers to install energy efficient equipment. Rebates are available for certain water heaters, washers, dryers,...

105

Modesto Irrigation District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Modesto Irrigation District’s Home Rebate Program offers residential customers cash rebates for the purchase and installation of qualifying energy efficient products installed in existing homes....

106

Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lassen Municipal Utility District (LMUD) offers an incentive for residential customers who purchase and install efficient lighting, HVAC equipment and ENERGY STAR rated appliances for eligible...

107

Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

108

Orlando Utilities Commission- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Orlando Utilities Commission (OUC) offers rebates on a variety of energy efficient improvements for residential customers. Customers should view the program brochure on the web site listed above...

109

Plumas-Sierra REC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Plumas-Sierra Rural Electric Cooperative (PSREC) offers several financial incentives for residential customers to improve the efficiency of their homes by upgrading to energy saving appliances and...

110

Cherokee Electric Cooperative- Residential Energy Efficiency Loan Programs  

Broader source: Energy.gov [DOE]

Cherokee Electric Coop offers loans to residential customers for making energy efficiency improvements. In association with the Tennessee Valley Authority (TVA), the Energy Right program offers...

111

ConEd (Electric)- Residential Energy Efficiency Incentives Program  

Broader source: Energy.gov [DOE]

Con Edison is offering the Residential HVAC Electric Rebate Program. Through this program, incentives are offered on energy efficient heating and cooling equipment for residences in the eligible...

112

Peninsula Light Company- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

113

Kentucky Utilities Company- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

114

Xcel Energy (Gas and Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In addition to home energy audits, Xcel Energy offers rebates to Minnesota residential customers for the purchase of energy efficient HVAC systems, insulation, appliances and lighting equipment....

115

South Kentucky RECC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

116

East Central Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

East Central Energy (ECE) provides rebates for residential customers to purchase energy efficient equipment. Rebates are offered for recycled refrigerators/freezers, central air conditioning units,...

117

Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

118

Lower Valley Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

119

Carroll County REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Carroll County REMC offers incentives to residential customers who purchase and install energy efficiency equipment for the home. Rebates are available on geothermal heat pumps, air source heat...

120

Black Hills Energy (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and install energy efficient natural gas appliances, heating equipment and insulation materials....

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Missouri Rural Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Missouri Rural Electric Cooperative (MREC) offers a number of rebates to residential customers for the purchase and installation of energy efficient equipment. Eligible equipment includes clothes...

122

Central Lincoln People's Utility District- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Central Lincoln People's Municipal Utility District (CLPUD) offers a variety of energy efficiency programs for residential customers to save energy in eligible homes. Rebates are available for...

123

Clark Public Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Clark Public Utilities offers several energy incentives for residential customers to increase the energy efficiency of their homes. Rebates are offered for refrigerators, freezers, clothes washers,...

124

Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

125

Columbia River PUD- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Columbia River PUD offers a variety of rebates to residential customers for making energy efficient improvements to electrically heated homes. Rebates are available for Energy Star manufactured...

126

Lumbee River EMC- Residential and Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

127

Central New Mexico Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Central New Mexico Electric Cooperative (CNMEC) provides an incentive for its residential members to purchase energy efficient water heaters, clothes washers, dishwashers, refrigerators, and...

128

NW Natural (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon administers energy efficiency rebate programs for both residential and commercial customers of NW Natural in Washington. Energy Trust is awarding the rebates and providing...

129

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

130

CenterPoint Energy- Residential and Small Commercial Efficiency Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's (CNP) Residential and Small Commercial Standard Offer Program (SOP) provides incentives to encourage contractors to install energy efficiency measures in homes and small...

131

Lake Region Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lake Region Electric Cooperative (LREC) offers a variety of rebates for residential customers to improve the energy efficiency of homes. Rebates are available for Energy Star refrigerators and...

132

FirstEnergy (Potomac Edison)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

FirstEnergy (Potomac Edison) offers incentives to Maryland residential customers who are interested in upgrading to more energy efficient appliances and HVAC systems. Rebates are available on...

133

Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

134

Norwich Public Utilities (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for...

135

Orange and Rockland Utilities (Gas)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

Orange and Rockland Utilities provides rebates for residential customers purchasing energy efficient natural gas equipment. Rebates exist for furnaces, water boilers and controls, steam boilers,...

136

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating...

137

Dayton Power and Light- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Dayton Power and Light offers rebates to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat pumps, air conditioning...

138

City Water Light and Power- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

City Water Light and Power (CWLP) offers rebates to Springfield residential customers for increasing the energy efficiency of participating homes. Rebates are available for geothermal heat pumps,...

139

Louisville Gas and Electric- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

140

City Utilities of Springfield- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

City Utilities of Springfield Missouri provides incentives for residential customers to increase the efficiency of eligible homes. Rebates are available for programmable thermostats, insulation...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Southwest Gas Corporation- Residential and Builder Efficiency Rebate Program (Arizona)  

Broader source: Energy.gov [DOE]

Southwest Gas Corporation (SWG) offers rebates to residential customers in Arizona who purchase and install energy efficient natural gas tankless water heaters, clothes dryers, windows, attic...

142

Sustainable Energy Utility- Residential Energy Efficiency Program (District of Columbia)  

Broader source: Energy.gov [DOE]

The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides financial incentives to District residents who install energy-...

143

Okanogan County PUD- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Public Utility District No. 1 of Okanogan County provides rebates to residential customers for purchasing energy efficient appliances. The qualifying appliance must be installed in a location that...

144

Grays Harbor PUD- Non-Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Grays Harbor PUD's Non-Residential Rebate Program offers financial incentives to its commercial, agricultural, industrial, and institutional customers for the installation of energy efficient...

145

Independence Power and Light- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

146

Turlock Irrigation District- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Turlock Irrigation District (TID) offers a residential rebate program for customers who install energy-efficient equipment in their homes. Eligible equipment includes

147

Energy Optimization (Electric)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

148

Jasper County REMC- Residential Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential customers for the purchase and installation of energy...

149

Ashland Electric Utility- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

The City of Ashland Conservation District offers a wide variety of incentives for residential customers to increase the energy efficiency of homes, or build new homes that meet efficient design...

150

National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Metro New York)  

Broader source: Energy.gov [DOE]

National Grid’s High Efficiency Heating Rebates are offered to residential gas heating customers in the New York City metro area and Long Island. Rebates vary depending on equipment type and where...

151

National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid’s High Efficiency Heating Rebates are offered to residential gas heating customers in the New York City metro area and Long Island. Rebates vary depending on equipment type and where...

152

Economic Analysis of Ilumex, A Project to Promote Energy-Efficient Residential Lighting in Mexico  

E-Print Network [OSTI]

Energy-Efficient Residential Lighting in Mexico J. Sathaye,Energy-Efficient Residential Lighting in Mexico J. Sathaye,of U.S. and Canadian lighting programs for the residential,

Sathaye, Jayant A.

2008-01-01T23:59:59.000Z

153

Energy Audit Results for Residential Building Energy Efficiency  

E-Print Network [OSTI]

Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

154

Duquesne Light Company- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates to its residential customers for purchasing and installing energy-saving equipment. Eligible equipment includes dehumidifiers, freezers, refrigerators, air...

155

Kenergy- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

156

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect (OSTI)

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

157

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

Not Available

2012-01-01T23:59:59.000Z

158

Residential Energy Efficiency Rebates (Offered by 16 Utilities)  

Broader source: Energy.gov [DOE]

Bright Energy Solutions offers energy efficiency cash incentive programs to residential and [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=IA82F&re... business] customers of...

159

Mississippi Power- EarthCents Residential Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Mississippi Power offers rebates to its residential customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps,...

160

NineStar Connect- Residential Energy Efficient Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Nine Star Connect (Greenfield and Maxwell, IN) offers residential customers an incentive to buy energy efficient air-source heat pumps, geothermal heat pumps. All heat pumps must meet minimum...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ashland Electric Utility- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

City of Ashland Conservation Division has zero-interest loans to help residential customers finance energy efficiency improvements to participating homes. The maximum loan amount is $7,500. The...

162

Shakopee Public Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Shakopee Public Utilities offers its residential customers rebates on a variety of energy-efficient appliances and equipment. Rebates are available for CFL and LED lighting, air-source and...

163

RG&E (Gas)- Residential Efficiency Program (New York)  

Broader source: Energy.gov [DOE]

RG&E is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as...

164

Union Power Cooperative- Residential Energy Efficient Heat Pump Loan Program  

Broader source: Energy.gov [DOE]

Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan...

165

Co-Mo Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Co-Mo Electric Cooperative provides rebates to residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. The...

166

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of participating homes. Electric customers of MidAmerican Energy qualify for rebates on...

167

MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of their homes. Eligible customers are eligible for rebates on water heaters, air...

168

National Residential Efficiency Measures Database Unveiled (text version)  

Broader source: Energy.gov [DOE]

Below is the text version of the Webinar titled "National Residential Efficiency Measures Database Unveiled," originally presented on January 18, 2011. In addition to this text version of the audio...

169

ConEd (Gas)- Residential Energy Efficiency Incentives Program  

Broader source: Energy.gov [DOE]

Con Edison is offering the Residential HVAC Gas Rebate Program. Through this program, incentives are offered on energy efficient heating and cooling equipment for residences in the eligible service...

170

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of homes. Eligible customers are eligible for rebates on furnaces, furnace fan motors,...

171

Potential Peak Load Reductions From Residential Energy Efficient Upgrades  

E-Print Network [OSTI]

of the distribution network can be improved; and added environmental pollution can be minimized. Energy efficiency improvements, especially through residential programs, are increasingly being used to mitigate this rise in peak demand. This paper examines...

Meisegeier, D.; Howes, M.; King, D.; Hall, J.

2002-01-01T23:59:59.000Z

172

Otter Tail Power Company- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Otter Tail Power Company offers incentives to all residential customers in South Dakota to install energy efficient equipment in residences. Rebates are available for geothermal and air source heat...

173

Taylor County RECC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Taylor County RECC offers rebates to residential customers for upgrading to energy efficient insulation and heat pumps. Under the Button-Up insulation upgrade program, a utility representative will...

174

Energy Smart- Residential Energy Efficiency Rebate Program (20 Municipalities)  

Broader source: Energy.gov [DOE]

Franklin Energy Services has partnered with the Michigan Public Power Agency (MPPA), which is made up of 20 municipal utilities, to offer the Energy Smart Residential Energy Efficiency Rebate...

175

Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

176

Linn County Rural Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to residential customers....

177

Platte-Clay Electric Cooperative- Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Platte-Clay Electric Cooperative offers a variety of rebates to residential and commercial customers who wish to upgrade to energy efficient equipment. Newly installed ground source heat pumps are...

178

PG&E- Non-Residential Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Pacific Gas and Electric Company (PG&E) offers rebates and other incentives to businesses and non-residential customers to increase their energy efficiency. In addition to covering equipment...

179

Marshall Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.marshallutilities.com/index.php Marshall Municipal Utilities (MMU)] offers a variety of incentives for its residential customers to install energy-efficient equipment in their homes. ...

180

SDG&E (Electric)- Multi-Family Residential Efficiency Program  

Broader source: Energy.gov [DOE]

Multi-Family Residential building owners and property managers in San Diego Gas and Electric (SDG&E) territory are eligible for rebates on energy-efficient, clothes washers, insulation, room...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PG&E (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for...

182

Texas-New Mexico Power Company- Residential Energy Efficiency Programs (Texas)  

Broader source: Energy.gov [DOE]

Texas-New Mexico Power's (TNMP) Residential Standard Offer Program promotes energy efficiency among residential electricity customers in its Texas service area. The program provides incentives for...

183

New Mexico Gas Company- Residential Efficiency Programs  

Broader source: Energy.gov [DOE]

The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding insulation and for homes which attain Energy Star...

184

SCE- Non-Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Southern California Edison (SCE) offers incentives for non-residential customers, regardless of size and energy usage. [http://asset.sce.com/Documents/Business%20-%20Energy%20Management%20Solu......

185

Strategy Guideline: High Performance Residential Lighting  

SciTech Connect (OSTI)

The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

Holton, J.

2012-02-01T23:59:59.000Z

186

Energy efficiency choice in the purchase of residential appliances  

SciTech Connect (OSTI)

This paper provides a quantitative analysis of the behavior of the market for the purchase of energy efficiency in residential appliances and heating and cooling equipment. We examine the historical efficiency choices over the period 1972 to 1980 for eight consumer products: gas central space heaters, oil central space heaters, room air conditioners, central air conditioners, electric water heaters, gas water heaters, refrigerators, and freezers. We characterize the behavior of the market for these products by an aggregate market discount rate. Except for air conditioners, the observed discount rates are much higher than real interest rates or the discount rates commonly used in life-cycle cost analysis of consumer choice. They appear to be relatively constant, even though fuel prices escalated rapidly over the time period. We conclude from these results that the market for energy efficiency is not performing well. Several explanations of the under investment in efficiency are proposed: (1) lack of information about the costs and benefits of energy efficiency; (2) prevalence of third party purchasers; (3) unavailability of highly efficient equipment without other features; (4) long manufacturing lead times; and (5) other marketing strategies.

Ruderman, H.; Levine, M.D.; McMahon, J.E.

1984-07-01T23:59:59.000Z

187

Audit Procedures for Improving Residential Building Energy Efficiency  

E-Print Network [OSTI]

Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

188

American Municipal Power (Public Electric Utilities)- Residential Efficiency Smart Program (Ohio)  

Broader source: Energy.gov [DOE]

Efficiency Smart ™ provides energy efficiency incentives to the American Municipal Power, Inc (AMP) network of public power communities. Efficiency Smart assists residential, commercial , and...

189

Residential Energy Efficiency Messaging | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokineticClothes Washers (Appendix J2)Residential

190

Piedmont EMC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation's (PEMC) Energy Efficiency and Renewable Energy Loan Program is available to eligible consumers to finance the purchase and installation of energy efficient...

191

New Energy Efficiency Standards for Residential Clothes Washers...  

Office of Environmental Management (EM)

June 2011 - Residential furnaces and residential central air conditioners and heat pumps September 2011 - Residential refrigerators, freezers, and refrigerator-freezers...

192

Energy Savings Potential and Opportunities for High-Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

sponsored this assignment and provided comments on draft versions of the report. iii Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential...

193

DTE Energy (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE offers a combination of energy audit discounts and rebates for the installation of energy efficiency improvements in Detroit Edison Electric and Michigan Consolidated Gas Co. service areas....

194

DTE Energy (Electric)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE offers a combination of energy audit discounts and rebates for the installation of energy efficiency improvements in Detroit Edison Electric and Michigan Consolidated Gas Co. service areas....

195

Douglas Electric Cooperative- Residential Energy Efficiency Loans  

Broader source: Energy.gov [DOE]

Douglas Electric Cooperative offers rebates to its members for the purchase of energy efficient products and measures. Rebates include clothes washers, heat pumps, manufactured homes, and...

196

Questar Gas- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers,...

197

Oklahoma City- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Beginning in 2010, homeowners in Oklahoma City are eligible for energy efficiency loans up to $10,000. Residents must have an annual income of $100,000 or less and must repay the loan within 36...

198

LADWP- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Los Angeles Department of Water and Power (LADWP) offers a variety of rebates for energy efficient equipment used in homes through the Consumer Rebate Program. Rebates are available for qualifying...

199

Efficiency Maine Residential Appliance Program (Maine)  

Broader source: Energy.gov [DOE]

Efficiency Maine offers rebates for the purchase of Energy Star certified water heaters, and ductless heat pumps. Purchases must be made between September 1, 2013 and June 30, 2014. See the...

200

An innovative educational program for residential energy efficiency. Final report  

SciTech Connect (OSTI)

Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

Laquatra, J.; Chi, P.S.K.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an  

E-Print Network [OSTI]

Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

Ma, B.; Yan, Z.; Gui, Z.; He, J.

2006-01-01T23:59:59.000Z

202

AN E&E PUBLISHING SERVICE ENERGY EFFICIENCY: Tenn. project to test range of residential upgrades  

E-Print Network [OSTI]

AN E&E PUBLISHING SERVICE ENERGY EFFICIENCY: Tenn. project to test range of residential upgrades has done on common residential construction near the Oak Ridge lab. In one such project, Christian

203

Design for Energy Efficiency in Residential Buildings  

E-Print Network [OSTI]

-saving efficiency was 50%. Tab. 1 Difference of over all heat transfer coefficient limitation of building Exterior wall Exterior window Roof 65% energy-saving residence buildings in Beijing (>5 stories) 0.6 2.8 0.6 South of Sweden 0.17 2.5 0...

Song, M.; Zhang, Y.; Yang, G.

2006-01-01T23:59:59.000Z

204

UCSF Green Campus Residential Resource Efficiency Project  

E-Print Network [OSTI]

Upgrades Completed as of September 2010 Supply compost bins Insulate water pipes and water heaters Weather Housing identify opportunities to more efficiently use and conserve water, energy and other resources June on tenant behavioral upgrades Data Analysis ·Calculation of predicted savings on water use (gallons

Yamamoto, Keith

205

An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates  

E-Print Network [OSTI]

the high efficiency instantaneous water heater with electronic ignition. The largest equipment energy savings (20%) was achieved from the horizontal-axis clothes washer. Compact fluorescent lamps (CFLs) saved 75% lighting energy use. Among all...AN ANALYSIS OF MAXIMUM RESIDENTIAL ENERGY EFFICIENCY IN HOT AND HUMID CLIMATES Mini Malhotra Graduate Research Assistant Jeff Haberl, Ph.D., P.E. Professor/Associate Director Energy Systems Laboratory, Texas A&M University College...

Malhotra, M.; Haberl, J. S.

2006-01-01T23:59:59.000Z

206

National Residential Efficiency Measures Database - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the housing industry to high-performance homes. These data allow for effective optimization capabilities to guide builders, researchers, HERS raters, contractors, and...

207

AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

1 AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL homes energy efficient through Title 24 Part 6 Building Energy Efficiency Standards (Standards for Energy Efficiency in Existing Buildings (AB 549 Report), the Energy Commission made a series

208

Project REED (Residential Energy Efficiency Design) is a Web-based building performance simulation tool  

E-Print Network [OSTI]

ABSTRACT Project REED (Residential Energy Efficiency Design) is a Web-based building performance in their particular climate. Reaching The Mass Market: Given this Utility's 4.5 million residential ratepayers residential market. This cost-effective approach can permanently transform the energy con- suming behavior

209

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

SciTech Connect (OSTI)

The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

2009-05-18T23:59:59.000Z

210

Residential Energy Efficiency Rebate (Offered by Members of Associated Electric Cooperative)  

Broader source: Energy.gov [DOE]

Associated Electric Cooperative and many of its associated member cooperatives offer rebates to residential customers who purchase and install energy efficient equipment for the home. Eligible...

211

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

212

Golden Valley Electric Association- Residential Energy Efficiency Rebate Program for Builders  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association’s (GVEA) Builder $ense program targets home builders who install electrical energy efficiency measures during construction of residential buildings. Newly...

213

EECLP Webinar #4: Residential Energy Efficiency Deep Dive Part 2-- Text Version  

Broader source: Energy.gov [DOE]

Below is the text version of the EECLP Webinar 4: Residential Energy Efficiency Deep Dive Part Two, presented in December 2014.

214

NorthWestern Energy (Gas)- Residential Energy Efficiency Rebate Program (Montana)  

Broader source: Energy.gov [DOE]

NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Customers who purchase an Energy Star programmable...

215

Baltimore Gas and Electric Company (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

216

Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

217

EECLP Webinar #3: Residential Energy Efficiency Deep Dive Part 1-- Text Version  

Broader source: Energy.gov [DOE]

Below is the text version of the EECLP Webinar #3: Residential Energy Efficiency Deep Dive Part 1, presented in December 2014.

218

Utilities District of Western Indiana REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Utilities District of Western Indiana REMC offers residential customers incentives for energy efficient heat pumps, water heaters, and air conditioners. Eligible air-source heat pump and air...

219

Wright-Hennepin Cooperative Electric Association- Non-Residential Energy Efficient Rebate Program  

Broader source: Energy.gov [DOE]

Wright-Hennepin Cooperative Electric Association offers a range of rebates to non-residential customers who purchase and install approved energy efficient equipment. Rebates are available for...

220

Wright-Hennepin Cooperative Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Wright-Hennepin Cooperative Electric Association provides financial incentives for its residential customers to purchase and install energy efficient HVAC equipment. Rebates are offered for...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

McMinnville Water and Light- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

McMinnville Water and Light (MWL) offers rebates on energy efficient homes, appliances and equipment to their residential customers. Rebates are valid on refrigerators, freezers, clothes washer,...

222

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network [OSTI]

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

223

The residential energy map : catalyzing energy efficiency through remote energy assessments and improved data access  

E-Print Network [OSTI]

Although energy efficiency has potential to be a significant energy resource in the United States, many energy efficiency projects continue to go unrealized. This is especially true in the residential sector, where efficiency ...

Howland, Alexis (Alexis Blair)

2013-01-01T23:59:59.000Z

224

Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

225

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

SciTech Connect (OSTI)

Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

2011-04-01T23:59:59.000Z

226

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011  

SciTech Connect (OSTI)

This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

Not Available

2011-11-01T23:59:59.000Z

227

Summary of Workshop: Barriers to Energy Efficient Residential Ventilation  

SciTech Connect (OSTI)

The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.

Sherman, Max; Sherman, Max

2008-01-10T23:59:59.000Z

228

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect (OSTI)

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

229

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Office of Energy Efficiency and Renewable Energy (EERE)

This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kaua‘i (KEMA 2005).

230

Nebraska Public Power District- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

The Nebraska Public Power District offers rebates to homeowners who purchase energy efficient heat pumps, upgrade their insulation, and/or have their cooling system tuned-up. The High Efficiency...

231

Calculating Energy Savings in High Performance Residential Buildings Programs: Preprint  

SciTech Connect (OSTI)

Accurate and meaningful energy savings calculations are essential for the evaluation of residential energy efficiency programs sponsored by the U.S. Department of Energy (DOE), such as the Building America Program (a public-private partnership designed to achieve significant energy savings in the residential building sector). The authors investigated the feasibility of applying existing performance analysis methodologies such as the Home Energy Rating System (HERS) and the International Energy Conservation Code (IECC) to the high performance houses constructed under Building America, which sometimes achieve whole-house energy savings in the 50-70% range. However, because Building America addresses all major end-use loads and because the technologies applied to Building America houses often exceed what is envisioned by energy codes and home-rating programs, the methodologies used in HERS and IECC have limited suitability, and a different approach was needed. The authors have researched these issues extensively over the past several years and developed a set of guidelines that draws upon work done by DOE's Energy Information Administration, the California Energy Commission, the International Code Council, RESNET, and other organizations that have developed similar methodologies to meet their needs. However, the final guidelines are tailored to provide accurate techniques for quantifying energy savings achieved by Building America to help policymakers assess the effectiveness of the program.

Hendron, B.; Rarrar-Nagy, S.; Anderson, R.; Judkoff, R.; Reeves, P.; Hancock, E.

2003-08-01T23:59:59.000Z

232

PPL Electric Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

PPL Electric Utilities offers numerous rebates and incentives for its residential customers. Refer to the program web site for complete details.

233

MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

'''The availability of rebates through this program is unclear. Contact MidAmerican regarding the availability of gas incentives for residential customers.'''

234

Gunnison County Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Gunnison County Electric Association (GCEA), a Touchstone Energy Cooperative, has a residential rebate program for eligible Energy Star appliances including clothes washers, dishwashers,...

235

Johnson County REMC- Residential Energy Efficiency Rebate Program (Indiana)  

Broader source: Energy.gov [DOE]

Johnson County Rural Electric Membership Cooperative offers rebates to residential customers who install or replace new water heating and HVAC equipment. Rebates are available on the purchase and...

236

EIA Energy Efficiency-Residential Sector Energy Intensities,...  

U.S. Energy Information Administration (EIA) Indexed Site

8c) html table 8c excel table 8c excel table 8c For questions about the "Residential Energy Intensity Tables," please contact: Behjat Hojjati Program Manager...

237

Elk River Municipal Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

[http://www.elkriverutilities.com/index.php Elk River Municipal Utilities] provides rebates to their residential electric customers who purchase and install Energy Star rated appliances and HVAC...

238

Sulphur Springs Valley EC- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

239

MassSAVE (Electric)- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

MassSAVE organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities include Columbia Gas of...

240

Middle Tennessee EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Middle Tennessee Electric Membership Corporation (MTEMC) and the Tennessee Valley Authority (TVA) offer incentives for residential customers through the In-Home Energy Evaluation Program. This...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Southwest Tennessee EMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Southwest Tennessee Electric Membership Corporation (STEMC), in collaboration with The Tennessee Valley Authority, offers water heater rebates for residential customers. Rebates are available for...

242

Salt River Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

243

Orange and Rockland Utilities (Electric)- Residential Efficiency Program (New York)  

Broader source: Energy.gov [DOE]

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

244

Projected regional impacts of appliance efficiency standards for the U.S. residential sector  

SciTech Connect (OSTI)

Minimum efficiency standards for residential appliances have been implemented in the US for a large number of residential end-uses. This analysis assesses the potential energy, dollar, and carbon impacts of those standards at the state and national levels. In this assessment, the authors use historical and projected shipments of equipment, a detailed stock accounting model, measured and estimated unit energy savings associated with the standards, estimated incremental capital costs, demographic data, and fuel price data at the finest level of geographic disaggregation available. Energy savings from the standards are substantial. Total primary energy savings will peak in 2004 at about 0.7 exajoules/year (1 exajoule = 10{sup 18} joules {approx} 1 quadrillion Btu = 10{sup 15} Btus). Cumulative primary energy savings during the 1990 to 2010 period total 10.6 exajoules. Efficiency standards in the residential sector have been a highly cost-effective policy instrument for promoting energy efficiency. Projected cumulative present-values dollar savings after subtracting out the additional cost of the more efficient equipment are about $33 billion from 1990 to 2010. Average benefit/cost ratios for these standards are about 3.5 for the US as a whole. Projected carbon reductions are approximately 9 million metric tons of carbon/year from 2000 through 2010, an amount roughly equal to 4% of carbon emissions in 1990. Because these standards save energy at a cost less than the price of that energy, the resulting carbon emission reductions are achieved at negative net cost to society. Minimum efficiency standards reduce pollution and save money at the same time.

Koomey, J.G.; Mahler, S.A.; Webber, C.A.; McMahon, J.E.

1998-02-01T23:59:59.000Z

245

INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE  

E-Print Network [OSTI]

and Analysis of Swedish Residential Energy Use Data 1960-80.1980. International Residential Energy Use and ConservationInternational Comparison of Residential Energy ! Js~. Report

Schipper, L.

2013-01-01T23:59:59.000Z

246

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

SciTech Connect (OSTI)

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

247

Clark County REMC- Clark County REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Clark County REMC provides incentives for residential members to upgrade to more efficient household equipment. Rebates are available for air-source heat pumps, geothermal heat pumps, central air...

248

Port Angeles Public Works and Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Port Angeles Public Works and Utilities offers a rebate program to encourage residential customers to increase the energy efficiency of their homes. The rebates apply to qualifying installations in...

249

New Hampshire Electric Co-Op- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-Op provides a number of energy efficiency incentive programs for residential members. First, members can receive a free Home Energy Analysis through the [http://www.nhec...

250

Duke Energy (Gas and Electric)- Residential and Builder Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Duke Energy provides a financial incentive for its residential customers to purchase energy efficient HVAC products through the Smart $aver program. A $200 rebate is available for geothermal heat...

251

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)  

Broader source: Energy.gov [DOE]

This paper examines the behavioral assumptions that underlie California’s residential sector energy efficiency programs and recommends improvements that will help to advance the state’s ambitious greenhouse gas reduction goals.

252

Central Hudson Gas and Electric (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of between $25 and $600 for energy efficient equipment and measures. This is for residential electric customers who upgrade heating,...

253

SoCalGas- Non-Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Southern California Gas Company (SoCalGas) offers non-residential customer rebates to encourage energy efficiency. More information about rebates and equipment requirements can be found at the...

254

City of Statesville Electric Utility Department- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The City of Statesville Electric Utility Department offers rebates to its residential customers for installing new, energy efficient water heaters and heat pumps. To qualify for the heat pump...

255

Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

256

Baltimore Gas and Electric Company (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available...

257

Missouri River Energy Services (23 Member Cooperatives)- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Bright Energy Solutions offers energy efficiency cash incentive programs to [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=MN169F&r... residential] and business customers of...

258

FirstEnergy (West Penn Power)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

FirstEnergy (West Penn Power) offers a variety of incentives to Pennsylvania residential customers who are interested in upgrading to more energy efficient appliances and equipment. Rebates are...

259

Gibson Electric Membership Corporation- Residential Energy Efficient Water Heater Loan Program  

Broader source: Energy.gov [DOE]

Gibson Electric Membership Corporation provides loans to its residential customers to finance new, energy efficient water heaters. The loans are interest-free and can be paid off in as many as 3...

260

Efficient Engine-Driven Heat Pump for the Residential Sector  

Broader source: Energy.gov [DOE]

Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Efficient Residential Building Code for Arab Countries  

E-Print Network [OSTI]

This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents specially, the effectiveness...

Hanna, G. B.

2010-01-01T23:59:59.000Z

262

LADWP- Non-Residential Energy Efficiency Incentive Program  

Broader source: Energy.gov [DOE]

Los Angeles Department of Water and Power offers prescriptive and custom incentives to non-residential customers for the installation of energy saving measures, equipment, or systems that exceed...

263

Jackson EMC- Residential Energy Efficiency Rebate Program (Georgia)  

Broader source: Energy.gov [DOE]

Jackson Electric Membership Corporation (EMC) is an electric cooperative that serves 194,000 customers in 10 counties in northeast Georgia. To encourage its residential customers to adopt energy...

264

Four-County EMC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Four-County EMC offers the Comfort Loan Program to residential customers. This program offers financing for insulation upgrades, the replacement of an existing heating/cooling system with an...

265

Northern Plains EC- Residential and Commercial Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Northern Plains Electric Cooperative is a member-owned electric cooperative that serves customers in east-central North Dakota. This EMC offers a low-interest loan program residential and...

266

Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

267

Pee Dee Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for dual fuel heat pumps, geothermal heat pumps, and...

268

Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy  

E-Print Network [OSTI]

by bundling energy efficiency, solar photovoltaics (PV), andby bundling energy efficiency, solar photovoltaics (PV), andPhotovoltaics Residential Conservation Service Residential Energy Efficiency

Fuller, Merrian C.

2011-01-01T23:59:59.000Z

269

High Efficiency Integrated Package  

SciTech Connect (OSTI)

Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

Ibbetson, James

2013-09-15T23:59:59.000Z

270

Text-Alternative Version of Building America Webinar: Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database  

Broader source: Energy.gov [DOE]

This is the transcript of the Building America webinar, Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database, held on March 18, 2015.

271

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

272

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect (OSTI)

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

273

APS - Residential Energy Efficient Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipofthe conveyance ofResidential Savings Category

274

National Residential Efficiency Measures Database | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 CaseNatElInformationResidential

275

Gulf Power- Residential Energy Efficiency EarthCents Program  

Broader source: Energy.gov [DOE]

Gulf Power, owned by Southern Company, offers programs to make customers' homes more energy efficient through do-it-yourself or professionally installed efficiency measures. First, the utility...

276

Cedar Falls Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Cedar Falls Utilities (CFU) Energy Efficiency Rebate Program provides rebates for energy efficient heating and cooling equipment, thermal envelope improvements and appliance recycling. The...

277

Delta-Montrose Electric Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Delta-Montrose Electric Association (DMEA) offers a variety of rebates for customers who buy energy efficient appliances and equipment. Rebates are available for energy efficient electric water...

278

Implications of maximizing China's technical potential for residential end-use energy efficiency: A 2030 outlook from the bottom-up  

E-Print Network [OSTI]

5 4. Efficiency Improvement and Technology5 4.1. Appliance Technology7 4.2. Residential Heating Technology

Khanna, Nina

2014-01-01T23:59:59.000Z

279

ISSUANCE 2015-02-03: Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period  

Broader source: Energy.gov [DOE]

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

280

Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries  

E-Print Network [OSTI]

1 Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries Bradford Millsa * and Joachim Schleicha,b,c a Virginia Polytechnic Institute of measures of household energy use behavior are estimated using a unique dataset of approximately 5

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PROJECTED REGIONAL IMPACTS OF APPLIANCE EFFICIENCY STANDARDS FOR THE U.S. RESIDENTIAL SECTOR  

E-Print Network [OSTI]

was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building.S. for a large number of residential end-uses. This analysis assesses the potential energy, dollar, and carbon presented in this report represent lower bounds to the true benefits. Energy savings from the standards

282

Xcel Energy (Gas)- Residential Conservation Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

283

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network [OSTI]

Financial Incentives in the Residential Sector Stephane deFinancial Incentives in the Residential Sector Stephane desavings achieved in the residential sector. In contrast,

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

284

Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel  

E-Print Network [OSTI]

energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

Diamond, Richard

285

Idaho Falls Power- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the...

286

St. Louis County- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

St. Louis County SAVES offers loans to residents for energy efficiency improvements in owner-occupied, single-family homes. Loans are available for a variety of energy-efficiency improvements, as...

287

Mansfield Municipal Electric Department- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Mansfield Municipal Electric Department encourages energy efficiency through the ENERGY STAR Appliance Rebate Incentive Program. Cash rebates are offered for ENERGY STAR central air conditioners,...

288

Miami-Cass REMC- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Miami-Cass Rural Electric Membership Cooperative (MCREMC) is a member-owned electric distribution cooperative serving customers in central Indiana. MCREMC offers energy efficiency rebates to its...

289

Northern Municipal Power Agency- Residential Energy Efficiency Rebate Program (Minnesota)  

Broader source: Energy.gov [DOE]

Northern Municipal Power Agency, in association with the Minnkota Power Cooperative, Inc., offers a variety of rebates for the purchase of qualifying energy efficient equipment. Rebates are...

290

Empire Electric Association- Residential Energy Efficiency Credit Program  

Broader source: Energy.gov [DOE]

Empire Electric Association provides rebates for its commercial customers who upgrade to energy efficient lighting, HVAC equipment, and motors.  These rebates are offered in conjunction with [http:...

291

Redding Electric- Residential and Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Redding Electric Utility offers a variety of financial incentives for energy efficiency through its Earth Advantage Rebate Program. Rebates are for weatherization measures, HVAC equipment, and...

292

Corn Belt Energy Corporation- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Corn Belt Energy Corporation (CBEC), in association with the Wabash Valley Power Association, provides its customers with the "Power Moves" energy efficiency rebate program. Through this program,...

293

Idaho Falls Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Idaho Falls Power offers rebates to eligible customers on energy efficient HVAC measures and weatherization upgrades. Rebates are available on heat pumps, new manufactured homes and insulation....

294

Cuivre River Electric- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Cuivre River Electric Cooperative, through the Take Control and Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

295

Questar Gas- Residential Energy Efficiency Rebate Programs (Idaho)  

Broader source: Energy.gov [DOE]

Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers, water...

296

Anaheim Public Utilities- Residential Home Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Upon request, Anaheim Public Utilities will perform a free home efficiency inspection, in which they will recommend energy saving improvements, rebates and provide some free energy saving devices....

297

DOE Announces Webinars on Residential Energy Efficiency, Marine...  

Energy Savers [EERE]

cooperatives and other rural electricity providers. The EECLP supports energy efficiency, demand side management, and renewable energy generation. Register for the webinar....

298

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

SciTech Connect (OSTI)

The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

2010-05-03T23:59:59.000Z

299

Is Efficiency Enough? Towards a New Framework for Carbon Savingsin the California Residential Sector  

SciTech Connect (OSTI)

The overall implementation of energy efficiency in the United States is not adequately aligned with the environmental benefits claimed for efficiency, because it does not consider absolute levels of energy use, pollutant emissions, or consumption. In some ways, promoting energy efficiency may even encourage consumption. A more effective basis for environmental policy could be achieved by recognizing the degree and nature of the synchronization between environmental objectives and efficiency. This research seeks to motivate and initiate exploration of alternative ways of defining efficiency or otherwise moderating energy use toward reaching environmental objectives, as applicable to residential electricity use in California. The report offers three main recommendations: (1) produce definitions of efficiency that better integrate absolute consumption, (2) attend to the deeper social messages of energy efficiency communications, and (3) develop a more critical perspective on benefits and limitations of energy efficiency for delivering environmental benefits. In keeping with the exploratory nature of this project, the report also identifies ten questions for further investigation.

Moezzi, Mithra; Diamond, Rick

2005-10-01T23:59:59.000Z

300

EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ?Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings? and 10 CFR 435, ?Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings? Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods  

SciTech Connect (OSTI)

Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

Lunden, Melissa M.; Delp, William W.

2014-06-05T23:59:59.000Z

302

City of Duluth- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The City of Duluth offers an incentive program to residents upgrade household equipment or install energy efficiency measures. Contractor-installed improvements are eligible for a rebate worth 25%...

303

Southern Power District- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups. Contractors who...

304

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

replaced with heat pump water heaters (efficiency of 250%).electric storage water heaters and heat pumps as shown infor Electric Water Heaters and Heat Pumps End Use Elec WH HP

Letschert, Virginie

2010-01-01T23:59:59.000Z

305

Residential Energy Efficiency Research Planning Meeting Summary Report: Washington, D.C. - October 27-28, 2011  

SciTech Connect (OSTI)

This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

Not Available

2012-02-01T23:59:59.000Z

306

Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas  

E-Print Network [OSTI]

, and provides the technical and economic analysis, which may provide reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on the existing residential building in Beijing, the paper discusses the reconstruction plan of energy saving. The outside air temperature for heating in Beijing is -9 , and the outside mean temperature is -1.6 during the heating period of 125 days...

Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

2006-01-01T23:59:59.000Z

307

An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates  

E-Print Network [OSTI]

type, and HV AC and DHW system type were determined from the housing survey data by the National Association of Home Builders (NAHB 2003) and the U.S. Census Bureau (USCB 2002). The characteristics of the building envelope, efficiency of HV AC... of Improved Fenestration for Code-Compliant Residential Buildings in Hot and Humid Climates. M.S. Thesis. College Station, TX: Texas A&M University. NAHB. 2003. The Builders Practices Survey Reports. National Association of Home Builders. Upper Marlboro...

Malhotra, M.; Haberl, J.

308

Improving air handler efficiency in residential HVAC applications  

SciTech Connect (OSTI)

In continuing the development of energy efficiency standards, consideration has turned to air handlers used for heating and air conditioning of consumer residences. These air handlers have typical efficiencies of about 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. This study was undertaken to examine some of these performance issues, under carefully controlled laboratory conditions, to support potential regulatory changes. In addition, this study examined the performance of a prototype air handler fan assembly that offers the potential for substantial increases in performance. This prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL which was specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that, averaged over a wide range of operating conditions, the prototype air handler had about twice the efficiency of the standard air handler and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the space between the air handler and the cabinet it was installed in. Therefore any fan rating needs to be performed using the actual cabinet it will be used in.

Walker, Iain S.; Mingee, Michael D.; Brenner, Douglas E.

2003-08-01T23:59:59.000Z

309

High Energy Efficiency Air Conditioning  

SciTech Connect (OSTI)

This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

Edward McCullough; Patrick Dhooge; Jonathan Nimitz

2003-12-31T23:59:59.000Z

310

Residential Energy Efficiency Tax Credit | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergy Efficiency Tax Credit

311

DOE Announces Webinars on Residential Energy Efficiency, Marine and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergy EfficiencyDavis-BaconOffshore

312

The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership  

SciTech Connect (OSTI)

This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

2010-12-31T23:59:59.000Z

313

Technology Solutions and Programmatic Approaches: Driving Innovation in Residential Energy Efficiency Strategies  

Broader source: Energy.gov [DOE]

"Technology Solutions and Programmatic Approaches: Driving Innovation in Residential Energy Efficiency Strategies," by Kat A. Donnelly, July 11, 2012. Describes how the program relies on technology to enhance the program including a new, industry specific platform customized in collaboration with program partners. The programs including homeowners/customers, trade allies, staff, and program administrators. The tools are technology platform provides tools for the various partners involved in specifically designed to increase uptake of energy efficiency programs, as well as provide real-time tracking of impacts and other key metrics.

314

High efficiency incandescent lighting  

DOE Patents [OSTI]

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

315

High Efficiency, Clean Combustion  

SciTech Connect (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

316

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

L ABORATORY Japan’s Residential Energy Demand Outlook tol i f o r n i a Japan’s Residential Energy Demand Outlook toParticularly in Japan’s residential sector, where energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

317

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

ABORATORY Japan’s Residential Energy Demand Outlook to 2030o r n i a Japan’s Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

318

Residential Energy Efficiency Customer Service Best Practices Peer Exchange  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGY FOR HIGH

319

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Standards for Consumer Products: Room Air Conditioners,Energy Savings -- Residential Products Room Air Conditionersfor Consumer Products: Residential Central Air Conditioners

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

320

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

2008-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Behavioral Assumptions Underlying California Residential Sector...  

Broader source: Energy.gov (indexed) [DOE]

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

322

Residential Dishwashers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Performance and purchasing specifications for residential dishwashers under the FEMP-designated product program.

Not Available

2010-06-01T23:59:59.000Z

323

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

324

Realized and prospective impacts of U.S. energy efficiency standards for residential appliances: 2004 update  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. federal residential energy efficiency standards that became effective in the 1988-2001 period or will take effect by the end of 2007. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. We estimate that the considered standards will reduce residential primary energy consumption and CO{sub 2} emissions in 2020 by 8% compared to the levels expected without any standards. They will save a cumulative total of 34 quads by 2020, and 54 quads by 2030. The estimated cumulative net present value of consumer benefit amounts to $93 billion by 2020, and grows to $125 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts is 2.45 to 1. While the results of this study are subject to a fair degree of uncertainty, we believe that the general conclusions--DOE's energy efficiency standards save significant quantities of energy (and associated carbon emissions) and reduce consumers' net costs--are robust.

Meyers, Stephen; McMahon, James; McNeil, Michael

2005-06-24T23:59:59.000Z

325

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

2010-11-24T23:59:59.000Z

326

Realized and projected impacts of U.S. federal efficiency standards for residential appliances  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2001 period or will take effect by the end of 2007. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products. We estimate that the considered standards will reduce residential primary energy consumption and CO{sub 2} emissions in 2020 by 8-9% compared to the levels expected without any standards. They will save a cumulative total of 25-30 quads by the year 2015, and 60 quads by 2030. The estimated cumulative net present value of consumer benefit amounts to nearly $80 billion by 2015, and grows to $130 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts in the 1987-2050 period is 2.75:1. The cumulative cost of DOE's program to establish and implement the standards is in the range of $200-250 million.

Meyers, Stephen; McMahon, James; McNeil, Michael; Liu, Xiaomin

2002-06-01T23:59:59.000Z

327

Policy Supporting Energy Efficiency and Heat Pump Technology  

E-Print Network [OSTI]

Policy Supporting Energy Efficiency and Heat Pump Technology Antonio M. Bouza, DOE/BTP Technology Space Heating ResidentialMELs Residential Lighting ResidentialWashing & drying Residential Cooking Residential Refrigeration Residential Water Heating Residential Space Cooling Residential Space Heating 80

Oak Ridge National Laboratory

328

EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

329

Energy Efficiency and Conservation Loan Program Webinar Series: Residential Energy Efficiency Deep Dive  

Broader source: Energy.gov [DOE]

This webinar will cover the fundamentals of developing a sustainable program working to upgrade the energy efficiency of homes and buildings.

330

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

E-Print Network [OSTI]

Standard for Residential Lighting in Chile, 2010 USResidential General Service Lighting in Chile Virginie E.focus on a regulation for lighting that would ban the sale

Letschert, Virginie E.

2012-01-01T23:59:59.000Z

331

National Grid (Electric)- Residential Energy Efficiency Rebate Programs (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid residential electric customers in Upstate New York are eligible for several incentives offerings. Rebates are available for properly recycling inefficient refrigerators and for the...

332

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...  

Office of Environmental Management (EM)

will build on system concepts and technical solutions developed for an 11-ton packaged natural gas heat pump. Residential Multi-Function Gas Heat Pump More Documents &...

333

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Refrigerators, Refrigerator-Freezers, and Freezers,and Updates RESIDENTIAL Refrigerators Freezers Central Aira given year for refrigerators, freezers, clothes washers,

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

334

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

residential/commercial primary energy consumption and carbonthe savings in primary energy consumption using factors forsite energy to primary energy consumption. The model uses

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

335

INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE  

SciTech Connect (OSTI)

This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

Schipper, L.; Ketoff, A.; Meyers, S.

1981-05-01T23:59:59.000Z

336

Atmos Energy- Natural Gas and Weatherization Efficiency Program  

Broader source: Energy.gov [DOE]

Atmos Energy provides rebates to residential and commercial for natural gas heating equipment through the Kentucky High Efficiency Rebate Program. When Atmos Receives the Kentucky High-Efficiency...

337

Energy efficiency campaign for residential housing at the Fort Lewis army installation  

SciTech Connect (OSTI)

In FY1999, Pacific Northwest National Laboratory conducted an energy efficiency campaign for residential housing at the Fort Lewis Army Installation near Tacoma, Washington. Preliminary weather-corrected calculations show energy savings of 10{percent} from FY98 for energy use in family housing. This exceeded the project's goal of 3{percent}. The work was funded by the U.S. DOEs Federal Energy Management Program (FEMP), Office of Energy Efficiency and Renewable Energy. The project adapted FEMP's national ``You Have the Power Campaign'' at the local level, tailoring it to the military culture. The applied research project was designed to demonstrate the feasibility of tailored, research-based strategies to promote energy conservation in military family housing. In contrast to many energy efficiency efforts, the campaign focused entirely on actions residents could take in their own homes, as opposed to technology or housing upgrades. Behavioral change was targeted because residents do not pay their own utility bills; thus other motivations must drive personal energy conservation. This campaign augments ongoing energy savings from housing upgrades carried out by Fort Lewis. The campaign ran from September 1998 through August 1999. The campaign strategy was developed based on findings from previous research and on input from residents and officials at Fort Lewis. Energy use, corrected to account for weather differences, was compared with the previous year's use. Survey responses from 377 of Fort Lewis residents of occupied housing showed that the campaign was moderately effective in promoting behavior change. Of those who were aware of the campaign, almost all said they were now doing one or more energy-efficient things that they had not done before. Most people were motivated by the desire to do the right thing and to set a good example for their children. They were less motivated by other factors.

AH McMakin; RE Lundgren; EL Malone

2000-02-23T23:59:59.000Z

338

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

McNeil, Michael A.

2010-01-01T23:59:59.000Z

339

About the Better Buildings Residential Network | Department of...  

Office of Environmental Management (EM)

About the Better Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and...

340

An analysis of maximum residential energy-efficiency in hot and humid climates  

E-Print Network [OSTI]

- 3: Case-Studies of High-Performance Homes...........................................................151 Table A- 4: Simulation Software for Energy-Efficient Building Design..................................152 Table A- 5: Determination... studies of high performance homes and a review of the simulation software for energy-efficient building design. Section 3 discusses the significance of the work and its contribution to the energy- efficient building design and research. The scope...

Malhotra, Mini

2006-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

AIR FLOW DISTRIBUTION IN A HIGH-RISE RESIDENTIAL Helmut E. Feustel and Richard C. Diamond  

E-Print Network [OSTI]

AIR FLOW DISTRIBUTION IN A HIGH-RISE RESIDENTIAL BUILDING Helmut E. Feustel and Richard C. Diamond Lawrence Berkeley National Laboratory, Berkeley, USA ABSTRACT The provision of ventilation air for high-rise multifamily housing has plagued retrofit practitioners and researchers alike. We have been studying the air

Diamond, Richard

342

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

SciTech Connect (OSTI)

Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.

Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

2011-06-01T23:59:59.000Z

343

Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector  

SciTech Connect (OSTI)

The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

McNeil, Michael A.; Letschert, Virginie E.

2007-05-01T23:59:59.000Z

344

Overview of existing residential energy-efficiency rating systems and measuring tools  

SciTech Connect (OSTI)

Three categories of rating systems/tools were identified: prescriptive, calculational, and performance. Prescriptive systems include rating systems that assign points to various conservation features. Most systems that have been implemented to date have been prescriptive systems. The vast majority of these are investor-owned utility programs affiliated with the National Energy Watch program of the Edison Electric Institute. The calculational category includes computational tools that can be used to estimate energy consumption. This estimate could then be transformed, probably by indexing, into a rating. The available computational tools range from very simple to complex tools requiring use of a main-frame computer. Performance systems refer to residential energy-efficiency ratings that are based on past fuel consumption of a home. There are few of these systems. For each identified system/tool, the name, address, and telephone number of the developer is included. In addition, relevant publications discussing the system/tool are cited. The extent of field validation/verification of individual systems and tools is discussed. In general, there has been little validation/verification done. A bibliography of literature relevant to the use and implementation of a home energy rating system is also included.

Hendrickson, P.L.; Garrett-Price, B.A.; Williams, T.A.

1982-10-01T23:59:59.000Z

345

Transforming the market for residential windows: design considerations for DOE's Efficient Window Collaborative  

SciTech Connect (OSTI)

Market adoption of recent, commercially available technological advances that improve the energy performance of windows will lead to immediate economic and energy savings benefits to the nation. This paper is a scoping study intended to inform the design of a major DOE initiative to accelerate market adoption of these windows in the residential sector. We describe the structure of the US residential window market and the interests of the various market players. We then briefly review five recent market transformation initiatives. Finally, we summarize our findings in a list of considerations we believe will be important for the DOE's initiative to transform the US residential window market.

Eto, J.; Arasteh, D.; Selkowitz, S.

1998-08-01T23:59:59.000Z

346

Planning for an energy-efficient future: The experience with implementing energy conservation programs for new residential and commercial buildings: Volume 1  

SciTech Connect (OSTI)

This report is one of a series of program experience reports that seek to synthesize current information from both published and unpublished sources to help utilities, state regulatory commissions, and others to identify, design, and manage demand-side programs. This report evaluates the experience with implementing programs promoting energy efficiency in new residential and commercial construction. This investigation was guided by our perspective on how programs address the barriers to widespread adoption of energy-efficient design and better end-use technologies in new buildings. We considered four types of barriers: lack of information, high initial costs, degree of technological development, and perceived risk. We developed a typology that reflects different approaches to overcome these barriers to energy-efficient construction. 234 refs., 5 tabs.

Vine, E.; Harris, J.

1988-09-01T23:59:59.000Z

347

National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid’s High Efficiency Heating Rebates are offered to gas heating customers in the Upstate New York counties of Albany, Columbia, Fulton, Herkimer, Jefferson, Madison, Montgomery, Oneida,...

348

National Grid (Electric)- Non-Residential Energy Efficiency Program (Upstate New York)  

Broader source: Energy.gov [DOE]

National Grid’s Non-Residential Program is for electric business customers in upstate New York. Incentives are available for both small commercial and large commercial customers in the Upstate New...

349

Sustainability and residential development : a guide to cost-efficient green building technologies  

E-Print Network [OSTI]

Given the upward trend of global energy consumption in recent decades, it has become imperative that countries reduce the amount of energy used on an annual basis. In America, the residential sector is one of the primary ...

Determan, Kelley Victoria

2014-01-01T23:59:59.000Z

350

Preliminary/Sample Residential EE Loan Term Sheet and Underwriting...  

Broader source: Energy.gov (indexed) [DOE]

sample or preliminary term sheet for single family residential energy efficiency loans. Author: Energy Efficiency Finance Corp. PreliminarySample Residential Energy Efficiency...

351

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network [OSTI]

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

352

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Broader source: Energy.gov (indexed) [DOE]

428114 Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Daniel Flowers (PI), Salvador Aceves, Nicholas Killingsworth, Matthew McNenly, Thomas...

353

Tacoma Power- Residential Weatherization Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power helps residential customers increase the energy efficiency of homes through the utility's residential weatherization program. Weatherization upgrades to windows are eligible for an...

354

High Efficiency Engine Technologies Program  

SciTech Connect (OSTI)

Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

Rich Kruiswyk

2010-07-13T23:59:59.000Z

355

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

SciTech Connect (OSTI)

A large variety of energy-efficiency policy measures exist. Some are mandatory, some are informative, and some use financial incentives to promote diffusion of efficient equipment. From country to country, financial incentives vary considerably in scope and form, the type of framework used to implement them, and the actors that administer them. They range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-points rewarding customers for buying highly efficient appliances (Japan). All have the primary objective of transforming the current market to accelerate the diffusion of efficient technologies by addressing up-front cost barriers faced by consumers; in most instances, efficient technologies require a greater initial investment than conventional technologies. In this paper, we review the different market transformation measures involving the use of financial incentives in the countries belonging to the Major Economies Forum. We characterize the main types of measures, discuss their mechanisms, and provide information on program impacts to the extent that ex-ante or ex-post evaluations have been conducted. Finally, we identify best practices in financial incentive programs and opportunities for coordination between Major Economies Forum countries as envisioned under the Super Efficient Appliance Deployment (SEAD) initiative.

Can, Stephane de la Rue du; Shah, Nihar; Phadke, Amol

2011-07-13T23:59:59.000Z

356

Enabling High Efficiency Ethanol Engines  

SciTech Connect (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

357

The effect of hardware configuration on the performance of residential air conditioning systems at high outdoor ambient temperatures  

E-Print Network [OSTI]

A study was performed which investigated the effect of hardware configuration on air conditioning cooling system performance at high outdoor temperatures. The initial phase of the investigation involved the testing of ten residential air...

Bain, Joel Alan

1995-01-01T23:59:59.000Z

358

The potential for electricity efficiency improvements in the US Residential Sector  

SciTech Connect (OSTI)

This study represents the most elaborate assessment to date of US residential sector electricity improvements. Previous analyses have estimated the conservation potential for other countries, states, or individual utility service territories. As concern over greenhouse gas emissions has increased, interest has grown in estimates of conservation potential for the US residential sector as a whole. The earliest detailed estimate of US conservation potential is now out of date, while more recent estimates are less detailed than is desirable for engineering-economic estimates of the costs of reducing carbon emissions. In this paper, we first describe the methodology for creating supply curves of conserved energy, and then illustrate the subtleties of assessing the technical conservation potential. Next we present the data and forecasts used in this assessment, including costs, baseline thermal characteristics, energy use, and energy savings. Finally, we present the main results and conclusions from the analysis, and discuss future work. 102 refs., 7 figs., 16 tabs.

Koomey, J.G.; Atkinson, C.; Meier, A.; McMahon, J.E.; Boghosian, S.; Atkinson, B.; Turiel, I.; Levine, M.D.; Nordman, B.; Chan, P.

1991-07-01T23:59:59.000Z

359

Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas  

E-Print Network [OSTI]

. Mini Malhotra, and Mr. Mushtaq Ahmed who provided 18 For the residential models the National Association of Home Builder?s Builder survey (NAHB 2002) was used for pre... Laboratory, University of California at Berkeley, Berkeley, CA, (March). NAHB 2002. Home Builder?s Surveys, National Association of Home Builders, 1201 15th Street NW, Washington, D.C., 20005. NOAA 1993. Automated Surface Observing System Guide for Pilots...

Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

2004-01-01T23:59:59.000Z

360

Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas  

E-Print Network [OSTI]

. Mini Malhotra, and Mr. Mushtaq Ahmed who provided 18 For the residential models the National Association of Home Builder?s Builder survey (NAHB 2002) was used for pre... Laboratory, University of California at Berkeley, Berkeley, CA, (March). NAHB 2002. Home Builder?s Surveys, National Association of Home Builders, 1201 15th Street NW, Washington, D.C., 20005. NOAA 1993. Automated Surface Observing System Guide for Pilots...

Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

2006-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network [OSTI]

Document (TSD): Energy Efficiency Standards for Consumerthe Assistant Secretary for Energy Efficiency and RenewableSummer Study on Energy Efficiency in Buildings. Asilomar,

Lekov, Alex

2011-01-01T23:59:59.000Z

362

EECLP Webinar Series- #4 Residential Energy Efficiency Deep Dive, Part Two  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Efficiency part two will focus on how to implement specific aspects of an energy efficiency program, based upon needs expressed in the “Energy Efficiency Overview” webinar.

363

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network [OSTI]

of Electricity Energy Efficiency Programs. ” Resource forWho Should Administer Energy-Efficiency Programs? Berkeleyresources/state-energy-efficiency-policy-briefs. Caracino

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

364

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

SciTech Connect (OSTI)

With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

Letschert, Virginie; McNeil, Michael A.

2008-05-13T23:59:59.000Z

365

Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler  

SciTech Connect (OSTI)

The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

Parker, Danny S; Sherwin, John R; Raustad, Richard

2014-04-10T23:59:59.000Z

366

Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report  

SciTech Connect (OSTI)

The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

Aglan, H.

2005-08-04T23:59:59.000Z

367

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. ace012aceves2010o.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

368

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network [OSTI]

Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

Sathaye, Jayant

2011-01-01T23:59:59.000Z

369

15% Above-Code Energy Efficiency Measures for Residential Buildings in Texas  

E-Print Network [OSTI]

Emissions Savings (lbs/year) Combined Estimated Cost ($) Simple Estimated Payback (yrs) 0.025 11.1 30.1- Combined Ozone Season Period NOx Emissions Savings (lbs/day) 28.5-16.3 6.7 - 34.9 ESL-TR-07-08-02 Energy Systems Laboratory - August 2007 7... individual measures above for specific savings * Energy Cost: Electricity cost = $0.15/kWh Natural gas cost = $1.00/therm 4. Savings depend on fuel mix used. See detailed writeup (Building Description) * Building type: Residential * Gross area: 2...

Haberl, J. S.; Culp, C.; Yazdani, B.

370

Efficiency First - Contractor Outreach: Design & Implementation...  

Energy Savers [EERE]

Efficiency First - Contractor Outreach: Design & Implementation for Residential Retrofit Programs Efficiency First - Contractor Outreach: Design & Implementation for Residential...

371

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network [OSTI]

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin...

Breedlove, C. W.

372

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Peer Evaluation ace012aceves2011o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development...

373

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network [OSTI]

9 Hot-Water Oil Boiler LCC Analysis-Efficiency Levels and10 Hot-Water Gas Boiler LCC Analysis-Efficiency Levels andfurnace and boiler energy-efficiency standards. Determining

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

374

Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.

Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

2014-06-18T23:59:59.000Z

375

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network [OSTI]

energy conservation standard in terms of the Annual Fuel Utilization Efficiency (AFUE) descriptor at a minimum

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

376

Cheyenne Light, Fuel and Power (Gas)- Residential Energy Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power offers incentives to gas customers who construct new energy efficient homes or install energy efficient equipment in existing homes. Incentives are available for home...

377

RESIDENTIAL EXCHANGE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

establishes the right of Pacific Northwest electric utilities to participate in the Residential Exchange Program that provides wholesale power cost benefits for residential and...

378

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Report on Potential Impact of Possible Energy Efficiencyenergy saver”) lamps based on a report analyzing potential lamp efficiency

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

379

Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy  

SciTech Connect (OSTI)

Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

Fuller, Merrian C.

2010-09-20T23:59:59.000Z

380

Enabling High Efficiency Clean Combustion  

Broader source: Energy.gov (indexed) [DOE]

penalty associated with aftertreatment 3% improvement in open cycle efficiency (turbo, EGR system, etc.) 8 This presentation does not contain any proprietary or...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network [OSTI]

Conservation and Renewable Energy, Building EquipmentEnergy Efficiency and Renewable Energy, Building Equipmentand Renewable Energy, Office of Building Technologies, State

Koomey, J.G.

2010-01-01T23:59:59.000Z

382

RushShelby Energy- Residential and Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

RushShelby Energy provides customers with incentives to help offset the cost of installing energy efficient equipment in participating homes and facilities. Rebates are available for energy...

383

Carbon Power and Light- Residential and Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Carbon Power and Light, in collaboration with Tri-State Generation and Transmission Association, offers financial incentives for members to increase the energy efficiency of homes and facilities....

384

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

385

Seattle City Light- Multi-Family Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Seattle City Light provides incentives for its multi-family housing customers to increase their energy efficiency. Rebates are offered for common area lighting and weatherization measures including...

386

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

387

Detroit Public Lighting Department- Residential Energy Wise Program  

Broader source: Energy.gov [DOE]

The Detroit Public Lighting Department (PLD) offers residential customers rebates for energy efficient lights. In addition, low-income residential customers may qualify for free compact fluorescent...

388

High efficiency turbine blade coatings.  

SciTech Connect (OSTI)

The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

Youchison, Dennis L.; Gallis, Michail A.

2014-06-01T23:59:59.000Z

389

Enabling High Efficiency Clean Combustion  

Broader source: Energy.gov (indexed) [DOE]

for Efficiency Improvement Controls Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Phase 2 0 2 4 6 8 0 0.2 0.4...

390

sttesuhcassa RESIDENTIAL  

E-Print Network [OSTI]

University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

Schweik, Charles M.

391

sttesuhcassa RESIDENTIAL  

E-Print Network [OSTI]

Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

Mountziaris, T. J.

392

High Efficiency, High Performance Clothes Dryer  

SciTech Connect (OSTI)

This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.

Peter Pescatore; Phil Carbone

2005-03-31T23:59:59.000Z

393

Development of a Residential Code-compliant Web-based Energy Efficiency Calculator for Texas  

E-Print Network [OSTI]

Since 2001, Texas has been proactive in initiating clean air and energy efficiency-in buildings policies. The Texas Emissions Reduction Plan legislation of 2001 mandated statewide adoption of energy codes; created a 5% annual energy savings goal...

Cordes, J.; O'Neal, S.; Marshall, K.; Montgomery, C.; Stackhouse, R.; Mukhopadhyay, J.; Liu, Z.; McKelvey, K.; Yazdani, B.; Haberl, J.; Culp, C.; Gilman, D.

394

Webinar: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

Video recording and text version of the Fuel Cell Technologies Office webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015.

395

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

of Residential Source Heat Pump Gas Furnace HeatingResidential Heating Equipment (1) Database Year Minimum Type Code Fuel Effective (2) Efficiency (3) Heat Pumpheating technology of choice for almost 40% of the residential sector. Heat pumps

Wenzel, T.P.

2010-01-01T23:59:59.000Z

396

A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh  

E-Print Network [OSTI]

October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys technology have significantly reduced window-related energy use and peak demand in residential buildings

397

A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency  

SciTech Connect (OSTI)

The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

Stovall, Therese K [ORNL; Baxter, Van D [ORNL

2008-03-01T23:59:59.000Z

398

Chelan County PUD- Residential Weatherization Rebate Program  

Broader source: Energy.gov [DOE]

Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

399

Meade County RECC- Residential Rebate Program  

Broader source: Energy.gov [DOE]

Meade County RECC offers rebates to residential members who install energy-efficient systems and equipment. New homebuilders can also access rebates for installing energy-efficient equipment...

400

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

2014-03-01T23:59:59.000Z

402

An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners  

E-Print Network [OSTI]

LABORATORY NBS NATIONAL BUREAU OF STANDARDS NECPA NATIONAL ENERGY CONSERVATION POLICY ACT OEM ORIGINAL EQUIPMENT MANUFACTURERS ORNL OAK RIDGE NATIONAL LABORATORY PLF PART LOAD FACTOR SAI SCIENCE APPLICATION INCORPORATED SEER SEASONAL ENERGY EFFICIENCY RATIO... of variable speed units is discussed. The methodology includes: (1) making multiple runs of the Oak Ridge National Laboratory (ORNL) steady-state heat pump model, (2) making reasonable assumptions on the degradation factors, and (3) using a draft version...

O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

1986-01-01T23:59:59.000Z

403

PECO Energy (Gas) – Heating Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

404

Edmond Electric- Residential Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

405

An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986  

E-Print Network [OSTI]

EQUIPMENT MANUFACTURERS ORNL OAK RIDGE NATIONAL LABORATORY PLF PART LOAD FACTOR SAI SCIENCE APPLICATION INCORPORATED SEER SEASONAL ENERGY EFFICIENCY RATIO SF SQUARE FEET SHF SENSIBLE HEATING FACTOR TDB DRY BULB TEMPERATURE TON 12000 BTU/HR TXV THERMAL... Systems 6-13 5 Ton Package Systems 6-22 References 6-22 CONCLUSIONS AND RECOMMENDATIONS 7-1 iii APPENDIX * PAGE A ORNL MODEL OUTPUT A-1 B SEASONAL PERFORMANCE MODEL DESCRIPTION B-1 C OPTIMIZATION PROCEDURE C-1 iv CHAPTER 1 INTRODUCTION The National Energy...

O'Neal, D. L.; Murphy, W. E.

1985-01-01T23:59:59.000Z

406

Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector  

E-Print Network [OSTI]

Energy consumption from the residential sector is a complex sociotechnical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM...

Kelly, Scott

407

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

408

Efficient high density train operations  

DOE Patents [OSTI]

The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

Gordon, Susanna P. (Oakland, CA); Evans, John A. (Hayward, CA)

2001-01-01T23:59:59.000Z

409

Kosciusko REMC- Residential Geothermal and Air-source Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters....

410

Energize New York – Residential Energy Efficiency Market Transformation in New York*  

SciTech Connect (OSTI)

Energize New York (ENY) is focused on addressing known barriers to widespread energy efficiency (EE) adoption by property owners. In simple terms ENY works to; 1) increase homeowner trust by using known and trusted community leaders to communicate their own positive experiences with EE and ENY, 2) reduce friction points by integrating support staff and creative use of technology that ease a homeowner’s way forward through the EE upgrade process, 3) increase homeowner knowledge and trust of specific EE benefits through access to the ENY energy coach, 4) provide information on available financing options that show benefits (e.g. positive cash flow), and 5) provide tools and mechanisms that give homeowners greater comfort in evaluating and selecting the right contractor. These five fundamental program aspects are supported by a hyper-local communications and outreach model and a “lead by example” philosophy that requires community leaders to step forward and model energy efficiency behavior by example. In the communities where the program has successfully engaged local leadership and “trusted community sources” there has been a significant increase in the uptake of energy efficiency work. Quantitatively this growth translated into an increase of 240% in completed Home Performance projects from the two year pre-pilot period (2009-10) to the two year post-pilot period (2012-13). Additionally, the program has seen measureable increases in the output and performance of contractors who are members of the Energize Comfort Corps, a program innovation which included a subset of the NYSERDA approved and Building Performance Institute accredited home performance contractors. This innovation, launched in the later stages of the pilot, is paired with the Energize Contractor Ratings Index (CRI) and helps frame the provider market by giving homeowners a mechanism to provide and receive feedback on their contractor experience. The data incorporated into the CRI along with the ECC selection process, has measurably reduced a key decision barrier (“which contractor should I use”) for homeowners engaged in the EE decision making process.

Bregman, Thomas M.

2013-12-31T23:59:59.000Z

411

Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO  

SciTech Connect (OSTI)

Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

Zimring, Mark

2011-06-23T23:59:59.000Z

412

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

413

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

414

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

415

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

416

Very High Efficiency Solar Cell Modules  

SciTech Connect (OSTI)

The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

2009-01-01T23:59:59.000Z

417

Webinar: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

418

Highly Efficient Solar Thermochemical Reaction Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your...

419

Multicolor, High Efficiency, Nanotextured LEDs  

SciTech Connect (OSTI)

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Jung Han; Arto Nurmikko

2011-09-30T23:59:59.000Z

420

Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings  

SciTech Connect (OSTI)

Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

Pragasen Pillay

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect (OSTI)

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

422

Residential Mail Procedures Residential Mail Services  

E-Print Network [OSTI]

Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

Buehrer, R. Michael

423

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

SciTech Connect (OSTI)

In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-10-10T23:59:59.000Z

424

Assessment of Impacts from Adopting the 2009 International Energy Conservation Code for Residential Buildings in Michigan  

SciTech Connect (OSTI)

Energy and economic analysis comparing the current Michigan residential energy efficiency code to the 2009 IECC.

Lucas, Robert G.

2009-10-18T23:59:59.000Z

425

Lincoln Electric System (Residential)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

426

Better Buildings Residential Network Program Sustainability Series...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Call: Connecting the Dots Between the Real Estate Market and Residential Energy Efficiency Featuring Host: Rich Dooley, Arlington County, VA Call Slides and Discussion Summary...

427

Black Hills Power- Residential Customer Rebate Program  

Broader source: Energy.gov [DOE]

Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

428

Covered Product Category: Residential Electric Resistance Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets Federal efficiency...

429

East Central Electric Cooperative- Residential Rebate Program  

Broader source: Energy.gov [DOE]

East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

430

Unregulated Emissions from High-Efficiency Clean Combustion Modes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

431

Integrated Solar Thermochemical Reaction System for High Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of...

432

High Efficiency GDI Engine Research, with Emphasis on Ignition...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency GDI Engine Research, with Emphasis on Ignition Systems High Efficiency GDI Engine Research, with Emphasis on Ignition Systems 2013 DOE Hydrogen and Fuel Cells...

433

Tailored Materials for High Efficiency CIDI Engines (Caterpillar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program...

434

Vehicle Technologies Office: Materials for High-Efficiency Combustion...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve...

435

Energy Efficiency Opportunities in Federal High Performance Computing...  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

436

Los Alamos develops new technique for growing high-efficiency...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based...

437

Development of a High-Efficiency Zonal Thermoelectric HVAC System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

438

Progress toward Development of a High-Efficiency Zonal Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

439

Challenging Conventional Wisdom: A Clean and Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston...

440

High Efficiency Microturbine with Integral Heat Recovery - Presentatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

442

Energy-Efficient Melting and Direct Delivery of High Quality...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

443

Highly Energy Efficient Directed Green Liquor Utilization (D...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

444

Electrical and Thermal Transport Optimization of High Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on...

445

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless...

446

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous...

447

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

448

Syngas Enhanced High Efficiency Low Temperature Combustion for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

449

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

450

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Presentation from the U.S....

451

Low-Temperature Combustion Demonstrator for High-Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

452

High-Efficiency Clean Combustion Engine Designs for Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines Presentation from...

453

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

454

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

455

Glass-like thermal conductivity in high efficiency thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

456

Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project  

SciTech Connect (OSTI)

Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of these programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.

Vine, E.

1995-08-01T23:59:59.000Z

457

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect (OSTI)

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

458

Residential Mechanical Precooling  

SciTech Connect (OSTI)

This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

German, A.; Hoeschele, M.

2014-12-01T23:59:59.000Z

459

High-efficiency silicon concentrator cell commercialization  

SciTech Connect (OSTI)

This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

Sinton, R.A.; Swanson, R.M. [SunPower Corp., Sunnyvale, CA (US)

1993-05-01T23:59:59.000Z

460

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

SciTech Connect (OSTI)

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High Efficiency Engine Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency

462

High Efficiency Colloidal Quantum Dot Phosphors  

SciTech Connect (OSTI)

The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of thousands of hours of LED operation. Once the LED phosphor lifetime specifications are met, these nanocrystals will enable white LEDs for solid state lighting to simultaneously have increased efficiency and improved light quality, in addition to enabling the creation of custom light spectrums. These improvements to white LEDs will help accelerate the adoption of SSL, leading to large savings in US and worldwide energy costs.

Kahen, Keith

2013-12-31T23:59:59.000Z

463

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

464

Charge Trapping in High Efficiency Alternating Copolymers: Implication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in...

465

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

466

High-efficiency turquoise-blue electrophosphorescence from a...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efficiency turquoise-blue electrophosphorescence from a Pt(II)-pyridyltriazolate complex in phosphine oxide host. High-efficiency turquoise-blue electrophosphorescence from a...

467

High efficiency and low roll-off blue phosphorescent organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. High efficiency and low roll-off blue phosphorescent organic...

468

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

469

INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS  

E-Print Network [OSTI]

new buildings incorporating energy- efficient designs, Theenergy-efficient residential, studied as possible models design.

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

470

Florida City Gas- Residential Energy Smart Rebate Program  

Broader source: Energy.gov [DOE]

Florida City Gas (FCG) encourages residential customers to become more energy efficient by offering various rebates for the purchase and installation of efficient natural gas appliances. Rebate...

471

High Efficiency Low Emission Refrigeration System  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann GeorgeLogging| DepartmentScience EducationHeyHigh Efficiency

472

High Efficiency Cold Climate Heat Pump  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency Cold Climate

473

High-efficiency concentrator silicon solar cells  

SciTech Connect (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

474

Residential HVAC Indoor Air Quality(ASHRAE 62.2)  

E-Print Network [OSTI]

Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

475

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect (OSTI)

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

476

Supporting Photovoltaics in Market-Rate Residential New Construction: A Summary of Programmatic Experience to Date and Lessons Learned  

E-Print Network [OSTI]

efficiency initiatives for residential new construction. At a minimum, creating the appearance of a Supporting Photovoltaics

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

477

Lane Electric Cooperative- Residential and Commercial Weatherization Grant Program  

Broader source: Energy.gov [DOE]

Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a residential cash grant for 25% of measure costs up to $1,000,...

478

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

479

Exploring Cost-Effective, High Performance Residential Retrofits for Affordable Housing in the Hot Humid Climate  

SciTech Connect (OSTI)

In 2009, a Department of Energy Building America team led by the Florida Solar Energy Center began working with partners to find cost-effective paths for improving the energy performance of existing homes in the hot humid climate. A test-in energy audit and energy use modeling of the partner's proposed renovation package was performed for 41 affordable and middle income foreclosed homes in Florida and Alabama. HERS1 Indices ranged from 92 to 184 with modeled energy savings ranging from 3% to 50% (average of 26%). Analyses and recommendations were discussed with partners to encourage more efficient retrofits, highlight health and safety issues, and gather feedback on incremental cost of high performance measures. Ten completed renovations have modeled energy savings ranging from 9% to 48% (average 31%.) This paper presents the project's process including our findings thus far and highlights of the first home to meet the target HERS Index of 70.

McIlvaine, Janet; Sutherland, Karen; Schleith, Kevin; Chandra, Subrato

2010-08-27T23:59:59.000Z

480

High efficiency Brayton cycles using LNG  

DOE Patents [OSTI]

A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

Morrow, Charles W. (Albuquerque, NM)

2006-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "residential high efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for Supercritical...

482

A University Consortium on Efficient and Clean High-Pressure...  

Broader source: Energy.gov (indexed) [DOE]

Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines 2010 DOE Vehicle Technologies and...

483

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

484

Occupational and residential 60-Hz electromagnetic fields and high-frequency electric transients: exposure assessment using a new dosimeter  

SciTech Connect (OSTI)

One problem that has limited past epidemiologic studies of cancer and exposure to extremely low-frequency (0-100 Hz) electric and magnetic fields has been the lack of adequate methods for assessing personal exposure to these fields. A new 60-Hz electromagnetic field dosimeter was tested to assess occupational and residential exposures of a group of electrical utility workers and a comparison background group over a 7-day period. Comparing work periods only, utility workers' exposures were significantly higher than background levels by a factor of about 10 for electric (E) and magnetic (B) fields and by a factor of 171 for high-frequency transient electric (HFTE) fields. When overall weekly time-weighted averages combining work and nonwork exposures were compared, ratios of the exposed to background groups were lower. B and HFTE exposure ratios remained statistically significant, with values of 3.5 and 58, respectively, whereas the electric field exposure ratio was no longer significant, with a value of 1.7. E-field exposures of the background group were the highest during the nonwork period, probably reflecting the use of electrical appliances at home. Residential E- and B-field exposures were in the same range as published results from other surveys, whereas occupational E-field exposures tended to be lower than exposures reported in other studies. The high variability associated with occupational exposures probably accounts for the latter discrepancy. Worker acceptance of wearing the dosimeter was good: 95% of participants found it to be of little or no inconvenience while at work. At home, 37% found the device to be inconvenient in its present form but would not object to wearing a slightly smaller and lighter dosimeter.

Deadman, J.E.; Camus, M.; Armstrong, B.G.; Heroux, P.; Cyr, D.; Plante, M.; Theriault, G.

1988-08-01T23:59:59.000Z

485

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998throughThousand CubicWashington Natural GasResidential Residential

486

High Efficiency Organic Light Emitting Devices for Lighting  

SciTech Connect (OSTI)

Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

So, Franky; Tansu, Nelson; Gilchrist, James

2013-06-30T23:59:59.000Z

487

Simulation of High Efficiency Clean Combustion Engines and Detailed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance...

488

Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector  

E-Print Network [OSTI]

2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual’ electricity consumption by country/region

McNeil, Michael A.; Letschert, Virginie E.

2008-01-01T23:59:59.000Z

489

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

E-Print Network [OSTI]

Products: Central Air Conditioners and Heat Pumps EnergyResidential Central Air Conditioners and Heat Pumps.Products: Central Air Conditioners and Heat Pumps Energy

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-01-01T23:59:59.000Z

490

Evaluation of advanced technologies for residential appliances and residential and commercial lighting  

SciTech Connect (OSTI)

Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

1995-01-01T23:59:59.000Z

491

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS  

E-Print Network [OSTI]

) · Solar (Solar thermal, Photovoltaic) · Renewables (Hydropower, Geothermal, Wind, Biomass) Nuclear power power generation ­ Electrolysis · Overall efficiency approximately 25-30% (efficiency of electric power · Splits water at moderate temperatures (~700-900°C vs ~5,000°C for thermolysis) · Plant efficiencies

492

White LED with High Package Extraction Efficiency  

SciTech Connect (OSTI)

The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

Yi Zheng; Matthew Stough

2008-09-30T23:59:59.000Z

493

Tailored Materials for High Efficiency CIDI Engines  

SciTech Connect (OSTI)

The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

Grant, G.J.; Jana, S.

2012-03-30T23:59:59.000Z

494

Residential Energy-Efficiency Equipment Shown to be a Good Investment for U.S. Navy (Fact Sheet)  

SciTech Connect (OSTI)

A two-year project between the National Renewable Energy Laboratory (NREL) and the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) to demonstrate energy efficiency technologies at bases in Hawaii and Guam resulted in the identification of several promising options for reducing energy use and costs, including whole-house energy efficiency retrofits.

Not Available

2014-04-01T23:59:59.000Z

495

Graphene-Polypyrrole Nanocomposite as a Highly Efficient and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4- Graphene-Polypyrrole Nanocomposite as a Highly...

496

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

497

High SO2 Removal Efficiency Testing  

SciTech Connect (OSTI)

This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 January through 31 March 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s (NYSEG) Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is planned at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the second quarter of calendar year 1997. Section 5 contains a brief acknowledgement.

Gary Blythe

1997-04-23T23:59:59.000Z

498

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Volvo; multi-zone cycle simulation, OpenFOAM model development Bosch; High Performance Computing of HCCISI transition Delphi; direct injection GE Research; new...

499

The New European GreenBuilding Programme to Promote Energy Efficiency Investments in non-Residential Buildings  

E-Print Network [OSTI]

redesigned based on a concept that maximises comfort and efficiency. Fresh air 8 Source: P. Campanile -CRF Italy #0;5#0;5 Renewable Energies CRF Canteen: Efficiency of the climatisation Cogenerator 32-41% (*)2,3-3,1 tep3,4-5,2 tepPrimary energy monthly10...-13% due to the desiccant22-28% improved plant efficiencySolar roofEnthalpicwheelTo the kitchenHeat PumpFresh airAir treatment unit 10 Source: P. Campanile -CRF Italy #0;5#0;5 Renewable Energies CorsoVeneziaMilano?VRF (Variable Refrigerant Flow) inverter...

Adnot, J.; Bertoldi, P.

2004-01-01T23:59:59.000Z

500

Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development  

SciTech Connect (OSTI)

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Hewes, T.; Peeks, B.

2013-11-01T23:59:59.000Z